
����������
�������

Citation: Ostrowski, K.A.; Chastre,

C.; Furtak, K.; Malazdrewicz, S.

Consideration of Critical Parameters

for Improving the Efficiency of

Concrete Structures Reinforced with

FRP. Materials 2022, 15, 2774.

https://doi.org/10.3390/ma

15082774

Academic Editors: Piotr Smarzewski,

Mingli Cao, Mehran Khan and

Muhammad Usman Farooqi

Received: 6 February 2022

Accepted: 6 April 2022

Published: 9 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Technical Note

Consideration of Critical Parameters for Improving the
Efficiency of Concrete Structures Reinforced with FRP
Krzysztof Adam Ostrowski 1,* , Carlos Chastre 2 , Kazimierz Furtak 1 and Seweryn Malazdrewicz 3

1 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland;
kfurtak@pk.edu.pl

2 CERIS and Department of Civil Engineering, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
chastre@fct.unl.pt

3 Department of Materials Engineering and Construction Processes, Wroclaw University of Science and
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Abstract: Fibre-reinforced polymer materials (FRP) are increasingly used to reinforce structural
elements. Due to this, it is possible to increase the load-bearing capacity of polymer, wooden,
concrete, and metal structures. In this article, the authors collected all the crucial aspects that
influence the behaviour of concrete elements reinforced with FRP. The main types of FRP, their
characterization, and their impact on the load-carrying capacity of a composite structure are discussed.
The most significant aspects, such as type, number of FRP layers including fibre orientation, type
of matrix, reinforcement of concrete columns, preparation of a concrete surface, fire-resistance
aspects, recommended conditions for the lamination process, FRP laying methods, and design
aspects were considered. Attention and special emphasis were focused on the description of the
current research results related to various types of concrete reinforced with FRP composites. To
understand which aspects should be taken into account when designing concrete reinforcement with
composite materials, the main guidelines are presented in tabular form.

Keywords: FRP; concrete; CFRP; BFRP; GFRP; AFRP; cement matrix; epoxy resin; reinforcement;
compressive strength

1. Introduction and Aim of the Technical Note

Nowadays, concrete is the most common building material [1]. More and more often,
elements of the load-bearing structures with complicated shapes are made of advanced
concrete, which was impossible until recently. However, there are concrete structures built
several decades ago that still fulfil their role and often require repair and reinforcement.
This is largely due to the much lower level of concrete technology a few decades ago, the
low strength of concrete, and the course of the natural process of concrete carbonation.
Additionally, in the 20th century, a previously unknown deleterious chemical reaction
involving pore solutions in the concrete and certain compositions of siliceous aggregates
was detected [2]. The resulting expansion, known as alkali–silica reactivity (ASR), could
lead to abnormal cracking in a variety of patterns (depending on the design of the struc-
ture, reinforcement, detailing, restraints, and exposure conditions), reduction in strength,
and early in-service failure of the concrete structure [3]. The alkali–silica reactions are
responsible for the degradation of a number of structures and reinforcement corrosion. For
instance, alkali–aggregate reaction is considered to be the second most important factor
(after corrosion of reinforcing steel), causing premature destruction of concrete structures.
As a result of the reaction of sodium and potassium hydroxides with reactive silica (which
is part of some aggregates), a destructive process occurs that requires repair and potential
reinforcement. In order to ensure further, safe exploitation of concrete structures, they
can be reinforced with composite materials [4]. Nowadays, it is the most widely used
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technology that allows for effective reinforcement of reinforced concrete structures. An ex-
ample of such reinforcement is sticking a tape, mat, or mesh to the surface of the reinforced
element using an effective binder (usually epoxy resin). This technology does not disturb
the architecture of the building due to the small influence of the glued reinforcement on the
cross-section geometry of the concrete elements. A literature review from [5] confirmed the
feature of FRC—crack control. This can limit the rate at which substances such as water,
chlorides, and carbon dioxide ingress into structural elements, thereby prolonging the
service life of the structure.

However, the correct process for strengthening concrete structures depends on a
number of factors. The first factor is the choice of the type of FRP composite fibres taking
into account the environmental impact to which the reinforced element is exposed. The
second is the selection of the matrix co-creating the composite structure in which the
fibres/mats/tapes will be embedded. Other equally important factors determining the
quality of the reinforcement made are: the orientation of the fibres in the composite, the
course of the lamination process, preparation of the concrete substrate, and protection
of the composite against the effects of an aggressive environment such as physical and
chemical factors. Bearing the above aspects in mind and the fact that the reinforcement of
concrete structures with the use of composite materials has developed rapidly in recent
years [6,7], the authors presented the most important factors influencing the effectiveness
of structural strengthening. In the authors’ opinion, this technical note will be helpful to
a wide range of concrete reinforcement contractors, providing necessary information on
FRP from the design stage to installation. This can contribute to resolving the problem of
concrete being required for reinforcement, thus ensuring satisfactory and safe performance
of concrete structures.

2. Material Characteristics

The reinforcement of concrete structures with the use of composite materials has
developed rapidly in recent years. In order to provide information on FRP for concrete
reinforcement contractors, the authors provided a short description of composites and FRP
composites. Examples of how FRP composites can be used in the civil engineering industry
are presented.

2.1. Composites

Composites are based on two or more fundamental materials, and when combined,
they have properties other than individual constituent materials. According to Rajczyk and
Stachecki [8], composites can combine materials of the same type, as well as various types
of materials, such as metals, polymers, and ceramics, using their specific characteristics
in a thoughtful manner. In the case of particle-reinforced composites, one can distinguish
two subtypes, depending on the particle size used. Dispersion particles are those which
are connected to the matrix at the microscopic, atomic, or molecular level. In contrast
to a composite reinforced with small particles, the most popular example of a composite
reinforced with large particles (often called aggregate composite) is concrete. The con-
tinuous phase is then cement mortar, while the reinforcement is the aggregate. In such
reinforced composites (compared with dispersively reinforced composites), the transfer
of external loads is the result of a common matrix load capacity and a dispersed phase, in
which independent rigidity and hardness are greater than the rigidity and hardness of the
surrounding matrix. Therefore, the mechanism of interaction of particles with the matrix is
also changed. Fibre-reinforced composites exhibit a favourable strength-to-weight ratio.
Due to this, they are currently dominating the composite materials market due to their low
weight and superior mechanical and strength properties [9,10]. The working principle of
fibre composites is based on the transfer of loads through various types of fibres. The matrix
serves only as a binder for the fibres and as a direct protection against external factors.
The fibres used can be continuous or discontinuous (whiskers and cut fibres). Numerous
products made of single fibres can also be used as reinforcement. Structural composites are
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complex materials with a homogeneous or mixed material structure, whose modernization
and widespread use in industry have resulted in the development of the latest technologies.
This group includes laminates, i.e., interconnected layers of two-dimensional composites
and also layered composites, i.e., systems with a clear division of functions concerning
strength and protection. The basic laminate layer (laminate) forms a resin-bonded fibre
(single composite). The laminate itself is a system of interconnected composite layers (usu-
ally with different parameters) that are properly oriented with respect to the direction of
the main load, to use the best possible arrangement of individual layers. The classification
of composites regarding their construction is presented in Figure 1.
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A composite consists of a matrix and a second component (reinforcement) placed in it,
which has much better mechanical properties [12]. The major functions of the matrix are
as follows:

• To maintain the entire system in a compact form (combines reinforcement);
• To transfer external loads to the reinforcement;
• To provide appropriate strength;
• To influence the chemical and thermal properties;
• To protect reinforcement against mechanical damage;
• To give products a specific shape.

The major functions of the inner reinforcement are:

• To improve strength properties;
• To increase resistance to abrasion;
• To reduce thermal expansion;
• To increase resistance to thermal shock;
• To stop the propagation of cracks;
• To increase the load-bearing capacity of structures.

2.2. FRP Composites

Fibre-reinforced polymer (FRP) is a composite material made of a polymer matrix
reinforced with fibres (Figure 2). Due to numerous benefits, the usage of FRP in concrete
technology is becoming more and more popular to strengthen existing elements, but also to
design new hybrid structures. The high Young modulus, strength to mass ratio, resistance
to aggressive environments, good fatigue properties, low lifecycle costs, electromagnetic
transparency, and low thermal conductivity are the major advantages of FRP [13–16].
Appropriate inclusion of steel or non-metallic fibres has been proven to increase both the
tensile capacity and ductility of FRP concrete. The major fibres used as the reinforcement
in composites are carbon, basalt, aramid, and glass fibres (Figure 3). The most commonly
used laminates in civil engineering are: carbon fibre polymer materials (CFRP), basalt fibre
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polymer materials (BFRP), aramid fibre polymer materials (AFRP), and glass fibre polymer
materials (GFRP).
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2.3. The Importance of FRP Materials in Civil Engineering

Steel, concrete, and wood are the basic structural materials that are widely used in civil
engineering. The FRP technique could be perfectly adapted to improve the properties of
these materials and change the load-bearing capacity of structural elements. FRP materials
can be used for various types of reinforcements. There are no significant restrictions in
the strengthening of elements with complex geometry such as beams, chimneys, columns,
walls, columns, silos, and supporting structures for pipelines and gas pipelines. Due to
their properties (good tensile strength, ductility, and fatigue resistance), FRPs have been
used in a wide range of applications, including pavements, industrial floors, tunnel linings,
slope stabilization, impact-resistant structures, and structures sensitive to earthquakes [5].
Increasing the durability leads to longer service life, thus achieving a reduction in the
overall environmental impact of the element over its entire lifecycle. The very low weight
of polymer fibre mats is extremely beneficial when reinforcing structural elements. The
analysed method of strengthening the structure, in comparison with traditional methods,
is beneficial in the long term.

FRP materials can be used in reinforced steel, concrete, and wooden and brick con-
structions to:
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• Increase resistance to the seismic loads of masonry structures;
• Increase the strength of concrete and reinforced columns;
• Replace missing reinforcements;
• Enable the reassignment of buildings;
• Increase the strength of individual elements and the entire structure;
• Improve the load capacity of a structure that is weakened due to structural errors;
• Adapt the load capacity of a structure to the applicable standards and requirements;
• Enhancement of service loads;
• Increase service life and durability;
• Improve resistance to seismic loads.

3. Factors Influencing Strengthening of Concrete Structures with FRP Composites

The correct process for strengthening concrete structures depends on a number of
factors. From the choice of the type of FRP composite fibres and the matrix up to lamination
process, the authors presented the most important factors influencing the effectiveness of
structural strengthening.

3.1. Type of Fibres

The mechanical and physical properties of the most common fibres used in FRP
laminates are presented in Table 1.

Table 1. Properties of the major fibres used in FRP composites, adapted from [18–30].

Fibre Type
Young

Modulus
(GPa)

Tension
Strength

(MPa)

Ultimate
Elongation

at Break (%)

Density
(kg/m3)

Carbon
High strength 200–280 2500–5500 1.5–2.2 1800

High modulus 330–490 2100–2800 0.7–1.0 2000

Basalt - 90–110 4000–4840 2.25–3.1 2600–2800

Glass
S-glass 86–93 4500–4890 1.93 2460–2490

E-glass 72.3 3345–3400 2.12 2540–2580

Aramid

Kevlar 29 70–83 2900–2920 3.50–3.60 1440

Kevlar 49 124–151.7 2758–3010 2.4 1467

Kevlar 149 179 3450 1.3–1.6 1470

Carbon fibres (CF) are one of the most common fibres used to reinforce engineering
structures, and are characterized by chemical and thermal resistance. One of the major
important aspects regarding CF is the permissible temperature to use them up to even
2000 ◦C, in contrast to glass or aramid fibres [31,32]. Acceptable temperatures for the
possible use of different types of fibres are given in Table 2.

Table 2. Permissible temperatures when using fibres, adapted from [13].

Temperature Range Type of Fibre

Low temperature (below 100 ◦C) All available fibres: natural, glass, carbon, ceramic,
boron, organic, metal

Raised temperature
(100 ◦C–400 ◦C) Some organic, glass, carbon, ceramic, boron, metal

High temperature
(400 ◦C–700 ◦C) Ceramic, metal, carbon

Very high temperature
(above 700 ◦C) Carbon, ceramic
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Basalt fibres (BF) are produced by melting crumpled basalt rocks at a high temperature
equal to 1400 ◦C. BF have better physical and mechanical properties than glass fibres. The
cost of BF is lower than CF and much more expensive than glass fibres.

Aramid fibres (AF) are characterised by excellent chemical, mechanical, and physical
properties at high temperatures. Unfortunately, AF have a very low resistance to ultraviolet
light. Under the influence of long sunlight, the strength properties of these fibres may drop
by more than 50%. Kevlar fibres and modified AF with chains including p-disubstituted
benzene are characterised by much better mechanical properties than standard AF.

Glass fibres (GF) are chemical fibres obtained from water glass, and sometimes also
from melted glass. Changes in the amount of raw materials, such as clay for alumina, sand
for silica, colemanite for boron oxide, or calcite for calcium oxide enable the obtainment
of different types of glass fibres. The advantages of GF are mainly their high mechanical
strength, lightness, and resistance to aggressive environments. GF are available in a variety
of forms and shapes, which is why they are widely used in engineering. The stress–
strain characteristics for FRP materials and steel are presented in Figure 4. As shown
in Figure 4, all these fibres have a higher tensile strength than common reinforcing steel
and prestressing steel. However, it should be emphasized that one of the basic material
parameters determining the use of a given type of fibre is its stiffness. It is only in the
case of carbon fibres that their modulus of elasticity is higher than that of both steels.
Combined with the highest tensile strength of carbon fibres, they are the most widely used
in civil engineering. It is also worth noting that the deformability of fibres is lower than of
steel. The CF HM fibres stand out here, for which deformability is very low and stiffness
is significant.
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3.2. Orientation of Fibres in FRP Composites

The orientation of fibres in FRP composites has the most significant influence on the
load-bearing capacity of reinforced concrete structures. Creating mats from carbon fibres
allows the fibres in the mats to be freely arranged and different weaves to be created. For
ordered fibres, the material properties are strongly anisotropic and the Young’s modulus
and strength are a function of the volume fractions of the fibres and the matrix. In addition,
the modulus of elasticity and strength in the ordering direction are much greater than in
the direction perpendicular to the ordering. If the fibres are arranged in an orthogonal
way, there are directions of ordering and disorder called anisotropy. In this case, the best
mechanical properties occur under load along the fibres. Disordered fibres are characterized
by isotropic properties and an ultimate breaking strength lower than in the case of materials
with ordered fibres. The different orientation of carbon fibres in composite manufactured
from three CFRP laminates is presented in Figure 5. Depending on the stress maps occurring
in reinforced concrete structures, FRP mats with an appropriate weave should be selected,
which will ensure optimal behaviour of the structure. Bhatnagar et. al. [34] presented the
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study about understanding the effects of the fibre orientation and the machining direction
on the cutting behaviour with unidirectional carbon-fibre-reinforced plastic (UDCFRP)
laminates. The various fibre orientation angles chosen for observing the chip formation
behaviour and cutting forces were 0◦, 10◦, 30◦, 45◦, 60◦, 75◦, and 90◦ at two different rake
angles, 12◦ and 18◦. The results from Table 3 show that minimum force occurs in the range
of 0◦ to +30◦ fibre orientation. The values of cutting force on the negative side are larger
than their counterparts. The resultant cutting forces are much higher in the negative cutting
direction; the maximum value reaches the range of −30◦ to −60◦ fibre orientation. There is
approximately a 100% growth in the resultant forces when the direction of machining is
reversed from +0 to−0. Frangopol and Recek [35] concluded that each layer of laminate has
a different strength due to its fibres’ orientation and, therefore, a different reliability. The
presence of an additional layer in a composite laminate plate does not necessarily increase
the reliability and can increase the probability of failure of other layers. It is necessary to
consider layer-interaction effects in evaluating the reliability of FRCs and fibre orientation.
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3.3. Lamination Process

Every contractor knows that proper installation is the key process, no matter the
technology. This paragraph will be especially useful for contractors, seeking information
on FRP installation. The efficiency of strengthening structural elements depends on the
correct fibre lamination process. There are two methods for carrying out the process of
strengthening engineering objects using FRP fibres and epoxy resin: the wet lay-up and the
dry lay-up.

The name ‘wet lay-up method’ comes from the status of the FRP at the time of
application in its final position. In this method, part of the epoxy resin is applied directly
to the FRP reinforcement, while the other part of the resin, with a thixotropic agent, is
used to reinforce the concrete substrate. At the beginning, the structural element should be
reinforced with epoxy resin with a thixotropic agent (Figure 6(1)). The resin can be applied
mechanically using a saturator, or manually using a roller, trowel, or brush. The next step is
to soak the FRP reinforcement with epoxy resin using a roller (Figure 6(2)). Rolling should
take place along the FRP fibres. The effectiveness of the polymer’s cooperation with the
reinforcement depends on the correct soaking of the FRP mats. The easiest way to transfer a
wet FRP mat is to put it on a cardboard roller (Figure 6(3)). Thanks to this, all deformations
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of the FRP can be eliminated. The FRP should then be glued to the previously prepared
concrete substrate. It is important to properly arrange the FRP so that a proper direction of
fibres is established. In the final stage, the laminate surface is smoothed and air bubbles
from the FRP composite are removed (Figure 6(4)) using a plastic roller (rolling along the
FRP fibres).

Table 3. Cutting force based on fibre angle, adapted from [34].

Fiber Angle (◦)

Tool Rake Angle

12◦ 18◦

Cutting Force
Fc (N)

Resultant Force
Ft (N)

Cutting Force
Fc (N)

Resultant Force
Ft (N)

−75 162 110 170 65
−60 200 155 175 115
−45 160 181 160 170
−30 145 200 145 207
−10 135 210 140 215

0 145 140 120 125
10 120 120 105 85
30 115 40 155 45
45 140 62 105 85
60 158 61 215 45
75 140 60 170 40
90 315 110 300 98

Note: Cutting speed = 1.18 m/min; width of cut = 2.2 mm and depth of cut = 0.25 mm.
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The name ‘dry lay-up method’ also comes from the status of the FRP at the time of
application in its final position. In this method, the epoxy resin is used to reinforce the
concrete substrate and to impregnate the FRP. Firstly, epoxy resin is applied to the concrete
element using a trowel, brush, or roller (Figure 7a). The next step is to apply the previously
cut FRP reinforcement to the concrete element and laminate the FRP using a plastic roller
along the fibres (Figure 7b). If the application of more than one layer of FRP is planned,
this should be done using the ‘wet on wet’ method (applying the next layer of FRP on the
previous one, before the material dries). If not, a period of at least twelve hours (due to
the hardening process of epoxy resin) must pass before the next surface of the composite
is applied.

3.4. Matrix

The adhesion between the matrix and reinforcement has a crucial role during the
transfer of loads [38]. The matrix in the laminate is formed by epoxy resin (Figure 8a) or,
less frequently, by the cement matrix (Figure 8b). Epoxy resin consists of two components:
resin and hardener. After combining the ingredients in the right proportions, the working
time for applying the resin is about one hour at +20 ◦C, which decreases with an increasing
temperature (due to the viscosity of the resin increasing rapidly and its gelation). The
hardening of the resin is accompanied by the formation of a large amount of heat. Epoxy
resin is a liquid polymer material, which has been used in industry for over 50 years. It
is used as a matrix to reinforce structural elements made of concrete, metals, and wood.
Due to its properties, it works effectively with the mentioned materials. Epoxy resin can be
applied in all cases of reinforcing structural elements with FRP materials.



Materials 2022, 15, 2774 9 of 20Materials 2022, 15, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 7. Stages in the dry lay-up process: (a) reinforcing the concrete substrate and (b) applying 
the FRP reinforcement to the concrete substrate, adapted from [27]. 

3.4. Matrix 
The adhesion between the matrix and reinforcement has a crucial role during the 

transfer of loads [38]. The matrix in the laminate is formed by epoxy resin (Figure 8a) or, 
less frequently, by the cement matrix (Figure 8b). Epoxy resin consists of two compo-
nents: resin and hardener. After combining the ingredients in the right proportions, the 
working time for applying the resin is about one hour at +20 °C, which decreases with an 
increasing temperature (due to the viscosity of the resin increasing rapidly and its gela-
tion). The hardening of the resin is accompanied by the formation of a large amount of 
heat. Epoxy resin is a liquid polymer material, which has been used in industry for over 
50 years. It is used as a matrix to reinforce structural elements made of concrete, metals, 
and wood. Due to its properties, it works effectively with the mentioned materials. Epoxy 
resin can be applied in all cases of reinforcing structural elements with FRP materials. 

 
Figure 8. Example of the matrix in the laminate: (a) epoxy resin and (b) cement. 

One of the major drawbacks of epoxy resin-based composites is plastic behaviour at 
low temperatures. Due to this fact, a modified cement matrix has been considered as a 
potential alternative in recent years. This specific cement-based matrix is less sensitive to 
temperature changes in comparison with epoxy resin. Furthermore, the matrix could be 
internally reinforced with natural fibres which could improve the properties of the raw 
matrix [39]. The cement matrix consists of high-quality cement (especially Portland ce-
ment types I–CEM I 42,5R or CEM I 52,5R), silica fume, superplasticizer, and water. The 
efficient time for usage of both the epoxy resin and the cement matrix (from the moment 
the ingredients are mixed) is similar and mainly depends on ambient temperature. Un-
fortunately, adhesion of the cement matrix to some types of concrete is practically zero, 

Figure 7. Stages in the dry lay-up process: (a) reinforcing the concrete substrate and (b) applying the
FRP reinforcement to the concrete substrate, adapted from [27].

Materials 2022, 15, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 7. Stages in the dry lay-up process: (a) reinforcing the concrete substrate and (b) applying 
the FRP reinforcement to the concrete substrate, adapted from [27]. 

3.4. Matrix 
The adhesion between the matrix and reinforcement has a crucial role during the 

transfer of loads [38]. The matrix in the laminate is formed by epoxy resin (Figure 8a) or, 
less frequently, by the cement matrix (Figure 8b). Epoxy resin consists of two compo-
nents: resin and hardener. After combining the ingredients in the right proportions, the 
working time for applying the resin is about one hour at +20 °C, which decreases with an 
increasing temperature (due to the viscosity of the resin increasing rapidly and its gela-
tion). The hardening of the resin is accompanied by the formation of a large amount of 
heat. Epoxy resin is a liquid polymer material, which has been used in industry for over 
50 years. It is used as a matrix to reinforce structural elements made of concrete, metals, 
and wood. Due to its properties, it works effectively with the mentioned materials. Epoxy 
resin can be applied in all cases of reinforcing structural elements with FRP materials. 

 
Figure 8. Example of the matrix in the laminate: (a) epoxy resin and (b) cement. 

One of the major drawbacks of epoxy resin-based composites is plastic behaviour at 
low temperatures. Due to this fact, a modified cement matrix has been considered as a 
potential alternative in recent years. This specific cement-based matrix is less sensitive to 
temperature changes in comparison with epoxy resin. Furthermore, the matrix could be 
internally reinforced with natural fibres which could improve the properties of the raw 
matrix [39]. The cement matrix consists of high-quality cement (especially Portland ce-
ment types I–CEM I 42,5R or CEM I 52,5R), silica fume, superplasticizer, and water. The 
efficient time for usage of both the epoxy resin and the cement matrix (from the moment 
the ingredients are mixed) is similar and mainly depends on ambient temperature. Un-
fortunately, adhesion of the cement matrix to some types of concrete is practically zero, 
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One of the major drawbacks of epoxy resin-based composites is plastic behaviour at
low temperatures. Due to this fact, a modified cement matrix has been considered as a
potential alternative in recent years. This specific cement-based matrix is less sensitive
to temperature changes in comparison with epoxy resin. Furthermore, the matrix could
be internally reinforced with natural fibres which could improve the properties of the
raw matrix [39]. The cement matrix consists of high-quality cement (especially Portland
cement types I–CEM I 42,5R or CEM I 52,5R), silica fume, superplasticizer, and water.
The efficient time for usage of both the epoxy resin and the cement matrix (from the
moment the ingredients are mixed) is similar and mainly depends on ambient temperature.
Unfortunately, adhesion of the cement matrix to some types of concrete is practically zero,
so its use is strongly limited to low-strength concrete. The advantages and disadvantages
of epoxy resin and cement matrix are presented in Table 4.

3.5. Preparation of Concrete Substrate

Before the lamination process, concrete substrate (CS) should be prepared in a proper
way. CS must be dry, clean, and free of surface moisture. The laitance, dust, curing
compounds, oils, waxes, foreign particles, impregnations, and other coatings must be
removed from the concrete surface. For the best results, sandblasting, grinding or shot
blasting are recommended. An unprepared concrete surface is presented in Figure 9a.
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Table 4. Advantages and disadvantages of epoxy resin and cement matrix.

Matrix Advantages Disadvantages

Epoxy resin

• Very good strength properties
• Compressive strength of

40–90 MPa
• Tensile strength of 12–40 MPa
• Bending strength of 20–60 MPa
• Minimal shrinkage during curing
• High chemical resistance to most

solutions of inorganic and organic
acids, hydroxides, and solutions
of inorganic salts

• High hardness, abrasion, and
scratch and impact resistance

• No resistance to UV radiation
• Low elasticity
• Low chemical resistance to

oxidizing substances, alcohols,
hydrocarbons, and ketones

• Moisture sensitivity during
implementation

• No resistance to high
temperatures (plasticization at
temperatures from 70 ◦C)

• Combustible
• High cost
• Low stiffness

Cement
matrix

• High compressive strength
(to 100 MPa)

• Higher resistance to high
temperatures than epoxy resins

• No plastic behaviour at high
temperatures

• Incombustible
• Low cost
• High stiffness

• Low tensile strength (to 10 MPa)
• Very low cooperation/no

cooperation with FRP
• Low chemical resistance
• Low bending strength
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Grinding is surface finishing with abrasive tools, which results in high dimensional
and shape accuracy, as well as low roughness. The material from which grinding wheels are
made of is most often diamond, corundum, boron carbide, or silicon carbide. Sandblasting
is a technological process that consists of cleaning or shaping the surface with abrasive
material (sand) in a stream of compressed air or liquid. The sanding effect is similar
to grinding; however, the surface being cleaned is more even and obtains the required
roughness. Shot blasting is a similar technology to sanding. In this method, instead of
sand, special metal shots are used (in the form of metal spheres). Most often, the shots
can be recovered and reused. Research was carried out by the authors [40] to investigate
unprepared, grinded, and sanded concrete substrate (Figure 9b–d) and its result on the
effectiveness of reinforcing concrete elements with FRP materials. It was found that
mechanical surface treatment improves the adhesion of CFRP to the concrete substrate. The
highest compressive strength and deformability of the concrete elements was demonstrated
for the reinforced CFRP samples with a grinded concrete surface and the lowest for the
unprepared one. However, the differences in the tested high-performance concrete are not
large and concern only several percentages.
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3.6. Concrete Surface Moisture and Temperature during Lamination

The humidity of concrete surfaces in the lamination process is one of the key factors
affecting the quality of the concrete substrate and it further affects the joint between the main
structure and the outer reinforcement. Before commencing the process of strengthening
the structure, it is necessary to define the moisture content of the concrete substrate, and
determine the dew point temperature (DPT) and relative humidity. Most manufacturers
of composite materials and resins specify the maximum substrate moisture content to be
4–5% by weight. The temperature, however, must be at least a few ◦C above the DPT. Too
high humidity of the concrete surface may reduce the penetration depth of the epoxy resin
and reduce the adhesion of the binder to the concrete.

It is also very important that the resin should be at the ambient temperature where
the lamination takes place and during the process. Adverse changes may occur in the
laminate, which may result in its permanent under-hardening at temperatures below
10 ◦C. At temperatures above 40 ◦C, the resin gels too quickly, preventing the FRP fibres
from oversaturating.

3.7. High-Temperature Protection

Due to the major disadvantage of epoxy resin, i.e., low resistance at high temperature,
structural elements reinforced with an organic matrix should be protected against direct
impact of high temperature and fire. Damage due to fire/high temperatures is one of the
major destructive aspects that cause deterioration of reinforced concrete structures [41] and
concrete reinforced with FRP technique.

The main reason for protecting the reinforced concrete structure against the effects
of sunlight and elevated temperatures is the relatively low glass transition temperature
of most epoxy resins, which ranges from 40 ◦C to 50 ◦C [42]. This leads to a change in
the state of the epoxy resin, which goes from solid to plastic. Even slight deformation of
the adhesive can lead to local loss of adhesion of FRP fibres to the epoxy matrix, leading
to local stress relaxation. As a result, the composite may be destroyed and the bearing
capacity of the structural element may be lost. It should be remembered that even black
coloured carbon fibres (heat accumulating) covered with a transparent epoxy resin can
contribute to the destruction of the composite. Due to the influence of sunlight, the layer
can be significantly heated, which will stop fulfilling the role of the composite structure.
As it has been shown in [43], even in the temperate geographical zone, the temperature of
the adhesive under the thin laminate can reach 65 ◦C, which is 20 ◦C higher than the glass
transition temperature of the most common epoxy-based adhesives on the market.

The main way of protecting structural elements is by properly insulating them using
non-combustible mineral wool or cement mortar. A five-centimetre layer of mineral wool
on an FRP composite with epoxy resin can protect the FRP composite from a rising resin
temperature above the glass transition temperature for 120 min. A layer of cement mortar
of a few centimetres on the FRP composite provides fire protection for a minimum of
240 min [44].

3.8. Non-Destructive Testing of FRP Laminates

Ultrasonic testing involves introducing ultrasonic waves into the object, which are
reflected by material discontinuities, as well as bent and scattered on their edges (Figure 10).
The purpose of the test, depending on the type of waves used, is to detect internal, surface,
and subsurface discontinuities, to detect a lack of adhesion in glued, welded, soldered,
and riveted joints, and to determine the properties of the materials [45,46]. The test allows
the detection of flat and spatial discontinuities, internal and surface cracks, as well as
inclusions and delamination. Due to the complex construction of composite structures,
only this method is effective for assessing the state of FRP composites.
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4. Concrete Reinforced with FRP Composites

In scientific publications, a lot of information can be found on the effectiveness of
reinforcing concrete elements using FRP composites in the form of sheet, with regards to
the strength of concrete. However, the strengthening may vary depending on the concrete
used. The authors reviewed the literature concerning FRP composites on concrete with the
division into concrete and FRP type. Table 5 shows selected results that, according to the
authors, are selected due to their scientific importance and future perspectives. Laminate
types were divided into four major categories: CFRP, BFRP, GFRP, and AFRP. The types of
concrete involved: normal concrete, high performance concrete, ultra-high performance
concrete, lightweight concrete, fibre-reinforced concrete, and recycled tire rubber concrete.
All experiments were performed using small concrete column elements.

It has been proven that, as the number of reinforcement layers increases, the strength
of the elements increases. Furthermore, as the compressive strength of concrete decreases,
the effectiveness of the reinforcement increases.

Analysed research confirmed that epoxy resin is more commonly used than cement
matrix, due to load-bearing efficiency (adhesion properties in the case of the cement matrix
is low).

As the number of FRP laminates increases, the load-bearing capacity of a reinforced
concrete structure increases. However, the research showed that three layers are enough to
obtain 100% or more greater compressive strength in comparison with the reference concrete.

Technological parameters and their major influence on the efficiency of reinforcing
concrete structures with FRP laminates are presented in Table 6. The authors collected
the most significant aspects that have impact on the reinforcement. As seen below, to
obtain the desired properties starts with the concrete used in the construction or design of
the new one. The design stage of laminates includes determining their type, number of
layers, direction of fibres, and the type of matrix. Proper installation of the reinforcement,
including lamination in specified conditions and preparation of the concrete substrate are
extremely important for the performance of the composite.
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Table 5. Influence of FRP composites on the behaviour of concrete.

Compressive
Strength Rc as

a Reference
(MPa)

Laminate Type Matrix FRP Layers

Compressive
Strength of
Reinforced

Specimen in
Comparison to the

Reference (%)

Reference Type of Concrete

64.91

CFRP

ER

1

+33 [48] High-performance concrete

40.32 +99 [49] Fibre-reinforced normal concrete

81.04 CM +4 [50]
High-performance

self-compacting fibre-
reinforced concrete

31.74

ER

+128 [51] Normal concrete

33.7
2 +33

[52] Reinforced normal concrete
4 +71

136
1 +29

[53] Ultra-high performance
fibre-reinforced concrete5 +55

21.18
1 +80

[54] Lightweight aggregate concrete

3 +155

38.83
1 +46

3 +120

15.45
1 +236

3 +407

64.4

1 +22

[55] High-strength concrete2 +64

3 +99

43.4

1 +20

[56] Ready-mixed normal concrete3 +97

BFRP

1 +2

3 +3

55.8

2 +0.8

[57]

Normal concrete4 +38

6 +69

56.27 2 +41
High-performance concrete

76.98 4 +92

94.57 6 +136

26.26

GFRP

1 +8
[58] Low-performance concrete

2 +18

136
5 +35

[53]
Ultra-high performance
fibre-reinforced concrete9 +45

27.2
2 +220

[59] Low-performance concrete
3 370
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Table 5. Cont.

Compressive
Strength Rc as

a Reference
(MPa)

Laminate Type Matrix FRP Layers

Compressive
Strength of
Reinforced

Specimen in
Comparison to the

Reference (%)

Reference Type of Concrete

44

AFRP

1 +242 [60] Normal concrete

69.5
1 +49

[61] Recycled tyre rubber concrete

2 +109

63.7 3 +116

69.5 4 +180

23.8 1 +99

23.9 2 +196

23.8 3 +296

25.4 4 +335

7.1 1 +251

7.2
2 +450

3 +719

7.8 4 +812

110.3 4 +27
[62] Ultra-high performance concrete

100.2 4 +64

113.8 3 +16

[63] Ultra-high performance concrete113.8 4 +39

113.8 6 +39

23.1 1 +196 [64] Low-performance concrete

85.7 6 +94 [65] High-performance concrete

Note: ER—epoxy resin, CM—cement matrix.

Table 6. Technological, material, and environmental parameters and their major influence on the
efficiency of reinforcing concrete structures with FRP laminates.

Parameter Importance

Type of FRP As fibre strength increases, the load-bearing capacity of a
reinforced concrete structure increases.

Number of FRP layers As the number of FRP laminates increases, the load-bearing
capacity of a reinforced concrete structure increases.

Direction of fibres Arranging fibres parallel to the tensile stresses increases the
load capacity of the composite structure.

Different fibres used in
the laminates

Combining different FRP fibres in multilayer laminates is
possible and does not adversely affect the structure.

Matrix

The use of resins is recommended (especially epoxy resins).
In the case of reinforcing low-performance concrete, cement
mortar could be used, but the load-bearing efficiency, due to

adhesion properties, in this case, is low.

Lamination process

The high quality of carried out work, including the correct
reinforcement of the concrete substrate, accurate venting of

the resin, and the correct adhesion of the laminate to the
concrete surface guarantees good performance of the

structure in accordance with the reinforcement design.
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Table 6. Cont.

Parameter Importance

Type of concrete

As the strength of the concrete increases, the reinforcement
efficiency decreases. It is recommended that concretes with
low compressive strength should be reinforced with resin.

Especially, concrete elements with low compressive strength
may be reinforced with the use of composite meshes and a

cement mortar (or matrix).

Type of concrete surface

The sandblasting, grinding, and shot blasting of concrete
surfaces affect the load-bearing capacity of a reinforced

element in comparison to an unprepared concrete surface at
the level of several percentages. It has been noted in the
literature that the connection between the FRP and the

grinded concrete surface was the most favourable.

Preparation of concrete substrate

The concrete substrate must be clean, completely dry, and
free from dirt and cement milk. It is widely recommended
to prepare the concrete surface using mechanical treatment
as it improves the adhesion of FRP to the concrete substrate.
Epoxy resin has a greater possibility of penetrating into the

concrete, thus, increasing the total contact area. The best
results can be achieved by using a grinded concrete surface.

Geometry of elements
for retrofitting

FRP laminate creates a coating that adjusts and adheres to
the existing geometry of the element being reinforced. Due
to this, most concrete elements, considering their shape, can

be reinforced by this method. It is especially useful in
strengthening objects that are several dozen or more years

old. However, the trend in designing structures already
using laminates is beginning to become noticeable.

Performance conditions The lamination process should take place under positive
temperature conditions and with low humidity.

Temperature

The temperature during the lamination process should be
between +10 ◦C to +40 ◦C. As the ambient temperature rises,

the use time of the resin and the inorganic matrix is
shortened due to their accelerated fixation.

Insolation

High insolation, dark surfaces that do not reflect radiation
and excessive heating of the structure may affect the

achievement of the glass transition zone by the organic
matrix, beyond which the matrix begins to deteriorate.

Humidity
The humidity of concrete substrate should be not more than
5% by weight. High humidity has a negative effect on the

penetration depth of resin and cement mortar.

Design of new elements

By appropriate selection of FRP laminates, it is possible to
make slender elements with smaller cross-sections.

Advanced software allows to accurately determine the
number of laminate layers. Numerous experimental studies

are also helpful.

Fire protection

In the case of FRP laminates with epoxy resin, it is
recommended to protect them against high temperatures by
using insulation or cement matrix to confine the composite
structure. FRP laminates with cement matrix do not need

additional fire protection if the cement matrix has an
appropriate width.
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5. Durability of Concrete Structures Reinforced with FRP Materials

Fibre-reinforced polymer materials (FRP) are increasingly used to reinforce structural
elements [66]. Due to this, it is possible to increase the load-bearing capacity of polymer,
wooden, concrete, and metal structures [67,68]. However, because FRP laminates are still a
relatively new solution (depending on the region), there is not enough information on their
long-term behaviour which is crucial due to the design process [69]. Still, the high demand
of FRP structures in civil engineering raises the interest in their behaviour over time, or
in other words, their durability. Durability can be defined as the intensive correlation
between the maintenance of a material and its features, and the ability to resist technical
wear and chemical actions. The aging of materials due to exploitation and environment
impact results in the process of gradual durability loss [70]. If there is still insufficient
information about long-term properties of FRP reinforcements, the design codes cannot
consider durability factors properly.

In terms of technical wear and resisting chemical actions, carbon fibre-reinforced
polymer composites seem to be the most suitable. They are insensitive to chloride ions
(the same as aramid fibre-reinforced polymer composites) and have better fatigue strength
due to no water absorption (the same as glass fibre-reinforced polymer materials, which is
the cheapest solution). They are less durable than others, due to high chemical sensitivity
to an alkali environment. Glass and aramid can hydrolyse, especially in the presence of
the high alkalinity in concrete. The interface between the reinforcement and concrete also
plays a great role in terms of durability. Resin-dominated mechanisms are responsible
for the transfer of shear and transverse forces, thus effecting the bond [71]. However,
fibres in general do not rust like steel does and are resistant to attack by chlorides [72].
The research simulating the corrosion in large-scale reinforced columns and their repair
using CFRP [73] confirms this theory. Columns wrapped using CFRP were characterised by
improved strength and a slow rate of post-repair corrosion. Extensive, post-repair corrosion
resulted in no loss of strength or stiffness and only a slight reduction in the ductility of the
repaired member.

According to the American Concrete Institute (ACI 440.2R-08) [74], the ultimate tensile
strength of FRP laminates ffu and the effective strain εfd to prevent immediate debonding
failure can be determined as follows:

f f u = CE f f u∗ (1)

ε f d = 0.41

√
f ′c

nE f t f
≤ 0.9ε f u (2)

where:

• CE—environmental factor;
• f f u∗—ultimate tensile strength of FRP material reported by manufacturer;
• f ′c—specified compressive strength of concrete;
• n—number of layers of FRP reinforcements;
• E f —tensile modulus of elasticity of FRP;
• t f —nominal thickness of one layer of FRP reinforcement.

As shown in Table 7, durability reduction factor and long-term stress limitation factor
introduced for bond capacity, in case of CFRP are 0.95 and 0.55, respectively. This leads
to the conclusion that the preparation of the contact surface and the adhesion of the FRP
reinforcement affect the durability.
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Table 7. Reduction factors and long-term stress limitation factors.

Durability Reduction Factors

Regulation CFRP GFRP AFRP

ACI 440.1R-15 [75] 0.95 ffu 0.75 ffu 0.85 ffu

Long-Term Stress Limitation Factors

ACI 440.1R-15 [75] 0.55 ffu 0.20 ffu 0.30 ffu

6. Conclusions

Concrete structures built several decades ago often require repair and reinforcement.
In order to ensure their further, safe exploitation, they can be reinforced with compos-
ite materials, which have developed rapidly in recent years. This paper discussed the
main factors affecting the efficiency of reinforcing concrete structures with FRP materi-
als. The authors presented the most important factors influencing the effectiveness of
structural strengthening.

Section 2 contains basic characteristics of composites and FRP laminates of different
technologies, and usage examples of FRP materials in civil engineering. In Section 3,
some parameters affecting the strengthening are presented: the choice of the type of FRP
composite fibres, the selection of the matrix co-creating the composite structure, orientation
of the fibres, lamination process, preparation of the concrete substrate, and protection of
the composite against the effects of high temperature and non-destructive testing of FRP
laminates. Section 4 focuses on the influence of FRP composites on the strengthening level of
concrete, depending on the concrete and FRP types used. Here, compressive strength of the
reference concrete and the reinforced one of different types was compared. Technological,
material and environmental parameters having impact on reinforcing concrete structures
with FRP laminates were presented. In Section 5, some examples of durability of FRC
structures for concrete are shown.

Limitations in the current paper result from the analysed reinforced material, which is
concrete. Therefore, the work focuses on the most important aspects that must be taken
into account by designers of concrete structure reinforcements. The authors summarized
the applications of various types of FRP materials in concrete structures. This technical
note will be helpful to a wide range of concrete reinforcement contractors, providing
necessary information on FRP from the design stage to installation. This can contribute to
ensuring further, satisfying and safe performance of concrete structures. Bearing in mind
a responsible approach to sustainable construction, in a future work, the authors wish to
focus on the analysis of the use of recycled polymer fibres for the reinforcement of concrete
structures. This research will undoubtedly follow the current global trend in which the
re-incorporation of waste materials into the structure is desirable.
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Architektury 2016, 63, 309–316. [CrossRef]
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