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ABSTRACT. We consider conservative dynamical systems associated with
potentials V' which have singularities at a set S: V(x) — — o as x — §. It
is shown that various *“action” integrals satisfy Condition C of Palais and Smale
provided that the potential satisfy a certain strong force (SF) condition. Hence,
e.g., we establish the existence in SF systems of periodic trajectories which wind
around S and have arbitrary given topological (homotopy) type and which have
arbitrary given period, and also periodic trajectories which make arbitrarily tight
loops around §. Similar results are also obtained concerning the existence of
trajectories which wind around § and join two given points. The SF condition
is shown to be closely related to the completeness (in the riemannian sense) of
certain Jacobi metrics associated with the potential V, and this fact permits the
use of the standard results of riemannian geometry in the analysis of SF systems.
The SF condition excludes the gravitational case, and the action integrals do not
satisfy the Palais-Smale condition in the gravitational case. The Jacobi metrics
associated with gravitational potentials are not complete. For SF systems there
exist trajectories which join two given points and make arbitrarily tight loops
around §, and this is not the case in the gravitational two body problem. On
the other hand, for SF systems any smooth family of A-periodic trajectories
(A fixed) is bounded away from S, and this also is not the case for gravitational
systems. Thus the definition of the SF condition is “well motivated”, and leads
to the disclosure of certain differences between the behavior of SF systems and
gravitational (and other weak force) systems.

1. Introduction and statement of main existence theorems.

1A. Introduction. In this paper we shall describe an attempt to obtain infor-
mation about n-body systems and other kinds of conservative dynamical systems
through the application of standard variational and geometrical techniques to the

standard variational principles of classical mechanics.
We shall be considering systems of the general type

(1.1) i+ W) =0

where x = (x!
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,***,xM) denotes a general point of RV and V isa real-valued
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114 W. B. GORDON

function of RY with gradient VV. Throughout this paper it will always be
assumed that ¥ is of class C? everywhere on RM except at a closed nonempty
set S at which V has infinitely deep wells, i.e., it will be assumed that V(x) —
—o a3 x — S,

DEFINITION. The system (1.1) will be said to satisfy the strong-force (SF)
condition if and only if

There exists a neighborhood N of S anda C?
function U on N — S such that

(i) Ux) = -~ as x — S,

(i) - V(x) = IVU(x)|? forall x in N-S.

(SF)

ExampLel.1. Let S consist of a single point, the origin. Recall that a
potential V gives rise to a force — VV, so that the inverse-square potential
V(x) = —|x|~% gives rise to the inverse-cube force V¥ = —|x|~%x which is
easily shown to be strong, since in this case we can set U(x) = loglx|.

ExaMPLE 1.2. The inverse-square force corresponding to the gravitational
potential ¥(x) = — |x|~! is weak (not strong). For let U be a function which
satisfies (ii) in condition (SF). Then U(x) can behave no worse than |x|'/? in
a neighborhood of the origin, contradicting requirement (i).

REMARK 1.1. It should be emphasized that condition (SF) is a condition on
the local (near-field) behavior of a potential in a neighborhood of its singularities.
Thus our results do not at all apply to, say, magnetic dipoles whose inverse-cube
character is a far-field property.

REMARK 1.2. Many of our results will apply to the more general case of
conservative dynamical systems defined on riemannian manifolds. In this case, the
first term of the left-hand side of (1.1) must be replaced with the appropriate co-
variant derivative. Note also that condition (SF) is coordinate free and is there-
fore immediately applicable to riemannian manifolds.

Our definition of the SF condition has the following motivation: Let Z
be some appropriate Sobolev space which consists of either A-periodic cycles
(= smooth closed paths) in RV — S, or of paths which join two given points in
RY - S with a given time of transit. For any element f of T whose euclidean coor-
dinate representation is given by x = x(f) set

(1.2) A(f) = f{'/zlfc(t)lz - V(x(r))}dr.

According to Hamilton’s principle the extremals of the functional A are solutions
to (1.1). Hence, one would like to exhibit solutions to (1.1) as extremals, i.e., as
critical points to some functional (such as A), and then proceed to locate
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CONSERVATIVE DYNAMICAL SYSTEMS 115

(and compute) such critical points by means of standard methods in the calculus
of variations—specifically, the following:

(i) Methods using lower semicontinuity properties of the functionats.

(ii) Direct methods, such as the Ritz method.

(iii) Gradient methods, such as the method of steepest descent.

(iv) The topological theories of Morse and Lusternick-Schnirelmann. Tech-
nically, this means that we have to establish that the functionals satisfy Condition
C of Palais and Smale.

(v) Techniques from riemannian geometry. In this case solutions to (1.1)
with given total energy are represented as geodesics with respect to a certain
*“Jacobi” metric.

The main theme of this paper is to show that this rather simple-minded
approach works provided that the SF condition is satisfied.

It is disappointing that the gravitational case is excluded by the SF condi-
tion (cf. Example 1.2). However, the failure of these methods in the gravitational
case is both systematic and interesting, i.e., the SF condition is “well motivated”,
and our analysis based on its use will serve to disclose some of the special character
of gravitational and other weak-force systems.

We should also mention that our analysis is based on the use of functionals,
such as (1.2), which are integrals whose integrands are quadratic in X, and it may
be that there are functionals of a different character for which the methods enu-
merated above will work in the weak-force case.

1B. Notation and preliminary definitions. For any fixed number A >0, X1
= Z'(\; RN - S) will denote the Sobolev space of all absolutely continuous A-
periodic cycles which lie in RV — § and have L? derivatives defined almost
everywhere. For any pair of (not necessarily distinct) points p,q in RV - §
and real number T > 0,

Q' = Q' p, ; RV - 85)

will denote the Sobolev space of all absolutely continuous paths f = f(f) which
licin RM - S, have L? derivatives almost everywhere, and which join p to ¢
in time T: f(0) = p and f(T) = q. These spaces will be discussed in more
detail in §8§5 and 7, but at this point we should mention that Z!'(A; RV - §)

is an open submanifold of the Hilbert space =!(A; R¥), and that an admissible
norm for Z!'(A; RY) is given by [IflI? = Ifi3 + IDfII3 where ||-|l, denotes
the ordinary L? norm and D = d/dt. By the Sobolev imbedding theorems,
weak convergence in ||+ |}, implies uniform convergence, i.e., the weak !
topology is stronger than the C°® topology. (Similar remarks apply of course to
the spaces Q')
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For any path or cycle f in Q! or Z! with euclidean representation
x = x(t) we define the following functionals:

X(f) = %[ 1k@ dt = HIDFIZ = HIFIZ - WIFI2,
BN = [ vx@)ar.

Hence, from (1.2) we can write
149 A=J-E

Our main results consist of a number of theorems which assert that any cycle
or path joining two given points can be continuously deformed in RY — § into
a solution of (1.1), provided that the path or cycle winds around S in a suffi-
ciently complicated way. The definitions below make this notion precise.

DEFINITION 1.1. A smooth path f joining two given points p,q in RN — §
will be said to be simple if p = q and f is homotopic in RY - S to a point,
orif p# q and f belongs to the homotopy class of paths in RN — S which
contains the line segment Pq. This homotopy class will be understood to be
empty if DG intersects S, in which case every path in RN — S which joins p
to q is nonsimple.

DEFINITION 1.2. A smooth cycle f in RN — S will be said to be tied to
S if f cannot be continuously moved off to infinity without either crossing S
or having its arc length become infinite. More precisely, a cycle f is tied to S
if for every ¢ > 0 there exists a (possibly empty) compact subset K, of RY
which contains every smooth cycle which is homotopic to f in RN — S and
has arc length < c.

ExampLE 1.3. Let RY = R2 andlet S be a discrete set of points. Then
acycle f istied to S if and only if f is not homotopic (in R? —=§) toa
point, but this is not a general fact, as the next example will show.

ExampLE 14. Let RY = R3,and let S be the union of three straight
lines which intersect at the origin. Then a cycle f is tied to S if and only if
f winds around at least two of the lines. A cycle which winds around only one
of the lines is not tied to S. Although this example has no great physical interest,
the next example will show that it provides a good pictorial representation of the
geometry involved in planar n-body problems.

EXAMPLE 15. Let there be three masses m; with position coordinates
(x;» ;) constrained to move in the plane R2, so that the configuration space of
the system is R®. We suppose that each mass attracts every mass along the lines
joining them. Reduce the dimension of the configuration space from six to four
by fixing the centroid at the origin. The singularities of the system correspond to
collisions of the masses and these are defined by the three coincidence relations
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CONSERVATIVE DYNAMICAL SYSTEMS 117

P;: {xi =x, and y; = Y}, where the triple {i, j, k} varies over the cyclic per-
mutations of {1, 2, 3}. Hence the configuration space of the reduced system with
the singularities removed is R — S where S is the union of the three 2-planes
P,. Any pair of these planes intersect at precisely one point (the origin). A cycle
f is tied to S if and only if it winds around at least two of the planes. The
property of winding around the plane P; can be defined by the nonvanishing of
the period [, w; where w; is the closed but nonexact differential 1-form which
corresponds to an infinitesimal rotation around the plane P;. (Similar remarks
apply to planar n-body systems, n > 3.)

1C. Statement of main existence theorems. The components of the spaces
Q! and Z! correspond to homotopy classes of paths or cycles, and in the first
theorem presented below we shall exhibit solutions to (1.1) as paths or cycles at
which A attains minimum values on components. In the second theorem solu-
tions are obtained as paths or cycles at which J is minimized subject to the con-
straint £ = constant.

THEOREM 1.1. Assume condition (SF), and in addition that V is bounded
above, say, V < 0. Then

(@) For every \ >0, every homotopy class of cyclesin Z'(\; RN - §)
which consists of cycles tied to S contains a cycle f* at which A attains a
minimum value (for that homotopy class). Each such cycle f* is a \-periodic
solution to (1.1).

(b) For every T >0, and for every pair of (not necessarily distinct) points
p, q in RN =S, every homotopy class of paths in Q'(T; p, q; RN —S) con-
tains a path f* at which A attains a minimum value, and each such path f*
is a solution to (1.1) which joins p to q with time of transit T.

REMARK 1.3, The paths in part (b) of this theorem are not required to be
nonsimple.

Notation. For each real number ¢ let =1 = 2! N E~!fc} and Q! = Q!
N E~Yc}. Thesets Z} and Q! may be empty for certain values of ¢, eg., if
V<0 and ¢=0.

The next theorem asserts that J can be minimized subject to the con-
straint £ = ¢ on each homotopy class of, say, 2n-periodic cycles tied to 8, i.e.,
J attains minimum values on each component I' of Z! = Z!(2m RN - §).
(Similar remarks apply to Q:..) Each cycle f* providing such a minimum is a
2m-periodic solution to

(1.5) X@) + uVr@) =0
where p is a Lagrange multiplier which is necessarily nonzero if T" consists of
ueyclesowhichiaze npbhomotapicsions peints odfufi-onOwthen (1.5) provides a
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solution to (1.1) after the transformation of parameter t — fy/u. If u <0, the
transformation of parameter ¢ —> fo/—u provides a solution to (1.1)* where

(1.1)* %= VV(x) = 0.

Hence minimizing J IE:; provides periodic solutions to either (1.1) or (1.1)*.
The periods of these solutions cannot be specified because the values of the Lagrange
multipliers u cannot be determined a priori. (Similar remarks apply to J ISZ;;
in this case the requirement that the component consist of nonsimple paths will
insure that g #0.)

The device of exhibiting solutions to (1.1) as extremals for J IE; is due to
M. S. Berger [2],{3],[4], and has been used by him and the author {7] to obtain
information about the existence of periodic solutions to dynamical systems with
convex potentials.

From the Schwarz inequality we have

(1.6) arc length () = [ 02 "1kl dr < @rI()?

with equality if and only if the parameter ¢ of f: x = x(t) is proportional to
arc length. Hence, once it is established that J is minimized on each component
of 2: (for which 2:. #* ), it will readily follow that there exist solutions which
wind around S and have arbitrarily small arc length subject to the requirement
that the solutions have a prescribed topological type; or, to put the matter another
way, we obtain solutions which wind around and come arbitrarily close to S.

We would like to be able to exclude (1.1)* as a possibility. Now the set of
singularities S can be described as a set of attractors for the system (1.1), and as
a set of repulsors for system (1-1)*, and in most physically realistic situations one
can indeed exclude the possibility of having solutions which wind around and come
arbitrarily close to a system of repulsors S. However, there do exist examples
which show that this is not the general case, i.e., there do exist systems of repulsors
§ for which (1.1)* has periodic solutions tied to S. See Remark 1.5 and
Example 1.6 following the statement of the theorem.

THEOREM 1.2. Assuming condition SF, then:

(2) Every nonempty component (homotopy class) of £} = Z!(2m; RY - )
which consists of cycles which are tied to S and not homotopic to a point con-
tains a cycle f* at which J attains a minimum value, and each such cycle f*
is a periodic solution to (1.5) where the Lagrange multiplier u is nonzero. Hence,
givenany € >0, any cycle f which is tied to S and not homotopic to a point
can be continuously deformed (in RY — 8) into a periodic solution (with unspeci-
fied period) of either (1.1) or (1.1)* which at some points comes to within an €
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CONSERVATIVE DYNAMICAL SYSTEMS 119

(b) Similarly, every homotopy class of nonsimple paths (in RY -'S) join-
ing two given points p, q in RN —S contains an infinite number of solutions
to either (1.1) or (1.1)* which join p to q and cut arbitrarily small neighbor-
hoods of S.

REMARK 14. Suppose RV = R? and that S consists of a single attractor
located at the origin. Let p, ¢ be two distinct points in RY — S, and suppose
that the SF condition is satisfied. Then Theorem 1.2(b) provides for the exis-
tence of an infinite number of solutions to (1.1) which join p to ¢ and make
arbitrarily tight loops around the origin. Such solutions do not exist in the gravi-
tational case described in Example 1.2.

REMARK 1.5. Versions of these theorems (with errors) were announced in
[8] and [9]. In particular, Condition [A] in [9] is the SF condition, and Con-
dition [B] of the same paper was alleged to exclude (1.1)* as a possibility. The
following example provides a counterexample to this.

ExaMpLE 1.6. Consider the case of two negative electrical charges which are
fixed in space at positions p and g respectively. Then a third negative charge
can be made to oscillate back and forth along a segment of the line pgq, and can
be made to come arbitrarily close to the repulsors p, ¢. In this case two “infi-
nitely high” potential wells join together to form a convex well with a critical point
(of relative minimum) between p and g. The periodic trajectories thus obtained
are not tied to the set of singularities; however, if we modify this system by sur-
rounding the charges with a sphere of negative electricity, we obtain a new system
for which (1.1)* cannot be excluded as a possibility for cycles which are tied to
and come arbitrarily close to S.

The next theorem is based on the use of Jacobi’s principle, according to
which trajectories with given total energy can be represented as geodesics with
respect to a certain riemannian metric (the “Jacobi” metric).

THEOREM 1.3. Assume the SF condition, and in addition that V <O0.
Let p and q be two distinct points in RN -8, and let T be any homotopy
class of paths in RN —'S which join p to q. Then forevery h >0, T con-
tains a trajectory to (1.1) with total energy h. If p = q, the same assertion
holds, provided that T does not consist of paths which are homotopic (in
RY - 8) to a point.

The proof will be given in §4D. It turns out that condition (SF) is almost,
but not quite, equivalent to the assertion that the Jacobi metrics associated with
(1.1) and values of % >0 are complete (in the riemannian sense), and in §4 we
shall discuss a slightly stronger version of the SF condition which does in fact

Leinsuigothe complesensss of these.metrics and ao.fortinriihe assertions in the theorem.
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A discussion of a geometrical method which is valid for the case # <0, and also
for weak-force systems, is given in §4E.

1D. Three lemmas. The first lemma (G) formalizes the role that the SF
condition will play in the proofs, and lies at the heart of our discussion. It will
be proved in §2.

LEMMA G (MAIN GEOMETRICAL LEMMA). Assume condition SF. Then
any family T of homotopic cycles in Z'*(\; RN — S) which are tied to S,
and on which |E| and J are bounded, is bounded away from S. That is,
if there exist constants c¢,, ¢, such that |[E(f)l < ¢, and JI(f) < c, for
all f in T, then there exists a number & > 0 such that no cycle [ in T
intersects the &-neighborhood of S. Similarly, any family of (not necessarily
simple) paths in QY(T; p, ¢; RN — 8) on which |E| and J are bounded is
bounded away from 8.

The two “analytical” lemmas A; and A, are stated for reasons of explic-
itness. The first lemma A, is standard, but the second lemma A, is not quite
so standard and is concerned with some regularity results which are needed for the
application of the theory of Sobolev spaces to variational problems. Proofs are
given in §5B and §7C.

These lemmas are used in the proof of Theorem 1 and, strictly speaking,
there should be another set of lemmas which are applicable to the case of Theorem
2. However, these lemmas are really concerned with the calculation of the gra-
dients of the functionals £ and J on the spaces Z! and Q!, and their appli-
cation to the proof of Theorem 2 will follow from the extension of the method of
Lagrange multipliers to functions defined on infinite dimensional spaces.

LEMMA A,. The critical points of AIZ'(\; RN —S) are precisely the \-
periodic solutions to (1.1).

LEMMA A,. The critical points of AIQ'(T; p, ¢; RN — S) are precisely
the solutions to (1.1) which join p to q in time T.

2. Proof of Lemma G.
2A. We first prove the lemma for cycles. Let

G ={(x,z) ERN*1. x e RN -§, z = Ux)}

be the graph of the comparison function U = U(x) referred to in the defini-
tion of the SF condition. For any cycle f: x = x(r) belonging to
ZL(GRY - §) et

7 e = x(0), z = Ux(e))}
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CONSERVATIVE DYNAMICAL SYSTEMS 121

be the lifting of f to G,andlet ¢ = o(?) be the arc length of F Then using
elementary inequalities, one obtains

62 = %2 + |2)2 = %2 + &, VOO? < |x]® + [x]2IVUP?,

so that 6 < |x| + |x]IVU], and

@) o= [ear< [xflxl“-’dt]”2+ [fl)&lzdt]llz [flvuPdt]m.

Now, since we are only concerned with the behavior of ¥ in a neighborhood of
S, there is no loss of generality in assuming that ¥V <0 and - V > |VU|2.
Hence, from (2.1), we write

@2 o(f) S @NIUN? + @I - IO,

We are given a family T' of cycles f for which J(f) <¢; and E(f) <
¢, forall f belonging to I'. Hence

(2.3) o(f)<c;, forall fET.

For reasons of clarity we shall first proceed to prove the lemma for the
special case RY = R? and S = {p, q}, p # q, and then generalize. The proof
for this special case can be further reduced to the special cases when the family I
consists of a sequence of cycles f, all of which wind around one or both of the
singularities.

Case (i). All the f,, wind around p only. Suppose the f, are not bounded
away from p. Then, for every € > 0, the e-neighborhood of p intersects an
infinite number of cycles f,. By passing to a subsequence, we can suppose that

inf{If,()-pl: 0<t <A —0 as n— oo

Now, from a geometric or pictorial point of view, this last statement is equiv-
alent to saying that portions of the lifted cycles 'f; fall infinitely far down the
wellof G at p as n — oo,

Suppose there existsa & > 0 such that portions of an infinite number of
the f, fall outside the &-neighborhood of S. Then the variation of U(f,(t))
would become infinite as n — oo, but a(f,;) is greater than the variation of
U(f,(#)) (which geometrically is the length of the projection of 7‘;, onto the z-
axis), and this contradicts (2.3).

On the other hand, suppose there exists no such 8. Then the f, collapse
to the point p, which implies that E(f,) — — o, contradicting the hypotheses.

Case (ii). All the f,, wind around both p and q. In this case the proof
is even quicker, since o(f';) > d(p, q) + variation in U(f,,(5)).
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2B. We now proceed to prove the lemma for general RY and S. Again,
we can suppose that I' is a sequence of cycles f, = f,(¢f) which, upon being
reparametrized by arc length, converge uniformly to a cycle f*. If the f,
are not bounded away from S, then f* will be attached to S at one or more
points. If f* is attached to only one point of § the argument of Case (i)
above applies. If f* isattached to more than one point, the argument of Case (ii)
applies.

This completes the proof of the lemma for cycles. The proof of the lemma
for the path spaces QYT p, ¢; RY — S) is similar to the argument in Case (ii).

3. Proofs of Theorems 1.1 and 1.2 based on lower semicontinuity properties.

3A. We recall some properties of lower semicontinuous (1.s.c.) functions.

Let F: X — R be a real valued function on a topological space X. Then
F is Lsc. if and only if F~!(— e, ¢] is closed for every real number ¢, in
which case F is bounded below and attains its infimum on every compact subset
of X. If X is Hausdorff, then compact sets are necessarily closed, and we have
the following proposition.

PrOPOSITION 3.1. Suppose F: X — R is a real valued function on the
Hausdorff space X which has the property that

@31 F~1(— o, b] is compact for every real b.
Then F is Ls.c., bounded below, and attains its minimum value on X.

PrRoOF. Take a value of b such that F~(— e, b] is nonempty. Then
the infimum of Fon F~!(- e, b] is the infimum of Fon X.

In the sequel X will be a subset of a hilbert space with the (induced) weak
topology. We recall that a subset of a hilbert space is weakly compact if and only
if it is weak-closed and bounded.

3B. We shall now assume the hypotheses of Theorem 1.1 and prove that
the functional A attains minimum values. (The remainder of the theorem, which
asserts that such minimizing cycles or paths are solutions to (1.1), is provided by
Lemmas A, and A, whose proofs are given in §5B and §7C.)

Let X be a component of T'(A; RY = S) which consists of cycles tied
to S, and endow X with the weak topology it inherits from Z!'(A; RV). We
wish to apply Proposition 3.1 with F = A, i.e., we have to show that X N
A~1(- =, b] isa bounded and weak-closed subset of Z'(A; R¥).

Since J=A + E and V <0, we have E <0 and therefore

(3.2) J<b on A '(—e, b] = A-1(0, b],

— — —_ - -1
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CONSERVATIVE DYNAMICAL SYSTEMS 123

From (3.2) it follows that the elements of X are bounded in arc length and
from Lemma G it follows that the elements of X are bounded away from §;
and since the elements of X are tied to S, it follows that they are bounded in
C° norm, and hence in the L? norm [+, (defined in §1B). This last fact
combined with (3.2) shows that X is bounded with respect to |l - |l;.

Now suppose that {f,} is a sequence in X N A=![0, b] which converges
weakly to a cycle £€ Z'(A; RY). From general principles, {ll S} is bounded,
and {If,lly = IIflly since weak =! convergence implies C® convergence.
From (1.3) it follows that {J(f,)} is bounded, and from (3.3) it follows that
{IE(f,)1} is bounded. Hence Lemma G guarantees that the f, are bounded away
from §, so that f is homotopic to the f, in RN -8, ie., f€ X. To com-
plete the proof we have to show that £ € A~!{0, b]. We have E(f,) — E(f)
since weak convergence in Z! implies C° convergence. Also, from general
principles, we have [Ifll, <TimlIf,ll;, so that J(f) < lim J(f,). It follows that

A() = J(f) - E(f) <Tm A(f,) < b,

and the desired result follows.

This completes the proof that A[X attains its infimum. The proof of the
corresponding statement for AIQ(T; p, q; RY - S) is similar.

3C. The proof that J attains minimum values on the components of !
(and Qg) described in the statement of Theorem 1.2 is also similar to the proof
above. One uses Proposition 3.1 with F = J and X = acomponentin =} (2})
satisfying the given conditions. Again, the exclusion of certain homotopy classes
is required to insure the nonvanishing of the Lagrange multiplier u.

4. Proof of Theorem 1.3. The Jacobi metric.

4A. Condition (SF)*. The proof of the theorem is especially easy if the SF
condition is replaced with a slightly stronger condition ((SF)*), which has an
interesting geometrical interpretation.

There existsa C? function U on RN —'S such that
(SF)* @)* U is properon RY -8,
G)* - V= IVUI? on RN -8,

Recall that a function U is proper if and only if U~!{a, b] is compact for

every compact interval [a, b]. Hence (i)* implies (i) of condition (SF), so that

condition (SF)* implies condition (SF). In some cases the difference between

these two conditions is only apparent. For example, if S is compact and U

satisfies (i) and (ii) of the SF condition, then one can always obtain a compari-

son function satisfying (i)* and (ii)* by modifying the behavior of U in the
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124 W. B. GORDON

4B. The Jacobi metric. It turns out that condition (SF)* is precisely the con-
dition which guarantees the completeness of RY —§ (in the riemannian sense) with

' A

respect to the “Jacobi metric” g,; where
(4.1) By = (-1

Once this is established, the theorem will follow directly from the standard results
of riemannian geometry.

To be more precise, let M be a riemannian manifold endowed with metric
tensor g = (g;), and let V' be a potential function on M. By definition, the
Jacobi metric £ corresponding to a fixed number £ is defined by 2, =
(h—V)g;. Inourcase M= RY -8 and &; = 8;. According to a wellknown
variational principle of Jacobi, the nonconstant geodesics with respect to 2 are
reparametrized solutions to (1.1) with total energy h. (See e.g. [11, p. 125] for
a rigorous statement and proof of this principle.)

Now, besides being extremals for the arc length functional f — [IDf(#)dt,
geodesics are also extremals for the “energy” functional f — [IDf(£)|>dt. (See
eg. [13, p. 70] and also [11].) Hence in order to prove Theorem 1.3 it will suf-
fice to show that the energy integral T attains minimum values, where

4.2) T= [ - nix@Pde.

But it is known that the energy functional attains minimum values, provided that
the riemannian manifold is complete, i.e., the theorem will be proved once it is
established that the metric 2; defined by (4.1) is complete.

4C. A completeness criterion. The equivalence of condition (SF)* with the
completeness of the metric £ is an immediate consequence of the following propo-
sition, whose proof is found in [10].

PROPOSITION 4.1. In order that a smooth riemannian M be complete it is
necessary and sufficient that M support a proper function U whose gradient is
bounded in norm.

Suppose now we are given condition (SF)*. Then raising tensor indices in
the customary fashion, and setting | |z = norm with respect to § and Vp =
gradient with respect to £, we get

o o et
g =m-V) 5,
and therefore
V,UIR =870 ,U ;= (- V) ' IVUPR

< constant from (ii)*.
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4D. Proof of Theorem 1.3 under hypothesis (SF). We shall now briefly
describe a proof which is valid when the more general SF condition is assumed.
The proof follows the proof of Theorem 1.1(b) given in §3B and makes use of
the lower semicontinuity properties of the functional T In the proof one uses
the following lemma, which has the same function as Lemma G in the proof of
Theorem 1.1,

LEMMA G*. Assume condition (SF), and inaddition that V<0 and h>0.
Let T be the functional defined by (4.2). Then for any number b the set of
all paths f in QV(T; p, q; RN - 8) for which T(f) <b is bounded away
from S.

COROLLARY 42. Assuming the hypotheses of Lemma G*, then
TIQUT; p, q; RN = S) attains minimum values on components.

REMARK 4.1. The Euler-Lagrange equations for (4.2) are
(4.3) 2h - V)E - 26, VX + X2V = 0.

One cannot assert that the solutions to (1.1) which we obtain by minimizing T
on components of QY(T; p, q; RN - S) join p to q intime T because of
the reparametrization involved in going from (4.3) to (1.1).

To prove the lemma we first note that 2AJ(f) < T(f). Then using the
notation of §2A we have

6% = % + &, VUP® < %20 + [VUI?) < 1221 - V),
so that
_foT 623dt < (1 + 11 = 1/BDT(S).

Hence T(f) < constant implies o(?) < constant, and the proof proceeds very
much as before.

4E. A method applicable to weak-force systems and the case h < 0. We
conclude this section by mentioning a method for constructing domains D with
the property that any two points in D can be joined by a smooth path which
minimizes T. This method is applicable to weak-force systems as well as the case
h <0, and is based on the following theorem whose proof is given in [12].

THEOREM. Let D be a connected open subset of a (not necessarily com-
plete) riemannian manifold M. Then in order that every two points in D be
joined by a smooth geodesic minimizing arc length, it is sufficient that D support
a smooth function F which is proper, positive and convex.

Leonse o,cop%h?&ﬁlc}éinﬁlﬁathis theorem to the dvynamical case one constructs functions F
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which are convex with respect to the Jacobi metric. Also, the domains D need
not have compact closure or be homeomorphic to euclidean balls; see [12] for
details and examples.

5. Function-analytic preliminaries—the periodic case. In this section we shall
assemble some well-known facts about Sobolev spaces of periodic RY-valued func-
tions. Since a space of A-periodic R¥-valued functions A fixed) can be identi-
fied with a space of R¥-valued maps on the circle S, the theory presented here
is merely the simplest example of a more general theory of Sobolev spaces of vec-
tor-valued functions defined on closed manifolds. For references see, e.g., {151,
[17], [21].

5A. Notation and definitions. The standard inner product and corresponding
norm of RY will be denoted by (,) and |<]. Fix a number A >0, and let
= = T°(\; RY) represent the space of all C*™ A-periodic maps from R to
RV (so that == =~ C*=(S!, RY). We write D for d/dt,and for f, g € 2}

we set .

) (1, 8o = f, @), g@par, 11 = (. o,

(52) (£, @ = (f,8) + ©OF, Dg)y, WfI3 = (£, [N,

(5.3) Ifli_y = sup{(f, &)y, llglly = 1}.

The second term of the right-hand side of (5.2) can be integrated by parts to
obtain

G4 (f, &) = (d —~ D), 8),.

Note that I — D? is an elliptic operator with trivial kernel.

The Sobolev spaces ¢ = ZY(A\; RY), i = — 1,0, 1, are defined to be the
completions of Z> with respect to ||« [l;. We recall the following well-known
facts:

(2) (Rellich’s theorem). ! C 2% C !, and the injections =! — 0,
% — =-! are compact (completely continuous).

(b) (Sobolev’s theorem). Weak Z!-convergence implies C® convergence.
Hence the functions belonging to =! are continuous (in fact, absolutely continuous).

(c) (), isa continuous bilinear function on =!. Hence there exists a com-
pact operator G on X! such that

(5'5) (f’g)o = (Gf’g)l’ f»gezl-

The kemel of G is trivial, so that the eigenvectors of G constitute an orthonor-
mal basis for Z'. (See, e.g., Riesz and Sz.-Nagy {19, p. 234].)
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(d) (I - D?) is an isomorphism from Z! onto Z~!,and G extends to
an inverse isomorphism from Z~! to Z!. In other words, G- is the Green’s
operator associated with the elliptic operator (I ~ D?) and we can write

(5.6) (-D»G =GUI-DH) =1
(¢) Z7! is in fact a hilbert space with inner product
G.7 (. 8)_, = Gf. 8),-

Also, (, ), considered asabilinear form on C™ extends to a continuous bilinear
function on Z!'x Z~!,and =! isdualto = through (,),, ie., for every
continuous linear functional L on Z! thereexistsa g € £~! such that L =
(°, 8)y- (It is thus apparent that ™! is a space of Schwartz distributions (on
S') which are of the same order as the (vector) Dirac 8-functions.)

5B. The gradients V® and V. Proof of Lemma A,. Let F be a real-
valued function on Z! of class C!. The Z!-gradient of F at f€ =! is
defined by the relation

) dF0) = LR + )y = @R, W),

which must hold for every v in X!, so that from (¢) we must have
.9 dF;0) = (VPF(f), v),
for some element VOF(f) of Z~!. From (5.5) it follows that

(5.10) VIF = GV°F.

Now suppose that
F() = fo 060, 50)dt

where Q = Q(x, X) isa C? function of 2N real variables, and x = x(¢) is
the representation of f € Z! in euclidean coordinates. Then, formally at least,
we have

dF ) = (%%—, v)o + <g—g i»)o.= Z—f-—(% g_g) ")o’

ie.

In other words, the distribution YOF(f) can be identified with the “first varia-
tion” of F at f
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In particular, we have (from (1.3) and (5.6))
vOI(f) = -D%, V'I(f)=-GD*f=f-Gf,
G11)  VOE() =V V() VEW) =GVV(f),
VOA(f) = - D% - WW(f), V'A(S) = f-Gf-GIV(f).

In order that these last relations (and their derivations) make sense it is necessary
that the operators D and D? be interpreted in the distribution sense, i.e., we
consider D to be a continuous map from ! to T¥-! (1 =0,1) and D? to
be a continuous map from E! to Z~!. For example, for u € Z° and veE 3!
we can write

(5.12) (u, Dv)y = — (Du, v),.

One way of justifying this relation is to replace the functions u, v with sequences
of C* functions which converge to u and v in the Z°, =! topologies, and
then pass to the limit on each side (cf. (e)).

The proof of Lemma A, is now an immediate consequence of (5.11).

6. The Palais-Smale condition and the behavior of families of periodic orbits.

6A. Let M be a smooth riemannian manifold which is possibly infinite
dimensional. Recall that a C°® function F on M which is bounded below is
said to satisfy the Palais-Smale (P-S) condition (often referred to as *“Condition C”
in the literature) if every subset of M on which F is bounded and |VF| is not
bounded away from zero contains a critical point of F in its closure. It is known
that the Morse and Lusternik-Schnirelmann critical point theories can be applied to
functions which satisfy the P-S condition provided that M is complete; in partic-
ular, such functions attain minimum values on each component of M ([14], [16],
[19]). If M is not complete, the following condition is required for the theory
to hold [16, p. 208].

(*) For every real number a, f~!(— o, a] is complete.

Of course, the Morse and Lusternik-Schnirelmann theories provide for the
existence of critical points of a more general type than local minima, and in our
particular case the application of such results would require topological data on
the loop spaces of our configuration spaces RY — S. We shall not pursue this
line of inquiry in this paper, but shall be content to prove the following theorems.

THEOREM 6.1. Assume condition (SF) and in addition that V <0, and let
T be any component of Z'(\; RN - S) which consists of cycles tied to S.
Then AIT satisfies the P-S condition.
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THEOREM 6.2. Assume condition (SF) and let T, be any component of
zion RN — S) which consists of cycles tied to S. Then JIT, satisfies the P-S
condition.

PrOOFS. The spaces Z!(A; RY —S) and Z!(A; RN - 8) are incomplete,
but Lemma G renders this lack of completeness ignorable, i.e., from Lemma G it
follows that the SF condition implies property (*) for the functions F = Al
and F = ]JIT,. Indeed, in §3B, C it was shown that T' N A~!(— o, b] and
r,n J~Y(~ o, b] are weakly compact (and therefore closed) subsets of
Z'(A; RY) and ZI!(A; RV).

Proceeding now with the proof of Theorem 6.1, suppose we are given a
sequence {f,} of cyclesin Z!(A; RV —S) for which A(f,) <b and V'A(f)
— 0 in the strong Z! topology. Using (5.11) we have

strong, X

(6.1) f, - Gf, — GVV(f,) ——— 0.

But from the weak compactness of A~!(— oo, b] it follows that by passing to a
subsequence we can assume that f, — f weakly in ! for some f in Z!.
And from the compactness property of G, the weak convergence of f,, implies
the strong convergence of Gf, and also GVV(f,). Hence from (6.1) it follows
that f,, converges strongly,

The proof of Theorem 6.2 is similar, except that the relation VIA(f,,) —0
is replaced with

o 1
VLI(£) - u(EIVE(S,) 855 0
where
_ W IL), VEUD),
Bn = TWWEGE
ie., (6.1) is replaced with
6.2) £, = Gf, = w(£,)GVV(S,) strong, 21,

By passing to a subsequence one can suppose that u(f,) — constant, and the
proof proceeds as before.

6B. The failure of the Palais-Smale condition for the gravitational case and
the behavior of families of periodic orbits. As is well known, the Kepler problem,
i.e., problem of two bodies moving under the influence of their mutual gravitation,
is equivalent to the problem of one body moving in a plane around a fixed center
of attraction according to the equation ¥ = —x/[x|® (cf. Example 1.2).

PROPOSITION 6.3. For the Kepler problem the functionals
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A =AIZ' (A R? - (0,0)) and JIZ(A; R? - (0,0)
do not satisfy the P-S condition.

ProOOF. In the Kepler problem a trajectory is periodic if and onIy if it has
total energy A <0, and orbits with equal periods have equal total energy A, and
also equal averaged kinetic energy J and averaged potential E. Let {f,} bea
sequence of A-periodic trajectories (A fixed) whose perihelions converge to the
origin as n — <. Then by perturbing each f,, slightly in a neighborhood of its
aperihelion we obtain a sequence {f,} for which, say, IA(f,)I is bounded and
VEA(f,) — 0, but for which the f, do not converge to a cycle in R? — (0, 0).

More generally, for a given hamiltonian system, suppose there exists a sub-
manifold M of phase space consisting entirely of periodic orbits. Let H, P, J,
and E denote the hamiltonian, period, and averaged kinetic and potential energies,
respectively, expressed as functions of M, eg., for w € M,

EW) = s~ [ vio,wyar
w) = Pw) Jo (o,w
where o, is the hamiltonian flow. Suppose also that these functions are all of

class C!; then it is known that [6]
0=dPANdH=dPANdJ=dP NdE =dH ANdJ =dH NdE = dJ A dE.

Hence if A is not a critical value of P, then H,J and E are constant on com-
ponents of P~!'{\}. Combining this remark with Lemma G, we obtain the follow-
ing theorem.

THEOREM 64. Suppose we are given a SF system in which a.family F of
Nperiodic trajectories (N fixed) can be embedded as a connected subset of a
smooth submanifold M of phase space consisting of periodic trajectories (of dif-
fering periods). Suppose also that P, J and E are of class C' on M and that
N\ is not a critical value of P (restricted to M). Then the family F of \-periodic
trajectories is bounded away from S.

The condition that A be a noncritical value can be replaced with the condi-
tion that ¥ <0.

THEOREM 6.5. Assume condition SF and in addition that V <0. Let F
be a family of N\-periodic trajectories (A fixed) which can be embedded as a path-
connected subset of a nanifold M of periodic trajectories on which P, J, and E
are of class C'. Then F is bounded away from S.

Proof. In [6, p. 113] it is shown that — dP/P = d(J — F)/2J. Hence
J — E = constant on F, and since £ <0 it follows that J and E are bounded
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7. The nonperiodic case.
TA. Preliminary remarks. The condition that a curve f: x = x(¢) be a crit-
ical point for the functional

A = AlQNT; p, ¢; RV - 8)
is given by
7.1 —dAW) = + VV(x),v), =0

where this relation is required to hold for all smooth “test functions” v = v(¢)
which vanish at t =0 and ¢ = T, and the derivative ¥ is interpreted in a dis-
tribution sense. If f were known to be of class C?2, so that. ¥ + VV(x) is of
class C9, one could conclude that ¥ + V¥ (x) = 0. In the absence of such
knowledge, all one might conclude from (7.1) is that ¥ + VV(x) is a distribution
which consists of a linear combination of (vector) Dirac &-functions centered at

t =0 and ¢t = T. In other words, in order to prove Lemma A, (§1D) and
extend the results of the last two sections to the nonperiodic case of functionals
defined on Q!(T; p, ¢; RY - 8), we have to establish some regularity results
concerning the smoothness of distributions satisfying certain conditions. For
example, it turns out that the Dirac functions which are centered at the endpoints
correspond to C> functions, namely, exponentials.

7B. The Sobolev spaces 2, Q) ., Q.. We now introduce certain spaces
and operators in parallel to the development given in §5A. On the space
c>([0, T], RY) we define the inner products (, ); G =0,1),and norms [ |l;
@i =-1,0, + 1), exactly as in formulae (5.1), (5.2) and (5.3), and we define
QL = QU(T, RY) to be the completions of C>({0, T], R") with respect to
the corresponding norm. Note that (5.4) is not valid in the present case, since we
no longer have integration by parts, i.e., for f, g in Qé we can only write
(Df, 8)g = = (£, Dg), if either f or g vanishes at the endpoints.

The theorems of Rellich and Sobolev remain valid, and one can define a com-
pact selfadjoint operator G by (5.5), so that Qe“ becomes a hilbert space with
inner product defined by (5.7). The relation G(I — D?) = I is no longer valid;
indeed, the operator (/ — D?) now has a nontrivial kernel. However, it will be
shown that G is a right-inverse to (I — D?), so that (I — D?) is a surjective
map from Q! to Q7.

For the remainder of this section we set

Q.4 = QUT;p, ; RY - 8),

which we recall (§1B) is the set of all f in ! with valuesin RY —~ § for
which f(0) = p, f(T) = q, and we let QL represent the linear submanifold of
LEpe COHMRIHE BT HIEF Vit o fsr WHICH @) 2 Py = 0.
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The space £2, can be identified with the tangent space of @} . at any
point, and we conclude this paragraph by computing the gradients of J, E and A
(restricted to 9} ).

Let P be the projection of Q:_, onto Qi which is orthogonal with respect
to the inner product (,),. Then the formulae (5.11) of §5B are no longer valid,
but we have

V! X(f) = -PGD*f, V'E(f) = PGVV(f),

VIA(S) = - PGD?f + VV(f)).
It will suffice to prove the first relation. By definition, V!J is the element of the
tangent space (24) of Q} , which satisfies dJ () = (V'J(f), v), forall v
in Q). But dJ() = (Df, Dv),, and since v € Q}, we can write dJ,(v) =
- D%, V), where the meaning of the right-hand side in the sense of distributions
is again indicated by the discussion following (5.12). Continuing, we have

dJ ) = - D%, v}y, = - (GD*f, v), = - (GD?f, Pv), = - (PGD?f, v),.

(12)

7C. Fundamental results on regularity. Proof of Lemma A,. We shall now
present some lemmas which are involved in proofs of theorems which are the ana-
logues of the results of §6 for the nonperiodic case. The presentation given here
has some features in common with Palais’ proof in [14] that the energy integral
satisfies the P-S condition, but unfortunately we were not able to adapt his proof
(the case V¥ =0) for our purposes.

LeMMA 7.1. (I = D?)G = I, where G and (I — D?) are considered as
maps from Q' to Q) and QL to Q7' respectively.

LemMA 7.2. The orthogonal complement (QL) of Q) in QL ie., the
range of (I — P), has dimension 2N and consists entirely of C> functions.
Specifically, (L)' consists of maps f of the form
(7.3) f(©) = ae’ + be~?, a,b€ERV,

COROLLARY. f € Q} and Pf =0 implies fE C™.

LEMMA 73. fE€E Q_! and PGf =0 implies f =0.

REMARK. Lemma A, is an immediate consequence of Lemma 7.3 and the
relations (7.2).

LEMMA 74. Let [, f, be elements of Q; such that

K 0! strong, 51
f, =% and D*f, ———2— D’f.

Then
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strong, Q:,
Jop — .
PrROOFs. [7.1]. It suffices to prove that (/ — D2)Gf = f forall f of
class C™ since C™ is dense in Q; and (/ - DG is a continuous map from
Q; to Q:,. For any v in Q:‘ we can integrate by parts to obtain

(U = D?)GS, v)y = (Gf, v)y + OGS, Dv)y = (Gf, v); = (£, Vo>

and since f and (I — D?)Gf are of class C° the result follows.
[7.2]. A direct calculation shows that every f of the form (7.3) belongs
to (21). In fact. for u € Q) we have

74 (u, ae’ + be™?), = (u(t), ae’ — be™HIIZT

To conclude the proof, it suffices to show that dim(Q})* < 2N. Now, by the
Sobplev theorems, the map that sends every f € Q! into its ith component eval-
uatedat 1 =0 or ¢ = T is a continuous linear functional on Q:, and there-
fore, by the Riesz representation theorem, there exist 2N elements a;,***, 0,y
of Q! such that QL consists precisely of those f in Q) for which

£, °‘1)1 = (f, 0‘2)1 == (f, O‘ZN)I =0.

The result follows.
[7.3]. From Lemma 7.2 we have

(7.5) I-DHI-P)=0

and Gf = PGf + (I - P)Gf = (I — P)Gf by hypothesis. Now apply (I ~D?)
to both sides and apply Lemma 7.1 and equation (7.5).

[7.4]. Without loss of generality we can assume f = 0, and the problem is
to show that f, — 0 strongly in Q!. But f, — 0 weakly and from Lemma
7.2 the operator (I — P) is compact, so that (/ — P)f, — O strongly in .
Therefore, it suffices to show that Pf, — O strongly in Qi Again, since
( - P)f, =0 strongly in QJ, it follows that D?( — P)f, — 0 strongly in
Qe‘l; and since D2f,, — 0 strongly in Q;‘l by hypothesis, it follows that
D*Pf, =0 strongly in £7!.

Since Pf, € Q), we can integrate by parts to obtain

WDPf N3 = — (D2Pf,, Pf,)y < IID2Pf,II_, * IPf,ll, —O.
Hence

WPF, I3 = IDPf N3 + IIPf,lI5 — O

and the lemma is proved.
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7D. The Palais-Smale condition. As an illustration of how these lemmas
can be used to establish that the results of § 6A have analogues inthe nonperiodic
case, we prove the following theorem.

THEOREM 7.1. Assume condition (SF) and in addition that V <0. Then
A = AlQ, , satisfies the P-S condition.

PROOF. As in the periodic case, we obtain a sequence {f,} of maps in
Q) , which are bounded away from S, converge in the weak Q] topology, and
satisfy

1
g 2,

VIA(S,) = - PG, + VW(£,)) e 2es o,

But from the continuity of GD?: Q! — Q! and the compactness of (I - P),
( - PYGD?f,, + VV(/,)) also converges strongly in Q). Hence G(D%f, + WW(f,,))
converges strongly in !, and using Lemma 7.1, it follows that D*f, + VV(f,)
converges strongly in Q;‘. But from the Sobolev theorems VV'(f,) converges
in the C9 sense, and therefore strongly in Q; 1. hence D2 f, also converges
strongly in Q2 1 and the desired result follows from Lemma 7 4.
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