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Abstract. Governing equations for two-phase compressible flow with different phase
pressures and temperatures are presented, the derivation of which is based on the for-
malism of thermodynamically compatible hyperbolic systems and extended irreversible
thermodynamics principles. These equations form a hyperbolic system in conservation-
law form. A two-phase isentropic flow model proposed earlier and the hyperbolic model
for heat transfer underlie the developed theory of this paper. A set of interfacial ex-
change processes such as pressure relaxation, interfacial friction, temperature relaxation
and phase transition is taken into account by source terms in the balance equations. It
is shown that the heat flux relaxation limit of the governing equations can be written in
the Baer-Nunziato form, in which the Fourier thermal conductivity diffusion terms for
each phase are included.

1. Introduction. Multiphase flow modelling has undergone intensive developments
in recent years because of its great importance for practical applications. In recent
decades several theories of two-phase flow have been developed and exploited successfully
for the needs of industry and environmental sciences.

In this paper we study a model of two-phase two-fluid flow in which the constituents of
the mixture have different velocities, pressures and temperatures. Mathematical models
for such a flow are still far from a final satisfactory state. One of the most popular models
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in this field has been proposed by Baer and Nunziato [2]. The governing equations of
the model are taken as a set of two separate systems of conservation laws for each phase
coupled by interface exchange terms. This model has been applied to the study of many
concrete problems, and some modifications and generalizations of this model have been
made in, for example, [1, 3, 8, 16, 24] and the references therein. Note that the governing
equations of the Baer-Nunziato model are hyperbolic. This is a very important attribute
of the model, in that it gives a theoretical basis for its mathematical study and for
confidence in numerical solutions of the equations. But not all equations of the Baer-
Nunziato type model are in conservative form, and this results in difficulties in defining
and studying discontinuous solutions [13, 25].

We propose a different approach to model two-phase flows, based on the formalism
of thermodynamically compatible systems. This theory allows us to formulate classes
of hyperbolic conservation equations using generating thermodynamic potentials and
variables. Its core is a phenomenological approach in modelling of continuous media and
using thermodynamic laws, which determine the structure of the governing equations.
The theory of thermodynamically compatible systems has been developed in the last
few decades and has been successfully applied in different areas of continuum mechanics
and mathematical physics [7, 9, 12, 18]. With respect to multiphase compressible flow
a general principle has been constructed [21, 22], and the model for two-phase flows
in which thermal nonequilibrium between the phases is negligible has been developed
and applied to the study of some specific problems [19, 20, 23]. In this approach the
mixture is supposed to be a continuum in which the two-phase character of the flow is
taken into account. The complete set of governing equations is a hyperbolic system and
consists of the mass, momentum and energy conservation laws for the mixture, which are
completed by balance laws for additional mixture parameters, namely, for the volume
fraction and relative velocity. Moreover, all equations of the system have a conservative
form. This fact is very attractive from mathematical and numerical viewpoints, because
it gives a straightforward way to develop the theory of discontinuous solutions and to
apply modern numerical methods. Note that the equations of the conservative model
can be transformed to a system that is similar to the Baer-Nunziato form. The difference
consists of the distinct definition of interfacial pressure and lift forces that appear in the
phase momentum equations. These forces are not included into the traditional Baer-
Nunziato model.

In this paper we present a generalization of the model [23] for the case of flow with
two different phase temperatures. The design methodology of the model is based on the
synthesis of the conservative equations from [23] and hyperbolic heat transfer equations
formulated in [17]. The hyperbolic equations for heat conductivity are well-known and
widely discussed in the literature; see for example [18]. This model is based on the
Cattaneo equation for heat transfer, and the temperature and heat flux are used as
variables. In the present paper we use phase entropies and entropy fluxes as physical
variables which seems to be more convenient for our study and are typical variables
in irreversible thermodynamics [5]. The resulting system of governing equations is also
hyperbolic and all equations are written in conservative form.
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The model presented in the paper is designed for two-phase flows in which both phases
are compressible and the relative motion is of a considerable magnitude. We note that
the model is supposed to be a basic model and for each concrete flow the closure constitu-
tive relations (equation of state, source terms) should be specified by taking into account
features of constituents and their interaction. The model’s possible areas of application
include gas/liquid flows (liquid droplets in gas or gas bubbles in liquid) and solid parti-
cles/gas flows at high pressure. The temperature and heat transfer rate in these types
of flow can be pretty large. It is necessary to note that the heat transfer characteristic
relaxation time in pure liquid or gas is extremely short and the applicability of a hyper-
bolic law for heat transfer instead of the parabolic Fourier law could be reasonable for
modelling processes with a comparable characteristic time. In our case of two-phase flow
the mechanism of heat transfer is determined mainly by the relative motion of phases
and whether the characteristic time of such a mechanism of heat transfer is large. In
Sect. 4 we will see that the proposed hyperbolic model takes into account this feature of
the flow.

The paper is organized as follows. In Sect. 2 we give a brief formulation of the con-
servative model for compressible two-phase flow, in which thermal effects are ignored.
Sect. 3 describes the hyperbolic heat transfer equations, on the basis of which the so-
phisticated conservative model for two-phase flow with two temperatures is presented
in Sect. 4. Also in Sect. 4 the diffusive limit of the hyperbolic heat flux relaxation is
discussed. It is shown that such an approximation leads to equations similar to the
Baer-Nunziato equations with parabolic phase thermal conductivity terms. Conclusions
are drawn in Sect. 5. Finally, in the Appendix, a description of the generating system
is given, which is formulated by the thermodynamically compatible systems theory and
generates the proposed two-phase model.

2. Two-phase flow equations in the case of negligible temperature varia-
tions. In this section we briefly review the model for two-phase flow proposed in [23].
Its derivation is based on the principles of thermodynamically compatible systems [12],
and the governing equations form a hyperbolic system of differential equations in conser-
vative form. We ignore here many possible dissipative processes and take into account
only interfacial friction and relaxation of phase pressures to the common pressure value.
Variations of phase temperatures are assumed to be negligible, and in this section we
ignore thermal processes.

We consider processes in the Cartesian coordinate system, the tensor notation such as
upper and lower indexes, and summation with respect to common index are used. Note
that sometimes we identify quantities with lower and upper indexes in order to avoid
multiple indexation. Assume that the mixture is a continuum in which the two-phase
character of the flow is taken into account. Suppose that the state of each phase with a
number i = 1, 2 is characterized by its volume fraction αi, mass density ρi and velocity
vector uk

i , k = 1, 2, 3. For the volume fractions the saturation constraint α1 + α2 = 1 is
assumed.

The set of convenient physical parameters of state for the derivation of the governing
equations is α, ρ, c, uk, wk, where α = α1 is the volume fraction of the first phase, ρ is
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the mixture mass density, c = c1 is the mass fraction of the first phase, uk is the average
velocity of the mixture, and wk is the relative velocity of phases.

These parameters of state for the mixture are connected with the parameters of state
for each phase by the relations

α = α1, ρ = α1ρ1 + α2ρ2, c =
α1ρ1

ρ
, uk = c1u

k
1 + c2u

k
2 , wk = uk

1 − uk
2 . (2.1)

Using (2.1) we can derive the relations expressing the individual parameters, such as
mass densities and velocities, by the mixture parameters:

ρ1 =
c1ρ

α1
=

cρ

α
, ρ2 =

c2ρ

α2
=

(1 − c)ρ
(1 − α)

, (2.2)

uk
1 = uk + c2w

k = uk + (1 − c)wk, uk
2 = uk − c1w

k = uk − cwk. (2.3)

The system of governing equations for two-phase flow written in terms of the mixture
parameters (2.1) can be derived with the formalism of thermodynamically compatible
systems (see Appendix) and reads as follows:

∂ρα

∂t
+

∂ρukα

∂xk
= −φ,

∂ρ

∂t
+

∂ρuk

∂xk
= 0,

∂ρul

∂t
+

∂(ρuluk + pδkl + ρwlEwk
)

∂xk
= 0, (2.4)

∂ρc

∂t
+

∂(ρukc + ρEwk
)

∂xk
= 0,

∂wk

∂t
+

∂(ulwl + Ec)
∂xk

= −(eklju
lωj + λk).

The equations of the above system are the balance laws for volume fraction, total
mass, total momentum, mass fraction and relative velocity, respectively. Here eklj is
the unit pseudoscalar. Fluxes in the last three equations contain the derivatives of the
equation of state (specific internal energy) E, which is supposed to be a known function
of the parameters of state. The momentum flux contains the mixture pressure p, which
is also defined by the derivative of the equation of state with respect to the mixture
density:

p = ρ2Eρ = ρ2 ∂E

∂ρ
. (2.5)

The two source terms in the first and in the last equations of system (2.4) are the
pressure relaxation term and interfacial friction term, respectively. The variable ωj is an
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auxiliary variable and its introduction is necessary to write the equation for the relative
velocity in conservative form. Therefore, two additional equations should be added to
the system (2.4) in order to provide its compatibility [22]. The first one is a steady
conservative equation

ejkl ∂wk

∂xl
= ωj , (2.6)

which defines ωi as the vorticity of the relative velocity vector, and the second one is as
follows:

∂ωk

∂t
+

∂(ulωk − ukωl + ekljλj)
∂xl

= 0. (2.7)

We emphasize again that the vector variable ωi is introduced only to write the equation
for the relative velocity in conservative form. Actually one can use in system (2.4) the
equivalent nonconservative equation for the relative velocity

∂wk

∂t
+ ul ∂wk

∂xl
+

∂Ec

∂xk
+ wl

∂ul

∂xk
= −λk, (2.8)

instead of the conservative one. Nevertheless, the additional Eqs. (2.6) and (2.7) can be
useful in studying discontinuous solutions.

It is reasonable to define the source terms in the following way:

φ =
ρ

τ (p)
Eα =

ρ

τ (p)

∂E

∂α
, λk = ζEwk = ζ

∂E

∂wk
, (2.9)

where τ (p) is the pressure relaxation time which is assumed to be a function of parameters
of state and ζ is the interfacial friction coefficient, which also can be a function of pa-
rameters of state. Further we will see that such a definition will provide the positiveness
of entropy production in more sophisticated models of two-phase flow.

Thus the closing relations for the system (2.4) are the source terms φ, λk and the
equation of state E. The source terms are defined by formulae (2.9) in which the deriva-
tives of the equation of state Eα, Ewk are included. Only the pressure relaxation time
τ (p) and the interfacial friction coefficient ζ should be defined empirically using physical
assumptions and experimental data.

Now we describe how to define the equation of state for the mixture if the equations
of state for each phase are known. First of all, we assume that the equation of state for
the mixture has a well-known form [26], and is represented as the sum of the specific
internal energy of the mixture e and the kinematic energy of the relative motion:

E(α, ρ, c, w1, w2, w3) = e(α, ρ, c) + c(1 − c)
wiw

i

2
. (2.10)
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Note that the introduction of the kinematic energy of the relative motion into the equa-
tion of state is a consequence of the requirement that the total kinetic energy of the
mixture is the sum of phase partial kinetic energies:

ρ
uiu

i

2
+ ρc(1 − c)

wiw
i

2
= α1ρ1

ui
1u

i
1

2
+ α2ρ2

ui
2u

i
2

2
. (2.11)

Let us suppose now that the equation of state (specific internal energy) for each phase
is a known function of its mass density ei = ei(ρi), (i = 1, 2). Let us assume in addition
that

e(α, ρ, c) = c1e
1(ρ1) + c2e

2(ρ2).

Using the relations (2.2) connecting phase mass densities and parameters of the mixture,
we obtain

e(α, ρ, c) = ce1
(cρ

α

)
+ (1 − c)e2

(
(1 − c)ρ
(1 − α)

)
, (2.12)

which gives us the internal energy for the mixture.
The definition of the equation of state for the mixture (2.10), (2.12) via equations

of state for each phase gives us the possibility of rewriting the system (2.4) in terms of
individual parameters of each phase [23]. We do not reproduce the conservative system
in terms of phase individual parameters here because such a derivation will be done later
for a more sophisticated model with two temperatures.

The system (2.4) can be rewritten in terms of phase individual parameters in the
Baer-Nunziato type form as it is, for example, in [24], in which two sets of balance
equations for each phase are coupled by the interfacial momentum exchange terms. The
transformation of the equations is not difficult, but it is a cumbersome procedure. We
provide the final system only, which is as follows:

∂ρα1

∂t
+

∂ρα1u
k

∂xk
=

p1 − p2

τ
,

∂α1ρ1

∂t
+

∂α1ρ1u
k
1

∂xk
= 0,

∂α2ρ2

∂t
+

∂α2ρ2u
k
2

∂xk
= 0, (2.13)

∂α1ρ1u
i
1

∂t
+

∂α1ρ1u
i
1u

k
1

∂xk
+

∂α1p
1

∂xi
= p̂I

∂α1

∂xi
+ fi + ζ̂(ui

2 − ui
1),

∂α2ρ2u
i
2

∂t
+

∂α2ρ2u
i
2u

k
2

∂xk
+

∂α2p
2

∂xi
= p̂I

∂α2

∂xi
− fi − ζ̂(ui

2 − ui
1).

Here, as before, ρ = α1ρ1 + α2ρ2, uk = α1ρ1
ρ uk

1 + α2ρ2
ρ uk

2 , ζ̂ is the modified interfacial
friction coefficient

ζ̂ = ζ
(α1α2ρ1ρ2)2

ρ3
, (2.14)
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and p̂I is an interfacial pressure:

p̂I =
α2ρ2p

1 + α1ρ1p
2

α1ρ1 + α2ρ2
. (2.15)

The definition of interfacial pressure in our model differs from the definition in the con-
ventional Baer-Nunziato type models; for example, pI = α1p1 + α2p2 in [24]. The more
significant difference are the terms fi in the momentum equations, which do not appear
in the Baer-Nunziato model:

fi =ρc1c2(uk
1 − uk

2)
(

c1

(
∂ui

2

∂xk
− ∂uk

2

∂xi

)
+ c2

(
∂ui

1

∂xk
− ∂uk

1

∂xi

))
. (2.16)

These forces arise for the flow with nonzero relative velocity and are caused by the phase
vorticities. Such type of force is called lift force; see, for example, [6].

3. Hyperbolic heat transfer equations. The model for two-phase compressible
flow with two temperatures proposed in this paper uses a hyperbolic heat transfer ap-
proach, which gives a finite speed of propagation of thermal perturbations. Such an
approach in heat transfer modelling was discovered by Cattaneo and has been studied by
many researchers; see, for example, [18]. The Cattaneo theory is usually formulated in
terms of temperature T and heat flux Jk, and the governing equation for Jk is as follows:

τ
∂Jk

∂t
+ κ

∂T

∂xk
= −Jk. (3.1)

Here κ is the thermal conductivity coefficient, and τ is the heat flux relaxation time.
For our purpose another set of variables is preferable, namely, entropy and entropy

flux. These variables, accepted in irreversible thermodynamics [5], have been used in
[17]. We also presuppose the existence of a thermodynamic potential—specific internal
energy E. Moreover, we assume that the entropy flux is a derivative of the equation of
state (specific internal energy) with respect to the conjugate variable which we call the
thermal impulse. Such a set of variables including the entropy and thermal impulse seem
to be more convenient for models of complicated media. Finally, we assume that heat
transfer processes are governed by the following system:

ρ
∂S

∂t
+

∂Ejk

∂xk
= σ,

ρ
∂jk

∂t
+

∂T

∂xk
= −

Ejk

κ
. (3.2)

Here ρ is the mass density of the medium, which is assumed to be incompressible, S is
the specific entropy, jk is the thermal impulse, E(S, jk) is the specific internal energy,
T = ES is the temperature, and σ is the entropy production. To close the system (3.2)
it is necessary to define the dependence of internal energy on S and jk. The simplest
one we can choose is

E = e(S) +
A

2
jkjk, A =

ρκ

τ
.

The term e(S) can be derived supposing that the medium is in equilibrium state (jk = 0)
and by integrating the equation de = C(T )dT = TdS, where C(T ) is the specific heat
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capacity. Note that if we denote jk = τ
ρκJk and take A = ρκ

τ we obtain for Jk Eq. (3.1)
directly.

Multiplying the equations of the system (3.2) by ES and Ejk
respectively and summing

the results, we obtain the energy balance law in the form

ρ
∂E

∂t
+

∂ESEjk

∂xk
= σES −

Ejk
Ejk

κ
. (3.3)

From the first law of thermodynamics, namely, the conservation of energy, we conclude
that the right-hand side in the latter equation must be zero and hence for the entropy
production we have

σ =
1
T

Ejk
Ejk

κ
≥ 0.

It is important to note that the classical Fourier heat transfer law can be obtained
assuming that the time scale of the processes under consideration is much bigger than
τ . Appealing to physical intuition we do not provide a proof of this statement. Some
mathematical results concerning the relaxation limit of hyperbolic equations can be found
in [4, 15]. So the relaxation limit can be obtained by neglecting the term ∂jk/∂t in the
second equation of the system (3.2), and the entropy flux becomes

Ejk = −κ
∂T

∂xk
.

Hence the entropy and energy equations take the form

ρ
∂S

∂t
− ∂

∂xk

(
κ

∂T

∂xk

)
= κ

1
T

3∑
k=1

(
∂T

∂xk

)2

,

ρ
∂E

∂t
− ∂

∂xk

(
κT

∂T

∂xk

)
= 0.

These equations are well-known in heat transfer Fourier theory.

4. Conservative model for two-phase flow with two temperatures. Now we
can construct a more sophisticated model for the flow of the mixture of two compress-
ible phases with different velocities, pressures and temperatures. The model is based
on the synthesis of two models presented in previous sections—the isentropic model for
two-phase flow and the hyperbolic equations for heat transfer. We shall consider mech-
anisms such as interfacial exchange, pressure relaxation, interfacial friction, interfacial
temperature exchange and phase transition.

4.1. Generating system of conservative equations. First of all we define the set of
parameters of state for each phase

αi, ρi, si, uk
i , jk

i ,

where i is the phase number (i = 1, 2), αi is the volume concentration of the i-th phase,
ρi is the mass density of the i-th phase, si is the specific entropy of the i-th phase, uk

i is
the velocity vector of the i-th phase, and jk

i is the specific thermal impulse of the i-th
phase. It is supposed that the saturation constraint for volume fractions α1 + α2 = 1
holds.
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The theory of thermodynamically compatible system allows us to formulate the system
of governing equations in terms of parameters of state for the mixture:

α1, ρ = α1ρ1 + α2ρ2, c1 =
α1ρ1

ρ
,

uk = c1u
k
1 + c2u

k
2 , wk = uk

1 − uk
2 , Si = cisi, jk

i . (4.1)

Here ρ is the total mass density of the mixture, ci is the mass concentration of the i-th
phase, uk is the mixture velocity vector, wk is the relative velocity vector, Si is the partial
entropy of the i-th phase, and jk

i is the thermal impulse vector of the i-th phase. It is
obvious that the saturation constraint c1 + c2 = 1 is also valid for phase mass fractions.

As in Sect. 2 let us denote α = α1, c = c1. The basic system of governing equations
can be derived from the generating system of conservation laws (see Appendix) and reads
as follows:

∂ρ

∂t
+

∂ρuk

∂xk
= 0,

∂ρα

∂t
+

∂ραuk

∂xk
= −φ,

∂ρc

∂t
+

∂(ρcuk + Ewk
)

∂xk
= −ψ,

∂ρui

∂t
+

∂(ρuiuk + pδik + ρwiEwk
)

∂xk
= 0,

∂wk

∂t
+

∂(ulwl + Ec)
∂xk

= −eklju
lωj − 1

ρ
λk

0 , (4.2)

∂ρji
1

∂t
+

∂(ρji
1u

k + ES1δ
ik)

∂xk
= −λi

1,

∂ρji
2

∂t
+

∂(ρji
2u

k + ES2δ
ik)

∂xk
= −λi

2,

∂ρS1

∂t
+

∂(ρS1u
k + Ejk

1
)

∂xk
= Π1 − π1,

∂ρS2

∂t
+

∂(ρS2u
k + Ejk

2
)

∂xk
= Π2 − π2.

The equations of system (4.2) are the total mass conservation law, the balance law for
the volume fraction, the balance law for the mass fraction, the total momentum conser-
vation law, the balance law for the relative velocity, two balance laws for phase thermal
impulses, and two balance laws for the phase entropies, respectively. The pressure p is
defined in the same way as in Sect. 2: p = ρ2Eρ.

The constitutive relations which should be defined for the closure of system (4.2) are
the specific internal energy E and the source terms φ, λk

0 , λi
1, λ

i
2, λ

i
3, Π1, Π2, π1, π2.
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The procedure of derivation of E by the known equations of state for each phase is
similar to Sect. 2 and will be given below. The source terms are defined in the following
way (note that our goal is not to describe a possible general structure of source terms,
but to select only those that are essential for the modelling of physical processes in which
we are interested):

φ =
ρ

τ (p)
Eα,

ψ =
ρ

τ (c)
Ec,

λk
0 = χ00Ewk

+ χ01Ejk
1

+ χ02Ejk
2
, λk

1 = χ01Ewk
+ χ11Ejk

1
, λk

2 = χ02Ewk
+ χ22Ejk

2
,

Π1 =
1

ES1

χ11

3∑
k=1

(
Ejk

1
+

χ01

χ11
Ewk

)2

+
c1

ES1

(
χ00 −

χ2
01

χ11
− χ2

02

χ22

) 3∑
k=1

(Ewk)2

+
ρc1

ES1

E2
α

τ (p)
+

ρc1

ES1

E2
c

τ (c)
, (4.3)

Π2 =
1

ES2

χ22

3∑
k=1

(
Ejk

2
+

χ02

χ22
Ewk

)2

+
c2

ES2

(
χ00 −

χ2
01

χ11
− χ2

02

χ22

) 3∑
k=1

(Ewk)2

+
ρc2

ES2

E2
α

τ (p)
+

ρc2

ES2

E2
c

τ (c)
,

π1 =
1

τ (T )

ES1 − ES2

ES1

,

π2 =
1

τ (T )

ES2 − ES1

ES2

.

These source terms are responsible for the following physical processes: φ governs the
relaxation of phase pressures to a common uniform state, ψ governs the rate of phase
transition, λk

0 simulate the interfacial friction force, and λk
1 and λk

2 simulate relaxation
of the phase thermal impulses to the corresponding equilibrium states. Here a mutual
dependence of thermal impulses and relative velocity is taken into account. We also
emphasize that coefficients χij in the formulae for λi

j are taken as symmetric, which
is a consequence of the Onsager principle [5]. Π1 and Π2 simulate the phase entropy
production caused by all of the above-mentioned relaxation processes, and finally π1 and
π2 govern the phase energy exchange leading to equalizing of the temperatures of the
two phases.

We emphasize that the source terms Π1, Π2 in the equations for partial entropies must
be nonnegative and hence the coefficients(

χ00 −
χ2

01

χ11
− χ2

02

χ22

)
, χ11, χ22, τ (p), τ (c)

must be nonnegative. We also suppose that τ (T ) is nonnegative.
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It is easy to see that the definition of source terms provides the positiveness of the
production of total entropy S = S1 + S2, the equation for which can be obtained by a
summation of the equations for partial entropies, namely

∂ρS

∂t
+

∂(ρSu + Ejk
1

+ Ejk
2
)

∂xk
= Π = Π1 + Π2 +

1
τ (T )

(ES1 − ES2)
2

ES1ES2

≥ 0. (4.4)

Note that all coefficients in the source terms can be functions of the parameters of
state.

As in the simplified model for isentropic two-phase flow (Sect. 2), an additional com-
patibility equation connected with the relative velocity vorticity (2.6) and (2.7) should
be added to system (4.2).

The solution to system (4.2) satisfies an additional total energy conservation law,
which can be derived by the summing up of all equations of this system multiplied by the
corresponding factors: E+ρEρ−ulu

l/2−αEα−cEc−jk
1 Ejk

1
−jk

2 Ejk
2
−S1ES1−S2ES2 , Eα,

Ec, uk, ρEwk
, Ejk

1
, Ejk

2
, ES1 , ES2 (see Appendix). The equation itself has the following

form:

∂ρ
(
E + ulu

l

2

)
∂t

+
∂

(
ρuk

(
E + ulu

l

2 + p
ρ + wlEwl

)
+ EcEwk

+ Ejk
i
ESi

)
∂xk

= 0. (4.5)

Below we describe how to choose closing relationships, namely, equation of state and
coefficients in the source terms.

4.2. Equation of state. Suppose that we know the internal energy

ei = ei(ρi, si, j
k
i )

for each phase as a function of its mass density ρi, specific entropy si and specific thermal
impulse jk

i . The dependence on the thermal impulse jk
i can be taken as in Sect. 3:

ei = ei
0(ρi, si) + Ai

jk
i jk

i

2
,

where Ai is a constant.
As in Sect. 2 we take the equation of state for the mixture as a sum of specific internal

energy and kinematic energy:

E(ρ, α, c, S1, S2, j
k
1 , jk

2 , wk) = e(ρ, α, c, S1, S2, j
k
1 , jk

2 ) + c(1 − c)
wkwk

2
.

The specific internal energy e we define using known e1, e2 by the formula

e(ρ, α, c, S1, S2, j
k
1 , jk

2 ) = c1e1(ρ1, s1, j
k
1 ) + c2e2(ρ2, s2, j

k
2 ).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



270 E. ROMENSKI, A. D. RESNYANSKY, AND E. F. TORO

Furthermore, we will use a dependence of parameters of state for each individual phase
on the parameters of state for the mixture. It can be derived from (4.1) and reads as
follows:

uk
1 = uk + (1 − c)wk, uk

2 = uk − cwk, ρ1 =
cρ

α
, ρ2 =

(1 − c)ρ
(1 − α)

,

s1 =
S1

c1
, s2 =

S2

c2
, jk

1 = jk
1 , jk

2 = jk
2 .

Using these formulae we can derive the derivatives of the equation of state for the mixture
Eα, Eρ, Ec, Ewk , ES1 , Ejk

1
, ES2 , Ejk

2
by the derivatives of equations of state for individual

phases e1
ρ1

, e1
s1

, e1
jk
1

and e2
ρ2

, e2
s2

, e2
jk
2
.

To do this we can use the following set of thermodynamic identities:

de = d(c1e
1 + c2e

2) = (e1 − e2)dc + c1de1 + c2de2,

de1 = e1
ρ1

dρ1 + e1
s1

ds1 + e1
jk
1
djk

1 , de2 = e2
ρ2

dρ2 + e2
s2

ds2 + e2
jk
2
djk

2 ,

dρ1 =
c1

α1
dρ − ρ1

α1
dα +

ρ

α1
dc, dρ2 =

c2

α2
dρ +

ρ2

α2
dα − ρ

α2
dc,

ds1 =
1
c1

dS1 −
s1

c1
dc, ds2 =

1
c2

dS2 +
s2

c2
dc.

These identities lead us to the final thermodynamic identity

de = eρdρ + eαdα + ecdc + eS1dS1 + eS2dS2 + ejk
1
djk

1 + ejk
2
djk

2

=
1
ρ2

(α1ρ
2
1e

1
ρ1

+ α2ρ
2
2e

2
ρ2

)dρ +
1
ρ
(ρ2

1e
1
ρ1

− ρ2
2e

2
ρ2

)dα

+((e1 + ρ1e
1
ρ1

− s1e
1
s1

) − (e2 + ρ2e
2
ρ2

− s2es2))dc

+e1
s1

dS1 + c1e
1
jk
1
djk

1 + e2
s2

dS2 + c2e
2
jk
2
djk

2 ,

from which we obtain

Eρ =
1
ρ2

(α1ρ
2
1e

1
ρ1

+ α2ρ
2
2e

2
ρ2

) =
α1p

1 + α2p
2

ρ2
,

Eα =
1
ρ
(ρ2

1e
1
ρ1

− ρ2
2e

2
ρ2

) =
p1 − p2

ρ
, (4.6)

Ec = ((e1 + p1/ρ1 − s1e
1
s1

) − (e2 + p2/ρ2 − s2e
2
s2

)) + (1 − 2c)
wkwk

2
,

ES1 = e1
s1

= T 1, ES2 = e2
s2

= T 2, Ejk
1

= c1e
1
jk
1
, Ejk

2
= c2e

2
jk
2
.
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Here T 1, T 2 are temperatures of phases. It is interesting to note that the derivative ec of
the specific internal energy with respect to c is simply the difference of phase chemical
potentials µi:

ec = µ1 − µ2,

µi = ei +
pi

ρi
− siT

i.

Now we can write the system of governing equations in terms of individual parameters
of state for each phase.

4.3. Governing equations in terms of individual parameters of state. The system of
conservative balance equations (4.2) can be rewritten using individual parameters of
each phase α1, α2, ρ1, ρ2, u

k
1 , uk

2 , s1, s2, j
k
1 , jk

2 (recall that the volume fraction of the second
phase can be determined via the volume fraction of the first phase: α2 = 1 − α1). To
do this it is necessary to use formulae (4.1), (4.3) and (4.6). The resulting system is as
follows (note that we left the equation for α as in (4.2)):

∂(α1ρ1 + α2ρ2)
∂t

+
∂(α1ρ1u

k
1 + α2ρ2u

k
2)

∂xk
= 0,

∂ρα

∂t
+

∂ραuk

∂xk
= −φ,

∂α1ρ1

∂t
+

∂α1ρ1u
k
1

∂xk
= −ψ,

∂(α1ρ1u
i
1 + α2ρ2u

i
2)

∂t
+

∂(α1ρ1u
i
1u

k
1 + α2ρ2u

i
2u

k
2 + α1p

1 + α2p
2)

∂xk
= 0,

∂(uk
1 − uk

2)
∂t

+
∂(ui

1u
i
1/2 − ui

2u
i
2/2 + µ1 − µ2)

∂xk
= −eklju

lωj − 1
ρ
λk

0 , (4.7)

∂ρji
1

∂t
+

∂(ρji
1u

k + e1
s1

δik)
∂xk

= −λi
1,

∂ρji
2

∂t
+

∂(ρji
2u

k + e2
s2

δik)
∂xk

= −λi
2,

∂α1ρ1s1

∂t
+

∂(α1ρ1s1u
k + c1e

1
jk
1
)

∂xk
= Π1 − π1,

∂α2ρ2s2

∂t
+

∂(α2ρ2s2u
k + c2e

2
jk
2
)

∂x
= Π2 − π2.

As in Sect. 2, this system must be supplemented by the compatibility relations (2.6),
(2.7) for the relative velocity vorticity ωj .
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The source terms in the above equations can also be written in terms of individual
parameters of phases:

φ =
p1 − p2

τ (p)
, ψ =

ρ

τ (c)
(µ1 − µ2 +

1
2
(c1 − c2)(ui

1 − ui
2)(u

i
1 − ui

2)),

λk
0 = χ00c1c2(uk

1 − uk
2) + χ01c1e

1
jk
1

+ χ02c2e
2
jk
2
,

λi
1 = χ01c1c2(ui

1 − ui
2) + χ11c1e

1
ji
1
, λi

2 = χ02c1c2(ui
1 − ui

2) + χ22c2e
2
ji
2
,

Π1 =
1

T 1
χ11

3∑
k=1

(
c1e

1
jk
1

+
χ01

χ11
c1c2(uk

1 − uk
2)

)2

(4.8)

+
c1

T 1

(
χ00 −

χ2
01

χ11
− χ2

02

χ22

) 3∑
k=1

(c1c2(uk
1 − uk

2))2 +
c1

T 1

(p1 − p2)2

ρτ (p)

+
ρc1

T 1

(µ1 − µ2 + (c1 − c2)(ui
1 − ui

2)(ui
1 − ui

2)/2)2

τ (c)
,

Π2 =
1

T 2
χ22

3∑
k=1

(
c2e

2
jk
2

+
χ02

χ22
c1c2(uk

1 − uk
2)

)2

+
c2

T 2

(
χ00 −

χ2
01

χ11
− χ2

02

χ22

) 3∑
k=1

(c1c2(uk
1 − uk

2))2 +
c2

T 2

(p1 − p2)2

ρτ (p)

+
ρc2

T 2

(µ1 − µ2 + (c1 − c2)(ui
1 − ui

2)(u
i
1 − ui

2)/2)2

τ (c)
,

π1 =
1

τ (T )

T 1 − T 2

T 1
, π2 =

1
τ (T )

T 2 − T 1

T 2
.

Finally we can rewrite the total mixture entropy balance Eq. (4.4) and energy con-
servation law (4.5) in terms of individual parameters:

∂(α1ρ1s1 + α2ρ2s2)
∂t

+
∂((α1ρ1s1 + α2ρ2s2)uk + c1e

1
jk
1

+ c2e
2
jk
2
)

∂xk

= Π = Π1 + Π2 +
1

τ (T )

(T 1 − T 2)2

T 1T 2
≥ 0, (4.9)

∂

∂t

(
α1ρ1(e1 +

ui
1u

i
1

2
) + α2ρ2(e2 +

ui
2u

i
2

2
)
)

+
∂

∂xk

(
α1ρ1u

k
1

(
e1 +

p1

ρ1
+

ui
1u

i
1

2

)

+ α2ρ2u
k
2

(
e2 +

p2

ρ2
+

ui
2u

i
2

2

)
+ c1T

1e1
jk
1

+ c2T
2e2

jk
2

)
= 0. (4.10)

It is interesting to note that the difference of chemical potentials of phases is presented
in the system (4.7) twice, namely in the relative velocity flux and in the source term that
is responsible for the phase transition. The thermodynamic theory uses equality of phase
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chemical potentials as phase equilibrium condition [14]. In our model such an equality
is also responsible for the kinematic equilibrium of phases. In other words, the chemical
potentials difference causes the relative motion of the phases.

There is a set of coefficients χ00, χ01, χ02, χ11, χ22 in the source terms λi
0, λ

i
1, λ

i
2 that

should be defined. We take

χ00 = ζ +
χ2

01

χ11
+

χ2
02

χ22
, χ01 = − ρs1

c1κ1
, χ02 =

ρs2

c2κ2
,

χ11 =
1

c1κ1
, χ22 =

1
c2κ2

, (4.11)

where ζ is an interfacial friction coefficient, and κ1, κ2 are the coefficients of thermal
conductivity for phases.

The motivation for this choice is caused by the requirement related to phase entropy
fluxes in the case of negligible thermal conductivity. This requirement can be formulated
in the following way: if the phase heat transfer characteristic times are large in com-
parison to the characteristic time of the process under consideration (in other words, if
κ1, κ2 → 0), then the partial phase entropy fluxes are

α1ρ1s1u
k
1 , α2ρ2s2u

k
2 .

Note that only interfacial friction and thermal conductivity coefficients are required
to define χ00, χ01, χ02, χ11, χ22 for each concrete two-phase mixture. The consequence of
the above choice of coefficients χij is provided in the next section, in which the diffusive
limit of the heat flux is discussed. It turns out that the equations, which are derived
assuming that κi are sufficiently small, look similar to the Baer-Nunziato equations in
which the phase parabolic thermal conductivities are taken into account.

4.4. Diffusive heat transfer limit. In Sect. 3 it was observed that the hyperbolic heat
transfer equations give a parabolic approximation of heat transfer processes if the heat
flux relaxation time is small. In case of two-phase flow we have two interacting heat
transfer processes for each phase with two different heat flux relaxation times. Here we
study the relaxation limit in both phases assuming that two heat flux relaxation times
are sufficiently small. We also suppose that the characteristic scale of the process is much
larger than the relaxation times.

Let us consider the equations from the system (4.7) for phase thermal impulses:

∂ρji
m

∂t
+

∂(ρji
muk + em

sm
δik)

∂xk
= −λi

m, m = 1, 2,

where λi
m is defined by (4.8) with coefficients (4.11).

Following the assumption concerning the smallness of κ1, κ2 and the characteristic
time scale of processes, we can neglect the time derivative and convective term in the
equation for qi

m. The resulting equation is

λk
m = −

∂em
sm

∂xk
= −∂Tm

∂xk
, m = 1, 2.
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Now with use of the formulae for coefficients (4.8), (4.11), we obtain

c1e
1
jk
1

= ρs1c1c2(uk
1 − uk

2) − c1κ1
∂T 1

∂xk
,

c2e
2
jk
2

= −ρs2c1c2(uk
1 − uk

2) − c2κ2
∂T 1

∂xk
. (4.12)

From the above formulae we see that in the case of considerable relative motion of
phases, the leading terms in dissipative entropy fluxes are connected to the relative
velocity whereas the parabolic terms can be negligible due to the smallness of κ1, κ2.

Finally, the phases entropies balance equations are transformed to

∂α1ρ1s1

∂t
+

∂α1ρ1s1u
k
1

∂xk
− ∂

∂xk
c1κ1

∂T 1

∂xk
= Π1 − π1,

∂α2ρ2s2

∂t
+

∂α2ρ2s2u
k
2

∂xk
− ∂

∂xk
c2κ2

∂T 2

∂x
= Π2 − π2. (4.13)

Expressions (4.12) should be also substituted into entropy production terms Πk, πk, which
are defined by (4.8) and become (πk does not change)

Π1 =
c1κ1

T 1

3∑
k=1

(
∂T 1

∂xk

)2

+
c1ζ

T 1

3∑
k=1

(c1c2(uk
1 − uk

2))2 +
c1

T 1

(p1 − p2)2

ρτ (p)

+
ρc1

T 1

(µ1 − µ2 + (c1 − c2)(ui
1 − ui

2)(ui
1 − ui

2)/2)2

τ (c)
,

Π2 =
c2κ2

T 2

3∑
k=1

(
∂T 2

∂xk

)2

+
c2ζ

T 2

3∑
k=1

(c1c2(uk
1 − uk

2))2 +
c2

T 2

(p1 − p2)2

ρτ (p)

+
ρc2

T 2

(µ1 − µ2 + (c1 − c2)(ui
1 − ui

2)(u
i
1 − ui

2)/2)2

τ (c)
,

π1 =
1

τ (T )

T 1 − T 2

T 1
, π2 =

1
τ (T )

T 2 − T 1

T 2
. (4.14)

So the diffusive limit leads to the traditional parabolic equations for phase heat transfer.
It is interesting to look at the transformed relative velocity equation, because the

original balance law contains a source term in which thermal impulses are included.
Substituting (4.12) into the source term in the equation for the relative velocity, we
obtain

∂(uk
1 − uk

2)
∂t

+
∂(ui

1u
i
1/2 − ui

2u
i
2/2 + µ1 − µ2)

∂xk

= −s1
∂T 1

∂xk
+ s2

∂T 2

∂xk
− ζc1c2(uk

1 − uk
2) − ekljukωj .

We see that, although the heat flux relaxation times are small, the influence of heat
transfer on the relative motion is finite.

The latter equation can be transformed to(
∂uk

1

∂t
+ ui

1

∂uk
1

∂xi
+

1
ρ1

∂p1

∂xk

)
−

(
∂uk

2

∂t
+ ui

2

∂uk
2

∂xi
+

1
ρ2

∂p2

∂xk

)
= −ζc1c2(uk

1 − uk
2),
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which can be used to derive individual phase momentum equations. It turns out that
they are identical to the phase momentum equations derived in the Sect. 2.

So we conclude that the diffusive limit of the system for two-phase flow (4.7) consists of
the balance laws for phase volume fraction α, mass and momentum balance equations for
two phases, and balance equations for partial entropies (4.13). The full system is similar
to the equations of the Baer-Nunziato model, in which the phase thermal conductivity
is taken into account:

∂ρα1

∂t
+

∂ρα1u
k

∂xk
= −φ,

∂α1ρ1

∂t
+

∂α1ρ1u
k
1

∂xk
= −ψ,

∂α2ρ2

∂t
+

∂α2ρ2u
k
2

∂xk
= ψ,

∂α1ρ1u
i
1

∂t
+

∂α1ρ1u
i
1u

k
1

∂xk
+

∂α1p
1

∂xi
= p̂I

∂α1

∂xi
+ fi + ζ̂(ui

2 − ui
1) − (c2u

i
1 + c1u

i
2)ψ,

∂α2ρ2u
i
2

∂t
+

∂α2ρ2u
i
2u

k
2

∂xk
+

∂α2p
2

∂xi
= p̂I

∂α2

∂xi
− fi − ζ̂(ui

2 − ui
1) + (c2u

i
1 + c1u

i
2)ψ,

∂α1ρ1s1

∂t
+

∂α1ρ1s1u
k
1

∂xk
− ∂

∂xk
c1κ1

∂T 1

∂xk
= Π1 − π1,

∂α2ρ2s2

∂t
+

∂α2ρ2s2u
k
2

∂xk
− ∂

∂xk
c2κ2

∂T 2

∂xk
= Π2 − π2,

where φ, ψ are defined by (4.8), Πi, πi are defined by (4.14), p̂I is defined by (2.15), fi is
defined by (2.16), and ζ̂ is defined by (2.14).

Note that the phase entropy balance equations are presented in the latter system, but
we can also derive phase energy balance equations, which are used in the Baer-Nunziato
type model and look as follows:

∂

∂t

(
α1ρ1

(
e1 +

ui
1u

i
1

2

))
+

∂

∂xk

(
α1ρ1u

k
1

(
e1 +

ui
1u

i
1

2

)
+ α1p

1uk
1 − c1κ1T

1 ∂T 1

∂xk

)

= −p1 ∂α1

∂t
+ (p̂I − p1)uk

1

∂α1

∂xk
+ uk

1fk + ζ̂(ui
2 − ui

1)u
i
1

−(µ1 + (c2 − c1)
u2

1

2
+ c1u1u2)ψ + T 1Π1 −

T 1 − T 2

τ (T )
,

∂

∂t

(
α2ρ2

(
e2 +

ui
2u

i
2

2

))
+

∂

∂xk

(
α2ρ2u

k
2

(
e2 +

ui
2u

i
2

2

)
+ α2p

2uk
2 − c2κ2T

2 ∂T 2

∂xk

)

= −p2 ∂α2

∂t
+ (p̂I − p2)uk

2

∂α2

∂xk
− uk

2fk − ζ̂(ui
2 − ui

1)u
i
2

+(µ2 − (c2 − c1)
u2

2

2
+ c2u1u2)ψ + T 2Π2 −

T 2 − T 1

τ (T )
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



276 E. ROMENSKI, A. D. RESNYANSKY, AND E. F. TORO

So the diffusive limit of the proposed conservative equations for two-phase flow can be
written in the form of the Baer-Nunziato type equations, which are not in conservative
form.

5. Conclusions. A system of governing equations for two-phase compressible flow
with two different pressures and temperatures of phases has been proposed. The deriva-
tion of the system is based on the formalism of thermodynamically compatible systems of
conservation laws and on extended irreversible thermodynamics principles. The system
is hyperbolic and is written in conservation-law form.

The phase interaction is modelled by the source terms added to the conservation
equations and includes the phase pressure relaxation, phase transition, interfacial friction
and phase temperatures equalizing.

The diffusive limit in the heat transfer equations in the proposed model can be trans-
formed to the well-known Baer-Nunziato type of governing equations for two-phase flow
in which traditional Fourier thermal conductivity is taken into account.

Because of its conservation form the presented model seems to be promising in applying
known mathematical means and the development and application of modern numerical
methods for studying different problems.

Appendix A. Thermodynamically compatible system of balance laws gen-
erating two-phase flow models. A Thermodynamically Compatible Systems theory
has been applied to the formulation of general classes of conservation equations for the
processes in complicated media in the presence of electromagnetic fields and external
forces; see, for example, [11, 12, 18]. This theory gives an elegant way to write the system
of conservation laws in terms of generating potentials and variables. Such a formulation
is based on the requirement for the system to be thermodynamically compatible; in other
words, the complete system admits an additional conservation law correponding to the
first law of thermodynamics. Each system written in terms of canonical variables and
generating potentials can be reduced to a symmetric hyperbolic system, and together
with its conservative form, it allows us to apply known mathematical means to study so-
lutions of various initial-boundary problems. In [11, 21] the class of thermodynamically
compatible systems generated by only one potential has been formulated. This class
includes many systems of governing equations of continuum mechanics. If dissipation is
not included into the governing equations, then the equations can be derived by varia-
tional principles in Lagrangean coordinates [10]. After passing to Eulerean coordinates,
dissipative processes can be included in the governing equations. A concrete system of
continuum mechanics can be derived from the thermodynamically compatible system by
assigning a physical meaning to the canonical variables and special choice of generating
potential.

In this paper the governing equations of two-phase flow are designed on the basis of
representatives of the class of thermodynamically compatible systems presented below.
Note that we do not consider here possible dissipative processes. We give this description
only to give an explanation of how the equations of the paper have been derived. Details
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concerning the inclusion of dissipation can be found in [22].

∂Lqi

∂t
+

∂(ukL)qi

∂xk
= 0, i = 1, 2,

∂Lui

∂t
+

∂[(ukL)ui
+ zkLzi

− δikzαLzα
]

∂xk
= 0,

∂Lzk

∂t
+

∂(uαLzα
+ n)

∂xk
= 0,

∂Ln

∂t
+

∂(ukLn + zk)
∂xk

= 0, (A.1)

∂Lθn

∂t
+

∂((ukL)θn + vn
k )

∂xk
= 0, n = 1, 2,

∂Lvn
i

∂t
+

∂((ukL)vn
i

+ θδik)
∂xk

= 0, n = 1, 2,

∂Lzk

∂xα
− ∂Lzα

∂xk
= 0.

Here L(qi, ui, zk, n, θn, vn
i ) is the generating potential assumed to be a convex function.

The last steady equation must be added to the system in order to provide the compati-
bility of the system (A.1). Actually this steady equation is a consequence of the equation
for Lzk

and can be obtained by differentiating the equation for Lzk
with respect to xα

and subtracting the equation for Lzα
differentiated with respect to xk. After that we

obtain

∂

∂t

(
∂Lzk

∂xα
− ∂Lzα

∂xk

)
= 0,

and if in the initial data ∂Lzk
/∂xα − ∂Lzα

/∂xk = 0, then this equality holds for t > 0
every time.

As was noted for the thermodynamically compatible system, an additional (energy)
conservation law exists. In our case it looks as follows:

∂

∂t
(qiLqi

+ uiLui
+ zkLzk

+ nLn + θnLθn + vn
i Lvn

i
− L)

+
∂

∂xk
(uk(qiLqi

+ uiLui
+ nLn + θnLθn + vn

i Lvn
i
) + ulzkLzl

+ zkn + θnvn
k ) = 0.

To derive this conservation law it is necessary to sum all equations of the system (A.1)
multiplied respectively by

qi, ui, zk, n, θn, vn
i , 2uizk.

Finally, the symmetric hyperbolic system can be derived from (A.1). To perform this
we rewrite the evolution equations in the equivalent form, which is simply obtained by

adding zk

(
∂Lzk

∂xi
− ∂Lzi

∂xk

)
= 0 to the equation for ui and ui

(
∂Lzk

∂xi
− ∂Lzi

∂xk

)
= 0 to the
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equation for zk. After that we obtain the following system:

∂Lqi

∂t
+

∂(ukL)qi

∂xk
= 0,

∂Lui

∂t
+

∂(ukL)ui

∂xk
+ Lzi

∂zk

∂xk
− Lzα

∂zα

∂xi
= 0,

∂Ln

∂t
+

∂(ukL)n

∂xk
+

∂zk

∂xk
= 0,

∂Lzl

∂t
+

∂(ukL)zl

∂xk
+ Lzα

∂uα

∂xl
− Lzl

∂uk

∂xk
+

∂n

∂xl
= 0.

∂Lθn

∂t
+

∂(ukL)θ

∂xk
+

∂vn
k

∂xk
= 0,

∂Lvn
k

∂t
+

∂(ukL)vn
k

∂xk
+ δik

∂θn

∂xk
= 0.

It is clear that the quasilinear form of the latter system is symmetric, and if the generating
potential L is a convex function, then the system is symmetric hyperbolic.

This system is a prototype of the generating system (4.2) of Subsect. 4.1. Actually,
in order to give a physical meaning to the above formal thermodynamically compatible
system, we have to identify all variables as physical variables and define the generating
potential L. One can prove that the system (4.2) can be obtained taking the derivatives
of generating potential as

Lq1 = ρ, Lq2 = ρα, Lui
= ρui, Ln = ρc, Lzk

= wk, Lθn = ρSn, Lvn
k

= ρjn
k ,

the variables as

q1 = E + ρEρ − uiui

2
− αEα − cEc − jn

k Ejn
k
− θnEθn , q2 = Eα, ui,

n = Ec, zl = ρEwl , θn = ESn
, vn

k = Ejn
k
,

and finally the generating potential as

L = ρ2Eρ − ρwkEwk .

An explanation regarding how to incorporate some kinds of dissipative processes into
the system (A.1) can be found in [22].
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