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Abstract

We review and re-examine the description and separation of the spin and orbital

angular momenta (AM) of an electromagnetic field in free space. While the spin

and orbital AM of light are not separately meaningful physical quantities in

orthodox quantum mechanics or classical field theory, these quantities are rou-

tinely measured and used for applications in optics. A meaningful quantum

description of the spin and orbital AM of light was recently provided by several

authors, which describes separately conserved and measurable integral values of

these quantities. However, the electromagnetic field theory still lacks corre-

sponding locally conserved spin and orbital AM currents. In this paper, we

construct these missing spin and orbital AM densities and fluxes that satisfy the

proper continuity equations. We show that these are physically measurable and

conserved quantities. These are, however, not Lorentz-covariant, so only make

sense in the single laboratory reference frame of the measurement probe. The

fluxes we derive improve the canonical (nonconserved) spin and orbital AM

fluxes, and include a ‘spin–orbit’ term that describes the spin–orbit interaction

effects observed in nonparaxial optical fields. We also consider both standard

and dual-symmetric versions of the electromagnetic field theory. Applying the

general theory to nonparaxial optical vortex beams validates our results and

allows us to discriminate between earlier approaches to the problem. Our
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treatment yields the complete and consistent description of the spin and orbital

AM of free Maxwell fields in both quantum-mechanical and field-theory

approaches.

Keywords: spin and orbital angular momentum of light, electromagnetic field

theory, conservation laws

1. Introduction

It is known that light (electromagnetic waves or photons) can carry both spin and orbital angular

momentum (AM) [1]. Locally, the spin density S is an intrinsic (i.e., origin-independent)

quantity, which is associated with the local ellipticity of the polarization of light. In turn, the

orbital AM density = ×L r PO is manifestly extrinsic (origin-dependent) and is produced by

the corresponding canonical (orbital) momentum density PO. This momentum PO is

proportional to the phase gradient and can circulate in optical vortices [2–5]. Spin and orbital

AM are widely used in classical and quantum optics as well-defined and separated degrees of

freedom [1]. Optical experiments clearly show qualitatively different transfers of spin and

orbital AM to small probe particles [6]. Namely, a small absorbing particle experiences a local

torque proportional to S (that causes it to spin) and also a radiation-pressure force proportional

to PO (that causes it to orbit in optical vortices) [4, 5, 7, 8]. Thus, spinning and orbital motions

of a probe particle allow operational measurements of the separate spin and orbital AM

densities in optical fields, see figure 1.

In theory, the separation of spin and orbital AM is unproblematic with paraxial

monochromatic light, which is employed in most applications [1]. However, the self-consistent

description and separation of the spin and orbital AM in generic electromagnetic fields is

problematic and has caused a number of debates. Both the quantum mechanics of photons

[9, 10] and classical electromagnetic field theory [11] do not provide meaningful descriptions of

the spin and orbital AM, but claim that only the total (spin + orbital) AM is a meaningful

quantity. Indeed, the quantum-mechanical first-quantization operators of separated spin and

orbital AM of light, Ŝ and = ×L̂ r̂ p̂, are inconsistent with the transversality condition for

photons, i.e., Maxwell’s equations [9, 10]. Furthermore, the spin and orbital parts of the

conserved AM Noether current in electromagnetic field theory, αβγS and = −αβγ α βγ β αγL r T r T

(where αβT is the canonical stress-energy tensor), are not conserved separately [11]. In addition,

these spin and orbital currents appear in canonical tensors that cannot be made simultaneously

gauge-invariant and Lorentz-covariant.

Nonetheless, the local expectation values of the operators Ŝ and L̂, as well as the pseudo-

vectors ε=S Si ijk
jk1

2

0 and ε=L Li ijk
jk1

2

0 extracted from the spin and orbital AM tensors in the

Coulomb gauge (εijk is the Levi–Civita symbol), yield the same values S and L that appear in

optical experiments with monochromatic fields [12]. Moreover, the integral values of the spin

and orbital AM, ∫ VS d and ∫ VL d (volume integrals for sufficiently localized fields are

assumed), are conserved, i.e., time-independent in free space [13]. This hints that the

electromagnetic spin and orbital AM are separate physically meaningful quantities, and that the

fundamental problems with the quantum-mechanical and field-theory approaches can and

should be overcome.
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Indeed, the discrepancy between the quantum operators of the spin/orbital AM and the

transversality of photons has been recently resolved [13–17]. It was shown, using both a

second-quantization approach to S and L [13] and a first-quantization approach using Ŝ and L̂

[14], that the suitably modified quantum-mechanical operators of the spin and orbital AM can

be made consistent with both the field transversality and the measured expectation values. In the

Figure 1. The spin and orbital AM densities of light are separately measurable
quantities. The local ellipticity of polarization (times the normal to the polarization
ellipse) determines the spin AM density S̄, equation (2.17). The local phase gradient of
the field determines the canonical (orbital) momentum P̄

O
, equation (2.18), and the

corresponding orbital AM density ×r P̄
O
. A small probe dipole particle experiences

both optical torque and radiation-pressure force, which are proportional to S̄ and P̄
O
,

respectively [4, 5, 7, 8]. An example of the paraxial optical vortex beam with the left-
hand circular polarization (ellipticity σ = −1) and charge-2 vortex ( = −ℓ 2) generating
the azimuthal phase gradient (orbital momentum) is shown in (a) (phase is color-coded).
Experimental results (b) from [6] demonstrate the spinning and orbital motion of a
probe particle in such a paraxial vortex beam, which clearly indicate the separate local
spin and orbital properties of the beam field. Reprinted with permission from [6].
Copyright 2003 by the American Physical Society.
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first-quantization formalism, the corrected spin and orbital AM operators acquire the form [14]

Δ= − ˆŜ Ŝ˜ and Δ= + ˆL̂ L̂˜ , where Δ̂ is a spin–orbit correction stemming from the transversality

condition (similar corrected spin and orbital AM operators also appear for Dirac electron

fields [18]).

This development is not yet a complete solution, however. The quantum-operator

approach is based on the Fourier (momentum) representation and yields only integral

expectation values of the spin and orbital AM. In contrast, the optical interaction with small

particles or atoms requires a proper local description of the spin and orbital AM in terms of

densities in real space. Furthermore, as the integral values ∫ VS d and ∫ VL d are conserved

quantities, there should be a continuity equation describing the local transport and fluxes of the

spin and orbital AM. Such a continuity equation for optical spin S was discussed in several

works [19–23], but most of these works have intrinsic discrepancies, and none of them derives

the conserved spin and orbital AM currents as proper Noether AM currents within the

electromagnetic field theory.

In this paper, we resolve this final fundamental problem in the description of the spin and

orbital AM of light. Akin to the quantum-operator approach, we modify the separation of the

spin and orbital parts of the canonical Noether AM current, Δ= −αβγ αβγ αβγS S˜ and

Δ= +αβγ αβγ αβγL L˜ , such that the modified tensors
αβγ
S̃ and

αβγ
L̃ satisfy a continuity equation

and properly describe the spin and orbital AM densities S and L. We show that this separation

produces a meaningful local description of the spin and orbital AM densities and fluxes, and

represents them as gauge-invariant (and, thus, observable) but not Lorentz-covariant quantities.

The latter fact is consistent with operational measurements, since a local probe particle will

always single out the specific laboratory reference frame where it is at rest. Comparing our

theory with other approaches and applying it to monochromatic optical fields validates our

results and allows us to discriminate between various earlier attempts. Importantly, we find that

the modification of the spin and orbital AM fluxes by the spin–orbit term Δαβγ describes the

spin-to-orbital AM conversion that is observed in nonparaxial optical fields [14, 24] (see

figure 2).

The paper is organized as follows. In section 2 we introduce the main equations and

notations, and give an overview of the existing approaches to the problem, emphasizing their

key shortcomings and subtle issues. We consider the conflict between the gauge invariance and

Lorentz covariance, quantum-operator approaches, and the role of dual (‘electric–magnetic’)

symmetry. In section 3.1 we recall a general form of Noether conservation laws in

electromagnetic field theory and indicate the way of constructing the spin and orbital AM

conserved currents. Sections 3.2 and 3.3 show explicit calculations and results for these new

conservation laws, using both the standard (electric-biased) and dual-symmetric electro-

magnetic theories. The latter one symmetrizes the electric and magnetic contributions

[12, 23, 25]. In section 4 we check our results by comparing them with other approaches and

applying them to monochromatic optical fields (e.g., nonparaxial Bessel beams). Section 5

concludes the paper.
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2. Overview of the problem

2.1. Basic notations and quantities

For the sake of simplicity, we use natural electrodynamical units ε μ= = =c 10 0 . Throughout

the paper we assume Minkowski space–time =αr t r( , ) with metric tensor

= −αβg diag ( 1,1,1,1). The Greek indices α β, , ... take on values 0,1,2,3, Latin indices i j, , ...

take on values 1,2,3, and summation over repeated indices is assumed. The four-dimensional

and three-dimensional Levi–Civita symbols are εαβγδ and εijk, and the Kronecker delta is δij.

The electric and magnetic fields are tE r( , ) and tB r( , ), and they satisfy the free-space

Maxwell equations:

B⋅ = ⋅ = ∂ = × ∂ = − ×   E E B B E0, , . (2.1)t t

The first two equations (2.1) represent the transversality condition, i.e., the orthogonality of the

Fourier-components of the fields to their k-vectors.

Together with fields, we use the magnetic vector-potential tA r( , ). In most cases we will

assume the Coulomb gauge ⋅ = A 0, and the fields are expressed via this vector-potential as

= −∂ = ×E A B A, . (2.2)t

Because of the dual symmetry between the electric and magnetic free-space Maxwell fields, we

also use an electric vector-potential tC r( , ), such that (assuming the Coulomb gauge

⋅ = C 0):

= −∂ = − ×B C E C, . (2.3)t

Equations (2.2) and (2.3) show that magnetic and electric vector potentials are not independent

quantities, but rather obey equations similar to Maxwell’s equation (2.1) [12, 23, 25].

In covariant relativistic notation, the magnetic vector-potential becomes a part of the four-

potential =α ( )A A A,0 ( =αA A(0, ) in the Coulomb gauge), and the electromagnetic field is

described by the anti-symmetric rank-2 tensor = ∂ ∧ =αβ α βF A E B( , ). The latter representa-

tion means that = −αβ βαF F , =F Ei
i

0 , and ε =F Bijk
jk

i
1

2
is a pseudo-vector. There is also a

dual field tensor ε∗ ≡ = −αβ αβγδ
γδF F B E( , )

1

2
, which can be represented via the electric four-

potential =α ( )C C C,0 ( =αC C(0, ) in the Coulomb gauge) as ∗ = ∂ ∧αβ α βF C . The covariant

form of Maxwell’s equation (2.1) is

∂ = ∂ ∗ =β
αβ

β
αβF F0, 0. (2.4)

Considering monochromatic optical fields, we will use the complex field and vector-

potential amplitudes E r( ), A r( ), etc, defined as

E A⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦= =ω ω− −t tE r r A r r( , ) Re ( ) e , ( , ) Re ( ) e , etc. (2.5)t ti i

In this case, the Coulomb-gauge vector-potentials have simple relations to the fields:

A E C Bω ω= − = −− −r r r r( ) i ( ), ( ) i ( ). (2.6)1 1

As usual in optics, the bilinear quantities calculated for monochromatic fields will be averaged

over oscillations in time.

5
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2.2. Spin and orbital AM densities: gauge invariance versus Lorentz covariance

Classical electromagnetic field theory produces a manifestly covariant canonical (Noether)

rank-3 tensor of the AM current [11], = + − ≡ +αβγ αβγ α βγ β αγ αβγ αβγM S r T r T S L that

represents the sum of the spin and orbital contributions, αβγS and αβγL . The spatial densities of

the spin and orbital AM are given by the pseudo-vectors ε=S Si ijk
jk1

2

0 and ε=L Li ijk
jk1

2

0.

Explicitly, these have the form

= × = × = ⋅ × S E A L r P E r A, ( ) , (2.7)O

where = ⋅ P E A( )O is the canonical (orbital) momentum density of the field [2–5, 12], and

we adopt the notation ⋅ = X YX Z Y Z( ) i i for any quantities X, Y, Z.

The quantities (2.7) are gauge-dependent (and, hence, nonobservable) since they explicitly

involve the vector-potential A, i.e., the spatial part of the four-potential =α ( )A A A,0 . To

provide gauge-invariant quantities, modified definitions of the spin and orbital densities are

typically used [10]:

= × = × = ⋅ ×⊥ ⊥S E A L r P E r A, ( ) . (2.8)O

Here the vector-potential is represented as a sum = +⊥ ∥A A A of the ‘transverse’ and

‘longitudinal’ parts, which obey the conditions ⋅ =⊥ A 0 and × =∥ A 0, respectively.

Since gauge transformations of the vector-potential involve only the longitudinal part ∥A and the

time component A0, equations (2.8) are gauge-invariant. The definitions (2.8) coincide with

(2.7) if one sets the Coulomb gauge in a given frame:

= ≡ ⋅ =α
⊥ ( )A A A A(0, ) 0, , 0. (2.9)

Importantly, the gauge-invariant definition (2.8) breaks the Lorentz covariance of the

original quantities (2.7) originating from the covariant tensor currents αβγS and αβγL . Indeed, the

transverse part of the vector potential, ⊥ tA r( , ), is not transformed covariantly and, when given

in one reference frame, it becomes essentially nonlocal in another reference frame [10, 16].

Nonetheless, the integral values of the spin and orbital AM, as defined via (2.8), are well-

defined quantities, which can be calculated in any reference frame. Moreover, for free-space

Maxwell fields, these are conserved quantities [13]:

∫ ∫∂ = ∂ =V VS Ld 0, d 0. (2.10)t t

Thus, adopting the Coulomb gauge (2.9), the canonical field-theory tensors yield

meaningful spin and orbital AM of the electromagnetic field. These are not Lorentz-covariant

and can be introduced only in one chosen reference frame. However, appealing to the optical

experience and applications, does one really need Lorentz covariance for densities of dynamical

properties of the field? The operational measurements of the spin, orbital and other densities via

local probes [4–8] always single out one particular laboratory reference frame, where the probe

is at rest. Therefore, to compare theory with experiment, one must properly define these

densities only in one laboratory reference frame. In addition, most optical applications deal

with monochromatic electromagnetic waves, which also depend on a chosen laboratory

reference frame (a transverse Lorentz boost makes optical beams nonmonochromatic [26]).

Based on these considerations, in what follows we use general covariant notations of the field

theory, but adopt the Coulomb gauge condition (2.9) in all explicit calculations to isolate the

gauge-invariant transverse part of the vector-potential. This means that our theory is actually

6
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gauge-invariant (A implies ⊥A ) but not Lorentz-covariant, i.e., it makes sense only in the

laboratory reference frame of a local probe.

It is important to note that in this paper, following previous works [12, 15, 23, 25], we

imply ‘locality’ of the spin and orbital AM densities in terms of the transverse vector potentials.

Although the latter are themselves integral quantities of the field strengths [10, 16], this

nonlocal relationship does not affect our conservation laws that treat the transverse vector

potentials as fundamental. Furthermore, in the most practically important case of monochro-

matic optical fields, the transverse vector potentials become locally related to the field strengths,

see equations (2.6).

2.3. Quantum approaches

It is instructive to review the quantum-operator approach to the spin and orbital AM of free

electromagnetic fields. There are two levels of quantum formalism: (i) the first quantization,

which deals with operators of dynamical variables acting on the classical electromagnetic field

(i.e., this is essentially a representation of classical electrodynamics) and (ii) the second

quantization, which quantizes the fields and make them quantum operators acting on the Fock

states of photons.

In the first-quantization approach, the AM operator underlying the spin and orbital AM

(2.8) is [9, 10]

= + × ≡ +M̂ Ŝ r̂ p̂ Ŝ L̂. (2.11)

Here Ŝ is the spin-1 operator given by the 3 × 3 matrix generators of SO (3) rotations, whereas r̂

and p̂ are the canonical coordinate and momentum operators. The operators Ŝ and L̂ obey the

standard SO (3) rotation algebra. However, when acting on free electromagnetic fields they do

not preserve their transversality, i.e.,

⋅ = − ⋅ ≠ ( ) ( )S LE Eˆ ˆ 0. (2.12)i i

The reason for this is that Ŝ generates rotations of only directions of the field vectors (but not

their spatial distributions), while L̂ rotates only the spatial distribution of the field (but not its

direction) [10, 15]. Therefore canonical spin and orbital AM operators are not consistent with

Maxwell’s equation (2.1). In contrast, the total AM operator M̂ generates rotations of the whole

field tE r( , ) (both directions and distributions), and is consistent with the transversality. Due to

this, most textbooks in quantum electrodynamics claim that the spin and orbital parts of the AM

of light are not separately meaningful, and only the total AM of a photon makes sense [9, 10].

In 1994, van Enk and Nienhuis [13] showed that, despite the fundamental problems with

the operators Ŝ and L̂, the second quantization of the integral spin and orbital AM, ∫ VS d and

∫ VL d , based on the densities (2.8) results in meaningful field operators of the spin and orbital

AM ̂ and ̂. These second-quantization operators are fully consistent with the transversality

and Maxwell equations, but have unusual commutation relations that are different from the

SO (3) algebra [13]. Considering a local quantum dipole interaction of light with an atom, van

Enk and Nienhuis found that ‘both spin and orbital AM of a photon are well defined and

separately measurable’.

In 2010, Bliokh et al [14] found a consistent first-quantized description of the spin and

orbital AM of light (a similar theory for Dirac electron fields is described in [18]). The problem

with Ŝ and L̂ was resolved by modifying the separation (2.11) into spin and orbital parts to

7
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make them consistent with the field transversality. This modification can be interpreted as a

‘projection’ of the canonical operators onto the transversality subspace. The resulting modified

spin and orbital AM operators acquire the form:

Δ Δκ ′= − = = + = ×ˆ ˆHŜ Ŝ ˆ L̂ L̂ r̂ p̂˜ ˆ , ˜ . (2.13)

Here Δ κ κ= − × ×( )ˆ ˆ ˆ Ŝ is the spin–orbit correction term, κ p= p̂ ˆ ( p̂ is the scalar total

momentum operator), κ= ⋅H ˆ Ŝˆ is the helicity operator, and ′ = + ×( ) pr̂ r̂ p̂ Ŝ ˆ2 is the so-

called Pryce position operator for photons [27], well-known in the theory of relativistic spinning

particles [28]. The modified operators (2.13) are properly consistent with the field transversality

and obey the same noncanonical commutation relations as the second-quantization operators

AM ̂ and ̂ in [13]. Remarkably, the modified operators (2.13) produce the same expectation

values of the spin and orbital AM as the canonical operators Ŝ and L̂, so this modification does

not affect any observable quantities, which are still based on equations (2.8). At the same time,

the operators S̃̂ and L̃̂ acquire a particularly simple diagonal form in the helicity (momentum-

space) representation. They facilitate Fourier-space calculations and illuminate spin–orbit

conversion processes originating from Berry-phase effects [14] (see section 4.2 and figure 2).

Other aspects of the spin and orbital AM of light in quantum formalisms were also

analyzed by Barnett [15], Bialynicki-Birula [16], and Fernandez-Corbaton et al [17]. These

works agree with the approaches of [13] and [14] described above. Thus, the problem with the

quantum-operator description of the integral spin and orbital AM of light seems to be resolved.

It should be emphasized, however, that the operators (2.13) allow efficient calculations of

the integral values of the spin and orbital AM, but not their local values in the generic case.

Indeed, these operators can be easily used in the momentum (Fourier) representation [14]. In the

coordinate (real-space) representation, they become nonlocal because of the p1 ˆ operator, and

do not yield densities of the spin and orbital AM. An important exception is the case of

monochromatic fields (2.5). In this case, the complex field and vector-potential amplitudes

become proportional to each other with a factor of frequency ω, equation (2.6). Then, the time-

averaged spin and orbital AM densities (2.8) acquire the form of local expectation values of

operators Ŝ and L̂ or S̃̂ and L̃̂ with the ‘wave function’ Eψ ω∝ − r( )1 2 [5, 8, 12]. For a generic

nonmonochromatic field the operation ω ∝ p1 1 ˆ is nonlocal [10, 16].

2.4. Spin and orbital AM currents in field theory

The consistent quantum formalism does not fully resolve the problem of obtaining a local

description of the spin and orbital AM in electromagnetism. To address this remaining problem,

we must return to a field theory description. The canonical spin and orbital AM tensors αβγS and
αβγL in the Coulomb gauge (2.9) yield the spin and orbital AM densities (2.8), which

correspond to optical experiments and conserved integral values (2.10), consistent with the

quantum-mechanical approach. However, the canonical tensors αβγS and αβγL do not yield

proper fluxes of the spin and orbital AM—they do not satisfy the continuity equation, i.e., the

local conservation law for the spin and orbital AM:

∂ = −∂ ≠γ
αβγ

γ
αβγS L 0. (2.14)

This problem resembles the inconsistency of the canonical operators Ŝ and L̂, equation (2.11),

with the transversality, equation (2.12). Equation (2.14) shows that the canonical spin and

orbital AM currents are not conserved separately, while their sum is: ∂ =γ
αβγM 0.

8
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Nonconserved currents (2.14) conflict with the conservation of the integral values (2.10); one

could expect that there should be proper continuity equations that describe the local transport of

the separately conserved spin and orbital AM.

There have been several attempts to suggest such a continuity equation for optical spin. In

2001, Alexeyev et al [19] suggested a continuity equation for spin using complex Maxwell

fields, with similar equations later considered by others [21, 22]. However, in these papers, the

authors considered complex time-dependent fields in Maxwell equations, while the proper fields

must be real. This is an intrinsically inconsistent approach, which could make sense only in the

most trivial case of monochromatic fields with time-independent complex amplitudes. In 2002,

Barnett [20] considered the flux of the total AM from αβγM and suggested the separation ‘by

hand’ of the spin and orbital parts. However, the continuity equations for the spin and orbital

parts were not provided. Furthermore, the ratios of spin and orbital fluxes to the energy flux,

calculated in [20] for nonparaxial optical beams, contradict calculations of spin and orbital AM

in nonparaxial Bessel beams in [14]. Namely, the spin-to-orbital conversion in nonparaxial

fields is absent in [20], while it is clearly observed in experiments and described in theory

[14, 24]. Finally, in 2012 Cameron et al [23] derived the continuity equation for the

electromagnetic spin using an extension of the local helicity conservation law. However, the

helicity conservation follows from the so-called dual symmetry between electric and magnetic

fields [12, 23, 25, 29], and not from Poincaré symmetries of space–time. Therefore, the

continuity equation derived in [23] works only for the dual-symmetrized spin but not for the

standard spin density (2.7) and (2.8) (see the next section). Thus, the spin AM continuity

equation has never appeared as a proper conservation law following from the field-theory AM

tensor. Furthermore, the continuity equation for the orbital AM has never been considered at all.

2.5. The role of the dual ‘electric–magnetic’ symmetry

So far, we considered the AM problem using only the electric field and vector-potential A.

However, free-space Maxwell electromagnetism possesses an important symmetry between the

electric and magnetic properties. This is the so-called dual symmetry [12, 23, 25, 29]. To take

this symmetry into account, one has to consider electric and magnetic fields, E and B, on equal

footing. This naturally involves two vector-potentials, A and C, equations (2.2) and (2.3).

Recently, we showed [12] (see also [25]) that choosing a suitable Lagrangian, one can construct

the dual-symmetric free-space electromagnetic field theory, preserving the symmetry between

electric and magnetic properties.

The discrete form of the dual transformation reads

→ → −
→ → −

E B B E

A C C A

, ,

, . (2.15)

The dynamical characteristics of the electromagnetic field become symmetrized with respect to

the transformation (2.15) in the dual-symmetric electromagnetism [2, 12, 15, 23, 25, 29]. In

particular, spin and orbital AM densities (2.8) become

= × + ×S E A B C
1

2
( ),

9
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= × = ⋅ × + ⋅ × L r P E r A B r C
1

2
[ ( ) ( ) ]. (2.16)O

Such dual symmetrization does not change the integral values of the spin and orbital AM,

∫ VS d and ∫ VL d [15],5 but their densities become different. For example, considering the

time-averaged values of the spin density and orbital momentum density in a monochromatic

field (2.5) and (2.6), the standard (electric-biased) and dual-symmetric versions of

electromagnetism yield the following quantities [12]:

E E E E B B
ω ω

= × = × + ×( ) ( )S̄ S̄
1

2
Im * ,

1

4
Im * * . (2.17)

standard dual

E E E E B B
⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦ω ω

= ⋅ = ⋅ + ⋅  P̄ P̄
1

2
Im * ( ) ,

1

4
Im * ( ) * ( ) . (2.18)

O standard O dual

The standard and dual-symmetric densities in equations (2.17) or (2.18) are equivalent for

paraxial propagating fields (as, e.g., in figure 1), but can be significantly different in nonparaxial

or other complex fields [2]. For instance, the two definitions (2.17) result, respectively, in zero

and nonzero transverse spin in evanescent TE waves [5, 30]. In what follows, we will use the

‘standard’ and ‘dual’ superscript only when needed to emphasize the difference between the

two theories.

The question of whether one should use the dual-symmetric versions of these quantities is

another subtle issue. On the one hand, the fundamental dual symmetry of free-space Maxwell

theory makes the dual-symmetric definitions more natural [2, 15] and self-consistent [12]. For

instance, the standard definition of spin in (2.17) implies that a rotating electric field produces

spin AM, while a rotating magnetic field does not. This would be bizarre.

On the other hand, if we rely on experimental measurements of the spin density, we should

consider the interaction of the electromagnetic field with a small probe particle or other

measuring device (see figure 1). Importantly, any measuring device represents matter, and

matter is not dual-symmetric in electromagnetism. There are electric charges but no magnetic

charges. Therefore, a typical point-dipole particle or an atom is coupled to the electric rather

than magnetic field (see, e.g., [2, 5, 12, 13]). Accordingly, such an electric-dipole probe will

measure the electric part of the spin, i.e., its standard definition. Similarly, a magnetic-dipole

particle or another particle with complex properties would ‘measure’ magnetic spin density or

more sophisticated quantities [8].

Thus, the fundamental dual symmetry and structure of free-space fields implies dual-

symmetric definitions of all meaningful quantities, while practical applications might require

alternative quantities, which depend on the character of light–matter interaction. The

electric–dipole interaction involves the standard ‘electric’ spin. (See also discussion in [12].)

In this paper we consider both standard (‘electric-biased’) and dual-symmetric versions of

electromagnetism. Since all calculations are quite similar in the two theories [12], we perform

explicit calculations for the standard theory, and then show the final results of the dual-

symmetric calculations. As we will see, locally conserved spin and orbital AM currents can be

equally constructed within both approaches, i.e., independently of the dual symmetry.

5
In this context, we note that the inequalities in equations (2.47) and (3.36) in [12] should be equalities. The

integral values of the dual-symmetric and dual-asymmetric spin or orbital AM are equal to each other, as follows

from the results of [15].

10
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3. Conserved spin and orbital AM currents

3.1. General covariant form

We are now in a position to construct the proper field-theory description of the electromagnetic

spin and orbital AM currents of an electromagnetic field. We start with the main local

conservation laws in electromagnetic field theory [11, 12]. In this section we present these in a

general tensor form, without explicit expressions in terms of fields.

As is well known, Noether’s theorem results in the conservation laws associated with

continuous symmetries of the Lagrangian or equations of motion. First, the symmetry with

respect to translations in space–time result in momentum-energy conservation. Applying

Noether’s theorem yields the canonical stress-energy tensor αβT and the corresponding

conservation law:

∂ = ≠β
αβ αβ βαT T T0, . (3.1)

Note that the canonical stress-energy tensor is nonsymmetric. This tensor contains the four-

vector = =α α ( )P T W P,0 O representing the canonical four-momentum density, including the

energy density = +( )W E B 22 2 and the orbital momentum density PO.

Second, the symmetry with respect to rotations of the Minkowski space–time generates the

relativistic AM conservation. It is described by the rank-3 αβ-antisymmetric AM tensor αβγM :

∂ = = −γ
αβγ αβγ βαγM M M0, . (3.2)

The AM tensor (3.2) is related to the stress-energy tensor (3.1) as

= − + ≡ +αβγ α βγ β αγ αβγ αβγ αβγM r T r T S L S , (3.3)

where αβγS is the so-called spin tensor. The form of equation (3.3) suggests that the AM tensor

consists of an orbital (extrinsic) part αβγL and a spin (intrinsic) part αβγS . However, these two

parts are not conserved separately. Indeed, substituting equation (3.3) into (3.2) and using

equation (3.1), we obtain

∂ = −∂ = − ≠γ
αβγ

γ
αβγ αβ βαS L T T 0. (3.4)

In 1939, Belinfante [31] suggested a useful procedure to symmetrize the canonical stress-

energy tensor by adding a suitable total divergence to the canonical stress-energy tensor. This

procedure results in a symmetric stress-energy tensor  αβ and conservation law:

   = + ∂ ∂ = =αβ αβ
γ

αβγ
β

αβ αβ βαT K , 0, , (3.5)

where the tensor αβγK is constructed from the spin tensor (3.3):

= + −αβγ βγα αγβ αβγ( )K S S S
1

2
. (3.6)

The symmetrized tensor (3.5) contains the four-momentum density  = =α α W( , )0

including the Poynting vector  = ×E B [11]. The corresponding symmetrized AM tensor can

then be constructed from the symmetric stress-energy tensor (3.5):

   = − ∂ =αβγ α βγ β αγ
β

αβγr r , 0. (3.7)

11
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It might seem that this AM tensor contains only the orbital part, but actually it also

includes the spin because the integral values of the AM (3.3) and (3.7) coincide for sufficiently

localized fields: ∫ ∫= =αβ αβM V Vd d const0 0 . Nonetheless, separating the spin and orbital

parts of the AM is problematic with the symmetrized tensor (3.7). Furthermore, we emphasize

that although the symmetrized stress-energy tensor (3.5) is typically considered in field theory

as physically meaningful (the source of the gravitational field), it is the canonical momentum

density PO stemming from the canonical tensor (3.1) that appears in optical and quantum-

mechanical measurements of the momentum density of light. See, e.g., discussions in

[4, 5, 8, 12], quantum weak measurements in [32], and the transfer of optical ‘super-

momentum’ >WP 1O (impossible with the Poynting vector,  ⩽W 1) in [33].

In addition to the conservation laws associated with Poincaré symmetries (i.e.,

transformations of the space–time), there is one more fundamental conservation law for free-

space Maxwell fields. Namely, there is conservation of the helicity, associated with the

continuous version of the internal dual symmetry between the electric and magnetic parts of the

free field [12, 23, 25, 29]. The conservation of the helicity current can be written as

∂ = =α
α α ( )J J H S0, , . (3.8)dual

Here αJ is a four-pseudovector, with its zero component H being the helicity density pseudo-

scalar and Sdual being the helicity flux pseudo-vector.

Importantly, for the dual-symmetric formulation of electromagnetism [12, 23, 25], this

helicity flux precisely coincides with the pseudo-vector of the spin density obtained from the

spin tensor: ε=S Si ijk
jkdual 1

2

0 dual. Thus, the same dual-symmetric spin density can be obtained

either from the AM tensor or from the helicity current.

Recently, Cameron et al [23] suggested an extension of the conserved helicity four-current

(3.8) to a rank-3 pseudo-tensor similar to the so-called Lipkin’s zilch pseudo-tensor [34]:

∂ = =γ
αβγ αβγ βαγJ J J0, . (3.9)

Here =α αJ J00 , and equation (3.9) also includes a continuity equation for the spin S
dual

:

Σ∂ + ∂ =S 0, (3.10)t i j ij
dual dual

where Σ = Jij
ijdual 0 . Thus, the dual-symmetric spin (following from the helicity flux) satisfies the

continuity equation (3.10) despite the nonconserved spin tensor (3.4). However, for the standard

(dual-asymmetric) spin Sstandard such a continuity equation has never been derived.

Is it possible to derive the properly conserved spin and orbital AM tensors in

electromagnetic field theory from the Noether AM currents, without appealing to the dual

symmetry? The key idea of our approach is to modify the spin and orbital AM fluxes in the

canonical tensors αβγS and αβγL , such that new tensors
αβγ
S̃ and

αβγ
L̃ properly satisfy the

continuity equations (compare to the modification of the operators (2.13)):

Δ Δ= − = + ∂ = ∂ =αβγ αβγ αβγ αβγ αβγ αβγ
γ

αβγ
γ

αβγ
S S L L S L˜ , ˜ , ˜ ˜ 0. (3.11)

In doing so, we require that the spin–orbit correction Δαβγ does not affect the spin and orbital

AM densities S and L in equations (2.7) or (2.8), and that it is properly antisymmetric:

Δ Δ Δ= = −αβ αβγ βαγ0, . (3.12)0
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Comparing equation (3.11) with (3.4), we find that the right-hand side of the canonical spin-

continuity equation (3.4) needs to be represented as the total divergence of Δαβγ:

Δ− = ∂αβ βα
γ

αβγT T . (3.13)

We implement the modification given by equations (3.11)–(3.13) in the next sections.

3.2. Explicit calculations for the standard electromagnetism

In this section, we consider the standard electromagnetic field theory [11, 12], which is based on

the field Lagrangian  = − = −αβ
αβ ( )F F E B

1

4

1

2

2 2 being a functional of the gauge field (four-

potential) α α( )A r . Because this Lagrangian is dual-asymmetric, the canonical dynamical

characteristics and conservation laws also have dual-asymmetric form [12]. We recall that when

performing calculations in covariant notations, we assume the Coulomb gauge (2.9), so the final

results will not be Lorentz-covariant.

The canonical stress-energy tensor (3.1) and the corresponding orbital AM tensor (3.3) are

= ∂ − = −αβ α
γ

βγ αβ γδ
γδ

αβγ α βγ β αγ( )T A F g F F L r T r T
1

4
, . (3.14)

The stress-energy tensor αβT includes the canonical momentum density = ⋅ P E A( )O ,

equation (2.8). The canonical spin tensor (3.3) and (3.4) reads

= −αβγ γα β γβ αS F A F A . (3.15)

Calculating the anti-symmetric part of the stress-energy tensor αβT and using the

transversality of the vector-potential and electromagnetic field, equations (2.1) and (2.9),

produces

ε− = ∂ − = ∂ ( )( )T T E A T T B A, . (3.16)i i
k k i

ij ji
k ijl k l

0 0

By inspection, we can compare this result to the divergence term in equation (3.13) and

determine the correction Δαβγ to the spin and orbital AM tensors, equations (3.11) and (3.12):

Δ Δ Δ Δ Δ ε= = = − = =αβ γ E A B A0, , . (3.17)i k ik
k i

ijk
ijl k l

0 00 0 0

This is the key result of this paper, which yields the modified conserved spin and orbital AM

currents
αβγ
S̃ and

αβγ
L̃ , equations (3.11).

The modified spin conservation law (3.11) with equations (3.15) and (3.17) results in the

continuity equation for the spin AM pseudo-vector ε ε= =S S S˜
i ijk

jk
ijk

jk1

2

0 1

2

0 and spin flux

pseudo-tensor Σ ε= S̃ij ikl
klj1

2
:

Σ∂ + ∂ =S 0,t i j ij

Σ δ= × = ⋅ − −S B A B AE A B A( ) , ( ) . (3.18)i i ij ij i j j i

This continuity equation for the spin AM is obtained here for the first time. It differs from the

spin conservation suggested by Cameron et al [23], equation (3.10), because equation (3.18)

does not rely on the dual symmetry and is written for the standard spin AM density Sstandard. It is

unrelated to the helicity pseudo-tensor or similarity with Lipkin’s zilches, and is derived from

the AM conservation in the form of the conserved rank-3 tensor
αβγ
S̃ .

13
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Equations (3.11) with equations (3.14) and (3.17) result in the analogous conservation law

for the pseudo-vector of the orbital AM, ε ε= =L L L˜
i ijk

jk
ijk

jk1

2

0 1

2

0 and its flux Λ ε= L̃ij ikl
klj1

2
:

⎡
⎣⎢

⎤
⎦⎥

Λ

Λ ε ε δ

∂ + ∂ = = ⋅ ×

= ∂ + − +



( )( )

L L

r B A E B B A

E r A0, [ ( ) ] ,

1

2
. (3.19)

t i j ij i i

ij ikl k jmn n l m lj j i
2 2

To our knowledge, the orbital-AM conservation law is also derived here for the first time.

As it should be, the spin and orbital AM densities in equations (3.18) and (3.19) coincide

with the known S and L in equations (2.7) or (2.8). At the same time, we will show in section 4

that the novel spin and orbital AM fluxes Σij and Λij in equations (3.18) and (3.19) yield

meaningful expressions for the spin and orbital AM in nonparaxial optical beams. We will see

that these results are consistent with other approaches, but they correct the spin and orbital

fluxes suggested previously in [20].

3.3. Results for the dual-symmetric electromagnetism

To restore the fundamental dual symmetry present in free-space Maxwell equations, but broken

in the standard field Lagrangian and canonical Noether conservation laws, we recently

suggested a dual-symmetric version of electromagnetic field theory [12] (see also [25]). The

dual-symmetric electromagnetism is based on the Lagrangian  = − +αβ
αβ

αβ
αβ( )F F G G

1

8
involving the second, dual gauge field (four-potential) α α( )C r as = ∂ ∧αβ α βG C . Subject to

constraint = ∗αβ αβG F (equivalent to equations (2.2) and (2.3) in the Coulomb gauge), the

dual-symmetric Lagrangian yields the same Maxwell equations of motion, but improved, dual-

symmetric canonical conservation laws. It was shown in [12] that the dual-symmetric

electromagnetism is a more consistent theory in free space than the standard one.

All equations in the dual-symmetric electromagnetism can be obtained from their standard-

electromagnetism counterparts via symmetrization over the dual transformation (2.15). In

particular, the stress-energy tensor (3.1), and the corresponding orbital AM tensor (3.3) become:

⎡
⎣

⎤
⎦= ∂ + ∂ ∗ = −αβ α

γ
βγ α

γ
βγ αβγ α βγ β αγ( ) ( )T A F C F L r T r T

1

2
, . (3.20)

This includes the canonical momentum density = ⋅ + ⋅ P E A B C[ ( ) ( ) ]O 1

2
,

equation (2.16). In turn, the canonical spin tensor (3.3) and (3.4) reads

⎡
⎣

⎤
⎦= − + ∗ − ∗αβγ γα β γβ α γα β γβ αS F A F A F C F C

1

2
. (3.21)

Akin to equation (3.16), calculating the anti-symmetric part of the stress-energy tensor

(3.20) and using the transversality of the vector-potentials and fields produces

⎡⎣ ⎤⎦ε− = ∂ + − = ∂ −( ) ( )T T E A B C T T B A E C
1

2
,

1

2
. (3.22)i i

k k i k i
ij ji

k ijl k l k l
0 0

As before, we can write this part as the divergence term (3.13) and determine the correction Δαβγ

to the spin and orbital AM tensors, equations (3.11) and (3.12):

Δ Δ Δ Δ Δ ε= = = − = + = −αβ γ ( ) ( )E A B C B A E C0,
1

2
,

1

2
. (3.23)i k ik

k i k i
ijk

ijl k l k l
0 00 0 0
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This determines the modified conserved spin and orbital AM currents
αβγ
S̃ and

αβγ
L̃ ,

equations (3.11), in their dual-symmetric forms.

The modified spin conservation law (3.11), with equations (3.21) and (3.23), results in the

continuity equation for the spin AM pseudo-vector, ε ε= =S S S˜
i ijk

jk
ijk

jk1

2

0 1

2

0, and spin flux

pseudo-tensor Σ ε= S̃ij ikl
klj1

2
:

⎡⎣ ⎤⎦

Σ

Σ δ

∂ + ∂ = = × + ×

= ⋅ − ⋅ − − + +

S S

B A B A E C E C

E A B C

B A E C

0,
1

2
( ) ,

1

2
( ) . (3.24)

t i j ij i i

ij ij i j j i i j j i

This spin conservation law (3.24) coincides with the one suggested by Cameron et al in [23]

from the extension of the helicity conservation, equations (3.8)–(3.10). Indeed, it is the dual-

symmetric spin (2.16) that is equal to the flux of the helicity = ⋅ − ⋅H B A E C( )
1

2
[12, 23, 25]. However, here the derivation of equation (3.24) relies solely on the AM

conservation and the transversality conditions, and it is unrelated to the dual symmetry and

helicity conservation.

Finally, from equation (3.11) with equations (3.20) and (3.23), we obtain the continuity

equation for the pseudo-vector of the orbital AM, ε ε= =L L L˜
i ijk

jk
ijk

jk1

2

0 1

2

0 and its flux

Λ ε= L̃ij ikl
klj1

2
:

⎡⎣ ⎤⎦

Λ

Λ ε ε

∂ + ∂ = = ⋅ × + ⋅ ×

= ∂ − ∂ + −

 

{ }( ) ( )

L L

r B A E C B A E C

E r A B r C0,
1

2
[ ( ) ( ) ] ,

1

2
. (3.25)

t i j ij i i

ij ikl jmn k n l m n l m j i j i

As it should be, the spin and orbital AM densities in equations (3.24) and (3.25) coincide

with the known dual-symmetric S and L in equation (2.16) [12, 15, 23]. Interestingly, Maxwell

equations allow conservations of spin and orbital AM in both dual-asymmetric and dual-

symmetric forms, discussed in sections 3.2 and 3.3. This means that the ‘electric’ and

‘magnetic’ parts of the spin and orbital AM densities are separately conserved quantities, so

that the dual symmetry is not essential here. This cannot be seen in the integral conservation

laws (2.10), because the integral values of the ‘electric’ and ‘magnetic’ spin and orbital AM are

equal to each other [15].

4. Monochromatic fields: spin and orbital AM fluxes in optical beams

4.1. Spin and orbital AM conservation in monochromatic fields

Here we consider applications of the above general results to the case of monochromatic fields

(2.5), which are important in optics. Substituting equations (2.5) and (2.6) in the spin and orbital

AM conservation laws (3.18) and (3.19), we obtain time-averaged versions of these laws for the

complex field amplitudes:

B E B EE E B E⎡
⎣

⎤
⎦

ω ω
δ∂ × = − ⋅ − − =1

2
Im ( * )

1

2
Im * 0, (4.1)t i j ij i j j i

* *
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E E
ω

∂ ⋅ × [ ]r
1

2
Im * ( )t i

B E B E B E⎜ ⎟⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠ω

ε ε= − × + + ∣ ∣ − ∣ ∣ = { }rr
1

2
Im ( )

1

4
0. (4.2)j jkl l i k j i ijk k

* * 2 2

Figure 2. Spin-to-orbit AM conversion appears in nonparaxial optical fields in free
space. A spherical geometry in momentum space (stemming from the electromagnetic
wave transversality) and the Berry-phase contribution results in a polarization-
dependent part of the orbital AM of a nonparaxial field [14, 24]. For instance, (a) a
tightly focused circularly-polarized (σ = ±1) optical beam without a vortex ( =ℓ 0)
nonetheless exhibits a circulating orbital momentum PO proportional to σ θ−( )1 cos 0

(θ0 being the characteristic focusing aperture angle). Experimental pictures (b) from
[24] demonstrate a spin-dependent orbital motion of a small particle in such a tightly
focused field, i.e., the presence of the σ-dependent orbital AM. The spin-to-orbital
converted part of the AM flux is precisely described by the Δαβγ correction,
equations (3.11), (3.17), and (3.23), see section 4.2.
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Here the time derivatives obviously vanish because the complex field amplitudes (2.5) are time-

independent. Nonetheless, the spin and orbital AM fluxes (under the gradient  j) represent

meaningful physical characteristics of optical fields (see the next section).

The dual-symmetric versions of equations (4.1) and (4.2) read

B E B EE E B B B E⎡
⎣

⎤
⎦

ω ω
δ∂ × + × = − ⋅ − − =[ ]

1

4
Im ( * ) Im ( * )

1

2
Im * 0, (4.3)t i i j ij i j j i

* *

B E E B B E B E

E E B B

⎡
⎣

⎤
⎦

ω

ω
ε

∂ ⋅ × + ⋅ ×

= − × + × + + =

 

  { }( )

[ ]r r

r r

1

4
Im * ( ) * ( )

1

4
Im ( ) ( ) 0. (4.4)

t i

j jkl l i k l i k i j j i
* * * *

A spin continuity equation similar to equation (4.3) was suggested by Alexeyev et al [19] and

later considered by others [21, 22]. However, in those papers, the authors considered complex

nonstationary fields, i.e., complex solutions of real Maxwell equations (2.1). As far as we know,

such fields do not exist in real world.

4.2. Spin and orbital AM fluxes in nonparaxial optical beams

As an application of the above general results, we consider the spin and orbital AM in

nonparaxial optical vortex beams (e.g., Bessel beams) [1, 13, 14, 20, 35, 36]. Straightforward

classical-optics calculations and the separation of the integral spin and orbital AM in such

beams face some difficulties [35] because of the subtle ‘surface AM’ contribution [36]. One can

efficiently calculate the spin and orbital AM using quantum-operator approaches [13, 14], and

there is a spin-dependent term in the orbital AM, which shows the spin-to-orbit AM conversion

in nonparaxial fields [14] (see also [37]). This is an observable effect which appears upon the

generation of a nonparaxial field: e.g., upon tight focusing or scattering of light [24] (see also

[18] for Dirac electrons), see figure 2. In 2002, Barnett [20] suggested to characterize the spin

and orbital AM in nonparaxial beams via their fluxes integrated over the beam cross-section.

This is a more natural approach (since the beams are delocalized states), but the fluxes

suggested in [20] resulted in the perfect separation of the polarization-dependent spin and

phase-dependent orbital AM parts without the spin–orbit effect.

Here we calculate the spin and orbital AM fluxes in a nonparaxial optical vortex beam, and

show that the fluxes derived in our theory yield a result that is fully consistent with the

quantum-operator approaches [13, 14]. As we will see, our fluxes contain the spin-to-orbital

conversion term due to the Δαβγ correction, equations (3.11), (3.17), and (3.23).

For the sake of simplicity, we consider a monochromatic field with a well-defined helicity,

i.e., consisting of plane waves with the same circular polarization. Such fields are characterized

by complex amplitudes B Eσ= −i , where σ = ±1 is the helicity [14], and their characteristics

are equivalent in the standard (electric-biased) and dual-symmetrized approaches. It is

convenient to define the complex beam field as a 2D Fourier integral using spherical

coordinates θ ϕk( , , ) in the momentum k-space (the θ = 0 direction corresponding to the beam

propagation) [14, 36]:

E ∫∝ σ ⋅
⊥Fr k e k k( ) ( ) ( ) e d . (4.5)k ri 2
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Here the complex scalar Fourier amplitude is θ ϕ θ= ∝ ϕF F fk( ) ( , ) ( ) eiℓ for the vortex beam

with topological charge (orbital AM index) ℓ, and θ δ θ θ∝ −( )f ( ) 0 for the Bessel beams. Next,

θ ϕ=σ σe k e( ) ( , ) is the unit vector of the circular polarization (orthogonal to k due to the

transversality). Finally, θ ρ θ ϕ φ⋅ = + −kz kk r cos sin cos( ), ρ φ z( , , ) are the cylindrical

coordinates in the real space, and the integral (4.5) is taken over the transverse components of

the wave vector: θ θ θ ϕ=⊥d kk sin cos d d2 2 [14, 36]. The unit polarization vectors are given

by [14]:

σ
θ ϕ θ ϕ θ ϕ ϕ=

+
= − = −σ θ ϕ σϕ

θ ϕe
e e

e e
i

2
e , (cos cos , cos sin , sin ), ( sin , cos , 0), (4.6)i

where θe and ϕe are written using their Cartesian components.

To characterize the spin and orbital AM in the z-propagating vortex beams, we calculate

the spin and orbital AM fluxes through the transverse x y( , ) plane. These are given by

∫ ∫Σ Σ Λ Λ∝ ∝⊥ ⊥r r r r¯ ¯ ( ) d , ¯ ¯ ( ) d , (4.7)zz zz zz zz
2 2

where the time-averaged fluxes Σ̄ij and Λ̄ij are the expressions under the gradient  j in

equations (4.1) and (4.2), and ρ ρ φ= =⊥ x yrd d d d d2 . Explicitly, from equations (4.1), (4.2)

and the helicity condition B Eσ= −i , we find

E E EΣ
σ

ω
= + −( )¯

2
,zz x y z

2 2 2

E E E E E
⎡
⎣⎢

⎤
⎦⎥Λ

σ

ω
= ∂ − ∂ +φ φ( )¯

2
Re . (4.8)zz y x x y z

* *
2

Here we took into account that × = ∂φr( )z . The fluxes (4.8) differ from those suggested in

[20] by the terms Eσ ω− 2z
2

and Eσ ω2z
2

in the spin and orbital parts, respectively. These

are corrections originating from the spin–orbit Δαβγ correction, equations (3.11), (3.17), and
(3.23). These corrections in equation (4.8) explicitly show the key role of the longitudinal
z-component of the field (stemming from the transversality condition) in the spin–orbit
interaction processes [24, 38].

Since it makes sense to calculate the ratios of the spin and orbital AM to the energy, we

also determine the energy flux in the beam. This is given by the z-component of the canonical

momentum density (2.18) [2–5, 12]:

E E⎡⎣ ⎤⎦∫
ω

∝ = ⋅ ∂⊥
∗P P Pr r¯ ¯ ( ) d , ¯ 1

2
Im . (4.9)z z z z

O O 2 O

Substituting now the beam field (4.5) into equations (4.7)–(4.9), performing some vector

algebra with equations (4.6) and Fourier analysis of quadratic forms, we derive the integral

energy, spin AM, and orbital AM fluxes in the beam:

∫ θ θ∝ ⊥P f k k¯ ( ) cos d , (4.10)z
O 2 2

∫Σ σ θ θ∝ ⊥f k¯ ( ) cos d , (4.11)zz
2 2 2
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∫Λ θ σ θ θ∝ + − ⊥[ ]f k¯ ( ) ℓ (1 cos ) cos d . (4.12)zz
2 2

Taking the simplest Bessel-beam case with θ δ θ θ∝ −( )f ( ) 0 [14], we obtain the finite ratios of

the spin and orbital AM fluxes to the energy flux:

Σ σ θ Λ σ θ
= =

+ −( )

P k P k

¯

¯

cos
,

¯

¯

ℓ 1 cos
. (4.13)

zz

z

zz

z
O

0

O

0

These results coincide with the ones for the integral spin and orbital AM values obtained in [14]

using quantum-operator formalism (see also classical calculations in [37] and Dirac-electron

calculations in [18]). The total (spin+orbital) AM (4.13) is equal to σ + k( ℓ) , but the separation

is nontrivial because of the spin-to-orbital AM conversion term σ θ−( ) k1 cos 0 . This term

originates from the Δαβγ correction required for the local spin and orbital AM conservation laws,

and it describes the observable effects of the spin–orbit interactions of light [14, 24], figure 2.

This example demonstrates the validity of our general theory and its consistency with other

approaches. In contrast, the fluxes suggested in [20] miss the spin–orbit term and effects, and,

therefore, do not satisfy the conservation laws.

5. Conclusions

We have revisited the problem of the separation and description of the spin and orbital AM in

free-space Maxwell fields. We have reviewed the previous approaches, both quantum and

classical. Subtle but fundamental issues of the gauge invariance versus Lorentz covariance, and

the presence of the dual symmetry/asymmetry have been discussed. We argued that the

separation of the spin and orbital parts of the AM of light makes sense based on operational

local measurements of these quantities, e.g., via probe particles (figure 1). In this manner, the

gauge invariance of the spin and orbital AM densities is crucial, while the Lorentz covariance is

broken by the probe: the quantities are characterized in a single laboratory reference frame.

The main remaining problem was the lack of local conservation laws (continuity

equations) for the separated spin and orbital AM fluxes in electromagnetic field theory.

Although the integral values of the spin and orbital AM are separately conserved quantities,

their fluxes (following from the canonical AM tensor in field theory) do not satisfy the

continuity equations [11, 12]. We have resolved this problem in this paper. Namely, we have

found that the separation of the canonical AM flux into spin and orbital parts should be

corrected with a spin–orbit term Δαβγ, which describes the observable spin–orbit interaction

effects in nonparaxial fields (figure 2). In this manner, we have derived the modified spin and

orbital AM tensors, which satisfy the local conservation laws and are consistent with previous

quantum-operator approaches [13–17]. Our results correct the previous attempt to write the spin

and orbital AM fluxes [20], which miss the spin–orbit terms. We also confirm the spin

continuity equation suggested in [23] from the extended helicity conservation law. However,

our spin and or orbital AM continuity equations are more general, because they do not involve

the dual symmetry and can be written in the standard dual-asymmetric approach as well.

We have applied our theory to the case of nonparaxial optical vortex beams carrying both

spin and orbital AM. Remarkably, the modified fluxes suggested in this work precisely

correspond to the integral spin and orbital AM values obtained earlier within the quantum-
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operator approach [13, 14]. Thus, together with the previous works, our theory provides the

complete and consistent description of the spin and orbital AM of free Maxwell fields in both

quantum-mechanical and field-theory approaches.

Note that we have considered free-space fields, for which charges or currents should be

considered as external entities perturbing the spin and orbital AM. The consideration of the

changes in the spin and orbital AM induced by the presence of matter (charges, currents, or a

continuous medium) is an important problem for future investigation (see [5, 8, 13, 19, 21]).

Finally, we note that the problem of the description of the spin and orbital AM is also highly

important for quark and gluon fields in quantum chromodynamics in relation to the internal

structure of the nucleon [39]. In this manner, the approaches presented in our work contain

universal ideas that could be efficiently applied to other fields.
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