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Abstract

Bacterial 16S ribosomal DNA (rDNA) amplicons have been widely used in the classification of uncultured bacteria inhabiting
environmental niches. Primers targeting conservative regions of the rDNAs are used to generate amplicons of variant
regions that are informative in taxonomic assignment. One problem is that the percentage coverage and application scope
of the primers used in previous studies are largely unknown. In this study, conservative fragments of available rDNA
sequences were first mined and then used to search for candidate primers within the fragments by measuring the coverage
rate defined as the percentage of bacterial sequences containing the target. Thirty predicted primers with a high coverage
rate (.90%) were identified, which were basically located in the same conservative regions as known primers in previous
reports, whereas 30% of the known primers were associated with a coverage rate of ,90%. The application scope of the
primers was also examined by calculating the percentages of failed detections in bacterial phyla. Primers A519–539, E969–
983, E1063–1081, U515 and E517, are highly recommended because of their high coverage in almost all phyla. As expected,
the three predominant phyla, Firmicutes, Gemmatimonadetes and Proteobacteria, are best covered by the predicted
primers. The primers recommended in this report shall facilitate a comprehensive and reliable survey of bacterial diversity in
metagenomic studies.
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Introduction

In prokaryotes, the 16S ribosomal RNA (rRNA) genes are

essential and occur in at least one copy in a genome [1]. They are

also present in all mitochondrial genomes, which have lost most of

their ancestral gene content in the long evolutionary history of

symbiosis [2]. The universality of the genes makes them an ideal

target for phylogenetic studies and taxonomic classification [3].

The products of the rRNA genes can fold into a complex, stable

secondary structure, consisting of stems and loops [4]. The

sequences of some of the loops are conservative across nearly all

bacterial species because of the essential functions involved,

whereas the features of the structural parts are largely variant and

specific to one or more classes [5,6]. Since the invention of the

polymerase chain reaction (PCR) technique [7], the variant

regions, V1–V9, of the 16S rRNA genes (rDNAs) have been used

for species identification [8].

The appropriate primers for a PCR reaction are critical because

an over-relaxed match between a primer and its target leads to

PCR failure. For 16S rDNAs, the primers (15–20 nucleotides (nt))

are located in the conservative regions that flank a target region

used for phylogenetic analysis [8]. The first sets of primers were

designed by using conservative regions of 16S rDNA sequences

from different species and were named according to their positions

on Escherichia coli 16S rDNA [8]; this has become the protocol for

subsequent primer design. For example, primer E685 corresponds

to eubacterial P4 region [9] and primer A344 targets the archaeal

H339 region [10]. In the recent decades, more primers have been

designed for bacterial studies with tools such as ARB [11], as the

number of known 16S rDNA sequences increases. Moreover,

primers targeting a specified phylum have recently been designed

[12]. However, known polymorphisms also accumulate in the

conservative regions, when a large number of 16S rDNA

sequences were generated and deposited in public databases, such

as the Ribosomal Database Project (RDP) database [13].

Consequently, the originally widely used primers may not be

suitable for a small group of bacteria, as noticed in recent studies

[14,15,16].

The problem of primer selection is even more difficult and has

attracted attention because of recent advances in metagenomic

studies. Massive parallel sequencing techniques allow unprecedent-

edly rapid and economical DNA sequencing. Nearly one million

sequences of 400 nt can be generated by the Roche 454 FLX

Titanium machine, allowing the deep sequencing of environmental

bacterial genomes [17]. In many experiments, amplicons of the V3

and/or V6 regions have been subjected to the pyrosequencing [18].

These two variant regions in 16S rDNA can provide sufficient

phylogenetic information about the bacteria in samples [19,20].

The accumulation of known polymorphisms in the conserved

regions means that the coverage rates of some primers are
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declining [6]. This might cause problems in using widely accepted

primers if they fail to recover a high percentage of bacterial species

in uncultured environmental samples, as expected. Using wrong

primers will lead to failure to detect some bacterial species and

consequently incomplete surveys in metagenomic studies.

Previous studies have found that Archaea- and Eubacteria-

specific primers cannot target a spectrum of classes [14,16]. The

known primers for the Archaea are not always suitable for

amplifying the 16S rRNA amplicons for Korarchaeota or

Nanoarchaeota [16]. Using the RDP classifier and the BLAST

program, Baker et al. (2003) and Huws et al. (2007) have

investigated the species specificity and coverage spectrum of the

known primers. However, the results of both studies are

preliminary in that the coverage rates of the primers were not

given. Moreover, the latter study did not consider degeneracies in

these primers. In a recent work, the coverage of several known

primers was surveyed using several sets of metagenomic data, and

the primers with better performance were recommended for future

work [21]. All these studies used known primers and provided brief

information of their phylum specificity. But we still do not have a

ranking of the capacities of the known primers useful for

environmental samples and a list of all candidate primers for

bacterial 16S rRNA genes.

In this study, we identified conservative fragments in 16S rRNA

genes from the RDP database and compiled a list of candidate

primers. The predicted primers reported in this study comprise

nearly a full-set of primers for prokaryotic 16S rRNA genes and

largely overlapped with known primers, regardless of any shift in

positions. The average coverage rate of our primers is 96%,

markedly higher than that of other known primers. We also

studied the scope of their application, which should provide

guidance for metagenomic studies.

Results

Designing predicted primers using conserved fragments
of 16S rDNA sequences

We identified continuous conservative sites (.14 nt) in the

Archaea and Eubacteria separately. They were positioned on the E.

coli 16S rRNA gene by using a pairwise alignment and converted to

conservative fragments. There were 8 archaea-specific and 11

eubacteria-specific conservative fragments of various lengths. Most

of the conservative archaeal and eubacterial fragments were

numbered according to approximate positions on the E. coli 16S

rRNA gene, and only four fragments lacked any counterparts:

eubacterial fragments 104–120, 683–707, and 1177–1197, and

archaeal fragment 1225–1242 (Table 1). Among the overlapping

fragments, we found obvious sequence variations such as between

archaeal 344–367 and eubacterial 314–368. The differences in

these fragments possibly reflect the major characteristics of the

functional parts of the 16S rRNA transcripts, which probably

developed after the divergence of the Archaea and Eubacteria.

Next, we selected candidate primers (15 nt) from the fragments

by checking their coverage rates. A high coverage rate indicates a

high percentage of bacteria in our dataset with a target site for the

candidate primer. Every candidate primer was examined with a

sliding window, which was moved across the fragments (Fig. 1).

Although all the sites were highly conservative, the coverage rates

of the candidate primers on the same fragment varied markedly

and might be distributed across a larger range than that shown in

Figure 1. The candidate primers containing degenerate sites

clearly corresponded to low coverage rates (Fig. 1), suggesting that

introduction of the degeneracies could not ensure complete

matches between the primers and their targets, and that the

degeneracies by themselves pointed to the positions of weak sites in

the candidate primers as well as in the conservative fragments.

After we filtered out the candidate primers with a coverage rates

below 90%, the remaining overlapping primers were merged

again and new coverage rates were measured for them (Table 2).

Thirty candidate primers (13 for the Archaea and 17 for the

Eubacteria) were identified and are of potential use in designing

forward and reverse primers. Notably, eubacterial conservative

fragment 104–120 did not contain candidate primers that met the

selection criteria. Some primers for the Archaea and Eubacteria

were not only numbered with the same E. coli rDNA positions but

were also highly homologous in their pattern. Therefore, they

were defined as predicted universal primers: U515–532, U785–

800, U909–928, and U1052–1071 (Table 2).

Coverage rates of predicted and known primers
To evaluate the accuracy of our prediction, the predicted

primers were compared with 29 known primers including 13

Archaea-specific, 9 Eubacteria-specific, and 7 universal primers

(Table 3). After cleaning the overlapping primers, we found that

our predicted primers contained a novel primer, A884–898, which

has not been reported previously. Although nearly all the

predicted and known primers were located in the same regions,

Table 1. The conservative fragments in archaeal and
eubacterial 16S rDNAs.

Bacteria Position Conservative fragment

E 104–120 GGCGVACGGGTGAGTAA

E 314–368 CAYTGGRACTGAGACACGGYCCARACTCCTACGGG

AGGCAGCAGTRRGGAATHTT

A 344–367 AYGGGGYGCAGCAGGCGRGAAARC

E 505–539 GGCTAACTHCGTGCCAGCAGCCGCGGTAATACGDA

A 506–547 GGYAAGDCYGGTGYCAGCCGCCGCGGTAAHACCRC

CDRTGGCGAA

E 683–707 GTGTAGRGGTGAAATKCGYAGAKAT

E 764–806 CGAAAGYGTGGGKAKCRCAGGATTAGATACCCTGGT

AGTCC

A 779–806 CRAACSGGATTAGATACCCSGGTAGTCC

E 879–893 CCRCCTGGGGAGTAC

A 882–936 CCTGGGRAGTACGKHCGCAAGDRTGAAACTTAAAGG

AATTGGCGGGGGAGCAC

E 909–940 ACTCAAAKGAATTGACGGGGRCCCGCACAAGC

A 947–973 GCSTGCGGYTYAATTGGABTCAACGCC

E 949–964 ATGTGGTTTAATTCGA

E 969–985 ACGCGARGAACCTTACC

A 1043–1073 GAGAGGWGGTGCATGGCCGYCGYCAGYTCGT

E 1048–1114 GTGSTGCATGGYTGTCGTCAGCTCGTGYCGTGAGRT

GTYGGGTTAAGTCCCRYAACGAGCGCAACCC

A 1094–1111 GTCAGRYAACGARCGAGA

E 1177–1197 GGAAGGYGGGGAYGACGTCAA

A 1225–1242 ACACGCGSGCTRCAAWGG

The conservative fragments were generated from multiple alignments among
6,624 Archaea (A) and 275,057 Eubacteria (E) in RDP database. The positions are
determined according to relative positions in E. coli 16S rDNA genome. Y: C or T;
R: A or G; W: A or T; K: G or T; M: C or A; S: C or G; V: not T; H: not G; B: not A; D:
not C.
doi:10.1371/journal.pone.0007401.t001

Primers for 16S rDNA Amplicons
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some of the known primers were probably problematic because of

the lack of sufficient degeneracies and the low degree of

conservation at some sites in the primers. Therefore, the coverage

rates of these primers were compared with those of the predicted

primers.

For the predicted primers, the average coverage rates of the

archaeal and eubacterial primers were 96% and 96.2%,

respectively. The average coverage rate of the predicted universal

primers was 96%. The values for the known archaeal, eubacterial,

and universal primers were 85%, 77.4%, and 84.3%, respectively.

Overall, the coverage rates of all the predicted primers were above

90%, whereas the coverage rates of the 11 known primers (30.6%

of all known primers) were lower than 90% (Table 3). The

coverage rates of the predicted primers were significantly higher

than those of the known primers (Spearman test; P,0.00001). Our

results also cast doubt on the validity of some known universal

primers, as three out of the seven showed poor coverage in

Archaea or Eubacteria: the coverage rate of U779 in Archaea was

only 5%. The remaining primers, U341F, U519F, U789F, and

U1053F, are highly recommended for their high coverage rates in

all bacteria. U341F was not included among our predicted

universal primers, as polymorphisms and dissimilarities in this

region would introduce too many degeneracies when both the

Archaea and Eubacteria are considered.

Phylum specificity of predicted and known primers
As described above, we generated a list of predicted and known

primers with a high coverage rate for both the Archaea and

Eubacteria. However, it was a challenge to amplify the 16S rRNA

sequences of all the bacteria in environmental samples. Generally,

the dominant and well-characterized bacterial phyla could be

detected easily according to the principles of primer design. The

problem was how to identify the minority bacterial phyla;

occasionally, a whole phylum was missed. In the RDP database,

the numbers of bacteria from different phyla differed substantially,

and the failure to detect a small phylum might simply result in less

than 1% loss of coverage rate. Therefore, it was necessary to assess

the phylum specificity of our predicted primers, as a supplemen-

tary evaluation other than coverage rate.

We first displayed coverage spectrum of 13 Archaea-specific

primers. In the Crenarchaeota and Euryarchaeota, the percentage

of failed detections was below 10% for the primers, indicating that

the coverage of these Archaea was rather stable (Fig. 2). However,

the coverage of Korarchaeota and Nanoarchaeota varied

remarkably in a range of 0%–100%. Primers A785–800, A899–

913, and A905–936 were not suitable for Korarchaeota, as

indicated by their 100% of failure rates. The highly variant

coverage rates of these primers in Nanoarchaeota were not

surprising because there were only three representatives of this

taxon (.1200 nt) in the database. In light of the spectrum found in

this test, A519–539 could provide the best coverage of all archaeal

phyla. Although some primers failed to cover Korarchaeota

completely, they provided location information for the design of

Korarchaeota-specific primers. Among the 12 known Archaea-

specific and universal primers examined, U906F and U1053F

performed better than the others (Fig. S1). And the result confirms

that the Archaea-specific primers do not have high coverage rates

in Korarchaeota and/or Nanoarchaeota.

The same test was performed with 17 predicted Eubacteria-

specific primers on 25 eubacterial phyla. Most of the primers

showed a weakness in finding targets in a small spectrum of

eubacteria phyla (Fig. 3). E969–983 was the best primers because

it displayed the lowest average rate (1%) of failed detections,

followed by E1063–1081 with an average failure percentage of

4.6%. The highest average failure percentage (32.8%) was

observed for E1177–1193. Surprisingly, the difference between

E783–797 and E785–806 was 9%, although the major part of

E783–797 lies within E785–806 except for the first two

nucleotides. Therefore, different primers show clear phylum

specificity, and fine adjustment of the primer target could achieve

better coverage. This was verified by variant rates of failed

detections observed for the same phylum dataset using different

primers. We thus measured the average of the rates for individual

phyla to determine the bacteria phyla that were most easily

detected, and the results showed that Firmicutes, Gemmatimona-

detes and Proteobacteria were the phyla with the highest rates of

match to the primers. In ascending order, the average percentages

of failed detections were 1.47%, 1.54%, and 1.9%, respectively,

for three phyla. In contrast, Planctomycetes and TM7 were

associated with the highest average rates of failed detections (40%

and 31.8%, respectively) with large standard deviation (42% and

43%, respectively), indicating that the coverage of the primers in

these two phyla is not stable. These results could be foreseen

because the overwhelming number of representatives from

Firmicutes and Proteobacteria (Fig. 3) caused a bias in primer

design. The polymorphisms in the minority phyla were largely

ignored, leading to insufficient degeneracies in the primers.

The performance of known primers was also assessed. Of the top

three phyla, Firmicutes and Proteobacteria were most easily detected

with the known primers (Fig. S2). A minor phylum, Deferribacteres,

was the phylum best covered by the known primers, with the lowest

average rate (0.45%) of failed detections, followed by Deinococcus

and Acidobacteria. This finding suggests that the 16S rDNA

sequences collected previously from the RDP and GenBank were

less biased in collection of certain phyla. However, the usefulness of

the known primers for Verrucomicrobia was limited, and half the

known primers showed .50% failed detections, perhaps reflecting

the lack of representatives of this phylum when the primers were

designed. Among the known primers, U515 and E517 are highly

recommended in light of their wide spectrum of perfect coverage.

E1099F also had an overall high coverage rate, although it failed to

detect most of Planctomycetes (Fig. S2).

Assessment of Cyanobacteria-specific primers
The above results are useful for studies that focus on a specific

phylum. By designing primers for a phylum of interest, only the

Figure 1. Coverage rates of candidate primers within a
conservative fragment. The coverage rates (%) of eight candidate
primers within the conservative fragment 59-CAAGDMTGAAACTTAAAG-
GAAT-39 were determined using all archaeal 16S rDNA sequences
(.1,200 nt) as the reference dataset. The coverage rate is the percentage
of the rDNA sequences that have a target fragment matching a given
candidate primer. One mismatch is allowed in the match.
doi:10.1371/journal.pone.0007401.g001

Primers for 16S rDNA Amplicons
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16S rDNA of the desired bacterial species is amplified for

subsequent studies. We examined three Cyanobacteria-specific

primers, CYA106F, CYA359F, and CYA781R [12]. The

coverage rate for all Eubacteria was 31.7% for primer CYA106F,

7.4% for CYA359F, and 2.3% for CYA781R. We classified the

identified bacteria species and found that CYA106F was not

specific for the Cyanobacteria. CYA106F, CYA359F and

CYA781R could be used to identify 80%, 98%, and 92% of the

4655 Cyanobacterial sequences in our collection, independently.

Moreover, CYA106F and CYA359F had many targets in

Firmicutes: 75% of 94475 Firmicutes sequences were targets of

CYA106F and 9% were targets of CYA359F. However,

CYA781R had an extremely low coverage rate (0.001%) in

Firmicutes. An appropriate combination of forward and reverse

primers could avoid generating a mixture of amplicons from

Firmicutes. These primers designed, based on previous database

collection, are still useful today.

Distance of the primers to variant regions of 16S rRNA
genes

We put the predicted and known primers onto the same map to

compare their relative distances to the 16S rRNA variant regions.

Three of these regions (V3, V5, and V6) in E. coli are shown in

Figure 4. The primers were concentrated in six narrow regions,

spanning the three variant regions. For those primers with high

coverage rates, the predicted and known primers overlapped

Table 2. The coverage rate of predicted primers.

Bacteria Position Sequence Average rate Coverage rate

E 321–336 ACTGAGACACGGYCCA 95.7% 96.1%

E 329–343 ACGGYCCARACTCCT 95.3% 96.0%

E 338–358 ACTCCTACGGGAGGCAGCAGT 97.3% 96.3%

A 346–361 GGGGYGCAGCAGGCG 94.2% 94.3%

E 350–364 GGCAGCAGTRRGGAA 95.1% 95.5%

E 505–524 GGCTAACTHC GTGCCAGCAG 95.3% 95.1%

A 514–528 GGTGYCAGCCGCCGC 97.3% 98.5%

E 515–532 GTGCCAGCAGCCGCGGTA 92.6% 91.0%

U 515–532 GTGYCAGCMGCCGCGGTA - 96.9%/96.9%

A 519–539 CAGCCGCCGCGGTAAHACCRC 96.7% 97.1%

E 683–700 GTGTAGMGGTGAAATKCG 92.6% 90.5%

E 783–797 CAGGATTAGATACCC 97.9% 97.9%

E 785–806 GGATTAGATACCCTGGTAGTCC 95.9% 94.6%

A 785–800 GGATTAGATACCCSGG 98.1% 98.4%

U 785–800 GGATTAGATACCCBGG - 98.4%/97.1%

A 884–898 TGGGRAGTACGKHCG 97.1% 97.1%

A 899–913 CAAGDMTGAAACTTA 97.6% 97.6%

A 905–920 TGAAACTTAAAGGAA 98.3% 98.3%

A 921–936 TTGGCGGGGGAGCAC 98% 97%

E 909–926 ACTCAAAKGAATTGACGG 98.5% 97.9%

U 909–928 ACTYAAAKGAATTGRCGGGG - 93.2%/92.1%

E 919–939 ATTGACGGGGRCCCGCACAAG 96.3% 96.1%

A 947–964 GCSTGCGGYTYAATTGGA 91.6% 90.5%

E 949–964 ATGTGGTTTAATTCGA 93.5% 93.5%

A 958–973 AATTGGABTCAACGCC 90.6% 93.5%

E 969–984 ACGCGARGAACCTTAC 97.4% 97.1%

A 1045–1059 GAGGWGGTGCATGGC 95.7% 97.4%

A 1052–1071 TGCATGGCCGYCGYCAGYTC 96.6% 95.1%

E 1052–1072 TGCATGGYTGTCGTCAGCTCG 97.1% 99.0%

U 1052–1071 TGCATGGYYGYCGYCAGYTC - 95.1%/98.8%

E 1063–1081 CGTCAGCTCGTGYCGTGAG 99.2% 99.3%

E 1096–1114 CCCRYAACGAGCGCAACCC 96.8% 95.6%

E 1177–1193 GGAAGGYGGGGAYGACG 98.2% 98.2%

A 1226–1242 CACGCGSGCTRCAAWGG 93.8% 93.5%

The primers in this table were fragments within the conservative fragments in Table 1. If coverage rates of neighboring candidate primers were all above 95%, they were
merged. If no predicted primers in a fragment, the cutoff rate decreased to 90%. The average coverage rate was thus calculated for the neighboring primers. Universal
primers (U) were obtained by referring to archaeal (A) and eubacterial (E) predicted primers at the same positions of E. coli genome. The coverage rate was measured for
the merged primer. For the universal primers, both were provided (A/E). Abbreviated names for bacteria and the positions were listed as those in Table 1.
doi:10.1371/journal.pone.0007401.t002

Primers for 16S rDNA Amplicons
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strongly. The ‘‘hot’’ regions where the primers bind were: 321–

364, 505–539, 783–806, 884–939, 947–984, and 1045–1081. The

sizes of the amplicons from the V3 region and V5–V6 region were

about 180 nt and 270 nt, respectively. Both could be completely

sequenced with the 454 FLX platform.

Discussion

In this study, we predicted all the potential primers for bacterial

16S rDNA amplicon. Their positions are largely consistent with

those of known primers, but the average coverage rate is higher

than that of known primers. Some of the known primers used in

previous studies have been found to be unsuitable for the

amplification of 16S rDNA fragments from uncultured samples.

We also confirmed that most of the primers in hand are highly

specific for a spectrum of bacterial species, and definitely cannot

be used to amplify all bacteria in uncultured samples. Our result

should be helpful in the design of primer for species-specific

amplicons, when research interests are restricted to a certain

species. As well as from 16S rDNAs, the protocol provided in this

study can also be applied to the detection of genetic variations in

other essential genes in bacterial communities [22], all of which

are important in metagenomic studies.

With recent advances in massively parallel sequencing tech-

niques, the bacteria world in untouched ecological niches can be

explored to survey its biodiversity and niche-specific metabolic

pathways. The use of 16S rDNA amplicon sequencing allows us to

estimate the abundance and diversity of these bacteria, whereas

the exhaustive detection of rare species is difficult to achieve. In

recent metagenomics studies, the number of phylotypes in the

same number of 16S rDNA sequences varied substantially for

samples from different environments and geographical sites

[23,24,25]. Despite this, we cannot exclude the possibility that

amplification efficacy of the different 16S rDNA primers used in

these studies led to the underestimation of bacterial richness.

Primer usage is undoubtedly one of the most critical limiting

factors affecting 16S rDNA analysis [18]. Although V3 and V6 are

the most popular regions examined in recent metagenomic studies,

the primers used differ [18]. This may lead to different capture

depths of the bacteria in environmental samples, attributable to

varying amplification efficiencies and coverage rates of the

primers.

In an attempt to compare the results of different studies,

research groups have tended to use the same primers. In several

studies of microbial communities in the human gut and seawater,

primers 967F and 1046R have been used to amplify the V6 region

to avoid the bias caused by primer selection [19,23,25,26]. Our

study provides a reliable set of candidate primers for researchers to

achieve an approximately full coverage of bacterial 16S rDNAs

and comparable results among different studies.

The recently updated Roche 454 Titanium platform yields

about one million reads per run, with reads up to about 400 nt

[17]. The increase in read lengths allows us to analyze longer

amplicons from the variant regions of 16S rDNAs. However, we

are still far from being able to sequence amplicons spanning both

V3 and V6 (Figure 4). Among all the primers discussed, E683–700

is important because it can be used as a reverse primer to generate

amplicons of ,340 nt from the V3 region or a forward primer

designed to generate ,400 nt amplicons spanning the V5 and V6

regions. The closest primers to it are at least 100 nt away, and it is

the only primer that allows the full utilization of the sequencing

capacity of the new 454 platform. However, a potential problem is

its relatively low coverage rate of 91% for the Eubacteria. Notably,

no predicted or known primer has been found for the Archaea in

this region. Therefore, the amplicons obtained with E683–700

from an uncultured environmental sample will specifically belong

to Eubacteria.

One limitation of this study is that the primer design depended

on the data in the RDP database. The bacteria in rare biospheres

can never be identified if the employed primers are not applicable

to them. New primers cannot be invented in case of lack of

representatives of those bacteria in the RDP database. Although

numerous 16S rRNA genes had been collected in databases, the

real bacterial world in environmental samples will still be invisible

under the current protocol for 16S rDNA detection. In this study,

three nearly full-length Nanoarchaeota were used as references for

primer design. The unstable coverage rate observed is an obstacle

to evaluating the efficiency of the predicted and known primers at

all sub-levels. Fortunately, ongoing and completed metagenomic

projects may help us by providing nearly full-length 16S rRNA

genes and by increasing the representatives of the rRNA genes

particularly from rare biospheres. As the number of 16S rRNA

Table 3. Coverage rate of known primers.

Primer [Ref] Primer sequence 59-39 Position
Coverage
rate

A333F [16] TCCAGGCCCTACGGG 333–348 57.4%

E334F [14] CCAGACTCCTACGGGAGGCAGC 334–356 74.2%

A340F [16] CCCTACGGGGYGCASCAG 340–358 88.3%

U341F [16] CCTACGGGRSGCAGCAG 341–358 91.1%/96.9%

E343F [20] TACGGRAGGCAGCAG 343–357 98.7%

A344F (A) [15] GGGGYGCASCAGGSG 344–360 90.8%

A344F (B) [15] ACGGGGCGCAGCAGGCGCGA 344–363 74.2%

U515F [16] GTGCCAGCMGCCGCGGTAA 515–534 63.3%/99.0%

E517F [20] GCCAGCAGCCGCGGTAA 517–533 99.1%

A519R [15] GGTDTTACCGCGGCKGCTG 519–537 98.0%

A519F [15] CAGCMGCCGCGGTAA 519–533 98.6%

U519F [16] CAGCMGCCGCGGTAATWC 519–537 96.7%/98.5%

A685R [27] TTACGGGATTTCACTCCTAC 685–704 19.5%

E685R [28] ATCTACGCATTTCACCGCTAC 685–705 79.8%

U779F [16] GCTAASSGGATTAGATACCC 779–799 89.9%/5.0%

E786F [14] GATTAGATACCCTGGTAG 786–803 95.2%

U789F [16] TAGATACCCSSGTAGTCC 789–807 97.7%/94.8%

A806R [15] GGACTACVSGGGTATCTAAT 787–806 96.4%

E806R [14] GGACTACCAGGGTATCTAAT 787–806 95.1%

U906F [16] GAAACTTAAAKGAATTG 906–923 98.3%/54.2%

A906R [15] CCCGCCAATTCCTTTAAGTTTC 906–927 97.3%

E917F [20] GAATTGACGGGRCCC 917–932 92.5%

A915R [15] GTGCTCCCCCGCCAATTCCT 915–934 97.1%

E939R [14] CTTGTGCGGGCCCCCGTCAATTC 917–939 93.1%

A976R [16] CCGGCGTTGAMTCCAATT 957–976 92.7%

A1040F [16] GAGAGGWGGTGCATGGCC 1040–1058 95.2%

U1053F [16] GCATGGCYGYCGTCAG 1053–1068 97.2%/97.2%

A1098F [16] GGCAACGAGCGMGACCC 1098–1115 67.0%

E1099F [20] GYAACGAGCGCAACCC 1099–1114 97.0%

The source of the known primers is labeled. The degenerated sites are defined
in Table 1. The names of Archaea-specific, Eubacteria-specific, and universal
primers are started with ‘A’, ‘E’ and ‘U’, respectively. For the universal primers,
the coverage rates for both the Archaea and Eubacteria are given (A/E).
doi:10.1371/journal.pone.0007401.t003
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genes increases, we can gain unprecedented knowledge about the

formation and dynamics of bacterial communities in different

ecological niches.

Another limitation of this study lies in dependence on the data

collection of the RDP database. The accuracy of our prediction of

the phylum specificity of the primers was affected by the numbers

of orders and classes in a given phylum and the sequences

available for these sub-phylum levels. If a phylum has one class

with sequences concentrated in one order, the coverage rate of the

primers will probably be higher than for a phylum with many

classes, all having a few sequences in different orders.

Materials and Methods

We downloaded nearly full-length 16S rRNA gene sequences

($1200 nt) from the website of the RDP (version 10.8) [13]. The

dataset included 6,624 archaeal and 275,057 eubacterial sequenc-

es in the alignment model.

For a sequence in the aligned format, we defined the sites as one

of three types: conservative sites, polymorphic sites, and gaps. A

conservative site consisted of one or two highly predominant

nucleotides, but occasionally three nucleotides at nearly equal

frequencies. A conservative site with two or three predominant

nucleotides was called a ‘‘polymorphic conservative site’’. A small

proportion of sequences did not have a nucleotide for alignment,

and a gap was inserted at that site. A polymorphic site contains

variant nucleotides in a small proportion of sequences, and a gap

was inserted at the corresponding position in the remaining

sequences. The conservative and polymorphic sites differ in the

proportion of the gaps. We obtained conservative fragments

(.14 nt) of 16S rDNA for the Archaea and Eubacteria separately,

by removing the polymorphic sites and retaining the conservative

sites. A polymorphic site was removed if the proportion of the

sequences with a gap was higher than 95%; a conservative site was

recorded if the proportion was below 10%. We used a sliding

window of 30 nt, moving across the aligned sequences in steps of

10 nt. If there were more than 14 continuous conservative sites in

a window, a conservative fragment was detected. We also limited

the maximum numbers of polymorphic conservative sites in each

sliding window to three. In the subsequent manual adjustments,

the conservative fragments were merged if they were overlapped.

Because of the high divergence of the rDNAs of the Archaea and

Eubacteria [16], the search for conservative fragments using all the

rDNAs could not detect those specific to the Eubacteria or

Archaea. We finally obtained two sets of conservative fragments,

one each for the Archaea and Eubacteria.

We then calculated the coverage rates of the conservative

fragments to obtain candidate primers with which to generate 16S

rDNA amplicons. The primary requirements for a candidate

primer were a length of 15 nt and no polymorphisms within the

first four or last four sites. We listed all the 15-nt candidate primers

in a conservative fragment and then determined their coverage

rates using the RDP bacterial sequences. Before this was done, the

alignment model of the sequences was transformed to the original

FASTA format by removing the gaps. We detected the matching

part of each bacterial sequence by using the first four or last four

nucleotides (if the first four nucleotides had polymorphisms, the

last four were used) as a seed. Once the seed met a matching one,

we extended the matching part back and forth until the full-length

candidate primer was matched to a certain part of the sequence.

For polymorphisms, all nucleotides were tested to see if they

matched the nucleotide at the target site. We allowed at most one

mismatch between the candidate primer and its target. Finally, the

coverage rate of the candidate primer was measured as a

percentage of the sequences in which the target was found.

With respect to the coverage rate of the primers, we merged the

neighboring candidate primers while maintaining the average rate

above 95%. When a conservative fragment did not contain any

eligible candidates, the threshold coverage rate decreased to 90%.

Universal primers are those sequences common to the archaeal

and eubacterial predicted primers. After merging, the predicted

primers were compared with known primers from previous reports

[14,15,20,27]. The known primers positioned at sites numbering

.1200 nt on the E. coli 16S rDNA were not included, because

some of the sequences in our collection were not within the

Figure 2. Phylum specificity of predicted primers for Archaea. Information on the primers is listed in Table 2. The primers were used to find
their targets in 1544 Crenarchaeota, 4153 Euryarchaeota, 37 Korarchaeota, 3 Nanoarchaeota, and 878 unclassified species. The sequences without a
target were classified into different phyla.
doi:10.1371/journal.pone.0007401.g002
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Figure 3. Phylum specificity of predicted primers for Eubacteria. Information on the primers is listed in Table 2. The primers were used to
find their targets in 778 Aquificae, 325 Thermotogae, 550 Deinococcus, 1922 Chloroflexi, 651 Nitrospira, 245 Deferribacteres, 4655 Cyanobacteria, 195
Chlorobi, 91629 Proteobacteria, 94475 Firmicutes, 23266 Actinobacteria, 2274 Planctomycetes, 216 Chlamydiae, 2646 Spirochaetes, 202
Fibrobacteres, 4040 Acidobacteria, 33924 Bacteroidetes, 737 Fusobacteria, 2851 Verrucomicrobia, 441 Gemmatimonadetes, 108 Lentisphaerae,
114 OP10, 327 TM7, 1683 Tenericutes, 108 Dehalococcoides, and 6333 unclassified bacteria. The phyla with less than 100 sequences were ignored.
The sequences without a target were classified into different phyla.
doi:10.1371/journal.pone.0007401.g003
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coverage scope of the primers. The RDP bacterial sequences were

used as a reference dataset to determine the coverage rates of the

known primers. For the predicted and known primers, we pooled

bacterial species in which the primers did not have their targets.

The bacteria were then sorted with SEQCART in the RDP

database, and the percentage of failed detections was calculated for

each bacterial phylum.

Finally, three Cyanobacteria-specific primers, CYA106F,

CYA359F, and CYA781R [12] were evaluated. These primers

were designed based on cyanobacterial sequences from the RDP

and GenBank, and were examined with a larger dataset from the

current version of RDP database (10.8).

Supporting Information

Figure S1 Phyla specification of known primers for archaea.

Legend: The known primers were used to find their targets in a

RDP dataset consisting of 1544 Crenarchaeota, 4153 Euryarch-

aeota, 37 Korarchaeota, 3 Nanoarchaeota and 878 unclassified

species. The sequences without a target were classified into

different phyla. The sequences and sources of the known primers

are referred to Table 3.

Found at: doi:10.1371/journal.pone.0007401.s001 (3.16 MB TIF)

Figure S2 Phyla specification of known primers for eubacteria.

Legend: The sequences and sources of the known primers are

shown in Table 3. The details of the RDP dataset in which the

primers were used to find their targets are referred to Figure 3.

Found at: doi:10.1371/journal.pone.0007401.s002 (4.68 MB TIF)
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