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We study theoretically the spin and orbital angular momentum �OAM� Hall effect in a high mobility
two-dimensional electron system with Rashba and Dresselhuas spin-orbit coupling by introducing both the spin
and OAM torque corrections, respectively, to the spin and OAM currents. We find that when both bands are
occupied, the spin Hall conductivity is still a constant �i.e., independent of the carrier density� which, however,
has an opposite sign to the previous value. The spin Hall conductivity in general would not be cancelled by the
OAM Hall conductivity. The OAM Hall conductivity is also independent of the carrier density but depends on
the strength ratio of the Rashba to Dresselhaus spin-orbit coupling, suggesting that one can manipulate the total
Hall current through tuning the Rashba coupling by a gate voltage. We note that in a pure Rashba system,
though the spin Hall conductivity is exactly cancelled by the OAM Hall conductivity due to the angular
momentum conservation, the spin Hall effect could still manifest itself as nonzero magnetization Hall current
and finite magnetization at the sample edges because the magnetic dipole moment associated with the spin of
an electron is twice as large as that of the OAM. We also evaluate the electric field-induced OAM and discuss
the origin of the OAM Hall current. Finally, we find that the spin and OAM Hall conductivities are closely
related to the Berry vector �or gauge� potential.
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I. INTRODUCTION

Spin transport electronics or spintronics in semiconduc-
tors has become a very active research field in condensed
matter mainly because of its potential applications in infor-
mation storage and processing and other electronic
technologies1 and also because of many fundamental ques-
tions on the physics of electron spin.2 Spin current genera-
tion is an important issue in the emerging spintronics. Recent
proposals of the intrinsic spin Hall effect are therefore
remarkable.3,4 In the spin Hall effect, a transverse spin cur-
rent is generated in response to an electric field in a metal
with relativistic electron interaction �spin-orbit coupling�.
This effect has been considered to arise extrinsically, i.e., by
impurity scattering.5 The scattering becomes spin dependent
in the presence of spin-orbit coupling, and this gives rise to
the spin Hall effect. In the recent proposals, in contrast, the
spin Hall effect can arise intrinsically in hole-doped �p-type�
bulk semiconductors3 and also in electron-doped �n-type�
semiconductor heterostructures4 due to intrinsic spin-orbit
coupling in the band structure. This intrinsic spin Hall effect
offers an exciting possibility of pure electric driven spintron-
ics in semiconductors, where spin-orbit coupling is relatively
strong and which can be more readily integrated with well-
developed semiconductor electronics.

A large number of theoretical papers have been written
addressing various issues about the intrinsic spin Hall effect.
In Ref. 6, a systematic semiclassical theory of spin transport
is presented, resolving a discrepancy between the prediction
of Ref. 3 and the Kubo formula result. In Ref. 7, an orbital-
angular-momentum �OAM� Hall current is predicted to exist
in response to an electric field and is found to cancel exactly
the spin Hall current in the spin Hall effect. In Ref. 8, how-
ever, ab inito relativistic band structure calculations show

that the OAM Hall conductivity in hole-doped semiconduc-
tors is one order of magnitude smaller than the spin Hall
conductivity, indicating no cancellation between the spin and
OAM Hall effects in bulk semiconductors because of the
orbital quenching by the cubic crystalline anisotropy. There
is also an intensive debate about whether the intrinsic spin
Hall effect remains valid beyond the ballistic transport
regime.9–11 On the other hand, experimental measurements
of large spin Hall effects for the Rashba two-dimensional
electron gas and for n-type bulk semiconductors have just
been reported,12,13 although more work is needed to firmly
establish the intrinsic or extrinsic nature of the results.

At present, an urgent current issue in spintronics research
is about the appropriate definition of the spin current.14–18 In
almost all previous studies of the intrinsic spin Hall effect,
the spin current is intuitively defined as the expectation value
of the spin and velocity operators, namely, 1

2 �v ,sz�, where �,�
is the anticommutator defined by �A ,B�=AB+BA. Similarly,
the OAM current is defined as the expectation value of
1
2 �v ,Lz�. Here, sz and Lz are the z component of spin and
OAM operators, respectively, and v is the velocity operator.
However, this conventionally defined spin �OAM� current is
not conserved in systems with spin-orbit interaction.6 Conse-
quently, many fundamental questions on the intrinsic spin
Hall effect in semiconductors remain unresolved. Very re-
cently, in Ref. 16, a proper definition of the conserved effec-
tive spin current is established for systems with spin-orbit
coupling, and the conserved spin current density is defined as

Js = Js + P�, �1�

where Js=Re��† 1
2 �v ,sz��� is conventional spin current den-

sity and P� is the torque dipole density which arise from spin
torque Tz

s=Re��† 1
i� �sz ,H0��� where H0 is the Hamiltonian
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of the system. The commutator �,� is defined by �A ,B�
=AB−BA. The effective spin current density Js then satisfies
the standard continuity equation16 of

�Sz

�t +� ·Js=0 where the
spin density is defined by Sz=�†sz�. A derivation of the
effective spin continuity equation in Rashba-Dresselhaus
system is given in Appendix A. Within this definition of the
effective spin current, the unphysical intrinsic spin Hall ef-
fect in insulators with localized orbitals vanishes, and the
Onsager relation between the spin Hall effect and inverse
spin Hall effect is ensured.16 Furthermore, this definition of
the spin current predicts opposite signs of spin Hall coeffi-
cients for a couple of semiconductor models such as the
Rashba and k-cubed Rashba Hamiltonians.16

In this paper, we extend the theory proposed in Ref. 16 to
two-dimensional electron systems with both Rashba and
Dresselhaus spin-orbit coupling. Furthermore, we introduce
the concept of the effective OAM current by including an
OAM torque correction term, and investigate the OAM Hall
effect in both pure Rashba system and systems with Rashba-
Dresselhaus spin-orbit coupling. We derive the effective
OAM continuity equation for the Rashba-Dresselhaus sys-
tem �Appendix B�. Also in this paper, we argue that in a pure
Rashba system, though the OAM Hall conductivity is found
to exactly cancel the spin Hall conductivity, there neverthe-
less would be nonzero magnetization current and finite mag-
netization at the sample edges because the magnetic dipole
moment associated with spin angular moment is twice as
large as that of the OAM. Finally, we find that there are
interesting relations between the Berry vector potential and
the spin and OAM Hall conductivities.

II. MODEL HAMILTONIAN AND LINEAR RESPONSE
CALCULATION

A. Rashba-Dresselhaus Hamiltonian

For a two-dimensional electron gas �2DEG� confined in a
semiconductor heterostructure, two major spin-orbit �SO� in-
teraction terms are usually present. One is the Rashba term,19

HR =
�

�
�� · �p � êz� , �2�

which stems from the structural inversion asymmetry. Here,
�� = ��x ,�y� and �z are the three Pauli matrices. The other is
the Dresselhaus SO coupling which results from the bulk
inversion asymmetry, if the heterostructure is made of semi-
conductors without spatial inversion symmetry such as semi-
conductors in the zincblende structure.20 The Dresselhaus
term is given by

HD = −
�

�
�px�x − py�y� . �3�

Therefore, the full Hamiltonian for the 2DEG with Rashba-
Dresselhaus SO coupling can be written as

H0 =
p2

2m
+ HR + HD, �4�

where m is the effective mass of the electrons in the 2DEG.
Interestingly, though the Dresselhaus coupling coefficient �

is fixed for a given structure, the Rashba coupling strength �
can be tuned by a gate voltage by up to 50%,21 thereby
providing an opportunity to study the interesting interplay
between both types of the SO coupling. The Hamiltonian has
been solved exactly by several authors. The eigenstates can
be written as

�nk� =
1
	2


e−i	�k�

in
� , �5�

where n= ±1 is band index and

tan 	�k� =
�ky − �kx

�kx − �ky
. �6�

The corresponding eigenenergies is given by

Enk =
�2

2m
k2 − nk
��� , �7�

where k= �kx ,ky�, k= �k�, tan���=ky /kx, cos 	�k�= �� cos �
−� sin �� /
���, sin 	�k�= �� sin �−� cos �� /
���, and

���=	��2+�2�−2�� sin�2��. It can be proved that the dif-
ference of two Fermi momenta �kF

± is given by �kF
+ −kF

−�
=2m
��� /�2. The band structure consists of two energy
bands which are degenerate at the center of the 2D momen-
tum space k=0, as schematically illustrated in the left-hand
panel of Fig. 1�a�. The spins associated with the eigenstates
all lie in the xy plane, as shown in the right-hand panel of
Fig. 1�a� and in the left-hand panel of Fig. 1�b�.

B. Spin Hall conductivity

Let us consider a uniform electric field E applied in the y
direction. The total Hamiltonian in this case is given by H
=H0+eEy, where −e is the electron charge. Let us treat the
term eEy as a small perturbation. To determine the spin
transport coefficient, we start with the linear response Kubo
formula in the clean limit. The conventional spin Hall con-
ductivity is22

�xy
s0 = −

e�

V
�

n�n�
�
k

�fnk − fn�k�

�
Im�nk�jx

sz�n�k�n�k�vy�nk��
�Enk − En�k�2 , �8�

where jx
sz =1/2�vx ,sz� is the usual spin current operator,

v�k�=�H0�k� /��k, H0�k�=e−ik·xH0eik·x, sz= �
2 �z, �nk� is the

eigenstate of the nth band with momentum k, and fnk is the
Fermi-Dirac distribution. The index n�n� denotes no intra-
band transition. Similarly, the spin torque response coeffi-
cient can also be obtained,16

��q� =
ie�

V
�

n�n�
�
k

�fnk − fn�k+q�

�
nk��s�k,q��n�k + q�n�k + q�v�k,q��nk�

�Enk − En�k+q�2 , �9�

where �s�k ,q�= 1
2 ��s�k�+�s�k+q��, v�k ,q�= 1

2 �v�k�+v�k
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+q�� with �s= 1
i� �sz ,H0�. In the above equation, �xy

s0

is the transport coefficient of conventional spin current
and �xy

�s can be determined from the dc response of the spin
torque dipole: P�= �Re�i�q��q���q→0 ·E, namely, �xy

�s

= �Re�i��y�q� /�qx��qx→0.16 Here ��q� is the response
coefficient of spin torque to an electric field with finite
wave vector q. Before doing summation in the above
Kubo formula, we expand the term inside the summation to
the first order of q. At zero temperature, fn�k+q� fn�k
+q · ��En�k /�k��fn�k /�En�k, where the first term is a step
function while the second term was involved with a Dirac
delta function. We assume that the two bands are all occu-
pied by the electrons and the Fermi energy is larger than the
SO splitting. The spin Hall conductivity is

�xy
s = �xy

s0 + �xy
�s , �10�

which is the linear response of the conserved effective spin
current Js to the electric field.16 It is straightforward to cal-

culate the spin Hall conductivity �the detailed derivation is
given in Appendix C�. We find that �xy

s0 =−sign��2

−�2�e /8 is the conventional spin Hall conductivity and
�xy

�s =sign��2−�2�e /4 is the conductivity due to the spin
torque correction. Therefore, the spin Hall conductivity de-
fined as the response of the conserved effective spin current
is

�xy
s =�

e

8
, �2 � �2,

0, �2 = �2,

−
e

8
, �2 � �2,� �11�

which is independent on the carrier density. Remarkably,
with the spin torque correction term �xy

�s included, the sign of
the effective spin Hall conductivity is opposite to the con-
ventional spin Hall conductivity reported in Refs. 23 and 24.

C. Orbital angular momentum Hall conductivity

The usual OAM current operator was introduced as

jx
o0 = 1

2 �vx,Lz� , �12�

where Lz is the z component of the OAM operator. In the
Rashba Hamiltonian and with this definition of the OAM
current, the spin Hall effect is always accompanied by the
OAM Hall effect which was first noted by Zhang and Yang.7

In a SO system, such a definition has the same problems as
the conventional spin current operator because the OAM cur-
rent is not a conserved quantity. Therefore, we derive the
continuity equation for the effective OAM current �see Ap-
pendix B�. We find

�Lz

�t +� ·Jo=Tz
o, where Lz=�†Lz� is the z

component of the OAM density, Jo=Re��†jo0�� is the
OAM current density and jo0 = 1

2 �v ,Lz�. Tz
o=Re��†�o�� is

the torque density, where �o= 1
i� �Lz ,H0�. In analogue to the

conserved effective spin current operator proposed in Ref.
16, the average torque in the bulk is zero, and hence we have
1
V �dVTz

o=0. The torque density can be written as the diver-
gence of torque dipole density P�

o�x�, i.e., Tz
o=−� ·P�

o�x�.
Substituting Tz

o=−� ·P�
o into continuity equation of OAM,

we obtain Jo=Jo+P�
o as the effective OAM current. The

torque dipole density vanishes outside the bulk, and we can
write �VdVP�

o=�VdV�−x� ·P�
o�=�VdVxTz

o. Therefore, the
unique form of torque dipole density is P�

o=Re��†�x�o���.
In short, we may define an effective OAM current operator,

Jo =
dx

dt
Lz + x�o. �13�

It has an extra term x�o which is the correction term due to
the OAM torque. The corresponding OAM current density

Jo=Re �†�x�Ĵo��x� defined as the expectation value of this
current operator satisfies the standard continuity equation of
�Lz

�t +� ·Jo=0. As for the spin Hall conductivity,16 the OAM
Hall conductivity has two parts,

FIG. 1. �Color online� �a� The schematic band structure of the
Rashba-Dresselhaus spin-orbit coupling system with ���� ���. The
outer sheet is for n= +1 and the inner sheet, for n=−1. The two
sheets touch at k=0. If �=�, the sheets become degenerate at line
kx=ky �see, also, Fig. 1 in Ref. 23�. The right-hand panel is the top
view of the two bands. The arrows labeled on the two bands denote
the spin directions of the associated k points, respectively. �b� Ini-
tially, the spins are in the xy plane �the left-hand panel�. At a short
time t0 after an external electric field E �indicated as the large hori-
zontal �red� arrow� is applied along the y axis, the bands move in
the −ky direction with the distance �ky =eEt0 /� �see Sec. II E�. Each
spinor feels an effective magnetic field and will do precession. For
kx�0, the spins tend to tilt down and for kx�0, the spins tend to tilt
up �the right-hand panel�. The z component of the spin is given by
�sz�=−eE���2−�2�cos � /4nk2
3��� �c�. Before an external elec-
tric field is applied, all the eigenstates carry zero orbital angular
momentum �OAM�, i.e., Lz�0=0 �see Sec. II E�. When the electric
field is turned on, the z component of the OAM is induced as shown
in the right-hand panel �small vertical arrows�. A linear response
calculation would give the z component as �Lz�=eE���2

−�2�2 cos � /4nk2
5���.
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�xy
o = �xy

o0 + �xy
�o , �14�

where the first term is the usual OAM Hall conductivity and
the second term comes from the OAM torque correction.
Thus, the OAM Hall conductivity can be calculated from Eq.
�8� and �9� by substituting jx

sz and �s with jx
o0 and �o

= 1
i� �Lz ,H0�, respectively. It can be shown �Appendix C� that

the OAM Hall conductivity defined as the linear response of
the effective OAM current is

�xy
o =�−

�2 + �2

�2 − �2

e

8
, �2 � �2,

0, �2 = �2,

�2 + �2

�2 − �2

e

8
, �2 � �2 � �15�

which is a function of the ratio � /� and is also independent
of the carrier density.

D. Berry vector potential and Hall conductivity

When the Hamiltonian of a physical system is param-
etrized by periodically changing environment, the state ket of
system will travel on a close path and return to initial state
ket after a period. The final state ket must coincide with
initial state vector, apart from a phase factor. Berry25 has
shown that the state ket will acquire an additional phase fac-
tor as the system undergoes the adiabatic evolution. The
phase factor accompanying the adiabatic evolution is called
Berry phase. Berry phase cannot be removed by any gauge
transformation for a closed path.26 In solids, the Bloch state
also acquire a Berry phase if the applied perturbation can
make a constraint such that k travels adiabatically on a
closed path in the Brillouin zone.27 The Berry phase of Bloch
states �nk� for a closed path C can be expressed by

�n = �
c

An�k� · dl , �16�

where An�k�=nk � �−i� �
�k �nk� is defined as Berry vector po-

tential �or Berry connection�. Berry curvature is defined as
�n=�k�An. The Berry vector potential and curvature are
the salient characteristic of energy band structure and hence
have important applications in transport properties of carri-
ers. It has been shown that the equation of motion of Bloch
electron has an extra anomalous velocity in terms of Berry
curvature of Bloch states.28 In bulk p-type semiconductors
with spin-orbit coupling, the existence of k-space magnetic
monopole �Berry curvature� in the degeneracy � point of
band structure results in a transverse force exerting on spin.3

The connection between the dissipationless spin Hall con-
ductivity and Berry curvature has been shown in Ref. 29.
Here we further show that in two-dimensional Rashba-
Dresselhaus systems, we can write the spin Hall and OAM
Hall conductivities in terms of Berry curvature and vector
potential.

With the eigenstates �nk� given by Eq. �5�, we can prove
that the matrix element n�k �vy �nk� satisfies the following
relation �for n��n�:

n�k�vy�nk� =
i

�
�Enk − En�k�n�k��− i�

�

�ky
�nk� , �17�

where n�k � �−i� �
�ky

�nk�=− 1
2

�	
�ky

. The Berry vector potential
is then given by

A = nk��− i�
�

�k
�nk� = −

1

2

�	

�k
. �18�

Substituting Eqs. �17� and �18�, into Eq. �8� and noting that
�xy

s0 =−�yx
s0,30 we have

�xy
s0 = −

e�

2mV
�

n
�
k

fnk

�nk
�k � A�z, �19�

where �nk is defined as �nk��Enk−E−nk� /�. Similarly, we
also obtain,

�xy
o0 = −

e�

mV
�

n
�
k

fnk

�nk
�k � A�z

2, �20�

where �xy
o0 =−�yx

o0 was used.30 The spin Hall and OAM Hall
conductivities are therefore related to Berry vector potential.

The Berry curvature is ��k�z= ��k�A�z=−
��2−�2�

��2−�2� ��2��k�.
The corresponding Berry phase is then given by the path
integral of the Berry vector potential, i.e., �=�Cdl ·A
=�R��k�zdkxdky =− �2−�2

��2−�2�=−sign��2−�2�, where R is the

region containing the origin in the k plane. The Berry cur-
vature �z is zero for k�0 but nonzero for k=0 where the
two bands of the Rashba-Dresselhaus system are degenerate.
As for the spin transverse force for the Luttinger Hamil-
tonian given in Ref. 29, the corresponding spin transverse
force in Rashba-Dresselhaus system can also be given in
terms of the Berry curvature. Even though the Berry curva-
ture vanishes for k�0, the spin Hall current can nonetheless
occur due to the Aharonov-Bohm-type effect at k=0.31

Let us now discuss the effects of the different choice of
the eigenstates on the above findings. In, e.g., Ref. 32, the

eigenstates ��nk̃��

�+ k˜ � =
1
	2


− ie−i	

1
�, �− k˜ � =

1
	2


 1

− iei	 � �21�

were used for the Rashba-Dresselhaus system. We find that
the unitary transformation defined by the matrix

U =
1

2

 − i + ei	 i − e−i	

ei	 − ie2i	 − i + ei	 � �22�

with UU†=U†U=1, will transform the eigenstates of Eq. �5�
to that of Eq. �21�, i.e., �nk̃�=U �nk�. Using the eigenstates in
Eq. �21�, the Berry vector potential is given by

A+ � + k˜ ��− i�
�

�k
�+ k˜ � = −

1

2

�	

�k
,
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A− � − k˜ ��− i�
�

�k
�− k˜ � = +

1

2

�	

�k
, �23�

that depends on the band index n. We may define An=nA for
both the bases of �5� and �21�. As a result, the Berry phase
given by Eq. �16� also depends on the band index n,32 i.e.,

�± = �
c

A±�k� · dl = � sign��2 − �2� = ± � , �24�

where � is the Berry phase when the basis of Eq. �5� is used.
In contrast, the signs of the Berry phase � for the two bands
are the same in the choice of the eigenstates of Eq. �5�.
Nevertheless, we can write �n=n� with n= ±1. Note that
the charge Hall effect would be zero when the basis of Eq.
�21� is used, and would be nonzero if the basis of Eq. �5� is
chosen, as have been pointed out in Ref. 32.

Using A=− 1
2

�	
�k �Eq. �18��, we can show that A= �k

�A�za0, where a0��− ky

k2 ,
kx

k2
�=

ê�

k and �k�A�z=−��2

−�2� /2
2��� which depends only on �. After some vector
algebra calculations, the spin Hall conductivity in Eq. �19�
can be written as

�xy
s0 =

e

82�
n
�

C

dl · n�k � A�za0
kF

n

kF
+ − kF

− , �25�

where �kF
+ −kF

−�=
2m
���

�2 was used. Because �kF
n −kF

−n�=n�kF
+

−kF
−�, Eq. �25� becomes

�xy
s0 =

e

162�
n
�

C

dl · n�k � An�za0, �26�

where An=nA with n= ±1. Using the definition of Berry
phase in Eq. �16�, the spin Hall conductivity can be written
as

�xy
s0 =

e

162�
n
�

C

dl · �nAn� =
e

162�
n

n�n, �27�

where �n=n� with n= ±1, in agreement with Ref. 23. In
other words, the spin Hall conductivity can be written as a
line integral of the Berry vector potential or a surface integral
of the Berry curvature. Note that Eq. �27� holds irrespective
of the choice of the eigenstates.

For the OAM Hall conductivity, similarly, Eq. �20� can be
rewritten as

�xy
o0 =

e

82�
n
�

C

dl · �k � An�z
2a0. �28�

This expression has also been given in Ref. 33, where ��k
�A�z=−���2−�2� /2
2��� was regarded as the OAM of the
eigenstates in the absence of any applied electric field. We
believe that this interpretation is inappropriate because the
expectation value of the conventional OAM operator de-
pends on the choice of bases, as will be shown in the next
section. In the next section we also argue that before an
electric field is applied, the OAM of the eigenstates is zero.
Finally, we also find that the ratio of the spin to OAM Hall

conductivity is
�xy

s0

�xy
o0

=2�k�A�z��=m where m is an integer.

E. Origin of the orbital angular momentum Hall current

All electrons have an intrinsic spin of 1
2 . Before an in-

plane electric field is applied, the spins of the electrons are
all aligned in the xy plane, as shown in Figs. 1�a� and 1�b�.
When an in-plane electric field is applied, the SO coupling
gives rise to not only a spin transverse force on a moving
electron34,35 but also an effective SO magnetic torque. The
Rashba-Dresselhaus Hamiltonian can be written as �HR�k�
+HD�k��=�� ·Beff where Beff���k� êz�−��kxêx−kyêy� is the
effective SO magnetic field. The dynamics of the z compo-
nent of spin can be derived from the Heisenberg equation of
motion and we obtain d�z�t� /dt= 1

i�
��z , p2

2m +HD+HR+eEy�
= 1

i� ��z ,HD+HR�= 1
i� ��z ,�i�Beff

i . Using the commutation rela-
tion of spin matrix ��i ,� j�=2i�ijk�k, we have �dsz�t� /dt�
=− 2

� �s��t��Beff�z, where s�= �
2 �� . From the equation of motion

of electron in k space, we also have �ky ��ky�t0�−ky�t=0��
=− eE

� t0 and �kx=0. Therefore, after a short time t0, the Fermi
surface �i.e., the circle for n= ±1� would move along the −ky
direction with the distance eEt0 /�. This implies that the
variation of the effective SO magnetic field is �Beff= ��êx

+�êy��ky. Consequently, each spin feels the effective SO
magnetic torque s��0���Beff and tilts out of the xy plane. The
quantum dynamical analysis of spin for the Rashba-
Dresselhaus system has been given in Ref. 23 Here we use
the quantum perturbation method to evaluate the response
quantities.

Let us expand the wave function to first order of electric
field, �nk��= �nk�+ �nk��1�, where the perturbed wave function
is

�nk��1� = eE �
n��n��n�

n�k�i�/�ky�nk�
Enk − En�k

�n�k� . �29�

The expectation value of the z component of spin can be
evaluated by �nk �sz �nk��= sz�0+�sz� where sz�0

�nk �sz �nk�=0 and the z component of the spin in first
order of electric field is given by �sz��2 Renk �sz �nk��1�

=−eE���2−�2�cos � /4nk2
3���. Therefore, for kx�0, the
spins on the outer �inner� sheet tend to tilt down �up� and for
kx�0, the spins on the outer �inner� sheet tend to tilt up
�down�, as shown in the right-hand panel of Fig. 1�b�. This
results in transverse spin Hall currents with spin polarization
in the z direction.

Now consider the OAM Lz=��x�k�z. The expectation
value �nk �Lz �nk��= Lz�0+�Lz� where Lz�0�nk �Lz �nk�
and �Lz�=2 Renk �Lz �nk��1�. In contrast to the spin case,
before an electric field is applied, as argued below, all the
eigenstates carry zero orbital angular momentum, i.e., Lz�0

=0, as illustrated in the left-hand panel of Fig. 1�c�. In the
absence of the applied electric field, the diagonal matrix el-
ements of the OAM depend on the choice of the eigenstates,
though the off-diagonal matrix elements of the OAM do not.
For example, if we choose the eigenstates of Eq. �5�, together
with the conventional position operator x= i�k, Lz�0

= nk �x��k �nk�=−���2−�2� /2
2���, a value which has
also been obtained in Ref. 33. On the other hand, if we use
the eigenstates �nk�= 1

	2
� e−i	�k�/2

inei	�k�/2 �, Lz�0=0. This is of course
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unsatisfactory, and therefore, we propose to define a gauge
invariant position operator X= i�k+A�k� to resolve the prob-
lem �see Appendix D�. We can show that with this gauge
invariant position operator X, Lz�0=0, irrespective of the
choice of the phase factor of the eigenstates. Therefore, we
believe that all the eigenstates of the Rashba-Dresselhaus
system carry zero OAM in the absence of applied electric
fields. Importantly, the other quantities such as �sz� and
�Lz�, which contain only the n�n� matrix elements, are
independent of the choice of the phase factor and also the
choice of the position operator.

As an in-plane electric field is applied, the dynamics of
the z-component of the OAM can be obtained by means of
Heisenberg equation of motion: dLz�t� /dt= d

dt ��x�k�z=
− 2

� �s��t��Beff� �z+ �x�F�z where Beff� =Beff��→−� and F=−eE

=−eEêy. The second term �x�F�z=�x� k̇ is the classical
external torque which causes the orbital motion of the elec-
trons and depends on the choice of the origin of the coordi-
nate system. The first term − 2

� �s��Beff� �z is the effective SO
magnetic torque. If we use the gauge invariant position op-
erator, the classical torque �x�F�z does not contribute to the
variation of the OAM in a short time t0. We can show that
d
dt ��X�k�z=− 2

� �s��t��Beff� �z−X�t�eE+ky�z, where �z=�k
�A���2��k� and is zero because k�0. After a short time t0,
X�0���ky vanishes because X�0��=0 and the z component
of the OAM for each eigenstate is induced by the effective
SO magnetic torque and external torque only. In our calcu-
lations, we treat the potential eEy as a perturbation and
use again the quantum perturbation method instead of
solving the Heisenberg equation of motion. We find that
the z component of the OAM is �Lz�=eE���2

−�2�2 cos � /4nk2
5���=−�sz����2−�2� /
2����, as illus-
trated in the right-hand panel of Fig. 1�c�. Therefore, under
the in-plane electric field along the y axis, the electrons on
the outer �inner� sheet with kx�0 drift toward the x axis,
carrying the downward �upward� tilted spinors as well as
finite positive �negative� OAM �Lz�, and the electrons on
the outer �inner� sheet with kx�0 drift toward the x axis,
carrying the upward �downward� tilted spinors as well as

finite negative �positive� OAM �Lz�. This gives rise to the
OAM Hall current. It is interesting to note that in the pure
Rashba system ��=0 and ��2−�2� /
2���=1�, the �sz� and
�Lz� have the same magnitude but the opposite signs and
hence cancel each other exactly. This is due to the fact that
the z component of the total angular momentum is conserved
in pure Rashba system.

III. SYSTEMS WITH BOTH RASHBA AND DRESSELHAUS
SPIN-ORBIT COUPLINGS

The calculated total and decomposed spin and OAM Hall
conductivities are summarized in Table I. The total spin and
OAM Hall conductivities are displayed as a function of the
ratio �� /�� in Fig. 2. The total angular momentum Hall con-
ductivity ��xy

s0 +�xy
�s +�xy

o0 +�xy
�o� is �see Table I�

�xy = �−
�2

��2 − �2�
e

4
, �2 � �2,

0, �2 = �2.
� �30�

It is clear that in 2DEG systems with the Rashba-Dresselhaus
SO coupling, the total angular momentum Hall conductivity
is in general not zero, except that �2=�2 or �=0 �pure

TABLE I. Total and decomposed spin �a� and orbital angular momentum �b� Hall conductivities of a
two-dimensional electron system with Rashba-Dresselhuas spin-orbit coupling.

�2��2 �2=�2 �2��2

�a� Spin Hall conductivity

�xy
s0

−
e

8

0 e

8
�xy

�s e

4

0
−

e

4
�xy

s e

8

0
−

e

8

�b� OAM Hall conductivity

�xy
o0 �2+�2

��2−�2�
e

8

0 �2+�2

��2−�2�
e

8
�xy

�o

−
�2+�2

��2−�2�
e

4

0
−

�2+�2

��2−�2�
e

4
�xy

o

−
�2+�2

��2−�2�
e

8

0
−

�2+�2

��2−�2�
e

8

FIG. 2. �Color online� Spin ��xy
s , solid line� and orbital angular

momentum ��xy
o , dashed line� Hall conductivities versus the

strength ratio �� /�� of the Rashba ��� to Dresselhaus ��� spin-orbit
coupling.
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Rashba SO coupling�. The sign of the total angular momen-
tum Hall conductivity is always negative, and, as will be
discussed shortly, this is because the Hall conductivity is
dominated by the negative OAM Hall conductivity. Further-
more, when the two SO coupling strengths are comparable,
the total angular momentum Hall conductivity is very large,
suggesting the interesting possibility of tuning the angular
momentum Hall effect by varying the Rashba SO coupling
strength. This large total Hall conductivity results from the
large OAM Hall conductivity in both the conventional and
present definitions of spin current �see Table I�. The conven-
tional OAM Hall conductivity is the same as that given in
Ref. 33. This singularly large OAM conductivity in the re-
gion that �� /�� approaches to unity, could lead to spontane-
ous magnetization, as suggested in Ref. 33. Nevertheless, we
believe that this singular behavior of the OAM conductivity
near ��� is unphysical and is perhaps due to the neglect of
the disorder in the present calculations. The disorder due to,
e.g., impurity scattering and electron-electron interaction is
known to have pronounced effects on the spin Hall effect.9–11

The infinite large OAM conductivity is expected to be sup-
pressed by the disorder effects in real 2DEG systems. None-
theless, further calculations taking into account the disorder
effects are beyond the scope of the present paper.

Shen23 recently pointed out that in the 2DEG systems
with both Rashba and Dresselhaus couplings, the spin cur-
rent along the z direction is antisymmetric with respect to a
unitary transformation, �x→�y; �y→�x; �z→−�z. This an-
tisymmetry makes the conventional spin Hall conductivity
change sign at �2=�2. It is interesting to note that the spin
torque Hall conductivity and hence the total spin Hall con-
ductivity also change sign at �2=�2 when one moves from
the region where Dresselhaus coupling dominates the region
where Rashba coupling dominates �Table I and Fig. 2�. This
shows that our calculated spin torque and total spin Hall
conductivities also obey the requirement of this antisymme-
try. We also note that as for the case of pure Rashba
coupling,16 the spin torque Hall conductivity is 2 times as
large as the conventional spin Hall conductivity but has an
opposite sign �Table I�, giving rise to the result that the con-
served spin Hall conductivity has the same size but opposite
sign to the conventional spin Hall conductivity.

On the other hand, all the �total, torque and conventional�
OAM Hall conductivities do not change sign at �2=�2, as
shown in Table I and Fig. 2. As for the case of spin Hall
effect, the torque OAM Hall conductivity is 2 times as large
as the conventional OAM Hall conductivity but has an op-
posite sign, resulting in that the effective OAM Hall conduc-
tivity has the same size but opposite sign to the conventional
OAM Hall conductivity �Table I�. The conventional OAM
Hall conductivity has been reported in Ref. 33, and our result
is consistent with this previous calculation.

IV. SYSTEMS WITH EITHER PURE RASHBA TERM OR
PURE DRESSELHAUS TERM

A. Pure Rashba spin-orbit coupling

In the case of �=0 and ��0, the Hamiltonian reduces to
the pure Rashba Hamiltonian. The spin torque operator be-
comes

�s
R �

1

i�
�sz,

p2

2m
+ HR� , �31�

and the y component of the velocity operator is

vy
R =

py

m
+

�

�
�x. �32�

The torque correction term for the spin Hall conductivity is
e /4, and for the OAM Hall conductivity is −e /4, which
exactly cancel each other. This result is confirmed by the
relation �Lz ,HR�=−�sz ,HR� that is present in the Rashba
Hamiltonian. Including the torque correction term, we get an
effective spin Hall conductivity of e /8, and an effective
OAM Hall conductivity of −e /8. This implies that when
the torque correction term is taken into account, the spin Hall
current is still exactly canceled by the accompanied OAM
Hall current and there is no total angular momentum current
in the pure Rashba system. This interesting observation has
been reported before in Ref. 7 in the context of the conven-
tional definition of the spin and OAM currents. This may be
expected because �sz+Lz ,HR�=0 and the conservation of the
total angular momentum therefore must be obeyed no matter
what definitions of the effective angular momentum currents
one adopts.

Nonetheless, we want to point out here that the spin Hall
effect in the pure Rashba Hamiltonian can still manifest itself
and be detected in several ways, even though the total angu-
lar momentum Hall current is zero. It is well known that the
magnetic dipole moment associated with the spin of an elec-
tron is �s=−2s�B and the one associated with the OAM of
an electron is �o=−L�B �see, e.g., Ref. 36�. Consequently,
although the total angular momentum �sz+Lz� current is zero,
the total magnetization ���s

z+�o
z�=−�2sz+Lz��B� current

would not be zero and will give rise to finite magnetization at
the edge of the sample. Therefore, the spin Hall effect in the
pure Rashba Hamiltonian can in principle be probed in at
least two ways. As noted in Ref. 7, one is by measuring the
electric field induced by the nonzero magnetization current37

and the other is the magnetization at the sample edges. Re-
cently, it is suggested in Ref. 11 that spin current can be
detected by measuring time-dependent magnetization preces-
sion.

B. Pure Dresselhaus spin-orbit coupling

In the case of �=0 and ��0, the Hamiltonian reduces to
the pure Dresselhaus Hamiltonian. In this case, the total,
torque correction and conventional spin and OAM Hall con-
ductivities have the same signs �Table I�. For example, the
total spin Hall conductivity is −e /8, being the same as the
total OAM Hall conductivity, thereby giving rise to a total
angular momentum Hall conductivity of −e /4. In the
Dresselhaus Hamiltonian, the total angular momentum is not
conserved, i.e., �sz+Lz ,HD�=−2i���xpy +�ypx��0. Instead,
we find �sz ,HD�= �Lz ,HD� or �sz−Lz ,HD�=0. Therefore, the
spin and OAM Hall conductivities would add up rather than
cancel each other, in contrast to the Rashba Hamiltonian.

We notice that the spin Hall conductivity in the clean limit
is constant in either pure Rashba system, or pure Dresselhaus
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system, or the mixture Rashba-Dresselhaus system �see �a� in
Table I�. Interestingly, in Refs. 10 and 11, it is shown that the
constant spin Hall conductivity in the pure Rashba system
would result in an unphysical growth of the magnetization
with time. This is due to the fact that the conventionally
defined spin Hall current in the pure Rashba system turns out
to be proportional to the time derivative of the magnetizaion
of the system. This linear relation between the conventional
spin Hall current and the time derivative of the magnetiza-
tion should also exist in the pure Dresselhaus system because
the two systems are related by the unitary transformation:
�x→�y and �y→�x, as mentioned in Sec. III. Indeed, we
find that the conventional spin current in the pure Dressel-
haus system is jx

sz = �
4 �vx ,�z�= �

2m�zpx, where the relation
��i ,� j�=2�ij was used. Furthermore, it can be shown
that the spin precession and conventional spin current

satisfy the relations
d�y�t��

dt = 2�

�2 px�z��t�= 4m�

�3 jx
sz�t�� and

d�x�t��

dt = 4m�

�3 jy
sz�t��. Therefore, the constant conventional spin

current in the clean limit in the pure Dresselhaus system
would also lead to the unphysical consequence that both
�y�t�� and �x�t�� depend linearly on time, resulting in an
infinite growth of the magnetization. In contrast, because the
conserved spin current satisfies the continuity equation �Eq.
�1��, we find no such relation that the conserved spin current
is proportional to the time derivative of the spin operator,
thereby, free from the artifact discussed above, as also
pointed out in Ref. 38.

V. CONCLUSIONS

In conclusion, we have calculated the spin Hall coductiv-
ity in the Rashba-Dresselhaus Hamiltonian with the spin
torque correction in the absence of disorder, and find it to
have the same magnitude but an opposite sign to the result
reported before.4,23 The spin Hall conductivity in the absence
of disorder is still a constant in the pure Dresselhaus �or
Rashba� system even when the torque correction is consid-
ered. We also introduce the conserved effective OAM current
and find that in general, the OAM Hall effect does not cancel
the spin Hall effect in the 2DEG with the Rashba-
Dresselhaus spin-orbit coupling. The OAM Hall conductivity
depends significantly on the strength ratio of the Rashba to
Dresselhaus spin-orbit coupling, suggesting that one can ma-
nipulate the total Hall current through tuning the Rashba
coupling by a gate voltage.39,40 We argue that in a pure
Rashba system, though the spin Hall conductivity is exactly
cancelled by the OAM Hall conductivity due to the angular
momentum conservation, the spin Hall effect still manifest
itself as nonzero magnetization Hall current and finite mag-
netization at the sample edges because the magnetic dipole
moment associated with the spin of an electron 2 times as
large as that of the OAM. We show that the spin and OAM
Hall conductivities have a simple relation to the Berry vector
�or gauge� potential. We also calculate the electric field-
induced OAM and discuss the origin of the OAM Hall cur-
rent.
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APPENDIX A: THE CONTINUITY EQUATION FOR THE
EFFECTIVE SPIN CURRENT

In this appendix, we derive the continuity equation for the
effective spin current. A similar derivation can also be found
in Ref. 15 The definition of spin density is Sz=�†sz�, where
sz= �

2 �z. Using i� �
�t�=H� and H=H0+eE ·x, we obtain the

following equation:

�

�t
��†�z�� =

1

i�
��†�zH0� − �H0��†�z��

=
1

i�
���†�z

p2

2m
� − 
 p2

2m
��†

�z��
+ ��†�zHR� − �HR��†�z�� + ��†�zHD�

− �HD��†�z��� , �A1�

where we have used �sz ,x�=0. First, we combine the follow-
ing two equations:

�

�xi

�† �

�xi
�z�� = 
 ��†

�xi
� �

�xi
�z� + �† �

�xi

�

�xi
�z� ,

�

�xi

 ��†

�xi
�z�� = 
 �

�xi

�

�xi
�†��z� +

��†

�xi

 �

�xi
�z�� .

Using the definition of momentum operator p=−i�� and
��†p�z��†=−�p�†��z�, we obtain

p · �2 Re��†p�z��� = ��†p2�z� − �p2�†��z�� . �A2�

Next, consider the term ��†�zHR�− �HR��†�z�� which
contains only the Rashba Hamiltonian. We obtain the follow-
ing equations:

��†�zHR� − �HR��†�z�� =
2i�

�
�†p · �� �

−
�

�
p · ��†�z��� � êz���

�A3�

and

��†�zHR� − �HR��†�z�� = − ��†�zHR� − �HR��†�z��†

=
2i�

�
��†p · �� ��†

−
�

�
p · ��†�z��� � êz���†.

�A4�

We combine Eq. �A3� and Eq. �A4�,
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��†�zHR� − �HR��†�z�� =
2i�

�
Re��†�p · �� ���

−
�

�
p · Re��†�z��� � êz��� .

�A5�

Now consider the term ��†�zHD�− �HD��†�z�� which
contains only the Dresselhaus Hamiltonian. From the second
term �HD��†�z�, we obtain

�HD��†�z� = −
�

�
�− px�

†�x + py�
†�y��z�

=
�

�
px��†�x�z�� −

�

�
�†px�x�z�

−
�

�
py��†�y�z�� +

�

�
�†py�y�z�

= −
�

�
�px��†�z�x�� − py��†�z�y���

−
�

�
�†�px�x − py�y��z� . �A6�

and then

��†�zHD� − �HD��†�z�� =
− 2i�

�
�†�px�y + py�x��

+
�

�
�px��†�z�x��

− py��†�z�y���

=
− 2i�

�
Re��†�px�y + py�x���

+
�

�
�px Re��†�z�x��

− py Re��†�z�y��� , �A7�

where we have used the relation ��†�zHD�− �HD��†�z��
=−��†�zHD�− �HD��†�z��†. Substituting Eqs. �A2�, �A5�,
and �A7� into �A1�, we obtain

�

�t
��†�z�� = − � Re��†�z
 p

m
−

�

�
�� � êz −

�

�
��xêx − �yêy���� +

2�

�2 Re��†�p · �� ��� −
2�

�2 Re��†�px�y + py�x��� .

�A8�

Consider the commutator ��z ,H0�, and we have

1

i�
��z,

p2

2m
+ HR + HD� =

2�

�2 p · �� +
− 2�

�2 �px�y + py�x� .

�A9�

The velocity operator in the Rashba-Dresselhaus system sat-
isfy the following relation:

v =
1

i�
�x,H� =

1

i�
�x,H0� =

p

m
−

�

�
��� � êz� −

�

�
��xêx − �yêy� .

�A10�

Finally, substituting Eq. �A10� and Eq. �A9� into Eq. �A8�,
we obtain the continuity equation of the effective spin cur-
rent

�

�t
��†sz�� = − � Re��†jsz�� + Re��†�s�� , �A11�

where we have used sz= �
2 �z, jsz = 1

2 �v ,sz� and �s= 1
i� �sz ,H0�.

With the definition of spin density Sz=�†sz�, spin current
Js=Re��†jsz�� and spin torque Tz

s=Re��†�s��, Eq. �A11�
can be rewritten as

�Sz

�t
+ � · Js = Tz

s �A12�

which is in agreement with Ref. 16.

APPENDIX B: THE CONTINUITY EQUATION FOR THE
EFFECTIVE OAM CURRENT

In this appendix, we derive the continuity equation for the
effective OAM current. Let us consider the z component of
the OAM density Lz��†Lz� and its partial time-derivative
i� �

�tLz. Applying i� �
�t�=H� where H=H0+eE ·x, we have

i�
�

�t
��†Lz�� = �†LzH0� − �H0��†Lz� + �†�Lz,eE · x��

= �†Lz
 p2

2m
+ HR + HD��

− �
 p2

2m
+ HR + HD���†

�Lz� + �†�Lz,eE · x�� . �B1�

First, using the commutation relations �p ,Lz�= i�êz�p and
�Lz , p2�=0, we can show that

CONSERVED SPIN AND ORBITAL ANGULAR MOMENTUM¼ PHYSICAL REVIEW B 73, 235309 �2006�

235309-9



��†Lzp
2� − �p2�†�Lz�� = p · ��†pLz� − �p�†��Lz���

= p · ��†�p,Lz��� − p2��†Lz��

+ p · ��†i�êz � p�� . �B2�

For the Rashba Hamiltonian HR, we have

�HR��†Lz� =
�

�
�− py�

†�x + px�
†�y�Lz�

=
�

�
p · ��†��� � êz�Lz��

+
�

�
�†�py�x − px�y�Lz�

and

��†LzHR� − �HR��†Lz�� = �†�Lz,HR��

−
�

�
p · ��†��� êz�Lz�� .

�B3�

For the Dresselhaus Hamiltonian HD, we obtain

��†LzHD� − �HD��†Lz�� = �†�Lz,HD�� −
�

�
p · ��†��xêx

− �yêy�Lz�� . �B4�

Substituting Eqs. �B2�–�B4� into Eq. �B1�, we have

i�
�

�t
��†Lz�� = p · ��†� p

2m
,Lz�� + �†�Lz,eE · x��

−
�

�
�†��� � êz�Lz�

−
�

�
�†��xêx − �yêy�Lz��

+ �†�Lz,HR + HD��

−
1

2m
p2��†Lz�� +

1

2m
p · ��†i�êz � p�� .

�B5�

Setting Eq. �A10� into Eq. �B5�, we have

�

�t
��†Lz�� = − � · ��†1

2
�v,Lz��� + �† 1

i�
�Lz,eE · x��

+ �† 1

i�
�Lz,H0�� −

i�

2m
�2��†Lz��

− p · ��†êz � p�� .

Finally, it can be shown that p · ��†êz�p�� is purely imagi-
nary, and �†Lz�=Re��†Lz�� is real for both the eigenstates
of the Rashba-Dresselhauls Hamiltonian and the Bloch states
�k. The Lz continuity equation becomes

�

�t
��†Lz�� = − � · Re��†jo0�� + Re��†�o�� + Re��†�E�� ,

�B6�

where jo0 = 1
2 �v ,Lz�, �o= 1

i� �Lz ,H0�, and �E= 1
i� �Lz ,eE ·x�.

With the OAM current density Jo=Re��†jo0��, the OAM
torque density Tz

o=Re��†�o�� and the classical torque den-
sity Tz

E=Re��†�E��, Eq. �B6� can be rewritten as

�Lz

�t
+ � · Jo = Tz

o + Tz
E, �B7�

which is the OAM continuity equation.
The torque Tz

E=Re��†�E�� has a classical analogue. It
can be regarded as the rotational torque moment due to the
force eE exerted on a particle located at the position x with
respect to the origin of the coordinate system. This can be
seen from the commutator �Lz ,eE ·x�=−i�e�x�E�z, and

Tz
E = − Re���†x�� � eE�z. �B8�

From the space integral �dVTz
E=−Re���dV�†x���eE�z,

we obtain �dVTz
E=−Re���x���� �eE��z, where �dV�x�

= ��x���. Expanding the ��x��� in powers of electric
field, we have ��x���= �0�x��0�+ x��1�+o�E2�, where
��0� satisfies the unperturbed wave equation i� �

�t ��0�
=H0��0�. Therefore, we obtain �dVTz

E=−Re��0�x��0�
� �eE��z+o�E2�. However, we should demand that the ex-
pectation value of the OAM in the unperturbed system is
zero. This would imply that the expectation value of the
position operator must be zero in the absence of the external
electric field, as discussed in Appendix D. Finally, we obtain
that the OAM continuity equation

�Lz

�t
+ � · Jo = Tz

o �B9�

which is valid in first order of the electric field.

APPENDIX C: SPIN AND OAM TORQUE HALL
CONDUCTIVITY

In this appendix, we derive the spin and orbital angular
momentum �OAM� torque Hall conductivities ��xy

� � in the
Rashba-Dresselhaus system. The conductivity in pure
Rashba system can be obtained by setting �=0 in the �2

��2 condition. The total torque conductivity is given by

�xy
� = ��xy

�s + �xy
�o� = Re�i�iy�q�/��qx�qx→0� , �C1�

where �y�q� is defined as

�y�q� =
ie�

V
�

n�n�
�
k

�fnk − fn�k+q�

�
nk���k,q��n�k + q�n�k + q�vy�k,q��nk�

�Enk − En�k+q�2 ,

�C2�

where ��k ,q�= 1
2 ���k�+��k+q��, v�k ,q�= 1

2 �v�k�+v�k+q��
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and �= 1
i� �sz+Lz ,H0� is the total torque. The equation �C1�

suggests that we can choose q= �qx ,0 ,0� for simplicity. By
the choice of q= �qx ,0 ,0�, the �y�q� can be expanded in
power of qx, i.e., �y�q�=�y

�0�+�y
�1�qx+�y

�2�qx
2+o�qx

3�, and the
torque conductivity will be rewritten as �xy

� =Re�i�y
�1��

=−Im��y
�1�� by using Eq. �C1�.

To evaluate �y in Eq. �C2�, we first expand the matrix
elements nk���k ,q��n�k+q�n�k+q�v�k ,q�y�nk� to first or-
der of qx,

nk���k,q��n�k + q�n�k + q�v�k,q�y�nk� =

−
n��

m
ky

�	

�kx
�kx sin 	 + ky cos 	�qx −

��

�

ky + ky cos�2	�

+ kx sin�2	� + qx
�	

�kx

��kx cos�2	� − ky sin�2	�� +
qx

2
sin�2	��

−
�2

�

kx + ky sin�2	� − kx cos�2	�

+ qx
�	

�kx
�ky cos�2	� + kx sin�2	��

+
qx

2
�1 − cos�2	��� + o�qx

2� . �C3�

We also need to expand the �fnk− fn�k+q� / �Enk−En�k+q�2 to
first order of qx. We have

fnk − fn�k+q

�Enk − En�k+q�2 =
fnk − fn�k

�Enk − En�k�2 + qx

�En�k

�kx

�
2
fnk − fn�k

�Enk − En�k�3 −
�fn�k/�En�k

�Enk − En�k�2�
+ o�qx

2� . �C4�

Assuming the Fermi energy is lager than the spin-orbit
splitting and using using �kF

+ −kF
−�=2m
��� /�2 and �xy

�

=−Im��y
�1��, we can write the torque conductivity as

�xy
� =

e�

42�
0

2

d�
G��,�,��


���
−

e�

82�
0

2

d�
H��,�,��cos �

�
����2 ,

�C5�

where G�� ,� ,�� and H�� ,� ,�� are given by

G��,�,�� =
��2 − �2�sin2 ��� sin�2�� − ��

�
����3 ,

H��,�,�� = � sin � + � cos � + ��2 − �2�

�
�� sin � − � cos ��cos�2��

�
����2

+ ��2 + �2�
�� cos � + � sin ��sin�2��

�
����2

− 2��
�� cos � + � sin ��

�
����2 .

Using �
����2= ��2+�2�−2�� sin�2��, we find that G

���

− H cos �

2
���2 can be written as


G��,�,��

���

−
1

2

H��,�,��

���2 � = ��2 − �2�

2� sin � cos � − �


���4 .

�C6�

From the above formula, we can easily check that Eq. �C6� is
zero when we set �2=�2. From Eq. �C6�, it follows that the
torque conductivity vanishes in the pure Rashba system �i.e.,
�=0� because the integral �d� sin � cos � is zero. Our next
step is to work out the integrals by using the residue
method.41 The crucial integrals are the following ����� ����:

�
0

2

d�
1

�
����4 =
2��2 + �2�
��2 − �2�3 ,

�
0

2

d�
sin � cos �

�
����4 =
2��

��2 − �2�3 . �C7�

For ���� ���, we can exchange the Rashba and Dresselhaus
couplings �↔� in the integrals. Substituting Eq. �C6� and
Eq. �C7� into Eq. �C5�, we obtain the torque conductivity

�xy
� = −

e

2

�2

��2 − �2�
. �C8�

Since the commutation relation �sz+Lz , p2

2m +HR�=0, the
Rashba coupling disappears in numerator of �xy

� . For �s
R

� 1
i� �sz ,HR�k��=���xkx+�yky�, we can use the same steps as

the calculation of �xy
� . The Hs�� ,� ,�� and Gs�� ,� ,�� can

be obtained by changing the � and � in H�� ,� ,�� and
G�� ,� ,��. We have

�xy
�s

R

= − �xy
�o

R

= −
e�

82�
0

2

d�
Gs��,�,��


���

+
e�

162�
0

2

d�
Hs��,�,��cos �

�a����2

= −
e�

82�
0

2

d�
G�� ↔ �,��


���

+
e�

162�
0

2

d�
H�� ↔ �,��cos �

�
����2 =
e

4

�2

��2 − �2�
.

�C9�

Therefore, the spin torque Hall conductivity is

�xy
�s = 
−

e

4

�2

��2 − �2�
+

e

4

�2

��2 − �2�� =
e

4

�2 − �2

��2 − �2�

= sign��2 − �2�
e

4
�C10�

and the OAM torque Hall conductivity is
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�xy
�o = 
−

e

4

�2

��2 − �2�
−

e

4

�2

��2 − �2�� = −
e

4

�2 + �2

��2 − �2�
.

�C11�

For the pure Rashba system, we can take �=0 in the �2

��2 condition. For the pure Dresselhaus system, we can
take �=0 in the �2��2 condition.

APPENDIX D: GAUGE INVARIANT POSITION
OPERATOR

In this appendix, we shall consider a method to obtain the
gauge invariant position operator and resolve the problem
that the expectation value of the OAM depends on the choice
of the eigenstates in the absence of applied electric field. In
crystalline environment, the position operator cannot be sim-
ply set to x= i �

�k .42 We find that the OAM will depend on the
choice of the eigenstates when we use the definition x= i �

�k .
For example, the following states can also be chosen as the
eigenstates:

�nk;M� =
eiM�k�

	2

 1

inei	�k� � , �D1�

where M�k� is the phase factor and n= ±1. It can be proved
that the eigenstates of Eq. �D1� satisfy the relation H0
=�nEnk�nk ;M�nk ;M� where the eigenenergy Enk is defined
in Eq. �7�. Using the eigenstates of Eq. �D1�, the matrix
element nk ;M�Lz�nk ;M� is zero if M =−	 /2 but nonzero if
M =−	. Furthermore, if the eigenstates of Eq. �21� are cho-

sen, the signs of +k̃�Lz�+k̃� and −k̃�Lz�−k̃� will be different.
Let us now consider the phase transformation of �nk�
=ei�n�k��nk� where the phase �n�k� depends on band index n.
We note that the eigenstates of Eq. �5� will be transformed to
that of Eq. �21� by the appropriate choice of the phase �n.

Actually, we have �+k̃�= �−i��+k� and �−k̃�=ei	�−k�. Let us
also introduce the operator X��x+A� where x= i �

�k and A�
is the vector potential. Using the above gauge
transformation,26 we obtain

nk�X��nk� = nk�x�nk� + A� −
��n

�k
. �D2�

Consider the specific transformation

A� = A +
��n

�k
. �D3�

Equation �D2� becomes the gauge invariant form43

nk�X��nk� = nk�X�nk� , �D4�

where the operator X is defined as X= i �
�k +A. We find that

A� satisfies the transformation �D3� if A� is defined as

An� � nk��− i�
�

�k
�nk� �D5�

which is the Berry vector potential when the eigenstates �nk�
are used. The vector potential A in the eigenstates �nk� can
be defined as An=nk��−i� �

�k �nk� which generally depends
on band index n. Therefore, the gauge invariant position op-
erator X will depend on band index n,

X± = i
�

�k
+ A±. �D6�

We find that the expectation value nk�Xn�nk� vanishes,
nk�Xn �nk�=0. It can also be shown that n��nk�Xn�nk�
=n��nk�i �

�k �nk� by the use of n�k �nk�=�n�n where �n�n is
equal to unity for n=n� and zero for n�n�. In terms of the
gauge invariant position operator, the OAM operator �x
�k�z is replaced by �Xn�k�z. As a result, the expectation
value of the OAM operator L�0=�nk�Xn�nk��k is zero
for all the eigenstates in the absence of the applied electric
field. Interestingly, note that the OAM operator does not al-
ways depend on band index n. For example, if the eigen-
states of Eq. �5� are used, the Berry vector potential is inde-
pendent of n, and so is the gauge invariant operator Xn.

Let us now show that the calculated OAM Hall conduc-
tivities remain unchanged no matter whether the conven-
tional x or gauge invariant Xn position operator is used. First
of all, the gauge invariant velocity operator 1

i� �X± ,H0�k�� is
the same as the original one 1

i� �x ,H0�k�� because the vector
potential A± commutes with H0�k�, namely, �A± ,H0�k��=0.
The gauge invariant OAM torque operator 1

i� ��X±�k�z ,H0�
is also the same as the conventional one 1

i� ��x�k�z ,H0�
because �A±�k�z commutes with H0�k�. Nevertheless,
the OAM current operator 1

2 �vx ,Lz� has an extra
term of �A±�k�zvx when the gauge invariant position
operator X± is used. For the eigenstates of Eq. �D1�,
we find that nk ;M�vx�−nk ;M�−nk ;M�vy�nk ;M�=−���2

+�2�sin 	 cos 	+��� /�2 and A±= 1
2

�2 �M
�k + �	

�k
� are all purely

real.44 On the other hand, Eq. �8� needs only the imaginary
part of the matrix elements �A±�k�znk ;M�vx�−nk ;M�
�−nk ;M�vy�nk ;M�. This shows that the extra term �A±

�k�zvx does not contribute to the Kubo formula. In general,
using �nk�=ei�n�nk�, we have nk�vx�n�k�n�k�vy�nk�
= nk�vx�n�k�n�k�vy�nk�. With the eigenstates of

Eq. �21�, we obtain that nk̃�vx�−nk̃�−nk̃�vy�nk̃�=−���2

+�2�sin 	 cos 	+��� /�2 and A±= �
1
2

�	
�k , which are all

purely real. Therefore, we conclude that the OAM Hall con-
ductivities �xy

o0 and �xy
�o remain the same even if we replace x

with X+ or X−.
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