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We analyze the optical properties of one-dimensional PT -symmetric structures of arbitrary complexity. These

structures violate normal unitarity (photon flux conservation) but are shown to satisfy generalized unitarity

relations, which relate the elements of the scattering matrix and lead to a conservation relation in terms of the

transmittance and (left and right) reflectances. One implication of this relation is that there exist anisotropic

transmission resonances in PT -symmetric systems, frequencies at which there is unit transmission and zero

reflection, but only for waves incident from a single side. The spatial profile of these transmission resonances

is symmetric, and they can occur even at PT -symmetry-breaking points. The general conservation relations

can be utilized as an experimental signature of the presence of PT symmetry and of PT -symmetry-breaking

transitions. The uniqueness of PT -symmetry-breaking transitions of the scattering matrix is briefly discussed by

comparing to the corresponding non-Hermitian Hamiltonians.

DOI: 10.1103/PhysRevA.85.023802 PACS number(s): 42.25.Bs, 42.25.Hz, 42.55.Ah

I. INTRODUCTION

Motivated by fundamental studies of PT -symmetric quan-

tum Hamiltonians [1–3], PT -symmetric photonic structures

have attracted considerable interest in the past few years.

These are structures with balanced gain and loss; in the

case of a one-dimensional (1D) structure, this means that

there is a symmetry point (chosen to be the origin, x = 0)

around which the linear index of refraction satisfies n∗(−x) =
n(x). Such structures were first studied in Refs. [4,5] and

were shown to exhibit a variety of exotic photon transport

phenomena, such as double refraction [5], power oscillations

[5–7], and nonmonotonic behavior of the transmission loss

with increased dissipation [8]. The initial studies focused

on parallel waveguide structures with alternating loss and

gain, in which the transverse variation of the electrical field,

in the paraxial approximation to the wave equation, maps

precisely onto a 1D or discrete Schrödinger equation, similar

to the earlier quantum studies [4–9]. The parallel waveguide

realization of PT -symmetric photonic structures has recently

found a promising application to compact optical isolators and

circulators [10].

Recently, several authors have studied PT -symmetric

cavities and heterostructures [11–14], as well as general PT

scattering systems [13], using the full scalar wave equation,

in the case that it obeys at least one PT -symmetry operation.

The current authors in particular emphasized the existence in

such systems of PT -symmetric and PT -broken phases of the

electromagnetic scattering matrix (S matrix). For the 1D case,

the eigenvalues of the S matrix are unimodular in the PT -

symmetric phase, as they are in unitary systems, but photon

flux is not conserved for most scattering processes, whereas

in the PT -broken phase, the S-matrix eigenvalues have

reciprocal magnitudes, one greater than unity (corresponding

to amplification) and the other less than unity (corresponding to

attenuation). We and others [11–15] pointed out the existence

of novel singular points in the broken-symmetry phase, which

we refer to as CPA laser points. At these points, one of the S-

matrix eigenvalues goes to infinity (the usual lasing threshold

condition), while the other goes to zero. The latter phenomenon

corresponds to coherent perfect absorption (CPA) [16,17],

in which a specific mode of the electromagnetic field, the

time reversal of the lasing mode, is completely absorbed.

For PT -symmetric structures, these two phenomena must

coincide [12,13]; i.e., at the laser threshold, in addition to

a radiating mode of self-oscillation, there always exists an

incident field pattern, which, instead of being amplified, is

completely attenuated.

The rich behavior of 1DPT -symmetric photonic structures

violates the standard intuition that optical structures can be

characterized by their single-pass gain or loss, which is always

zero in these systems. The coincidence of both lasing and

perfect absorption, and more generally the reciprocal amplifi-

cation and attenuation displayed by the S-matrix eigenvalues,

is a strict consequence of the symmetry property of the

S matrix for such structures. In Ref. [13], this was expressed

in arbitrary dimensions by the relation

(PT ) S(ω∗) (PT ) = S−1(ω), (1)

where P is the parity operator (or indeed any discrete

symmetry operator with P2 = 1) and T is the time-reversal

operator (in the representation we will employ, this can be

taken as the complex conjugation operator). By comparison,

a T -symmetric unitary S matrix would obey T S(ω∗)T =
S−1(ω).

The set of S matrices obeying Eq. (1) can be shown to be

isomorphic to a pseudounitary group, which in the 1D case

is just U (1,1) [18]. In physical dimensions higher than one,

there can be more than two input and output channels, and it

is possible for the S matrix to be in a mixed “phase” with one

subset of the eigenvalues forming “PT -broken” amplifying

or attenuating pairs and the remaining eigenvalues being “PT

symmetric” and flux conserving. For 1D structures, however,
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there are only two eigenvalues, and they must either be both

unimodular, or a nonunimodular inverse conjugate pair, except

at the PT transition point, an exceptional point at which the

S matrix has only one eigenvector and eigenvalue [13].

Several specific cases of 1D PT -symmetric structures have

been studied [11–13,19], and in addition to the interesting CPA

laser behavior, other intriguing properties have been found,

such as unidirectional invisibility [19]. It is thus worthwhile

to see which specific properties PT symmetry imposes on

transmission and reflection in arbitrary PT structures, in

both the symmetric and broken-symmetry phases. That is

the goal of this work. In Sec. II, we show that 1D PT

structures obey certain strong conservation relations, which

could be employed experimentally to determine if a given

structure has realized PT symmetry. In Sec. III, we examine

a consequence of these conservation relations: the existence

of transmission resonances in which the reflectance vanishes

only for waves incident from one side of the structure, which

we refer to as anisotropic transmission resonances (ATRs). The

unidirectional invisibility phenomenon found by Lin et al. [19]

is a special case of these ATRs. In Sec. IV, we derive a separate

relation for the boundary between the PT -symmetric and

PT -broken phases of the S matrix, involving the reflectance

and transmittance for one-sided scattering processes. In Sec. V,

we show that our conventional definition of the S matrix and

its eigenvalues is physically meaningful, and in particular that

its phase boundary can be related to PT -breaking transitions

in the spectrum of some PT -symmetric Hamiltonian.

II. GENERALIZED UNITARITY RELATIONS

We begin, following Longhi [12], with the 1D transfer

matrix M , defined by (see Fig. 1)

(

A

B

)

= M

(

C

D

)

. (2)

For a PT -symmetric heterostructure, the components of M

obey the following properties [12]:

M22(ω) = M∗
11(ω∗), M12(21)(ω) = −M∗

12(21)(ω
∗), (3)

where ω is the frequency of the incident and scattered beams.

For real ω, these relations imply M22 = M∗
11 and Re[M12] =

Re[M21] = 0, which enables us to parametrize M as

M =
(

a∗ ib

−ic a

)

. (4)

B G L D

CA

GL

x=0 x=L/2x=-L/2

FIG. 1. (Color online) Schematic of a 1D PT -symmetric pho-

tonic heterostructure, consisting of an arbitrary number of layers

that are PT symmetric about x = 0, i.e., n(x) = n(−x)∗. G and

L indicate gain and loss regions, and different color tones indicate

different amplification or absorption strengths.

It is determined by three independent real quantities, i.e., b

and the phase and amplitude of a. The parameter c is related

to |a|,b by

bc = |a2| − 1, (5)

which arises from the quite general condition det(M) = 1 [20].

The parametrization using a,b is valid except when M12 = 0;

in that case, |a| = 1 and c replaces b as the third independent

parameter.

In the following discussion, we assume nonvanishing M11

and M22, which holds everywhere except at CPA laser points

[21]. The S matrix is defined by
(

A

D

)

= S

(

B

C

)

≡
(

rL t

t rR

)(

B

C

)

, (6)

where rL and rR are the reflection coefficients for light incident

from the left and right, respectively, while t is the transmission

coefficient, which is independent of the direction of incidence.

The parametrization (4) gives

S =
1

a

(

ib 1

1 ic

)

. (7)

Thus, the reflection coefficients are rL = ib/a and rR = ic/a,

which are unequal in magnitude but can differ in phase by only

0 or π , and the transmission coefficient is t = 1/a. Note that

S satisfies the symmetry relation (1), with P = (
0 1

1 0 ) and T

the complex conjugation operator. By using (5), we obtain the

following exact “generalized unitarity relation”:

rLrR = t2

(

1 −
1

T

)

. (8)

This leads to the conservation relation

|T − 1| =
√

RLRR, (9)

where RL or R ≡ |rL or R|2 are the two reflectances and T ≡
|t |2 is the transmittance. In addition, Eqs. (7) and (8) lead

to phase relationships among the reflection and transmission

coefficients

φR = φL, if T < 1

φR = φL + π, if T > 1 (10)

φL,R = φt ± π/2,

where φL,R,φt are the phases of the reflection and transmission

coefficients.

Equations (8) and (9) are the central results of this work.

They are valid for all 1D photonic heterostructures with PT

symmetry; two examples are shown in Fig. 2.

For T < 1, Eq. (9) becomes T +
√

RLRR = 1. This is an

intriguing generalization of the more familiar conservation

relation R + T = 1, which applies to unitary (T -symmetric) S

matrices for which the left and right reflectances are necessar-

ily equal. In thePT -symmetric case, the geometric mean of the

two reflectances,
√

RLRR , replaces the single reflectance R.

Therefore, when T < 1, the scattering of a single incident wave

from one side of the structure is subunitary (some flux is lost)

and the scattering from the other side is superunitary (some

flux is gained). As an exception, there can be an accidental

degeneracy at which RL = RR , in which case the scattering
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FIG. 2. (Color online) (a) Reflectance and transmittance of a

1D PT -symmetric structure of index n = 2 ± 0.2i and length L.

RL,RR,T are labeled and indicated by the solid, dashed, and dotted

curves, respectively. Zeros of the reflectances and the corresponding

anisotropic transmission resonances (T = 1) are marked by vertical

dotted lines. The quantity RLRR + 2T − T 2 = 1 is plotted as the

horizontal dashed line to demonstrate the conservation relation (9).

(b) Phases of rL, rR , and t in (a), demonstrating the reflection

phase jumps at each ATR. (c) Same quantities are plotted as in

(a), but the structure now has a passive region of length 2L/5 in

the center. For this structure, we see that it is possible to have

“accidental” flux-conserving points at which RL = RR(≡ R �= 0)

and hence T + R = 1. Similarly, there are accidental pseudounitary

points for which T − R = 1. They are indicated by vertical dotted

and dashed lines, respectively. The speed of light in vacuum is taken

to be unity and ωL is dimensionless.

from both sides conserves flux. Such special cases do occur as a

continuous parameter such as frequency is varied for nontrivial

PT systems (Im[n(x)] �= 0), as shown in Fig. 2(c).

For T > 1, all single-sided scattering processes are supe-

runitary, and the conservation relation (9) can be rewritten

as T −
√

RLRR = 1. Accidental reflectance degeneracies

(RL = RR) are also possible in this regime, giving the usual

pseudounitary conservation relation T − R = 1, as shown

in Fig. 2(c). All of these quantities actually diverge when

approaching the CPA laser points, but they still satisfy the

conservation relation (9).

Finally, we see that for T = 1, one of the reflectances must

vanish (the other typically does not). Hence, the scattering

for that direction of incidence is flux conserving, similar to

resonant transmission in unitary structures. This phenomenon

is analyzed in greater detail in Sec. III.

Interestingly, the S matrix describing three-wave mixing in

the undepleted pump approximation corresponds to the special

case where RL = RR [22,23]. The case T + R = 1 describes

frequency conversion by absorption or emission of a pump

photon, and T − R = 1 describes parametric amplification of

both signal and idler by down conversion of pump photons.

The relevance of a special case of PT symmetry to optical

parametric amplification and conversion has only very recently

been appreciated.

An experimental concern in all PT systems is how to

confirm that one has truly realized a structure with PT

symmetry, i.e., that the gain and loss are balanced and the real

index is symmetric. Equations (8)–(10) are strong constraints

on the allowed scattering processes with a single incident beam

for PT systems, and can be used to test how close one is to

the ideal symmetric structure.

III. ANISOTROPIC FLUX-CONSERVING

TRANSMISSION RESONANCES

As we have noted, Eq. (9) implies an interesting phe-

nomenon: there exists a flux-conserving scattering process for

incident waves on a single side if and only if T = 1, and one of

RL or RR vanishes. We refer to such a process as an anisotropic

transmission resonance (ATR). ATRs are different from the

accidental flux-conserving processes that can occur for T < 1;

those, as we have seen, are accessible from either direction

of incidence (RL = RR). ATRs are a generalization of the

flux-conserving transmission resonances of unitary systems,

which are independent of the incidence direction. In Fig. 3,

we show how two ATRs evolve out of a single transmission

resonance of the unitary system as balanced gain and loss is

added. Within the same structure, ATRs can occur for both left

and right incidence, as the frequency is varied, but generally

at different frequencies (to occur at the same frequency, a

“doubly accidental” degeneracy RL = RR = 0 would have to

occur, requiring a second tuning parameter).

A surprising property of ATRs is that their intensity profile

is spatially symmetric. This can be shown from the following

analysis. If E(x) is the spatial profile of a left- (right-) going

transmission resonance, then by a PT operation E∗(−x) is

also a left- (right-) going transmission resonance of the same

structure. Since these two states happen at the same frequency,

they must be identical (up to a phase φ) by the requirement of

uniqueness:

E∗(−x) = eiφE(x). (11)

Hence, the intensity satisfies I (x) ≡ |E(x)|2 = I (−x). This

result is consistent with the intuitive expectation that in order

to conserve flux, the photons must on average spend equal

amount of time in the loss and gain regions of the structure.

Except at the ATRs, intensities do exhibit asymmetry for

single-sided incidence, and in particular this is the case for

a wave incident from the side with nonvanishing reflectance

[see Figs. 3(e) and 3(f)].

Figure 3 shows two ATRs of a multilayer structure, one for

each incidence direction, occurring at different frequencies.

The frequencies are very similar because Im[n] is not very

large and both ATRs arise from a bidirectional transmission

resonance of the unitary (Im[n] = 0) heterostructure. As
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FIG. 3. (Color online) Asymmetric transmission resonances in a multilayer heterostructure. (a) Transmittance and reflectances as a function

of frequency for Im[n] �= 0 and (b) for Im[n] = 0. Mode 0 is a bidirectional transmission resonance in the latter case. The structure has a

constant Re[n] = 2 and consists of 50 layers with Im[n] increasing (decreasing) stepwise from 0.004 (−0.004) to 0.1 (−0.1) toward the center

in the loss (gain) half. The frequencies are ωL = 25.275, 25.139 in Modes 1 (wave incident from gain side) and 2 (wave incident from the

loss side). Spatial profiles shown are (c) the ATRs, (d) unitary bidirectional transmission resonance, (e) “wrong” side scattering at the ATR

frequencies, and (f) “wrong” side scattering at RR = 0 in the same structure, but with larger Max(Im[n]) = 0.17, showing a stronger asymmetry.

we add gain and loss to the unitary heterostructure, while

preserving the PT symmetry, the transmission resonances

separate and their spatial profiles become more distinct.

Figure 3(e) shows the asymmetric intensity profiles for waves

incident at the ATR frequency, but from the “wrong” side (the

side with nonvanishing reflectance). The asymmetry increases

as the two ATRs move further apart with increasing gain or

loss, as shown in Fig. 3(f).

Let us refer to the left and right halves of a PT -symmetric

heterostructure as U,V . We can write the reflection and

transmission coefficients coefficients for the whole structure

(rL, rR , and t) in terms of the reflection and transmission

coefficients for the U and V segments:

rL =
rL,U − ei(αU +αV )r∗

L,U

1 − ei(αU +αV )r∗
L,U r∗

R,V

, (12)

rR =
rR,V − ei(αU +αV )r∗

R,V

1 − ei(αU +αV )r∗
L,U r∗

R,V

, (13)

t =
eiαU (1 − r∗

L,U rR,V )

1 − ei(αU +αV )r∗
L,U r∗

R,V

. (14)

Here, αU or V ≡ 2 Arg[tU or V ]. Note that if either rL,U = 0 or

rR,V = 0 at some ω, corresponding to a transmission resonance

of U (V ) in the right (left) direction, the transmittance for the

full structure will also be unity.

Thus, one type of ATR can arise from resonances of either

half of thePT system. This follows fromPT symmetry. First,

using the time-reversal operation, a transmission resonance of

S(nk) from the left must be a transmission resonance of S(n∗k)

from the right (interchange gain and loss regions and inter-

change incoming and outgoing amplitudes) [17]. Second, the

S matrix of the right-hand side of a PT structure is PS(n∗k),

so the right half of the PT structure must have a resonance for

waves incident from the left side as well, if its left side does.

Therefore, the composite structure will have an ATR if either

half does (rL,U = 0 or rR,V = 0). This argument is illustrated

graphically in Fig. 4; we refer to these as trivial ATRs.

ATRs also occur when Arg[rL,U ] or Arg[rR,V ] equal

(αU + αV )/2 and involve multiple scattering between the

subunits. It is straightforward to check that at such points,

T = 1 and RL(RR) = 0. It can be shown that a single layer

of gain or loss in a lossless environment (e.g., in air) does not

have transmission resonances in general, and we show in the

Appendix that all the ATRs in Fig. 2 are of this type and are

thus “nontrivial.”

As already noted, for an ATR to be bidirectional, a doubly

accidental degeneracy is needed either in the amplitude of

rL,U and rR,V (rL,U = rR,V = 0) or their phase (Arg[rL,U ] =
Arg[rR,V ] = (αU + αV )/2). This is highly unlikely, unless one

A
G

A’
L

A’
PT

A

Combined

A
G L

A

FIG. 4. (Color online) Graphical explanation of a trivial ATR

arising from the transmission resonance of the left half in the right

direction. PT symmetry requires that it also be a resonance of the

right half for left incidence (see argument in text). Depending on

the particular PT structure, there may or may not be trivial ATRs;

for example, the simple heterostructure of Fig. 2(a) has no such

ATRs. The ATRs of primary interest are those that arise from multiple

scattering between the left and right halves of the structure.
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can tune an additional continuous parameter other than the

frequency, so in the generic case all transmission resonances

of PT structures are unidirectional.

In a recent work, Lin et al. [19] have studied a 1D

PT -symmetric Bragg structure of alternating dielectric layers

with appropriate gain and loss, and discovered a series of very

closely spaced ATRs centered around the Bragg point, with

an additional property that they refer to as “unidirectional

invisibility.” Not only do they find T = 1,RL = 0,RR �= 0

(or vice versa), as dictated by Eq. (9), they also find that at

these ATRs, the transmission phase φt = 0, corresponding to

zero phase delay of the signal compared to free propagation.

The properties of the ATRs also hold approximately in

the neighboring frequency window, leading to a seemingly

“broadband ATR.” For these reasons, there would be no

signature of the presence of the structure in either the amplitude

or phase of the received wave packet, if the wave is sent from

the correct side (there would be a signature of course in the

reflected wave if sent from the wrong side). This condition, that

φt = 0 at the ATRs, is not required by our generalized unitarity

relations and is specific to their structure [24]. A similar

Bragg structure was studied before [25] and, recently, the

equivalent Hermitian problem in a complex coordinate system

was analyzed [26]. The “unidirectional invisibility” was shown

to break down as the number of unit cells increases at a fixed

modulation depth of the periodic refractive index [27], but a

number of ATRs still exist in the vicinity of the Bragg point.

The existence of nontrivial ATRs is independent of whether

the S matrix is in thePT -symmetric orPT -broken phase [13];

they can even occur at the symmetry-breaking exceptional

point (see the following section). However, we do find for the

simple gain-loss heterostructure of Figs. 2(a) and 2(b) that the

ATRs disappear soon after the lasing threshold is passed in

the broken-symmetry phase since in the large Im[n]kL limit,

RLRR approaches unity asymptotically. This is not the case for

more complicatedPT structures such as those of Fig. 2(c). The

different behaviors of the two cases are illustrated in Fig. 10

of the Appendix and their origin is discussed.

IV. PHASE TRANSITION BOUNDARIES

A 1D PT heterostructure can undergo a spontaneous

symmetry-breaking transition in the eigenvalues and eigen-

vectors of its S matrix, as either ω is increased at fixed gain or

loss or as gain or loss is increased at fixed ω [13]. In the

symmetric phase, the PT operation maps each scattering

eigenstate back to itself, whereas in the broken-symmetry

phase, each scattering eigenstate is mapped to the other. At

the symmetry-breaking exceptional point, there is only one

eigenvector and so both cases coincide.

Let λ1,2 be the eigenvalues of the S matrix of a PT -

symmetric heterostructure and ν1,2 be the ratios of the two

amplitudes of the corresponding eigenstates. It follows from

the S-matrix parametrization (7) that

λ1,λ2 =
i

2a
[(b + c) ±

√

(b − c)2 − 4], (15)

ν1,ν2 =
i

2
[(c − b) ±

√

(b − c)2 − 4]. (16)

These equations imply that λ1λ2 = −|a|2/a2,ν1ν2 = −1, and

the eigenvalues must have reciprocal moduli. In the symmetric

phase, both eigenvalues are unimodular, whereas the broken-

symmetry phase corresponds to the |λ1| > 1,|λ2| < 1 case.

The exceptional point occurs when b − c = ±2, and there

is a single eigenvector with eigenvalue λ = ±i|a|/a. Both

the eigenvalues and amplitudes ν1,2 meet and bifurcate at

the exceptional point, similar to the PT -breaking transitions,

which occur in the eigenvalue spectra of PT -symmetric

Hamiltonians [1–5].

Each eigenvector of the S matrix corresponds to a particular

choice of two coherent beams, simultaneously directed at

each side of the heterostructure. The S-matrix transition

can in principle be observed by tuning the complex input

amplitudes, measuring the output amplitudes, and hence

finding the scattering eigenvalues. One would actually need

to do such “two-sided” interference experiments to detect the

attenuating mode in the broken-symmetry phase, an interesting

possibility that is currently being explored [23]. However, such

experiments with two coherent input beams [17] are often

inconvenient and difficult to perform. Therefore, it would

be preferable to have a criterion for the transition based on

separate single-beam measurements.

In Ref. [13], two such criteria were given for the phase

boundaries in an arbitrary PT -symmetric heterostructure;

however, they both involve the relative phase of the reflection

and transmission coefficients. One of these conditions is

rL − rR = ±2it . Using the conservation relations (9), this can

be shown to lead to the simpler condition [28]

RL + RR

2
− T = 1, (17)

which involves only the transmittance and reflectances. The

left-hand side of Eq. (17) is greater than unity in the broken-

symmetry phase and less than unity in the PT -symmetric

phase. This provides a simple experimental criterion for

locating the PT -breaking transition point in 1D heterostruc-

tures. This criterion will be particularly useful if the quantity

(RL + RR)/2 − T varies rapidly near the transition point. This

appears to be the case for many heterostructures, as shown for

example in Fig. 5 for a three-layer structure.

1490 1510 1530
0.5

1.5

1.0

ωL
1550

|λ
|

FIG. 5. (Color online) Test of the criterion (17) for PT -

symmetry-breaking points of a three-layer heterojunction structure.

The thin solid lines represent the eigenvalues of the S matrix, which

exhibit five symmetry-breaking points as the frequency ω is tuned

over the selected range. The thick solid line indicates the left-hand

side of Eq. (17). The heterostructure has a constant Re[n] = 3, and the

first and last layers are filled with gain and loss of Im[n] = ±0.005.

The width of the central passive region is 4% of the total length L.
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FIG. 6. (Color online) Reflectances and transmittance along the

PT phase boundary for the 1D PT -symmetric structure studied in

Fig. 2(a), in the high-frequency regime (ωL � 1725). The plots are

given as a function of the gain or loss strength Im[n], while the

frequency ω is simultaneously varied to maintain the system at the

phase boundary. Vertical dotted lines indicate points where RR = 0,

for which RL = 4 and T = 1 as predicted by Eq. (17) and indicated

by horizontal dashed lines.

Equation (17) implies that for an ATR to coincide with

the exceptional point, the nonzero reflectance must be exactly

equal to 4, which is allowed but will not occur without specific

tuning. An example of such tuning is shown in Fig. 6. This plot

is obtained by tuning both the gain or loss strength (Im[n]) and

the frequency, to keep the system along the phase boundary,

and observing the reflectances and transmittance. Two ATRs

are found along the phase boundary. We note that a special

set of solutions of Eqs. (9) and (17) are given by RR,RL,T =
(p ± 1)2,p2,(p ∓ 1)2, where p is an arbitrary real number.

Interestingly, the maxima of RR,RL,T in this simple geometry

are given by this set of solutions with p = Re[n] in the high-

frequency regime where Im[n] ≪ 1.

V. UNIQUENESS OF PT TRANSITION IN SCATTERING

The generalized unitarity relations (8)–(10) hold regardless

of whether the eigenvalues and eigenvectors of the S matrix

are in the PT -symmetric or PT -broken phase, although the

quantities in the generalized unitarity relations are related to

the phase of the PT scattering system through the relation

(17). There is, however, some freedom of choice in the

definition of the 1D S matrix, corresponding to permutation

of the outgoing channels. The definition we used in Ref. [13]

is given in Eq. (6), which is also widely used in mesoscopic

physics [29]. In this section, we will refer to the S matrix

defined in this way as S0. In S0, the reflection coefficients

are on the diagonal, and the outgoing channels are related to

the corresponding incident channels by time reversal, which

seems quite natural. In particular, the time-reversal operation

T in this definition is represented by the complex conjugation

operator.

There is, however, an alternate definition:
(

D

A

)

= Sc

(

B

C

)

≡
(

t rL

rR t

) (

B

C

)

, (18)

which has also been used in the literature, including in one

of the earliest works on PT -symmetric scattering by Cannata

et al. [30]. This alternative definition of the S matrix, which

we will refer to as Sc, was subsequently used in the work

on unidirectional invisibility of Lin et al. [19]. Because the

permutation operation does not preserve the eigenvalues, these

two different definitions of the S matrix lead to different criteria

for the symmetric and broken-symmetry phases, as well as

for the phase boundary (exceptional points). This can lead

to confusion, as well as raising questions as to whether the

S-matrix eigenvalues and eigenvectors, and their transitions,

are physically meaningful.

Note first that both definitions lead to the same values

for t,rR,rL, so they will give the same scattered state for

the same input state. The issue is whether one or the other

definition more closely reflects the phenomena of spontaneous

PT -symmetry breaking, as already known from Hamiltonian

studies. In our earlier work on the PT transition in scattering

systems [13], we showed that the phase boundary of S0

corresponds closely to the anticrossings of the poles of the

S matrix in the complex ω plane (see also [15]). The locations

of these poles are independent of the definition of S; they

reflect the internal excitation frequencies of the scatterer, as

well as the coupling of these excitations to the continuum. This

suggested that thePT transition of S0 is indeed associated with

thePT transition of some underlying effectivePT -symmetric

Hamiltonian. We have recently verified this point of view

analytically and numerically, in collaboration with others. The

main part of that work will be presented elsewhere [31]; here,

we just state a few relevant results and show a numerical

example corroborating this point of view.

First, it is straightforward to show that the eigenvalues of Sc

have the same general properties as those of S0 (even though

they do not coincide). In particular, their product is −1 and they

are either both unimodular or of reciprocal modulus. However,

the criterion for their exceptional points differs from that of

S0. Using a similar a,b,c parametrization of Sc as used earlier

for S0, one finds that the eigenvalues are given by

λ1,λ2 =
1

a
[1 ±

√
−bc]. (19)

Since both b and c are real, this expression shows that

when bc > 0 both eigenvalues are complex (and unimodular),

whereas when bc < 0, both eigenvalues are real and satisfy

|λ1| = |λ2|−1 �= 1. Exceptional points occur when b = 0 or

c = 0. From Eqs. (7) and (8), one sees that bc = (1/T − 1) and

so bc > 0 → T < 1 and bc < 0 → T > 1, while b = 0(rL =
0) or c = 0(rR = 0) is the condition for T = 1. Thus, each ATR

is an exceptional point for Sc, and T > 1 corresponds to the

“broken-symmetry” phase, whereas T < 1 to the “symmetric”

phase. This is in contrast to S0 for which one has the criterion

of Eq. (17) involving both T and the average of RL and RR .

These two conditions for the transition and for the two

phases of the S matrix do not coincide [see Figs. 7 and

8(a)] unless an ATR is tuned to occur at the phase boundary

of S0 as we have shown in Fig. 6. We see that for this

simple heterostructure, S0 has a single transition to the broken-

symmetry phase (for a fixed Im[n]), while Sc has a series of

transitions corresponding to entering and leaving the broken-

symmetry phase in the high-frequency regime (Fig. 7). Each
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FIG. 7. (Color online) Logarithm of the modulus of the eigenval-

ues of S0 (thick line) and Sc (thin line) for the 1D PT heterostructure

studied in Fig. 2(a); case (a) is with Im[n] = 3.995 × 10−3 and case

(b) is with Im[n] = 4 × 10−3. |λ| = 1 indicates the PT -symmetric

phase, and reciprocal values for |λ| indicate the broken-symmetry

phase. Sc has multiple “transitions” spaced by the free spectral range

and insensitive to Im[n]; S0 has a single transition, which is highly

sensitive to small changes in Im[n].

of these transitions begins at one of the two ATRs and ends at

the other; thus, the centers of the broken-symmetry regions are

spaced by the free spectral range of the unitary cavity. These

“lozenges” of broken-symmetry phase barely change when

Im[n] is varied; Sc repeatedly enters and leaves the symmetric

phase as we tune ω. In contrast, the single transition point of

S0 moves substantially to lower frequency as Im[n] increases;

once it enters the broken-symmetry phase, it never reenters the

symmetric phase at any higher frequency. This indicates that

S0, not Sc, is measuring the breaking of PT symmetry.

In Fig. 8, we show the decisive comparison. If we simply

take the PT heterostructure shown in Fig. 2(a), and impose

Dirichlet or Neumann boundary conditions at the boundaries

to the continuum, we have a non-Hermitian discrete eigenvalue

problem with PT symmetry. Its energy spectrum (expressed

as complex frequencies) makes transitions between real and

complex conjugate pairs [Fig. 8(b)] in a manner that perfectly

follows the behavior of the eigenvalues of S0 and but not of Sc

[Fig. 8(a)]. Moreover, in Fig. 8(c) we show the poles and zeros

of the S matrix; their symmetric distribution around the Im[k]

axis is a consequence of the PT symmetry. Before the PT

transition of S0, the poles have approximately the same value

of Im[k] as for the passive system, but just at the transition of

S0, there is an anticrossing in the complex plane and half begin

moving toward the real axis and the other half recede further

down in the complex plane [13,15]. For Im[k] ≈ 17, the system

is very near the CPA laser point for which a pole and zero coin-

cide on the real axis. The eigenvalues of both S0 and Sc diverge

or vanish at this point because t, rR , and rL all diverge at the

lasing transition. Interestingly, for this value of Im[n], there are

no ATRs after the lasing transition and T < 1 for all larger k;

the reasons for this are discussed in the Appendix. The same

correspondence between the broken-symmetry phase of Sc

and the analogous closed-system Hamiltonian holds for more

complex PT heterostructures, such as that of Fig. 2(c), where

S0 has multiple broken phases [31]. Thus, we believe that at

0 5 10 15 20 25 30

-2

   0

2

1
0

Re[ωL]

lo
g

  
 |

λ
|

-2

0

2

-2

0

2

Im
[ω

L
]

Im
[ω

L
]

(c)

(b)

(a)

FIG. 8. (Color online) (a) PT phase transition of S0 (thick line)

and Sc (thin line) for the 1D heterostructure studied in Fig. 2(a) but

with n = 2 ± 0.208i. The broken-symmetry phase of S0 is indicated

by the shadowed area. (b) PT phase transition of the corresponding

finite non-Hermitian cavity Hamiltonian with Dirichlet boundary

conditions. Its broken-symmetry phase coincides with that of S0.

(c) Poles (red circles) and zeros (black crosses) of the S matrix (which

are the same for S0 and Sc); anticrossing of the poles occurs at the

phase transition of S0. At kL ≈ 17, the system is very near the CPA

laser threshold point, where the cavity both emits laser radiation and

perfectly absorbs the time reversal of the lasing mode.

least for the 1D case, there is a unique definition of the S matrix,

under which its PT transitions actually reflect the symmetry

breaking in the underlying non-Hermitian Hamiltonian.

VI. CONCLUSION

We have derived generalized unitarity relations for the

S matrix of arbitrary 1D PT -symmetric photonic heterostruc-

tures, including a conservation relation between the transmit-

tance and the left and right reflectances. This conservation

relation can be easily tested in experimental structures and

used as a criterion of how precisely one has realized the

PT symmetry. In addition, the conservation relation leads

to a simple criterion for identifying the exceptional point(s) at

which the PT symmetry is spontaneously broken or restored.

These exceptional points are shown to be closely related to the

PT -symmetry-breaking transition of the underlying effective

Hamiltonian of the system.
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APPENDIX: PROPERTIES OF SIMPLE GAIN-LOSS

HETEROJUNCTION

The PT heterostructure shown in Fig. 2(a), which consists

of two uniform slabs of equal length and index n,n∗, is

the simplest example one can study of the class of 1D

PT -symmetric photonic heterostructures, and it has been

treated previously in [11,13]. We will refer to this structure

as the “simple heterojunction” (SH), and it is described by

the transfer matrix (4) with a = (α + α∗) + i(β + γ ), b =
−i(α − α∗) + (γ − β), and c = i(α − α∗) + (γ − β), where

α =
| cos 
|2

2
−

n∗

2n
| sin 
|2, (A1)

β =
1

2|n|2
[n∗ sin 
 cos 
∗ + c.c.], (A2)

γ =
1

2
[n sin 
 cos 
∗ + c.c.], (A3)

and 
 ≡ nkL/2 is the complex optical path inside the left half.

Since β, γ are real, so are b and c, and it is straightforward

to check that (5) holds. This transfer matrix leads to certain

simple properties. First, as mentioned in the text, the SH has

no trivial ATRs as we will show in Sec. 1. Second, below

the PT -symmetry-breaking point, it has many ATRs, roughly

two per free spectral range of the passive resonator. Above the

symmetry-breaking transition, it still has ATRs until it passes

the lasing transition after which they disappear in the limit

Im[nkL] → ∞. We will discuss this behavior and contrast it

with more complex heterostructures in Sec. 2.

1. Absence of trivial ATRs

The SH can be treated as having an air gap of vanishing

width in-between the gain and loss regions. Hence, the

absence of trivial ATRs is a consequence of the absence

of reflectionless transmission resonances of such uniform

amplifying or attenuating slabs in air. In the following, we first

discuss in general the transmission resonances of a uniform

slab of refractive index n and length L/2 embedded in two

semi-infinite media of index nl and nr .

For this simple setup, the transfer matrix defined in Sec. II

[(
A

B ) = M(
C

D ); see Fig. 1] takes the form

M =
1

2

(

1 1
nlk

1 − 1
nlk

)

(

cos 
 i sin 

nk

ink sin 
 cos 


)(

1 1

nrk −nrk

)

,

(A4)

where nl, nr , n can be complex. A transmission resonance of

an incident beam from the left side requires C = 0 and

A =
(

1 −
nr

nl

)

cos 
 + i

(

n

nl

−
nr

n

)

sin 
 = 0. (A5)

For the gain and loss regions in SH, when treated as being

separated by an infinitely thin air gap, nl = nr = 1 while

Im[n] ≡ τ �= 0. We immediately see that Eq. (A5) can not

be satisfied because sin 
 �= 0 due to the finite imaginary part

of n. This holds independent of n (τ �= 0) and k( �= 0) (see

Fig. 9). This finding is confirmed by calculating the reflectance

directly [see Fig. 9(a)]. The same analysis can be extended to

the slightly more complicated case shown in Fig. 2(c), where

ωL
0 5 10 15 20

-4

-2

0

2

lo
g

  
  

R
1

0

FIG. 9. (Color online) Reflectance of the gain (solid) and loss

(dashed) region in the heterostructure studied in Fig. 2(a). Two

values of the refractive index are considered: n = 2 ± 0.2i (thick),

n = 2.5 ± 0.1i (thin).

all the ATRs are also found to be “nontrivial” as confirmed

again by calculating the reflectances of the subunits directly.

We note, however, that trivial ATRs do exist in some PT

structures. An example is the concatenation of even numbers

of SHs.
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92.345 92.35
10
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FIG. 10. (Color online) (a) Reflectances and transmittance same

as in Fig. 2(a) but at higher frequencies. Inset: Analysis of the

reflection coefficient from the “gain” side. Letters with arrow

represent the complex amplitude of the traveling waves at the nearest

interface. (b) Reflectances and transmittance same as in Fig. 2(c),

but at higher frequencies. Inset: zoomed in on the two ATRs near

ωL = 92.35. (c) Reflectances and transmittance of the central passive

region in Fig. 2(c) placed between two semi-infinite regions of gain

and loss with n = 2 ± 0.2i. The transmission resonances are given

by Eq. (A6) in which Im[nl] takes opposite signs depending on the

propagation direction. Solid curve represents T − 1 and its broken

parts indicate T < 1.
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2. Asymptotic properties of ATRs in the simple heterojunction

In this main text, we noted that ATRs for the SH disappear

soon after the lasing threshold is passed in the broken-

symmetry phase of S0 [see Fig. 10(a)]. To understand this

observation, we study the behaviors of RR and RT in the

large τkL limit. The reflection coefficient from the “loss”

side of the PT heterostructure approaches the value given by

the Fresnel formula (1 − n)/(1 + n) due to the suppression

of interference effects by strong absorption. Surprisingly,

the asymptotic value of the reflection coefficient from the

“gain” side, (1 + n∗)/(1 − n∗), turns out to be the inverse

of the Fresnel formula. This can be explained from the

analysis shown by the inset of Fig. 10(a). Due to the strong

loss inside the “loss” side of the cavity, D′ is given by

the Fresnel relation C ′(2n∗)/(n∗ − n) ≡ C ′r ′, implying |D| =
| exp[in∗kL/2]D′| = |r ′ exp[in∗kL]C| is much larger than |C|
in the large τkL limit. Therefore, the scattering at the air-gain

interface is approximately the time-reversed process as if the

“gain” side (which is the “loss” side in the time-reversed

picture) were semi-infinite, i.e., with incident amplitude r∗ and

reflected amplitude 1 in the air and transmitted amplitude D∗,

satisfying the Fresnel relation. The reflection coefficient in the

original problem is then (1 + n∗)/(1 − n∗). Thus, RLRR → 1

in this limit, which implies T → 0 from Eq. (9) and ATRs do

not exist.

In more complicated PT structures, ATRs can take place

in this limit. For example, the reflection coefficient connecting

C ′ and D′ approaches zero at the transmission resonances of

the passive region in Fig. 2(c). The analysis above then breaks

down and sharp changes of the transmittance and reflectances

take place at these frequencies as shown in Fig. 10(b). These

transmission resonances through the passive region are a

special set of solutions of Eq. (A5). They require nl = n∗
r

and Im[n] = 0, and the transmission resonances occur at


 = arctan

[

2 Im[nl]n

Re[nl]2 − Im[nl]2 − n2

]

. (A6)

In the frequency range shown in Fig. 2(c) where Im[nl]k is

small, these transmission resonances do not lead to ATRs of

the whole heterostructure due to the multiple interferences

taking place inside the gain and loss sub-units. In the large

Im[nl]k limit shown in Fig. 10(b), however, these multiple

interferences are suppressed due to strong absorption or

amplification, and ATRs arise from the resonances given

by (A6). Note that these ATRs are still “nontrivial” as

the frequencies given by (A6) are not the transmission

resonances of the gain or loss subunit in the absence of the

other.

For the purpose of completeness, we mention a few more

cases where transmission resonances of a single uniform slab

[i.e., the solutions of Eq. (A5)] exist. When nl, nr ,n can be

treated as real (with negligible absorption and no gain), two

types of solutions of (A5) can be found. The first one is well

known, nl = nr , which requires sin 
 = 0; the second one

is less well known, n = √
nlnr , which requires cos 
 = 0. It

is easy to convince oneself that no other types of solution

exist for real indices. As one slowly increases the gain or

loss strength in the scattering layer, approximate transmis-

sion resonances can still be found, but their reflectances

gradually increase and eventually become detectable. In

Ref. [32], a different case was studied where nr = 1, Im[n] =
0, Im[nl] �= 0. By noticing that cos 
 = 0 can not satisfy

the above equation and tan 
 is real, Eq. (A5) can be

reduced to

Im[nl]
2 = (Re[nl] − 1)(n2 − Re[nl]), (A7)

tan 
 = −n

(

Re[nl] − 1

n2 − Re[nl]

)
1
2

. (A8)

It describes the transmission resonance from a loss or

gain media to air through a passive slab, which gives

rise to the novel “surface” lasing modes introduced in

Ref. [32].
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Phys. Rev. A 84, 023820 (2011).

023802-10

http://dx.doi.org/10.1103/PhysRevLett.107.033901
http://dx.doi.org/10.1364/OPEX.13.003068
http://dx.doi.org/10.1364/OPEX.13.003068
http://dx.doi.org/10.1088/1751-8113/44/34/345302
http://dx.doi.org/10.1088/1751-8113/44/34/345302
http://dx.doi.org/10.1088/1751-8113/44/48/485302
http://dx.doi.org/10.1103/RevModPhys.69.731
http://dx.doi.org/10.1016/j.aop.2006.05.011
http://dx.doi.org/10.1016/j.aop.2006.05.011
http://dx.doi.org/10.1103/PhysRevA.84.023820

