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Conservative and dissipative tip-sample interaction forces probed with dynamic AFM

B. Gotsmann,* C. Seidel, B. Anczykowski, and H. Fuchs
Physikalisches Institut, Universita¨t Münster, D-48149 Mu¨nster, Germany

~Received 31 March 1999!

The conservative and dissipative forces between tip and sample of a dynamic atomic force microscopy
~AFM! were investigated using a combination of computer simulations and experimental AFM data obtained
by the frequency modulation technique. In this way it became possible to reconstruct complete force versus
distance curves and damping coefficient versus distance curves from experimental data without using fit
parameters for the interaction force and without using analytical interaction models. A comparison with
analytical approaches is given and a way to determine a damping coefficient curve from experimental data is
proposed. The results include the determination of the first point of repulsive contact of a vibrating tip when
approaching a sample. The capability of quantifying the tip-sample interaction is demonstrated using experi-
mental data obtained with a silicon tip and a mica sample in UHV.@S0163-1829~99!01839-1#
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I. INTRODUCTION

The tiny forces between a nanometer sized probe
sample have been intensively examined since the adven
atomic force microscopy~AFM!. As there are numerous ap
plications of AFM to a wide range of surfaces, the forc
involved need to be understood in order to give a quant
tive interpretation of AFM images. Furthermore, the analy
of the forces is relevant beyond AFM itself: the physics
nanometer sized particles or a tip and their interaction w
surfaces are of interest to the fields of cluster physics, e
ronmental science, the fabrication of nanostructures etc.

A variety of different theoretical models describing th
tip-sample interaction were published previously: approac
based on continuum theory take into account attrac
forces due to van-der-Waals interaction,1 electrostatic
interaction,2 elasticity,3 and can be set together to conta
models with both attractive and repulsive forces~see, for
example, the review by Kru¨ger et al.4! Atomistic theories
have also been applied.5,6 All AFM techniques are sensitive
to these forces, but only few of them are capable of de
mining the forces as a function of the separation betwee
probing tip and a sample. Contact AFM force-distance m
surements with soft cantilevers can record the forces of
tip-sample interaction accurately. However, due to a m
chanical instability when approaching a surface, a jump
contact of the probing tip occurs7 when the force gradien
becomes larger than the spring constant of the free can
ver. This prevents the determination of the full tip-samp
potential. On the other hand, for cantilevers stiff enough
avoid this jump-to-contact there is a loss of sensitivity.8

In large amplitude dynamic AFM this jump-to-contact
avoided by using stiff cantilevers. The cantilever is vibrat
at amplitudes much larger than the interatomic spacing~typi-
cally 1-100 nm!. Here, the measurement of the correspo
ing ac signals can be very sensitive. Due to the reductio
friction and lateral forces during the scanning process d
age to the tip or surface is minimized. All the advantag
have been impressively demonstrated in a large numbe
recent publications showing atomically resolved images
reactive,9,10 inert11 as well as electrical insulating12 surfaces
PRB 600163-1829/99/60~15!/11051~11!/$15.00
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and molecularily resolved images of thin organic adsorb
layers.13,14 Often in these examples only attractive forc
were involved and the FM technique15 was applied using
large amplitudes. This technique is chosen here to ana
and quantify tip-sample forces, but our results can also
applied to other AFM techniques.

In contrast to the case of extremely small vibrati
amplitudes,16 the theoretical analysis of large amplitude d
namic AFM is not straightforward. It is not trivial to assig
the acting forces to the images,17 because the forces for eac
position of the tip represent a spacial integral of the press
acting on the extensions of the tip. In addition, usually on
the time averaged quantities of the moving tip~amplitude,
frequency, etc.! are measured experimentally. This mea
that an integral over one period of vibration has to be c
sidered. Further, for a given position of the cantilever su
port the tip moves through a large part of the tip-sam
potential during each oscillation cycle, and as the potentia
nonlinear the mathematical description is a nonlinear pr
lem.

A force spectroscopy curve can be measured by vary
the cantilever support distance from the sample while pr
ing properties of the oscillation such as the frequency, a
plitude, or phase. These dynamic force spectroscopy cu
exhibit a strong material contrast18,19 indicating a sensitivity
to local mechanical properties, which has strong implicatio
for possible applications. How can the corresponding cur
then be related to forces? A large number of publicatio
addresses the problems under various circumstances.
choice of the appropriate mathematical description depe
on the different modes of operation. While for the amplitud
modulation~AM ! technique~also called intermittent contac
mode or slope detection! numerical methods are
predominant,4 rather good analytical descriptions20 exist for
the FM technique. In this report, however, a numeric
method is used for the analysis of the FM technique, beca
of its applicability to any type of force. For example th
simulation allows a reconstruction of the full force curv
even in the case of discontinuous curves, as can occur
example, on reactive surfaces.21 Furthermore, the simulation
turns out to be capable of also including energy dissipat
11 051 ©1999 The American Physical Society
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11 052 PRB 60B. GOTSMANN, C. SEIDEL, B. ANCZYKOWSKI, AND H. FUCHS
effects, which were not considered in previously publish
methods.

A property of dynamic AFM often neglected is that n
only elastic ~static! forces are probed but also dissipati
~velocity dependent! forces may play a role. These forces c
lead to strong material contrasts and are relevant to the
terpretation of phase imaging in tapping mode AFM.22,23

Similarly, in FM-AFM material contrasts can be obtained12

and—as shown below—can be analyzed quantitatively. T
opens up a new field of surface analysis for the quantita
determination of material properties on the nanometer sc
However, some of the underlying mechanisms, such as
coelasticity are strongly frequency dependent—and in A
or FM-AFM the frequency varies only marginally around t
free resonant frequency of the AFM cantilever. Other sc
ning probe methods such as scanning acoustic microsco24

may not be restricted to one specific frequency.
In the presence of both, conservative and dissipa

forces, it is desirable to analyze underlying mechanisms
distance dependencies in order to relate the results to o
applications in the field of scanning probe microscopy.

II. EXPERIMENT

All presented experimental data were obtained un
ultrahigh vacuum conditions using a commercial instrum
~Omicron UHV AFM/STM!, applying the FM-AFM
technique.15 Commercial silicon cantilevers with integrate
tips ~Nanosensors! were used~resonant frequency aroun
300 kHz, spring constant approximately 40 N/m!. In the FM
technique the driving signal of the cantilever excitation~per-
formed by a small piezo plate! is generated through a feed
back loop. The detector, sensing the cantilever movem
produces an ac signal, which is amplified, phase shifted,
then used as an excitation signal. The amplification is
justed by a PI controller to keep the vibration amplitu
constant. The frequencyf of the vibrating lever then varies in
response to the tip-sample interaction forces. The force
duced shift of the resonant frequencyD f in the self-excited
loop is used as a control signal to keep the tip-sample
tance constant while scanning.

Dynamic force spectroscopy~DFS! with the FM tech-
nique is the recording of the two distance-dependent v
ablesD f and the gain factorR ~proportional to the driving
amplitude Aexc) as a function of the displacement of th
cantilever support towards the sampled. Furthermore, for
quantitative measurements the absolute value of the am
tudeA, theQ value of the cantilever far away from the su
face and the spring constantkl have to be determined. Th
curves were recorded at preselected points of the surf
which can be explored by standard imaging. The reprod
ibility was checked by repeating the measurements. Pla
deformations of the tip or the sample can be detected b
persistent change in the spectroscopy curves.

In the example given below, the PI controller kept t
amplitude constant to better than 99%. It is important
check this point experimentally because even deviation
only a few percent from the set amplitudeA0 can have mea-
surable effects on the force spectroscopy curves. For
ample, softer PI controller settings can be chosen to impr
the signal-to-noise ratio. It can even be advantageous to
d
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low the amplitude to decrease slightly due to dissipat
forces by choosing the values of the PI controller approp
ately. In this case the situation would be more similar to
constant excitation FM technique.25 The probability of tip
wear or damage may then be reduced. However, for dyna
force spectroscopy a strong decrease of the amplitude is
desirable for two reasons: Firstly, regions of the potentia
relatively strong repulsion and dissipation may not
reached by the tip at all, because further penetration of the
is avoided by a faster reduction of the amplitude. Secon
the effects of conservative and dissipative forces on the D
curves are more difficult to seperate26 if the amplitude is
allowed to decrease rapidly with distance. From the theory
a simple harmonic oscillator one would expect that in t
FM techniquef responds to elastic forces~force gradients!
while the excitation amplitudeAexc responds to dissipative
forces. In the AM technique and in constant-excitation F
AFM, however, this separation cannot be made so easily
both the constant-excitation FM technique and the AM te
nique the excitation amplitudeAexc is kept constant while the
vibration amplitudeA is allowed to decay as a result of th
forces acting between tip and sample. This implies that
analytical purposesof the forces the~constant vibration-
amplitude! FM technique is more straightforward, and fo
imaging the constant excitation-amplitude techniques~AM-
AFM and constant-excitation-FM-AFM! are favorable due to
the avoidance of tip wear. Still, the complex situation mu
not be simplified too much at this point, especially as
different techniques have been proven equally powerfu
imaging.10,25

III. THEORETICAL TREATMENT

In order to interpret the experimental force spectrosco
curves a mathematical description of the measurement
cess has to be found which leads to an expression in term
conservative and dissipative tip-sample interaction forces
this section only conservative forces are considered. Ene
dissipation will be included in Sec. IV.

The vibration of the lever can be treated as a one dim
sional movement. This assumptions holds for weak pertu
tions of the cantilever movement by tip-sample interaction24

which is usually the case in dynamic AFM. In the case
stronger tip/sample interaction as used in scanning acou
microscopy24 higher flexural modes of the cantilever vibra
tion have to be taken into account. Further, the free le
behaves like a harmonic oscillator, i.e., the bending force
the lever follows Hook’s law. Although, the theory of ela
ticity predicts a dependence of the force of the fourth-or
spatial derivative of the lever deflection, Sarid27 has shown
that for very small deflections as present in AFM Hook’s la
can be restored. With these two assumptions the force b
equation of motion yields:

me f f z̈~ t !1b l ż~ t !1kl z~ t !1Fts@d1z~ t !#5Fexc~ t !, ~1!

wherez denotes the deflection of the cantilever,me f f its ef-
fective mass,b l the damping coefficient of the cantileve
motion, andkl the spring constant. The tip-sample intera
tion force is denoted byFts as a function of the absolut
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PRB 60 11 053CONSERVATIVE AND DISSIPATIVE TIP-SAMPLE . . .
tip-sample separationz̃5d1z ~see Fig. 1!. Fexc describes
the excitation through an actuator-piezo element. Co
sponding to our experimental setupFexc can be expressed b
a mathematical description of a PI controller and feedb
loop

Fexc~ t !5R•z~ t2tphase! ~2!

with R5p@A~ t !2A0#1 i E
t850

t

@A~ t8!2A0#dt8

5r H @A~ t !2A0#1
1

tpi
E

t850

t

@A~ t8!2A0#dt8J .

Here R denotes the loop-gain function. Experimentally,R
can be measured as a function ofd simultanously with
D f (d). The actual vibration amplitude~peak-to-peak value!
is denoted byA(t), and A0 is the corresponding set poin
value,p and i ~or r and tpi) are the settings of the PI con
troller, tphase is the phase shift. The inverse oftphase is usu-
ally set to 3/4 of the actual frequencyf 5 f 01D f , corre-
sponding to a shift ofp/2.

For our analysis we solved Eqs.~1! and ~2! numerically,
but in order to find an analytical or simpler numerical so
tion of this mathematical problem simplifications of the
equations have been made in the literature. Three impor
cases of approximative forms@Eqs. ~3!, ~5!, and ~8!# of the
equation of motion will be discussed below.

It is straightforward to assume that such a self-exci
system always vibrates at its mechanical resonance on w
the excitation has no influence except for the chosen vib
tion amplitude. The role of the feedback circuit then is pur
to compensate for energy losses, and hence both the ex
tion of the lever and the damping factorb l are neglected. If,
in addition, the interaction force is linearized over the ran
of the tip movement we find

me f f z̈~ t !1~kl1kts! z~ t !50, ~3!

where kts5
]Fts~d!

]d
.

In this case, a complete and simple analytic expression
be found15 for the frequency shift:

D f ~d!5
f 0

2kl
kts~d! for D f ! f 0. ~4!

The validity, however, is restricted to the case of very sm
vibration amplitudes.

By introducing a nonlinear but conservative tip-samp
interaction force into the equation of motion

FIG. 1. Scheme, explaining the meaning of the variablesz ~the

deflection of the lever!, d ~the lever support distance!, and z̃5z
1d the absolute tip-sample separation.
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me f f z̈~ t !1kl z~ t !1Fts@d1z~ t !#50 ~5!

the problem can be treated as a weakly perturbed harm
oscillator. Giessibl20 used a force of the form

Fts~ z̃!5 (
n51

`
Cn

z̃n
, ~6!

where theCn are constants, and found for large vibratio
amplitudes

D f ~d!52
1

A2p

f 0

klA0
3/2 (

n51

`
Cn I ~n!

~d2A0/2!n21/2
, ~7!

with I ~n!5
p

2n21 )
i 52

n
2i 23

i 21
.

This very useful equation was actually derived by pertur
tion theory from a Hamiltonian-function, which is not strictl
equivalent to Eq.~5!. The approximation~7! provides an
understanding of the relation ofD f to the different measure
ment parameterskl ,A0, and f 0 as well as the dependence o
different force characteristics.1,3 The exponent of the dis
tance dependence in Eq.~7! is n21/2 in strong contrast to
n11 in Eq. ~4!. This is because Eq.~7! is an approximation
for large amplitudes while Eq.~4! is valid for small ampli-
tudes.

Alternatively, Eq.~5! can be solved numerically28 result-
ing in a handy and~numerically! very fast method, which is
a convenient way even to simulate whole AFM images w
similar or better accuracy as compared to Eq.~7!. In contrast
to the analytic solution given in Eq.~7!, the time averaged
deflection of the lever due to the mean force can be ta
into account by a numeric solution. In the following sectio
~IV A ! the solution given in Eq.~7! will be compared with
the numerical simulation using the full ansatz of Eqs.~1! and
~2!.

A further step lies in taking into account the excitation
the cantilever. This can most easily be done by assumin
harmonic driving force

me f f z̈~ t !1b l ż~ t !1kl z~ t !1Fts@d1z~ t !#

5Aexccos~vexct !. ~8!

Here, the excitation amplitudeAexc ~in units of a force! is
introduced,vexc is the driving frequency—an approximatio
for Eq. ~2!. Again, both analytic~Sasakiet al.,29 or Boisgard
et al.30 derived with the Lagrange formalism! and numeric29

solutions are possible. The vibration amplitude and phase
can be determined as a function of the driving amplitude a
driving frequency. The complete resonance curves obtai
hereby are relevant for the interpretation of both the AM a
the FM technique. For the interpretation ofD f (d)-curves
obtained with the FM technique the resonance condition
to be found with the requirement that the vibration amplitu
A is equal to its set pointA0. This makes the numerical effor
quite similar to solving Eqs.~1! and ~2! directly. A simple
solution similar to Eq.~7! cannot be given for Eq.~8!. The
resonance curves obtained by solving Eq.~8! exhibit strong
distortions from the simple harmonic case when a stro
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FIG. 2. Schematic overview of the cases involved in the different sections.
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force interaction is involved. This is in agreement with e
perimental observations.31–33 Hysteresis effects can be see
depending on the direction of the frequency sweep, the m
mum of the amplitude curve becoming flat. Hence, bistab
ties appear in the resonance curves and, depending on
this bistability is accounted for, results can vary29 in theoreti-
cally calculated DFS curves.

In the experiment using the FM technique the self-exci
feedback loop guarantees that the lever always vibrates a
mechanical resonance. The definition of resonance for a s
dard driven harmonic oscillator is the maximum of the re
nance curve, which is equal to a phase lag ofp/2. Under the
influence of nonlinear interaction forces, however, the re
nance condition is more complicated. The phase lag betw
excitation and vibration is fixed by the feedback loop a
determines the resonance condition. This becomes impo
when distorted resonance curves appear. Hence, the ana
using Eq.~8! promises a deeper understanding of the co
plicated situation.

Regarding all the different examples listed above, we fi
a whole range of theoretical approaches to choose from
further analysis. Clearly, with increasing complexity of t
equation of motion the corresponding solutions become
intuitive. The analytical approaches given in Eqs.~4! and~7!
allow a clear insight into the dependence of the freque
shift on different parameters. The apparent drawback
clumsy simulation approaches is counterbalanced by t
extreme flexibility. In fact, different types of forces can b
introduced easily, such as dissipative forces, discontinu
forces, or adhesion hysteresis. As the complete trajec
-
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z(t) is obtained by simulation, it is possible to analyze a
harmonicity, contact times~see also Tamayoet al.22!, etc.
Furthermore, the model assumptions can be reduced
minimum.

Therefore, we choose to solve Eq.~1! directly including
the form of a PI controller as in Eq.~2!. In our simulation the
values of the PI controller have been selected to reprod
the behavior of the experimental setup. They are aboup
51024 N/m, i 50,06 N/~ms!, leading to a time constant o
tpi51.6723 ms. The differential equation was solved usin
the Verlet algorithm.34 All input parameters can be dete
mined experimentally:A0 , kl , b, f 0 , p, and i. Hence, the
spectroscopy curvesD f (d) and the corresponding forc

curvesFts( z̃) can be related to each other with no furth
assumptions and no fit parameters.

IV. RESULTS AND DISCUSSION

In the four following sections, different cases are cons
ered, which are illustrated in Fig. 2. In Sec. IV A, aconser-
vative model forceis fed into the simulation. Based onex-
perimentalD f (d) data a force vs distance curve is calculat
quantitatively with the help of the simulation in Sec. IV B. I
Sec. IV C, again, amodel forceis used but this timeenergy
dissipationis included. Finally, in Sec. IV Dexperimentally
determined energy dissipation rates are used for a quan
tive determination of thedissipative forcesalongside conser-
vative forces.
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A. Model calculations: Conservative forces

A result of the simulation with a conservative model for
is given in Fig. 3. The tip-sample interaction force curve
taken from the Muller, Yushenko, Dergaguin/Burge
Hughes, White~MYD/BHW ! model.35 This model is based
on continuum theory considering long-range attractive a
repulsive contact forces. For the numeric evaluation of
force curve the pressure distribution between tip and sam
was derived from a Lennard-Jones potential. The elastic
sponse of tip and sample was also considered. The total f
is then calculated by integration of the pressure function o
the tip area.4

Typical experimental values were chosen as input par
eters for the simulation of the spectroscopy curve. Solv
the equation of motion~1! and ~2! for these values leads u
to a D f (d)-curve as depicted in~a!. The general shape o
known experimental curves can clearly be recognized.
simulation, however, allows an extraction of much more
formation about the system.

At first, the force that acts between the tip and the sam
at the reversal point of the oscillation cycle as a function od
is plotted in Fig. 3~b!. This allows us to assign set poin
values ofD f ~chosen for scanning surfaces! to the forces
acting. For the interpretation of the forces it is important
know the contact radius in addition to the mere value of
forces, because the force for a given separation of tip
sample is given through integration of the pressure acting
different parts on the tip.4 The forces acting on the tipapex
are most important for the imaging process while attract
contributions of the rest of the tip form a background. F
the interpretation of the imaging process it is therefore

FIG. 3. Computer simulation using Eqs.~1! and ~2! with the
parameters:f 05300 kHz, A520 nm ~peak-to-peak!, Q520 000
andkl540 N/m. The force stems from the MYD/BHW-model fo
AH53310219 J ~Hamaker constant!, n50.42 ~Poisson ratio!, E
51.7431011 Pa ~elastic modulus of tip and sample! and Rtip520
nm in a sphere-plate geometry.~a! CalculatedD f (d)-curve, ~b!
force acting between tip and sample at the reversal point of
oscillation cycle for eachd, ~c! contact radius at lower inflection
point, ~d! mean deflection of the lever~time averaged!. The d axis
was shifted byA0/2 giving the absolute tip-sample distance at t
inflection point approximately.
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portant to separate absolute forces and repulsive forces
ing on the asperity only.17 This can be done by simulta
neously plotting the contact radius which might be extrac
from the evaluation of the model force.

Our example shows that the transition from attractive
repulsive total forces takes place on the branch of increa
values of D f ~with respect to approach of the tip to th
sample!,36 whilst the transition to repulsive forces on th
asperity of the tip~indicated by a contact radius greater th
0! already takes place on the branch of decreasing value
D f (d) @see Fig. 3~c!#. It is thus not appropriate to assign a
operation in the regime of falling values ofD f (d) to pure
attractive forces. Our results are in agreement with calcu
tions by Hölscher et al.,28 although their calculation was
based on a different tip-sample interaction force and integ
tion method. Hence, we do not expect strong deviations
this result when using other model forces for the tip-sam
contact~e.g., a force derived from atomistic theory with
van-der-Waals background!.

In addition to the force, the mean deflection of the can
lever, as obtained by averaging the oscillation signal in tim
is plotted in Fig. 3~d!. For the chosen magnitude of forc
amplitude and spring constant the absolute deflection va
remain marginal. For an analytical approach this indica
that we need to consider the mean deflection as a small
rection only.

The curves plotted~in this case of pure elastic forces! do
not depend on the chosen values of the PI controller once
preset amplitude is reached and kept constant. We
checked for the influence of the parametersQ, A0 , kl , and
the discretion of the time variableDt. We found that there is
virtually no dependence of the resulting curve onQ ~or b l).
The dependence onA0 and kl matches the predictions o
Giessibl20 within a few per cent for sufficiently large ampli
tudes.Dt has to be chosen greater than 1/(500f 0). It ranges
from 1/(1000f 0) to 1/(4000f 0) in our examples.

Finally, we compare our results to the analytical formu
given in Eq. ~7!. The result is shown in Fig. 4. As a tria
force we chose Fts( z̃)5C2 z̃221C3 z̃23 with C255
310228 m2N and C354.8310238 m3N, which is of the
form of Eq. ~6! and hence, Eq.~7! can be applied. The dif-
ference in terms of absolute numbers seems to be rather

e

FIG. 4. D f (d) curve calculated by numerical simulation~i! and
analytically with Eq.~7! ~ii !. The parameters are the same as in F
1. The force is given in the text.
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~some percent in the region far from the surface and so
ten percent near the surface!, but when looking at the two
curves in Fig. 4 we find a rather good qualitative agreem
between the numerical method using Eqs.~1! and~2! and the
analytical expression given by Eq.~7!. In contrast to this, the
solution ~4! is far from giving a comparable result.

B. Determination of force distance curves
from experimental frequency shift curves

In the paragraphs above we only considered the c
where a conservative force curve is given from which
D f (d) curve was calculated. However, the experiment p
vides onlyD f (d) curves, while the determination of corre
spondingFts( z̃) is desired. The calculation ofFts( z̃) from
measuredD f (d)-curves—theinverseproblem–is the key to
the quantitative analysis of DFS. This is a further aspec
the choice of an appropriate theoretical model which has
been mentioned above~in Sec. III!. Except for the analytica
solution in Eq.~4! there is no straightforward way to solv
this inverse problem. One possibility is to use an expans
into a power series with Eq.~6! and numerical fitting of the
D f (d)-curves using~7!. The numerical solution of Eqs.~1!
and ~2! can also be used with an algorithm based on
iteration of the variation ofFts( z̃) until the simulatedD f (d)
curve matches the experimental one. We developed a sp
algorithm,19 which allows us to perform such a calculatio
with our simulation method in a relatively time saving wa
~only five to ten times the calculation time required for t
noninverse problem!. As in similar mathematical problems
numerical variation method is applied: a trial force cur
Fts( z̃) is chosen, aD f (d) curve calculated, from the devia
tion of the resultingD f (d) curve with respect to the exper
mental one a new trial force curve is derived and so on. O
algorithm is optimized by omitting the variation of who
force curves. Instead the independent variabled is divided
into small stepsDd. This discretion is undertaken anyhow
the experimental procedure, hence, no information is los
comparison with the experimental input dataD f (d). Further-
more, even discontinuousD f (d) curves, which have alread
been observed experimentally,21,36 can be used in the simu
lation method.

The force curves are determined without any model
sumptions concerning the properties of the tip-sample in
action force. All input parameters and the force spectrosc
curveD f (d) can be readily determined from the experime
and there are no fit parameters necessary to obtain a c
plete Fts( z̃) curve. For theinterpretation of the resulting
force curves, however, in terms of Hamaker constants, e
tic moduli, etc. contact models and tip shapes have to
taken into account. For example: the repulsive part of
calculated force curve can be fitted with a curve expec
from the Hertz-model.3 Examples of different experimenta
curves of various surfaces are given in a previous paper19

An example for the calculation is given in Fig. 5. We too
an experimentalD f (d) curve@Fig. 5~a!#, which was obtained
on a mica surface. The calculated force curve is shown
Fig. 5~b!. It is a complete curve which exhibits the long
range attractive part as well as the short-range repulsive
We fitted the attractive region and found the best fit usin
distance dependencez̃22, which corresponds to a spher
e

nt

se

-

f
ot

n

e

ial

r

in

-
r-
y

,
m-

s-
e
e
d

in

rt.
a

plate approximation of van-der-Waals forces. We used
well known equation3 FvdW( z̃)5AHRtip /(6z̃2) and a tip ra-
dius of Rtip520 nm ~manufacturer information!. From this
we obtained a Hamaker constant ofAH51.2310219 J
(650%) in agreement with our expectations for the tw
kinds of material involved.3 Introducing the same tip radiu
now into the best fit for the repulsive branch wi
FHertz( z̃)5(2 z̃)3/2Rtip /K ~Hertz model! gives us a reduced
elastic modulusK51010 Nm22(6100%!, which is of the
expected order of magnitude. However, the applicability
the Hertz model is limited in this case due to the fact th
mica has no homogenous elasticity.

For both fits the choice of the origin (d50) becomes
relevant. The experiment and the simulation can give o
relative measures of the tip-sample displacement, the a
lute tip-sample separation can only be estimated up to
accuracy of about 2310210 m in this case. The choice of th
origin in the chosen example was made through analogy w
contact models4 and led to the best fits to the models.

With the example it becomes clear that the quantitat
analysis of DFS has a high-analytic potential. By determ
ing all properties of tip and sample, which are experime
tally accessible~elastic constants, tip shape, contact poten
difference, etc.! it might even be possible to examine th
contact models themselves, as the calculation method to
termineFts( z̃) is independent of specific model assumption

C. Model calculations including energy dissipation

Let us now include dissipative tip-sample forces in o
consideration. Although in dynamic AFM the tip usual

FIG. 5. The experimentalD f (d) curve is given in~a! and the

calculatedFts( z̃) curve is given in~b!. As the amplitude is kept

constant the normalized axisd2A0/2 for ~a! corresponds toz̃ in ~b!
identical with the force acting at the lower inflection point. Th
measurement/simulation parameters are:f 05296 593 Hz,A0532
nm ~peak-to-peak!, Q522815, andkl540 N/m. The simulation
was carried out with an accuracy of 0.05 Hz with regard to
experimentalD f (d) curve ~smoothed! and a step widthDd52.7
310211 m.
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moves at apparently ‘‘slow’’ velocities~less than 1 m/s!,
dissipative forces leading to energy loss of the movement
a very important factor in the tip-sample interaction.

In a first order approach one can regard our system
sinusodially driven simple harmonic oscillator. Then we e
pect for small damping effects that damping merely infl
ences the amplitude of the vibration, or in the FM techniq
the excitation amplitude necessary to keep the vibration
plitude constant. In this model the frequency shift is on
influenced by conservative forces. This separation of ela
and dissipative forces is to be verfied in this section.

The mathematical expression for energy dissipation
dissipation forces depends on the underlying mechanism.
small velocities we chose a simple form

Fts
diss~ z̃,ż!5g~ z̃!• ż, ~9!

where the force is a function of the absolute position
tween tip and sample and proportional to the cantilever
locity. This ansatz is justified for many different dissipatio
mechanisms such as electronic dissipation37 or simplified
models of viscoelasticity of the sample22 but becomes more
complex if adhesion hysteresis, capillary hysteresis,38 or
more complicated descriptions of viscoelasticity39 are in-
cluded.

In a model calculation we simulated aD f (d) curve, as we
did in the pure elastic case, with the same conserva
model force, but now assumed an additional dissipative fo
of the form of Eq.~9! with

g5g0expexp~2 z̃/z0!, ~10!

g0exp, and z0 being constants. This ansatz of the damp
coefficient for the experimental situation describes the de
of the dissipative force with distance when tip and sam
are out of contact, and at the same time reflects the ris
damping effects with increasing repulsive contact. The re
of the simulation is depicted in Fig. 6 whereD f (d), A(d),
the time averaged dissipation powerP(d) and Aexc(d) are
plotted. The corresponding curves for the case without
ergy dissipation were given in Fig. 3. By comparing Fig. 3~a!
and Fig. 6~a! we find that there is only little influence of th
energy dissipation on theD f (d)-curves. The small influence
can be accounted mainly to the small decrease of ampli
~up to 0.2%! through energy dissipation and can be neglec
in this case. However, for cases of larger dissipation ra
and cases where the settings of the PI controller allow
stronger decrease of the amplitude, the influence of ene
dissipation on the frequency shift has to be considered
topic of further investigation. The dissipation rate show
here is of the order of experimental data obtained with
AM technique on silicon.23 However, we expect a larger dis
sipation rate on polymer samples18 especially when using the
FM technique.

In order to determine the dissipation power from expe
mental data it is possible to use some fundamental equa
as used also for intermittent contact mode AFM by Cle
land et al.23 and Anczykowskiet al.18 modified for the FM
technique. We find for the power dissipated by the t
sample interaction averaged over one period of vibration
re
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P~d!5
pk f~d! A2~d!

4 Q FR~d!

R0
2

f ~d!

f 0
G , ~11!

whereR0 is the gain factor for the cantilever far away fro
the surface. In this equation, we use the gain factorR(d) @see
Eq. ~2!# rather than the excitation amplitude. This is becau
with regard to the signal-to-noise ratio in the experiment i
easier to calculate the excitation amplitude by multiplyi
the gain factor with the vibration amplitude of the lever th
to measure it directly. The formula can be easily checked
applying it to the simulation data in Fig. 6. In the simulatio
the actual dissipation power

P~ t !5Fts
diss@z~ t !,ż~ t !,d#• ż~ t !, ~12!

is to be averaged over one period of the oscillation. T
deviation of the curve determined with Eq.~11! from the
curve determined directly in the simulation@Fig. 6~c!# is less
than 0.05%. This indicates that Eq.~11! can also be applied
to experimental data. In simulations not shown here
found that Eq.~11! can even be used to calculate the ene
losses due to adhesion hysteresis effects. In the case o
hesion hysteresis effects being present we would expe
different qualitative behavior in the experimental curv
from the ones shown in this report. At the point where t
adhesion hysteresis is generated for the first time withi
dynamic force spectroscopy curve, a discontinuity in t
P(d) curve should occur. At the same time theD f (d) curve,
which would show an averaged effect of approach and
traction force curve, should not be mathematically differe
tiable. Careful experiments are needed to adress the ana
of adhesion hysteresis in more detail.

In the example~Fig. 6! the damping coefficient function
g( z̃) is related to the dissipation functionP(d) by means of
the computer simulation. An expression forP(d) can also be
derived analytically with appropriate approximations. T

FIG. 6. Computer simulation using Eqs.~1! and ~2! with the
same parameters and the same force as in Fig. 3 but with an a
tional dissipative force~given in the text!: ~a! D f (d) curve, ~b!
A(d)-curve,~c! energy dissipation~rate! curveP(d), and~d! exci-
tation amplitude curveAexc(d).
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actual dissipation power@Eq. ~12!# has to be averaged ove
one period of the oscillation. Assuming a harmonic mov
ment, this calculation can be carried out analytically fo
dissipative force as given in Eqs.~9! and ~10!, and we find
~see Appendix A!

P~d!5I 1S Ap

z0
D Apz0v2g0expexpS 2

d

z0
D , ~13!

where I 1 is the modified Bessel function of first order. Th
approximation given in Eq.~13! was compared quantita
tively with the simulation@Fig. 6~c!# and an agreement o
better than 98% was found.

D. Determination of conservative and dissipative forces
from experimental data

Finally, we consider the case where DFS curves are gi
experimentally while conservative and dissipative forces
to be determined. As the effects of conservative and diss
tive forces are only weakly coupled~see Sec. IV C!, a varia-
tion method similar to the one described above for the p
elastic calculation~see Sec. IV B! can be applied.

As an example we consider again the measurement
mica sample~Fig. 5!. The experiment provided a curve fo
R(d), which was recorded simultaneously withD f (d), and
from these curves a damping coefficient functiong( z̃) is to
be determined. As a first step, theR(d) curve can be trans
lated into a curve of the dissipation powerPdiss(d) using Eq.
~11!. Then, thisPdiss(d) curve can be related to a dissipatio
coefficientg( z̃) in a similar way as described above for th
calculation of the conservativeFts( z̃) from D f (d) ~Sec.
IV B !. As the corresponding algorithm may become nume
cally unstable it is desirable to have an approximate t
function g( z̃) determined by an analytical method or an i
dependent numerical algorithm.

Assuming a harmonic movement of the cantilever an
dissipative force of the form of Eq.~9! the problem can be
solved analytically, ifg is of the form of Eq.~10! or of the
form:

Fn
diss~ z̃,ż!5gn~ z̃!• ż

with gn~ z̃!5
g0n

~ z̃!n
, n50,1,2, . . . .

The results are given in Appendix A providing explicit fo
mulas for the corresponding functionsPn(d), n50,1,2, . . . .
However, these functions are difficult to handle for a ser
expansion. Therefore, a simple numeric approach outline
Appendix B was chosen here to determine the desired
function g( z̃) from the P(d) curve. The corresponding dis
sipative force was inserted into our simulation and the c
culation ofFts( z̃) from D f (d) was done as described abov
but this time the energy dissipation was calculated simu
neously. Theg( z̃) function was varied until the simulatio
reproduced the experimentalP(d) curve satisfactorily.

As the energy dissipation is comparatively small there
only a negligible difference of the determinedFts( z̃) curve
-

n
e
a-

e

a

i-
l

a

s
in
al

l-
,
-

s

when compared to the one in the purely elastic calculati
This is in accordance with the above results with weak
ergy dissipation~Sec. IV C!, but might differ in other experi-
mental situations.

The results of the calculation are shown in Fig. 7. In F
7~a! the experimental data is shown@D f (d) and P(d)]. In
Fig. 7 ~b! the experimentalP(d) curve is shown togethe

with a simulated one using a trial function forg( z̃) from

Appendix B and an optimizedg( z̃) curve. In Fig. 7~c! the
calculated tip-sample interaction forces are shown, the c

servative partFts( z̃) as well as the damping coefficient func

tion g( z̃), after variation. It is hereby shown that a quantit
tive calculation of conservative and dissipative forces fro
experimental data is possible. As can be seen from the
culated curves the damping coefficient rises rapidly when
surface is elastically deformed. Besides this strong damp
in the contact regime a significant amount of damping ta
place in the attractive region. This could originate in t
creation of image charges in the tip induced by therma
fluctuating charges or residual static charges on the m
surface. Similarily to the conservative forces we expect

damping coefficientg( z̃) to be a superposition of severa
contributions originating from different mechanisms.

Although better experimental data is needed for a m
detailed analysis, the proposed technique opens the pers
tive of a quantitative analysis of dissipative forces and
underlying mechanisms.

FIG. 7. Calculation based on the experimental data as use
Fig. 5 for a mica surface. The experimentalD f (d) curve is given in
~a! together with the experimental energy dissipation rate cu
P(d) @calculated using Eq.~11!#. In ~b! P(d) curves are given for
the experimental case~i! ~smoothed!, the trial function obtained by
the algorithm in Appendix B~ii !, and the curve after variation~iii !.
In ~c! the calculated force curves are plotted which were deriv
from the experimental data with the simulation method. The c

servative force as well as the damping coefficient curveg( z̃) @cor-
responding to~iii ! in ~b!# are shown.
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V. SUMMARY

In summary, dynamic force spectroscopy~DFS! based on
the FM technique can be used for the quantitative analysi
the tip-sample interaction forces, which is a step towards
absolute evaluation of material properties and the verifica
of tip-sample interaction models. Computer simulations
the cantilever movement enable us to relate interaction fo
to frequency shifts and, in addition, energy dissipation ra

With the use of model calculations~Sec. IV A! the point
of first contact on approaching the oscillating probe to
surface was determined to be close to the minimum of
D f (d) curve. This is in strong contrast to predictions bas
on simplified models stating thatD f (d) is proportional to the
force gradient. An analytic formula given by Giessibl20 leads
to a good agreement with the simulation.

With the reconstruction method~Sec. IV B! complete
conservative force-distance curves were determined with
fit parameters. Possible applications lie in the verification
contact models or the quantitative determination of mate
constants such as the elastic modulus or the Hamaker
stant. The latter carries information specific for the mater
An example is given for a mica sample.

The energy dissipation can easily be calculated from
experimental data with a simple analytic formula Eq.~11!,
which was verified by the simulation~Sec. IV C!. The dissi-
pation rate is of interest for the experimentalist to estim
the influence of the tip on the sample and vice versa. Ene
dissipation is introduced into the simulation using mod
data ~Sec. IV C! and experimental data~Sec. IV D!. It is
shown that the entanglement of conservative and dissipa
forces in terms of their mutual effect on frequency shifts a
loop gain factors is small in the examples given. Howev
generalization for cases of much larger dissipation rates
quire further investigation.

To relate the experimental energy dissipation rates to

sition dependent damping coefficient functionsg( z̃) differ-
ent methods can be applied. For some general forms of

g( z̃)-function analytic expressions of the dissipation rate

derived~Appendix A!. An approximateg( z̃) function can be
calculated using a simple numeric algorithm~Appendix B!.
This algorithm can be applied to more complicated forms

g( z̃)-functions. Finally, using the computer simulation
quantitative determination of this damping coefficient fun
tion is possible by a reconstruction method~Sec. IV D! simi-
lar to the one used for conservative forces.

As an example, ag( z̃) function was determined from ex
perimental data obtained on a mica sample~Sec. IV D!. The
example shows that a quantitative analysis of energy d
pation is possible even in the regime of purely attract
forces. From this a comparison with theoretical models
possible, allowing us to evaluate corresponding material c
stants.

To conclude, DFS can now be used for the quantitat
evaluation of material properties and the interpretation
AFM images. Thus DFS may establish a method for
determination material constants such as Hamaker const
electronic conductance~through electrostatic forces an
through electronic energy dissipation!, viscoelastic constants
of
e
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elastic moduli and others, alongside with imaging surface
ultimate resolutions.
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APPENDIX A: ANALYTIC WAY TO OBTAIN g„Z̃…

The energy dissipation rate as a function of the DFS
rameters is calculated for simple forms of damping coe
cient curvesg( z̃).

For a dissipative force of the form

Fn
diss~ z̃,ż!5gn~ z̃!• ż

gn~ z̃,d!5
g0n

~ z̃!n
, n50,1,2, . . .

we find for the energy dissipation rate

P~ t !5Fn
diss@z~ t !,ż~ t !,d#• ż~ t !.

Assuming a harmonic cantilever movement

z~ t !5Ap cosvt

ż~ t !52vAp sinvt

we can now calculate the mean dissipation power by solv
the integral

P~d!5
v

2pE0

2p/v

uP~ t !udt5
v

pE0

p/v g0n~2vAp!2sin2vt

~d1Apcosvt !n dt

5
v2

p
Ap

22n g0nE
0

p sin2 x

S d

Ap
1cosxD ndx.

This integral can be solved analytically, forn.1 we find40

P~d!5v2Ap
22n g0n

~22!n21

12n

an22

~a221!2n23 •(
n50

n22 S n21

n
D

3S 2n242n

n22 D ~a221!n,

where we introduceda:

a5
d

Ap
1Ad2

Ap
2 21.

For n50, we have explicitly

P~d!5
v2g00Ap

2

2
,

which is equivalent to the intrinsic damping of the cantilev
@compare with Eq.~11!#, and
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P~d!5v2g01

Ap

a
5v2g01

Ap

d

Ap

1Ad2

Ap
2 21

for n51,

P~d!5v2g02S d

A

Ad2

Ap
2 21

21D for n52.

The solution of simple power laws of the form

Fn
diss~ z̃,ż!5g0n•~ z̃!n

• ż, n50,1,2, . . .

can be obtained accordingly40 also resulting in a closed ex
pression, but it is more useful to look at a dissipative force
the form

Fexp
diss~ z̃,ż,d!5g0exp•expS 2

z̃

z0
D • ż,

wherez0 is the decay length. Here we find a mean dissip
tion power of

P~d!5I 1S Ap

z0
D Apz0v2g0expexpS 2

d

z0
D . ~A1!

I 1 is the modified Bessel function of first order.

APPENDIX B: NUMERIC WAY TO OBTAIN g„ z̃…

In this appendix the energy dissipation rate as a funct
of the DFS parameters is calculated numerically for any fo
of damping coefficient curvesg( z̃).

The experimental force spectroscopy curve is given
stepsi. We can then define
-
of

a-

ion
rm

in

f i5 f 01D f ~di !

with d5d02 i •Dd, i 50, . . . ,m.

The entire movement of the tip can be regarded seperatel
the intervals

~d02A/22 j Dd!, z̃,@d02A/22~ j 21!Dd#, j 51,2, . . .m.

A denotes the peak-to-peak value of the oscillation am
tude. If the functiong( z̃) is defined as constant on thes
small intervals

g~ z̃!5g j

for ~d02A/22 j Dd!, z̃,@d02A/22~ j 21!Dd#,

j 51,2, . . .m ~B1!

then the dissipation power on this interval can be appro
mated by

Pi j 5
g j Dd2

~Dt i j !
2 , ~B2!

where t i j 5
1

2p f i
arcsinFA/22~ i 2 j !Dd

A/2 G i> j >0

and Dt i j 5t i ( j 11)2t i j .

For the time averaged dissipation power we find:

P~di !52 f i (
j 50

i 21

Pi j Dt i j 52 f i (
j 50

i 21

g j

~Dd!2

Dt i j
,

which can be solved forg i successively fori 51,2, . . .m.
This method produces a trial functionP(d) only. The

approximation in Eqs.~B1! and ~B2! are not used in the
simulation described in Secs. IV C and IV D.
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