
Conservative Finite Difference Formulations, 

Variable Coefficients, Energy Estimates and 

Artificial Dissipation 
Jan Nordström 

The self-archived postprint version of this journal article is available at Linköping 

University Institutional Repository (DiVA): 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68582 

N.B.: When citing this work, cite the original publication.

The original publication is available at www.springerlink.com:
Nordström, J., (2006), Conservative Finite Difference Formulations, Variable
Coefficients, Energy Estimates and Artificial Dissipation, Journal of Scientific
Computing, 29, 375-404. https://doi.org/10.1007/s10915-005-9013-4

Original publication available at: 
https://doi.org/10.1007/s10915-005-9013-4 
Copyright: Springer Verlag (Germany) 
http://www.springerlink.com/?MUD=MP 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68582
https://doi.org/10.1007/s10915-005-9013-4
http://www.springerlink.com/?MUD=MP
http://twitter.com/?status=OA Article: Conservative Finite Difference Formulations, Variable Coefficients, Energy Estim... http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68582 via @LiU_EPress %23LiU


Conservative Finite Difference Formulations, Variable
Coefficients, Energy Estimates and Artificial
Dissipation

Jan Nordström1

Artificial dissipation terms for finite difference approximations of linear hyper-
bolic problems with variable coefficients are determined such that an energy
estimate and strict stability is obtained. Both conservative and non-conservative
approximations are considered. The dissipation terms are computed such that
there is no loss of accuracy.

KEY WORDS: Artificial dissipation; finite differences; stability; variable coeffi-
cients; energy estimate.

1. INTRODUCTION

Most difference methods for solving nonlinear hyperbolic problems are on
conservative form. Conservation is required for a correct shock speed in
a nonlinear problem, see [7]. For variable coefficient problems both con-
servative and non-conservative formulations are used. Examples of impor-
tant variable coefficient problems in applications include aeroacoustic (the
linearized Euler equations), electro-magnetics (variable permittivity and
permeability in the Maxwell’s equations) and problems where curvilinear
meshes with varying metric coefficients are used.

Normally, the artificial dissipation is constructed to absorb the energy
of unresolved modes in the problem. It can also be added to enable the
calculation of problems involving shocks (see [9] for a discussion on arti-
ficial dissipation operators). In this paper we aim for a particular kind of
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artificial dissipation that makes it possible to obtain an energy estimate
despite a basic conservative (or non-conservative) difference approxima-
tion. Other authors have studied this problem as well, see for example [5]
and references therein.

An energy estimate is necessary (but not sufficient) for obtaining the
correct long time behavior and strict stability of the scheme. The artificial
dissipation derived in this paper is constructed by expressing the conser-
vative formulation as a skew-symmetric formulation with an artificial dis-
sipation term added to it. The size and form of the artificial dissipation
term depend on the specific problem to be solved, the size of the mesh and
the order of accuracy of the difference operators we use. By observing the
behavior of the new conservative scheme and comparing it to the skew-
symmetric one, we arrive at the conclusion that the additional requirement
for strict stability is a certain amount of smoothness in the computed solu-
tion.

The artificial dissipation discussed in this paper is virtually indepen-
dent of specific boundary treatments and therefore those problems are to
a large extent ignored in this paper.

2. SPATIAL APPROXIMATIONS AND ENERGY ESTIMATES

Consider the problem,

ut +a(bu)x =0, 0�x �1, t �0, (1)

where a=a(x) and b=b(x). Note that a=1 yields a fully conservative for-
mulation. Throughout this paper we assume that the variable coefficients
a and b and the solution u are smooth.

Problems on the form (1) typically appear when constant coefficient
problems are approximated on a domain using a curvilinear mesh. As was
mentioned above, other typical examples on the form (1) include the line-
arized Euler and Maxwell’s equations.

To obtain an energy estimate we can multiply with the solution and
integrate over the domain. However, it is instructive to first split the spa-
tial operator into a symmetric and anti-symmetric part. The ansatz

a(bu)x =α(abu)x +βabux +γ axbu+ θabxu, (2)

and accuracy requirements yields β = 1 − α, γ = −α, θ = 1 − α. The first
two terms (α(abu)x +βabux) in the spatial differential operator constitute
the anti-symmetric part and last two (γ axbu+θabxu) form the symmetric
portion.



The energy-method applied to (1) with the splitting (2) now yields

d

dt
‖u‖2

�2
+abu2|10 =

∫ 1

0
(axb−abx)u

2dx, (3)

with the choice α = 1/2. In (3) we have introduced the norm ‖u‖2
�2

=∫ 1
0 u2dx.

Remark. Note that (2) is an identity and that the splitting merely
exemplifies the fact that only the symmetric part of the spatial differential
operator contribute to the estimate.

2.1. Galerkin Approximations

For numerical approximations based on the Galerkin approach, the
splitting technique used above is not necessary for obtaining an energy
estimate. Let

v =LT α =
i=N∑
i=0

αi(t)Li(x), (4)

approximate u. By inserting (4) into (1), multiplying with L and integrat-
ing over the domain we get,

Pαt +Qα =0, (5)

where

P =
∫ 1

0
LLT dx, Q=Q(a, b)=

∫ 1

0
La(bLT )xdx. (6)

Note that P is a symmetric positive definite matrix and that the depen-
dence of the variable coefficients a, b are built into the operator Q.

By using the scheme (5),(6) we will get a perfect energy estimate since

Q= 1
2

(
LabLT |10 +

∫ 1

0
LabLT

x −LxabLT dx +
∫ 1

0
LabxL

T −LaxbLT dx
)
.

(7)

Upon multiplying (5) with αT and using (6), (7) we obtain

d

dt
(αT Pα)+αT (LabLT |10)α =αT

(∫ 1

0
LaxbLT −LabxL

T dx
)
α, (8)

which exactly correspond to (3) by the use of (4). Note that Q is
almost skew-symmetric if a, b are constants.



2.2. Finite Difference and Collocation Methods

Next we turn to finite difference approximations (or spectral/poly-
nomial approximations of collocation type) where the spatial difference
operator D is of the summation-by-parts (SBP) type [2,4,8,10]. An SBP
operator D can be written as a product between two matrices, P −1Q that
satisfy the following properties:

1. P is symmetric and positive definite, and ∆xpI � P � ∆xqI ,
where p > 0 and q > 0, are independent of the number of node
points, N +1.

2. Q is nearly skew symmetric, i.e. Q+QT =diag(−1 0 . . .0 1)=B.

In the remainder of the paper we will only consider diagonal norms P that
commutes with varying diagonal matrices.

Remark. If Li in (4) denotes the ith Lagrange polynomial and a =
b=1, then P , Q in (6) combine to an SBP operator D =P −1Q, see [2].

Let u be the discrete approximation of u. The matrices A,B,Ax,Bx

are diagonal with a(xi), b(xi), ax(xi), bx(xi) as diagonal entries respectively
and they commute with P . The scalar product is (u, v) = uT P v and the
corresponding norm ‖u‖2

P = (u,u).
A direct application of the finite difference (or spectral collocation)

technique to (1) yields

ut +AP −1Q(Bu)=0. (9)

By multiplying (9) with uT P we obtain

d

dt
‖u‖2

P +uT BABu = (D(Au),Bu)− (Au,D(Bu)). (10)

The right hand side of (10) does not have the form required to obtain an
energy estimate.

In the approximation

ut + 1
2
P −1Q(ABu)+ 1

2
ABP −1Qu − 1

2
(AxB −ABx)u =0, (11)

the same splitting as in (2) is used. The energy estimate becomes

d

dt
‖u‖2

P +uT BABu = (u, (AxB −ABx)u), (12)

which exactly mimics the continuous estimate (3).



Remark. In contrast to the Galerkin approach, the splitting tech-
nique is required in order to obtain an energy estimate for the finite differ-
ence method. Note that the compact formulation of Q(a, b) in (6) for the
Galerkin approach correspond to

1
2
Q(ABu)+ 1

2
ABQu − 1

2
P(AxB −ABx)u

in the finite difference (spectral collocation) case.

2.3. Stability

Consider the following initial-boundary problem.

ut +H
(
x, t, ∂

∂xi

)
u = F(x, t) x ∈Ω, t �0

u = f (x) x ∈Ω, t =0
Lu = g(t) x ∈Γ, t �0

(13)

where i = 1,2,3 and H,L are the spatial and boundary operator respec-
tively. F,f, g are the forcing function, initial data and boundary data
respectively.

Definition 1. (13) is said to be strongly well posed if an unique solu-
tion exists and the estimate

‖u‖2
Ω +

∫ t

0
‖u‖2

Γ dτ �Kce
ηct

(
‖f ‖2

Ω +
∫ t

0
(‖F‖2

Ω +‖g‖2
Γ )dτ

)
(14)

holds. Kc and ηc do not depend on F,f or g. ‖ ·‖Γ and ‖ ·‖Ω are suitable
continuous norms.

The corresponding semi-discrete problem is

ut +H
(
x, t,Di

)
u = F(t) x ∈Ω, t �0

u = f x ∈Ω, t =0
Lu = g(t) x ∈Γ, t �0

(15)

where Di is the difference operator that approximates ∂
∂xi

, i =1,2,3.

Definition 2. (15) is said to be strongly stable if, for a sufficiently
small ∆x, there is an unique solution that satisfies

‖u‖h2
Ω +

∫ t

0
‖u‖h2

Γ dτ �Kdeηd t

(
‖u‖h2

Ω +
∫ t

0
(‖F‖h2

Ω +‖g‖h2
Γ )dτ

)
. (16)



Kd and ηd do not depend on F, f or g. ‖ · ‖h
Γ and ‖ · ‖h

Ω are suitable
discrete norms.

Definition 3. We call (15) strictly stable if the growth rates in (14)
and (16) satisfy

ηd �ηc +O(∆x) (17)

Remark. For a constant coefficient problem where H does not
depend on x we expect that ηd � ηc, for more details see [6]. A strictly
stable scheme (the growth/decay rate for the discrete problem is bounded
by the growth/decay rate of the continuous problem) is very important for
long time calculations. This property guarantees that high frequency errors
with low energy content do not grow and destroy the accuracy of a long
time calculation for realistic meshes.

3. THE LINEAR PROBLEM

In the rest of this paper we will consider a special model problem
constructed to 1) give an energy estimate independent of the boundary
conditions and 2) enable an exact calculation of the spectrum of the con-
tinuous problem. In the remainder of this paper we will deal with con-
servative approximations only, non-conservative formulations, see (3), adds
no extra difficulties.

Consider the linear system of equations on conservation form,

ut + (a(x)u)x = 0
vt + (b(x)v)x = 0 (18)

where a(x)>0, b(x)<0, x ∈ [0 1] and t >0. The boundary conditions are
determined by

u(0, t)=αv(0, t), v(1, t)=βu(1, t) (19)

and the initial conditions are u(x,0)=f (x), v(x,0)=g(x).
Multiplication of (18) with u, v and integration over the domain leads

to

d

dt
(‖u‖2

�2
+‖v‖2

�2
)=−

∫ 1

0
(axu

2 +bxv
2)dx, (20)

where we have introduced α =√−b(0)/a(0) and β =√−a(1)/b(1) in order
to eliminate the boundary terms.



3.1. A Conservative Approximation

A semi-discrete representation of (18) and (19) is

ut +D(Au) = 0
vt +D(Bv) = 0

u0(t) = αv0(t)

vN(t) = βuN(t),

(21)

augmented with initial conditions. A and B are diagonal matrices with the
values of a and b injected on the diagonal.

The system (21) is obviously on conservation form since if we multi-
ply with a smooth function φ we obtain

(φ,D(Au))=φT PD(Au)=φT QAu=φT BAu− ((Dφ),Au)

by using the summation by parts properties mentioned in the previous sec-
tion. Let w = (u, v)T ,

P =
(

P 0
0 P

)
, Q=

(
Q 0
0 Q

)
, F =

(
A 0
0 B

)
, (22)

and B =Q+QT (a slight abuse of notation since B was used also for the
scalar case). Using the Simultaneous approximation term (SAT) method
[3], which makes the boundary conditions part of the difference equation
through a “penalty”-term, and the definitions in (22) we can write (21)
as

wt +DFw =P−1Sw, (23)

where D =P−1Q and S is a (2N + 2)∗ (2N + 2) matrix with nonzero ele-
ments at position 1 and N + 2 in the first row and N + 1 and 2N + 2 in
the last row.

S =




σL 0 . . . −σLα 0 . . .

0 0
...

. . .

...

0 0
−σRβ 0 . . . σR




.

Multiplying equation (23) with wT P from the left and adding the trans-
posed resulting equation results in

wT Pwt +wT
t Pw = wT (S +ST )w −wT (QF + (QF)T )w.



By using Q+QT =B we get

d
dt

‖w‖2
P = BT1 + (Dw,Fw)P − (DFw,w)P ,

where BT1 =wT (S +ST −BF)w and (u, v)=uT P v. Let

GR1= (Dw,Fw)P − (DFw,w)P . (24)

To obtain strict stability, a first requirement is that BT1 has to be less than
or equal to zero. The choice

σL =−a0, σR =−bN, (25)

leads to non-positive eigenvalues of (S +ST −BF).

3.2. A Skew-Symmetric Approximation

Another approximation of (18) is obtained by using the splitting tech-
nique described in section 2. We get

ut + 1
2 (DAu +ADu)+ 1

2Axu = 0

vt + 1
2 (DBv +BDv)+ 1

2Bxv = 0,

which is equivalent to

wt + 1
2
(Fxw +DFw +FDw)=0. (26)

In (26), Fx =diag(Ax,Bx) and Ax,Bx have the values of ax, bx injected on
the diagonal. Equation (26) augmented with the SAT term becomes

wt + 1
2
Fxw + 1

2
(DFw +FDw)=P−1Sw, (27)

where the matrix S is the same as in Sec. 3.1. By multiplying (27) with
wT P from the left and then adding the corresponding transposed equa-
tion, we get

wT Pwt +wT
t Pw = wT (S +ST )w − 1

2 wT (PFx + (PFx)
T )w

− 1
2 wT (QF +FT QT +PFD +PFDT )w.

Now since P and F commute we get PFD=PFP−1Q=FQ which leads
to

d

dt
‖w‖2

P = BT2 − (Fxw,w)P . (28)



The boundary term BT2 = wT (S + ST − BF)w equals BT1 in section 3.1
and is therefore negative semi definite if (25) is used. Let

GR2=−(Fxw,w)P . (29)

3.3. The Energy Estimate

To obtain an energy estimate where the growth rate corresponds to
the continuous case, GR1 in (24) for the conservative formulation and
GR2 in (29) for skew-symmetric formulation must correspond to the right-
hand side in (20). Otherwise, strict stability will not be obtained.

Using a second order SBP operator, a(x)=1+ εx and b(x)=−1+ εx

imply that GR2=−(Fxw,w)P =−ε‖w‖2
P . This means that we get

d

dt
‖w‖2

P =−ε‖w‖2
P , (30)

which mimics (20) perfectly and therefore a correct discrete spectrum is
obtained, see Figs. 1 and 2.
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Fig. 1. Second order skew-symmetric case, a =1+0.8x, b=−1+0.8x.
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Fig. 2. Close-up, second order skew-symmetric case, a =1+0.8x, b=−1+0.8x.

In the conservative case we get

GR1=−ε‖w‖2
P +E, E = ε∆x

2

N∑
i=1

((ui−1 −ui)
2 + (vi−1 −vi)

2).

The deviation E > 0 does not necessarily vanish with decreasing ∆x nor
can it be estimated. As an example, assume that the solutions have a
smooth (superscript s) and a high frequency oscillatory part (with ampli-
tudes α,β), then ui = us

i + α(−1)i , vi = vs
i + β(−1)i . This leads to E =

2ε(α2 + β2) for large N . If an energy estimate existed, or we for some
other reasons knew that the scheme was stable, then α,β and also E

would go to zero. In this case we have no such knowledge and conse-
quently, the spectrum might not be correct, see Figs. 3 and 4.

Note that if u and v in (29) can be interpolated to smooth functions,
then

GR2≈−
∫ 1

0
(axu

2 +bxv
2)dx,

which indicates that the energy rate (28) for the skew-symmetric method
correspond to (20).
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Fig. 3. Second order conservative case, a =1+0.8x, b=−1+0.8x.
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Fig. 4. Close-up, second order conservative case, a =1+0.8x, b=−1+0.8x.



3.4. Continuous and Discrete Spectrum

By Laplace transforming (18) we get

sũ−f (x)+ (aũ)x = 0
sṽ −g(x)+ (bṽ)x = 0,

(31)

where ũ(s)= ∫ ∞
0 ue−st dt . The solutions to (31) with f (x)=g(x)=0, are

ũ= C1

|a| ∫ x

δ1

s
a
dx

, ṽ = C2

|b| ∫ x

δ2

s
b
dx

. (32)

C1 and C2 are constants and δ1 and δ2 are arbitrary real numbers. The
solutions ũ and ṽ in (32) inserted in the boundary conditions (19) leads
to

M

(
C1
C2

)
=

(
ũ1(0, s) −αṽ1(0, s)

βũ1(1, s) −ṽ1(1, s)

)(
C1
C2

)
=0,

where ũ1 = ũ/C1 and ṽ1 = ṽ/C2. The spectrum is determined by solving
|M|= 0 for the s values. For general a(x) and b(x) the spectrum is given
by

s = ln(αβ)+2nπi∫ 0
1 a(x)−1dx + ∫ 1

0 b(x)−1dx
,

where i is the imaginary unit and n∈Z.
The discrete spectrum is given by computing the eigenvalues of G in

wt =Gw where

G=−DF +P−1S, G=−1
2
Fx − 1

2
(DF +FD)+P−1S,

for the conservative and skew-symmetric formulation respectively.
In Figs. 1 and 2 all eigenvalues converge toward the continuous spec-

trum from the left. This imply strict stability for the skew-symmetric
method and linear variation of the wave speeds a, b. For the conserva-
tive formulation, see Figs. 3 and 4 we have no such convergence and the
method is not strictly stable.

The discrete spectrum in Figs. 5, and 6 for a more general varia-
tion of the wave speeds do converge to the continuous spectrum λRe

C =
s when refining the grid, but (λRe

j )max j = 1, . . . ,N + 1 increases when
∆x decreases. This means that not even the skew-symmetric formulation
is strictly stable, see Definition 3, Eq. (17).
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Fig. 5. Second order skew-symmetric case, a =1+0.8x4, b=−1+0.8x4.
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Fig. 6. Close-up, second order skew-symmetric case, a =1+0.8x4, b=−1+0.8x4.
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Fig. 7. Fourth order skew-symmetric case, a =1+0.8 sin(7.9x), b=−1+0.8 sin(7.9x).

In Fig. 7 the continuous spectrum has real parts with negative
eigenvalues while in the discrete spectrum, some eigenvalues have posi-
tive real parts. That will result in an explosion of the solution as time
increases.

The conclusion we can draw from the spectra shown above is that we
cannot always guarantee strict stability, not even with a skew-symmetric
formulation. However,

d

dt
‖w‖2

P =−(Fxw,w)P � |Fx |max‖w‖2
P , (33)

is always valid in the skew-symmetric formulation, i.e we can obtain an
energy estimate. For the conservative scheme (23) we cannot produce such
an estimate.

Remark. The fact that we could not obtain a strictly stable formu-
lation with the skew-symmetric formulation was a surprise for us at this
point in time. The results in [1] where coefficients with constant gradients
(ax = const.) were considered lead us to believe that the spectrum would
lie in the correct position for a skew-symmetric formulation and general
smooth variable coefficients. However, as can be seen in Figs. 5 and 7, that
is clearly not the case. We will come back to this point later.



3.5. A Conservative Method with Artificial Dissipation

Although we now have a numerical method with a bounded energy
rate, see section 3.2, it might be preferable to solve the problem (18) using
a conservative formulation of the problem as in (21) (that is certainly true
in the non linear case, see [7]).

Adding and subtracting 1
2 (Axu+ADu) and 1

2 (Bxv+BDv) respectively
from the conservative formulation (21) we get

ut +DAu + 1
2
(Axu +ADu)− 1

2
(Axu +ADu) = 0

vt +DBv + 1
2
(Bxv +BDv)− 1

2
(Bxv +BDv) = 0.

(34)

After rearranging the terms in (34) and by using (22) the semi-discrete
problem can be written,

wt + 1
2
(Fxw +DFw +FDw)=R, R = 1

2
(−DFw +Fxw +FDw), (35)

which is exactly the skew-symmetric formulation (26), except for the term
on the right hand side. If R is a non dissipative term we need to dominate
it by suitable artificial dissipation terms, preferably without affecting the
order of accuracy of the approximation. If we accomplish that, we have a
conservative formulation of the problem, that unlike (21),(23) leads to an
energy estimate.

For the first equation in (34), R has the form

Ri = 1
2
(−DAu +Axu +ADu)i , i = the ith node point. (36)

The size and form of the artificial dissipation term depends on the spatial
difference operator, D. In this paper we use second, fourth and sixth order
accurate central difference operators (see Appendix A for a description of
the first derivative operators).

In the second order case, we get,

DF ≈Fx + (∆x)2

6
Fxxx +O

(
(∆x)4

)
. (37)

By using (37) and (36) we obtain

Ri ≈− (∆x)2

4
[(axux)x ]x=xi

. (38)

The contribution to the energy estimate of Ri can be estimated by inter-
preting the result in continuous frame and by multiplying (38) with u and
integrate in space. That leads to,



∫
uRdx = (∆x)2

4

∫
axu

2
xdx. (39)

According to (39) Ri is of a dissipative nature if ax <0. To make sure
that our artificial dissipation (added to the right hand side of Eq. (23)) is
dissipative and large enough to balance R, we use the dissipation opera-
tors developed in [9] and write this term as

DIu =− (∆x)2

4
P̃ −1DT

1 C1D1u. (40)

In (40), D1 approximates a first derivative and C1 =|Ax |maxC where C is
a diagonal matrix that reduces the values of |Ax |max at the boundaries to
maintain the correct approximation order of the scheme. P̃ −1 =∆xP −1 is
included in order to obtain the correct discrete energy estimate, see [9].

Next we consider the fourth order operator. Taylor expansion and
formula (36) yields,

Ri ≈ (∆x)4

12
[(axxxux)x + (axuxx)xx ]x=xi

.

The contribution to the energy rate of Ri becomes,

∫
uRdx =− (∆x)4

12

∫
axxxu

2
xdx + (∆x)4

12

∫
axu

2
xxdx. (41)

The first integral in (41) is negative for axxx > 0 and the second one for
ax <0. The dissipation operator we will use becomes

DI=− (∆x)4

12
P̃ −1

(
DT

1 C3D1 +DT
2 C1D2

)
. (42)

D2 in (42) approximates a second derivative and C3 =|Axxx |maxC. Both C1
and C are defined above.

Finally we consider the sixth order case. Again, Taylor expansion and
formula (36) yields,

Ri ≈− (∆x)6

40
[(axxxxxux)x +2 (axxxuxx)xx + (axuxxx)xxx ]x=xi

The contribution to the energy estimate related to R is

∫
uRdx = (∆x)6

40

(∫
axxxxxu

2
xdx −2

∫
axxxu

2
xxdx +

∫
axu

2
xxxdx

)
. (43)



The dissipation operator is now determined to be

DI=− (∆x)6

40
P̃ −1(DT

1 C5D1 +2DT
2 C3D2 +DT

3 C1D3
)
. (44)

D3 in (44) approximates a third derivative and C5 =|Axxxxx |maxC. C1,C3
and C are defined above.

We can summarize the development described above by stating that
we have derived an approximation of the form

ut +DAu =DIu,

which we refer to as a conservative approximation with added dissipation
(DI). Note the symmetric construction of the dissipation operators in (40),
(42) and (44).

Remark. The implementation of this procedure in multiple dimen-
sions is straightforward. One performs the procedure described above and
adds on artificial dissipation operators of the form given in (41), (43) and
(45) in each coordinate direction, see [9] for more details. In Figs. 8 and 9,
the dissipative term has obviously balanced R enough, see (36) and com-
pare with Figs. 5 and 6. Not only do the discrete eigenvalues converge to
the continuous ones, but also (λRe

j )max j = 1, . . . ,N + 1, converges as ∆x

goes to zero. All eigenvalues in Fig. 8 and 9 converge from the left.

As can be seen in Figs. 10 and 11 a higher order of accuracy does
not mean that all eigenvalues are closer to the continuous ones. But they
do converge faster, which is shown in Figs. 12, 13 and 14.

Eigenvalues for problems involving a(x) and b(x) being polynomials
up to fifth degree as well as trigonometric functions have been consid-
ered. In all these cases (λRe

j )max j =1, . . . ,N +1, converges as ∆x goes to
zero for the conservative approximation with the new artificial dissipation,
although they sometimes converge from the right.

Remark. Recall that as long as the maximum real part of the
numerical eigenvalues converge to the maximum real part of the contin-
uous eigenvalues, see Definition 3, Eq. (17), we have strict stability.

Remark. Now we have a chance to understand why the skew-symmet-
ric formulation did not lead to strict stability while the conservative form
with the added dissipation did. A correct spectra would be obtained if

uT PAxu =
∫ 1

0
axu

2dx +O(∆xn),
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Fig. 8. Conservative method with dissipation term, second order case. a = 1 + 0.8x4,
b=−1+0.8x4.
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Fig. 9. Close-up, conservative method with dissipation term, second order case. a = 1+
0.8x4, b=−1+0.8x4.
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Fig. 10. Conservative method with dissipation term, second order case. a = 1 + 0.8
sin(7.9x), b=−1+0.8 sin(7.9x).
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Fig. 11. Conservative method with dissipation term, fourth order case. a = 1 + 0.8
sin(7.9x), b=−1+0.8 sin(7.9x).
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Fig. 12. Close-up, conservative method with dissipation term, second order case. a =1+0.8
sin(7.9x), b=−1+0.8 sin(7.9x).
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Fig. 13. Close-up, conservative method with dissipation term, fourth order case. a =1+0.8
sin(7.9x), b=−1+0.8 sin(7.9x).
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Fig. 14. Close-up, conservative method with dissipation term, sixth order case. a = 1 + 0.8
sin(7.9x), b=−1+0.8 sin(7.9x).

where n is the approximation order of the integration operator P . For a
smooth function u we certainly have convergence. However, the solutions
in the skew-symmetric cases discussed above were probably not smooth.
The conservative form with added dissipation is by construction more dis-
sipative (choice of |Ax |max) and hence might lead to smooth solutions and
strict stability.

4. NUMERICAL EXPERIMENTS

Consider the problem (21). We have chosen to investigate a few cases
where we are able to determine the solution analytically, see Appendix B.
Second, fourth and sixth order accurate finite difference operators on sum-
mation-by-parts (SBP) form (see [4,8,10]) with diagonal norms are used
in the numerical experiments. To integrate in time we use a fourth order
accurate Runge–Kutta method.

In Fig. 15 we show results using second, fourth and sixth order
accurate approximations an well as the exact result. Note the significant
difference in accuracy. Note also that since ax and bx , in Fig. 15 alter-
nate between positive and negative numbers, the amplitude of the solution
might grow in time, see Eq. (20).
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Fig. 15. (a) v at t =0.5 and (b) t =1.1 for second order case. (c) v at t =0.5 and (d) t =1.1
for fourth order case. (e) v at t = 0.5 and (f) t = 1.1 for sixth order case. a = 1 + 0.8 sin(πx),
b=−1+0.8 sin(πx), f = sin(2πx), g =−f , N =50.

Since SBP-operators with diagonal norms are used, the order of accu-
racy at the boundary is half the one used in the interior of the domain,
see [4]. This implies that the total order of accuracy in space becomes 2,
3 and 4 for the second, fourth and sixth order schemes respectively. The
order of actuary is not altered by the artificial dissipation, which can be
seen in Fig. 16.
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Fig. 16. Error at t =0.2, a =1+0.8sin(πx), b=−1+0.8 sin(πx), f = sin(2πx), g =−f .

In Figs. 17 and 18, an initial perturbation in v decreases and finally
vanishes as t increases. The disturbance is removed by the dissipation
terms. In the continuous case, the perturbation propagates along with the
rest of the solution.

By choosing f = sin(1.5πx) and g = −f we get a discontinuity that
travels through the right boundary into the solution of v. In Figs. 19 and
20 we see that the conservative method with artificial dissipation reduces
the perturbations caused by the discontinuity more than the skew-symmet-
ric method.

5. CONCLUSIONS

We have determined a new type of artificial dissipation that depends
on the variable coefficients and it’s derivatives and the size of the grid. Our
basic assumption is that the variable coefficients and the continuous solu-
tion are smooth. The artificial dissipation is constructed by expressing the
conservative formulation as a skew-symmetric formulation by adding an
artificial dissipation term to it. We have shown that it is possible to make
the conservative method strictly stable by adding an artificial dissipation
term without destroying the accuracy. We have also shown that strict sta-
bility cannot be obtained by using the skew-symmetric formulation only.
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Fig. 18. v at t = 0.5. Sixth order case, a = 1 + 0.8 sin(πx), b = −1 + 0.8 sin(πx), f =
sin(2πx), g =−f +perturbation,N =101.
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Fig. 19. v at t = 1.0. Conservative method with dissipation term, sixth order case, a = 1+
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Fig. 20. v at t = 1.0. Skew-symmetric method with dissipation term, sixth order case, a =
1+0.8 sin(πx), b=−1+0.8 sin(πx), f = sin(1.5πx), g =−f,N =100.



APPENDIX A. SBP-OPERATORS

A SBP-operator with diagonal norm [4] is on the form

D = 1
∆x




A

d

. . .

d

B


 .

A = A(n,m) is a matrix who takes care of derivatives close to the left
boundary. B =−rot(A,180◦) is of the same size as A but deals with deriv-
atives on the right boundary. The value of n and m depends on the order
of accuracy of the SBP-operator. The derivatives in the inner is taken care
of by the row vector d. d:s wideness depends on what SBP-operator we
use. A SBP-operator can be written as D =P −1Q, where P in our case is
a diagonal matrix.

Second order accurate difference operator:

A= (−1 1
)

d = 1
2

(−1 0 1
)

P =∆x diag
(

1
2 1 . . . 1 1

2

)

Fourth order accurate difference operator:

A=




− 24
17

59
34 − 4

17 − 3
34 0 0

− 1
2 0 1

2 0 0 0
4
43 − 59

86 0 59
86 − 4

43 0
3
98 0 − 59

98 0 32
49 − 4

49




d = 1
12

(
1 −8 0 8 −1

)

P =∆x diag
( 17

48
59
48 1 . . . 1 43

48
49
48

)



Sixth order accurate difference operator:

A1:6,1:3 =




− 21600
13649

43200
13649c− 7624

40947 − 172800
13649 c+ 715489

81894

− 8640
12013c+ 7624

180195 0 86400
12013c− 57139

12013

17280
2711 c− 715489

162660 − 43200
2711 c+ 57139

5422 0

− 25920
5359 c+ 187917

53590
86400
5359 c− 745733

64308 − 86400
5359 c+ 176839

16077

34560
7877 c− 147127

47262 − 129600
7877 c+ 91715

7877
172800
7877 c− 242111

15754

− 43200
43801c+ 89387

131403
172800
43801 c− 240569

87602 − 259200
43801 c+ 182261

43801




A1:6,4:6 =




259200
13649 c− 187917

13649 − 172800
13649 c+ 735635

81894
43200
13649c− 89387

40947

− 172800
12013 c+ 745733

72078
129600
12013 c− 91715

12013 − 34560
12013c+ 240569

120130

86400
2711 c− 176839

8133 − 86400
2711 c+ 242111

10844
25920
2711 c− 182261

27110

0 43200
5359 c− 165041

32154 − 17280
5359 c+ 710473

321540

− 86400
7877 c+ 165041

23631 0 8640
7877c

172800
43801 c− 710473

262806 − 43200
43801c 0




A1:6,7:9 =




0 0 0

0 0 0

0 0 0

72
5359 0 0

− 1296
7877

144
7877 0

32400
43801 − 6480

43801
720

43801




where c= 342523
518400 .

d = 1
60

(−1 9 −45 0 45 −9 1
)



P =∆x diag
(

13649
43200

12013
8640

2711
4320

5359
4320

7877
8640

43801
43200 1 . . .

1 43801
43200

7877
8640

5359
4320

2711
4320

12013
8640

13649
43200

)

APPENDIX B. ANALYTICAL SOLUTION

Consider following initial value problem

ut + (au)x =0, u(x,0)=f (x) (45)

where a =a(x). We can solve (45) by transforming this partial differential
equation to three ordinary differential equations. This is done by adding
two new variables, y and s, where we define y as du

dy
=−axu and s as x = s

when t =0. The three new equations are

dt

dy
=1,

dx

dy
=a,

du

dy
=−axu. (46)

This gives the solution u=f (s)e

∫ y
y0

−axdy
where a =a(x), x =x(y, s). s can

be determined from

∫ x

0

1
a
dx =y +

∫ s

0

1
a
dx. (47)

Using the relation y = t from the first equation in (46) the final expression
becomes

u=f (s)e
∫ t

0 −axdy.

s can be seen as a characteristic line to a point in the analytical solution.
When we express s explicity from (47) we do not always get s =x when t =
0, for instance for some periodic a(x). For that reason this solution only
holds for some a(x).

In this paper we wish to solve compute the solution to (18) and (19).
Since a > 0 and b < 0, points in solution of u move towards the right
boundary. And consequently points in the solution of v move in opposite
direction. To calculate u in a certain point at a certain time, we determine
where the point were located at t =0, follow that specific characteristic line
back in time to the boundary, and note the time. With known x and t

at the boundary we can track the point through the solution of v to the



other boundary. This procedure is repeated until t = 0. The value of u in
this specific point, for the case in Fig. B is then

u(xn, tn) = αv(0, ta)e
∫ tn
ta

−axdy

v(0, ta) = βu(1, tb)e

∫ ta
tb

−axdy

u(1, tb) = αv(0, tc)e
∫ tb
tc

−axdy

v(0, tc) = g(sv(0, tc))e
∫ tc

0 −axdy.

By combining the formulas above we obtain the final expression,

u(xn, tn)=α2βg(sv(0, tc))e
∫ tn

0 −axdy.
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Fig. B. Characteristic lines for a point p = (xn, tn) in u.
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