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Abstract: Classification is the science that arranges

organisms in groups according to their similarities and

differences. In plant science, there are many aspects of

classifications. For instance, there is morphological, ana-

tomical, palynological, molecular, and chemical classifi-

cation. All these types consume time, effort, and money.

In this research, new technology is tested to identify the

differences between plants. Spectroradiometer will help

in classifying Prosopis juliflora (Sw.) DC in Bahrah region

in Saudi Arabia. Spectroradiometer technology is applied

to a sample of 40 taxa of P. juliflora in two different sea-

sons. Within each sample site, measurements were taken

at a high sun angle from 10:00 am to 2:00pm. Results showed

that spectroradiometer indicated the existence of significant

differences among P. juliflora taxa. Correspondingly, the

spectroradiometer engenders the spectral responses of

the targeted species in the region between 400 and

2,500 nm wavelength. The spectral behavior of P. juliflora

in four seasons was demonstrated as season dependent.

The variance-based principal component analysis divided

the investigated samples into two groups, either positively

correlated or negatively correlated according to the sea-

sonal data collection. Sample number 5 in the quantile’s

slicing analysis maintained a stable behavior when it was

exposed to 100% wavelength. P. juliflora behavior was

stabilized in the infrared (IR) samples (4,5), the shortwave

IR (SWIR) (3,4,5), and thermal IT (TIR) (3,4,5,6) at the

quantile range of >75. While in the quantile range

<25, we found the stability behavior in the IR samples

(2,8,10), the SWIR (2,7,8,10), and in TIR (2,7,8,10).

Therefore, this approved that the spectroradiometer is

useful as the first classification process. More studies

are needed to support this finding, such as chemical

and molecular investigations.
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1 Introduction

Remote sensing plays a role in understanding these phe-

nomena. Remote sensing gives a lot of information about

plants, and the definition illustrates the finding or measuring

plant physical, biological, biochemical, or phonological attri-

butes that denote a plant’s functional acclimatization, which

otherwise reveal the underlying plant ecophysiological

processes [1,2]. Other numerous features are pertinent to

any discussion of identifying vegetation function with

remote sensing, including spatial, spectral, temporal, and

biological scopes.

Imaging spectrometers (instruments that gather hyper-

spectral data) breakdown the electromagnetic spec-

trum into sets of bands that categorize objects through

their spectral properties on the surface of the earth.

Hyperspectral data consist of various bands, approxi-

mately hundreds of bands, which also include the electro-

magnetic spectrum [3–5]. Hyperspectral remote sensing,

also referred to as imaging spectroscopy, is recently inves-

tigated by researchers and professionals to find and identify

the terrestrial flora [6–8]. Several ecological applications can

benefit from hyperspectral remote sensing, for instance,

measuring chlorophyll, leaf water, cellulose, pigments,

lignin along with other uses in agriculture, astronomy,

chemical imaging, remote sensing [9–11].
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Components of biodiversity, which are widely varied

in vegetations cover form related biological systems

in the Saudi Arabia welfare structure. Studies have

indicated contrasts in plants of one physical category

because of the distinction of substance and physical

properties inside the plant [12,13]. The vegetation struc-

ture gave a few contrasts in its spreading conduct in

various places in the Kingdom, which can be related to

climatic condition changes, water sources, and anthro-

pogenic weights along the rising slope, as reported by

Hegazy et al. [14].

Hyperspectral remote sensing applications were con-

tinuously developed over the past four decades to add

more insights into the natural vegetation behaviors and

agricultural practices [15]. Recently, significant scholarly

works describe in detail the concept of the ground-based

and handheld remote sensing platforms that improved

natural vegetation mapping [16–20]. Moreover, data

dimensionality and data redundancy are not limiting

factors in using hyperspectral data as it was before

which led to swift enhancements in hyperspectral

remote sensing applications [21,22]. Band selection in

hyperspectral data mining is an essential prerequisite

to optimize data efficiency and reduce the computa-

tional timing [23,24].

Several publications had discussed the hyperspectral

sensors on different platforms and their applications.

Specifically, handheld spectroradiometers such as analy-

tical spectral devices (ASD) were used extensively in nat-

ural vegetation mapping, among other several applications

[18,25,26]. ASD spectroradiometers operate generally from

400 to 2,500 nm in a very narrow range of 1 nm bandwidth

interval (high-resolution ASD) up to 100 nm bandwidth

intervals (low-resolution ASD). Detailed and accurate map-

ping of natural vegetation and plant taxonomical models

was achieved using the thermal infrared (TIR) spectrum

[27,28]. The new generation of the hyperspectral sensors

such as spatially enhanced broadband array spectrograph

system will expand the resources and the interpretation of

the hyperspectral remote sensing data [29,30].

In line with Alfarhan [31] and Thomas et al. [32],

vegetation species in Saudi Arabia are divided into three

general categories, namely, species of the Sudano–Dec-

canian zone, Saharo–Sindian zone, and Tropical Indian–

African categories. The annual average rainfall in the

northwestern regions of Saudi Arabia differs from

30mm in the northern areas to 90mm in the northeast.

Rainfall records in the central region of the Kingdom,

mainly in the Riyadh region, indicate that rainfall is

increasing from South to North and from East to west,

ranging between 100 and 85mm annually. Generally, the

annual average rainfall is less than 100mm and most of it

is in December, January, February, and March and con-

siderably helps for the growth of short-lived vegetation.

Many scholarly works had been published on the

flora of Saudi Arabia. According to El-Sheikh and Yousef

[33], Mandaville and Mandaville [34], and Thomas et al.

[35], the most comprehensive works are two flora books:

the first is Flora of Saudi Arabia written by Migahid et al.

[36] and published four times. The second is the Flora of

the Kingdom of Saudi Arabia written by Chaudhary [37].

Several studies were conducted in different regions of

Saudi Arabia such as Batanouny [38] and Aldhebiani

et al. [39] who studied the vegetation and floras of the

sabkhas, hillocks, and other prominent mountains of the

Najd region, such as Tuwaiq, Aja, and Salma. Consider-

able efforts have also been made toward the elucidation

of vegetation–environmental relationships in the ecosys-

tems “raudhas” or depressions [40–42]. The plant com-

munities of Wadis have been addressed in some studies

such as Wadi Al-Ammaria [43] and Wadi Hanifa [44]. The

Prosopis juliflora species, in the Kingdom of Saudi Arabia,

is endangered due to their limited genetic range and geo-

graphical variety, minor population size, short density,

threatening ecological conditions, and unselective tree

cutting, regardless of the truth that these species have a

great reproductive ability [45–47].

In the study area considered in this research, Bahrah,

west of Saudi Arabia, no studies have been endeavored to

classify P. juliflora species using different wavelengths.

The current study addressed the consideration of hyper-

spectral data in intraspecific variation in P. juliflora (Sw.)

DC, Saudi Arabia, to identify the significance of different

responses of the P. juliflora taxa to different spectral

wavelengths such as visible spectrum, short-wavelength

IR, long-wavelength IR, and TIR. The study goal is to

investigate the impact of different wavelengths on dif-

ferent leaf samples collected from different P. juliflora

taxa to study their spectral signature behavior and to

appraise the impact of these different wavelengths on

these species’ occurrence.

2 Materials and methods

2.1 Study area description

The climate of Saudi Arabia is classified as an “arid cli-

mate” within Thornthwaite’s global climatic classification,

and as “dry climates” in Koppen’s classification [48,49].
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According to Juneidi and Huss [50], relative humidity

is normally low excluding the coastal areas, where it

touches above 90%. The annual average temperature is

virtually 33.4 and 14°C in summer and winter, respec-

tively. Hot weather describes the Kingdom’s climate

for the larger part of the year. The north winds move

from the eastern Mediterranean in the direction of the

Arabian Gulf with some extensive variations [51]. Spec-

tral data are gathered in the Bahrah region, 21.392245°N,

and 39.472352°E. Bahrah is located on Tihama plateau

closer to Wadi Fatima between Jeddah and Makkah

(Figure 1). The climate in Bahrah Dafi is mild in summer

and rainy in winter. The average summer temperature

is reported as 33°C and the average rainfall is 520mm.

The greatest amount of rainfall is in January and the

lowest amount is in July [52]. Inside the study region,

different sites have been chosen as samples in an

exploration tour preceding the beginning of the arena

campaign for the gathering of spectral data. The arena

campaign commonly has a multitemporal framework,

gathering spectra from diverse sorts of plants at diverse

phenological periods and different periods of the

year [39].

2.2 Field sampling

The spectroradiometer is plugged into the Ethernet cable

and ends with a pistol to measure the spectrum and wave

oriented. The Spectralon® White Reference panel [53] is

installed for utilization and handling of the diverse seg-

ments, and the panel is in black to decrease the scattering

of the related radiance (Figure 2).

The leaves of P. juliflorawere cut from several trees in

different seasons where the tree is about 2 m long. More

than 40 samples in every sample site were calculated at a

high sun angle, from 10 am to 2 pm by spectroradiometer

technology. The following are the fundamental steps fol-

lowed in undertaking two experiments on P. juliflora species:

(1) P. juliflora leaves were collected from 10 trees of

which two samples were taken at different seasons.

(2) Other samples were collected from the plant to che-

mically measure them in addition to the soil.

(3) Leaves of the plant were weighed in the wet content

and then dried. After drying, the leaves were weighed

in dry wax to determine the water content.

(4) Dry leaves were measured by spectroradiometer, and

data collected from the files of spectral data were

Figure 1: The location of the study area sampling site disclosed Bahrah area.
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transferred as a format of ASCII text by applying the

software of ASD ViewSpec Pro.

2.3 Hyperspectral data processing

Spectral varieties with extreme noise at the final point of

the spectrum, from 2,350 to 2,500 nm, and with obvious

robust climatic intervention, that is 1,351–1,449 nm and

1,801–2,029 nm, were discarded from the investigation.

Accordingly, the spectral data were modified for steps,

i.e., sudden alterations of the noted reflectance that

took place in the spectral signatures at 1,000 nm, which

is typical for the instrument utilized, as a result of the

instrument sensitivity drift. The shortwave IR (SWIR) por-

tion of the spectrum, ranging from 1,000 to 1,800 nm,

was considered as a corrections’ reference since it is con-

stant to the instrument’s sensitivity drift [54,55]. To con-

clude, the spectral data are saved with the auxiliary

metadata in a uniform, accessible to track method [56].

Figure 3 shows the behavior of the natural vegetation

to different electromagnetic wavelengths. For the visible

spectrum, that is, from 1 to 395, the plant taxa do not

reveal any significant difference. For the long-wavelength

IR, that is from 442 to 1,079, the taxa reveal a significant

difference among the species. In its response to the SWIR,

Figure 2: Pictures showing the mechanism of work (1) plant leaves, (2) black plate, (3) spectroscopy, (4) white reflector, (5) measured by

pistol, and (6) transfer of data to the laptop.
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that is, from 1,128 to 1,569, the plant taxa reveal only one

sample differs from others. For the TIR, that is, from 1,618

to 2,108, the trees reveal that two of the samples are

similar in their behavior to the TIR and one sample differs

from them in its response to the TIR wavelength.

2.4 Principal component analysis (PCA)

The PCA is used to transform a set of likely correlated to

unlikely correlated variables. The principal component

number is less than or equal to the variables’ original

number. According to Lorenz [57] and Jolliffe and Cadima

[58], the PCA’s fundamental equations are described as

follows:
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Since w(1) has been defined to be a unit vector, it also

equivalently satisfies to be calculated as follows:
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The Kaplan–Meier estimator, also known as the pro-

duct-limit estimator, is a nonparametric statistic used to

estimate the survival function from lifetime data, survival

estimates, exploratory plots with optional parameter esti-

mates, and a comparison of survival curves when there is

more than one group, using designated sample data table

[59,60]. The summary report gives estimates for the mean

survival time as follows:
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With ti is the time when at least one event happened, di

the number of events that happened at time ti, and ni the

individuals known to have survived (have not yet had an

event or been censored) up to time ti.

2.5 Statistical functions

Quantile analysis is a binary form of spectral data classi-

fication, which Khan et al. [61] used to improve the algo-

rithm performance as a functional gradient descent (FGD).

The generic form of the FGD is valid to analyze high spec-

tral data precisely throughout a direct data interpretation.

( ) = [ ( − )]Q Y E ρ Y carg minτ c Y τ (5)

Where

Qτ (Y) is the τth quantile of Y,

ρτ (r) is the conditional function

Figure 3: Vegetation behavior subjected to a different spectrum of a different wavelength.
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While the τth conditional quantile of Y given x be f(x)

for a given quantile estimation:
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The functions with Col prefix compute statistics for

a column of numbers or expressions which specifically

includes the mean, quantile, range, maximum, and

minimum. The Col quantile functions of Bassett Jr and

Koenke [62], represent the quantile percentage divided

by 100. The 25% quantile, also called the lower quartile,

corresponds to p = 0.25, and the 75% quantile, called the

upper quartile, corresponds to p = 0.75. In general, to

define the quantile that corresponds to the fraction p,

linear interpolation between the two nearest pi is used.

According to Ashkar and Ouarda [63], if p lies as a frac-

tion of f from pi to pi+1, then pth quantile is defined as:

( ) = ( − ) ( ) + ( )+Q p f Q pi fQ pi1 1

As special cases, define the median and quartiles by:

Median: Q (5)

Lower quartile: Q (25)

Upper quartile: Q (75)

The function Q defined in this way is called the quan-

tile function.
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3 Results and discussion

In the current study, the ASD spectroradiometer illus-

trates the different spectral signatures over the visible,

Figure 4: The wavelength vs reflectance of Prosopis juliflora, (a) result collected in Feb. 2019, (b) result collected in Sep. 2019, (c) result

collected in Nov. 2019, and (d) result collected in Feb. 2020.
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near infra red (NIR), and SWIR spectral bands [64]. Corre-

spondingly, the spectroradiometer engenders the spectral

responses of the targeted species in the region between

400 and 2,500 nmwavelength. Figure 4 shows the spectral

behavior of P. juliflora in four seasons and different periods

in terms of wavelength against reflection by ASCII text

accompanied by the software of ASD ViewSpec Pro.

The results of the PCA were illustrated in Figure 5.

Principally, Figure 5a shows the variance-based PCA of

the ten different sample indicators where the analysis

was divided into two groups. The first group involves

the positive samples of S4–S5–S6–S7–S9, and the nega-

tive group involves the samples S1–S2–S3–S8–S10. While

Figure 5b shows the variance-based PCA collected in

summer. The ten different sample indicators were divided

into two groups: the first group involves the positive sam-

ples of S1–S5–S4, and the negative group involves the

samples S2–S3–S6–S7–S8–S9–S10. Figure 5c shows the

variance-based PCA where the ten different sample indi-

cators were also divided into two groups. The first group

involves the positive samples of S1–S3–S4–S5–S6, and

the negative group involves the samples S2–S7–S8–S9–S10.

Finally, Figure 5d shows the variance-based PCA col-

lected in winter 2020, and the ten different sample indi-

cators were divided into two groups according to the

correlation coefficient value [65].

Spectral information collected from the vegetative

covers is generally indicated as a difference in the mole-

cular character of the designated targets. Divergence data

were a gradually changing wavelength function; there-

fore, it gives data that are not likely interconnected with

any spectral calculations carried out in a system [66,67].

The analysis of the hyperspectral image, during the pre-

vious decade, had developed into one of the best potent

and wildest rising technologies in the area of remote sen-

sing [68,69].

Figure 5: Principal component analysis. (a) Result collected in Feb. 2019, (b) result collected in Sep. 2019, (c) result collected in Nov. 2019,

and (d) result collected in Feb. 2020.
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Table 1: Quantiles slicing analysis of Prosopis juliflora

(a) Result collected in Feb. 2019

T1 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

100.0% Max 0.75998 0.65156 0.81047 0.90976 0.95114 0.80032 0.69253 0.64990 0.73011 0.62004

99.50% 0.75986 0.64914 0.80926 0.90113 0.94337 0.79788 0.69114 0.64752 0.72403 0.61734

97.50% 0.75751 0.63724 0.80447 0.86081 0.92110 0.79377 0.68352 0.63778 0.70568 0.60085

90.00% 0.74176 0.62384 0.78557 0.82587 0.89004 0.78389 0.66912 0.62448 0.67442 0.59059

75.00% Quartile 0.68538 0.57103 0.68073 0.69554 0.77031 0.72146 0.59955 0.56141 0.56621 0.53662

50.00% Median 0.50901 0.43752 0.59829 0.58616 0.68110 0.55920 0.45518 0.41819 0.43792 0.44694

25.00% Quartile 0.27738 0.23438 0.34390 0.33800 0.39047 0.35005 0.23090 0.20595 0.27646 0.24444

10.00% 0.10298 0.06157 0.09557 0.08594 0.14111 0.06420 0.04543 0.04423 0.07407 0.05090

2.50% 0.05642 0.03849 0.06217 0.06146 0.06687 0.04089 0.02963 0.02855 0.04530 0.03594

0.50% 0.04618 0.03064 0.05156 0.05295 0.05663 0.03183 0.02248 0.02212 0.03889 0.02796

0.00% Min 0.04553 0.02985 0.05081 0.05233 0.05564 0.03116 0.02163 0.02136 0.03823 0.02685

(b) Result collected in Sep. 2019

T2 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

100.0% Max 0.85986 0.74088 0.82104 0.87244 0.90438 0.80695 0.79689 0.75318 0.76183 0.74386

99.50% 0.85618 0.73629 0.81603 0.87002 0.90112 0.80318 0.79209 0.74861 0.76152 0.74307

97.50% 0.83777 0.71558 0.79027 0.85714 0.88149 0.77987 0.77022 0.72552 0.75886 0.73995

90.00% 0.81402 0.69792 0.76500 0.84262 0.86035 0.75707 0.75066 0.70841 0.74938 0.73010

75.00% Quartile 0.76526 0.65510 0.70466 0.80040 0.80343 0.70779 0.70554 0.66460 0.69998 0.67204

50.00% Median 0.53300 0.53123 0.55533 0.62498 0.63333 0.56750 0.57015 0.52076 0.53018 0.52696

25.00% Quartile 0.26287 0.29614 0.29430 0.33539 0.36001 0.34301 0.31755 0.28662 0.29306 0.29006

10.00% 0.09844 0.07719 0.06424 0.08227 0.09017 0.07800 0.07326 0.06695 0.06972 0.06493

2.50% 0.04116 0.04605 0.04242 0.05441 0.05710 0.04742 0.04468 0.04469 0.04062 0.03314

0.50% 0.03790 0.03979 0.03490 0.04422 0.04892 0.03970 0.03770 0.03614 0.03420 0.03029

0.00% Min 0.03778 0.03934 0.03376 0.04273 0.04826 0.03862 0.03695 0.03514 0.03365 0.03015

(c) Result collected in Nov. 2019

T3 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

100.0% Max 0.70374 0.73011 0.81047 0.81435 0.95114 0.90370 0.79675 0.67049 0.90976 0.78604

99.50% 0.70338 0.72403 0.80926 0.81014 0.94337 0.89480 0.78988 0.66374 0.90113 0.77687

97.50% 0.70129 0.70568 0.80447 0.79981 0.92110 0.86173 0.75803 0.63576 0.86081 0.74285

90.00% 0.68940 0.67442 0.78557 0.77506 0.89004 0.82969 0.73032 0.60741 0.82587 0.71325

75.00% Quartile 0.65968 0.56621 0.68073 0.68779 0.77031 0.72237 0.64245 0.50801 0.69554 0.64945

50.00% Median 0.52984 0.43792 0.59829 0.61097 0.68110 0.62747 0.55300 0.40682 0.58616 0.54060

25.00% Quartile 0.30735 0.27646 0.34390 0.38138 0.39047 0.37521 0.32332 0.24635 0.33800 0.30468

10.00% 0.10666 0.07407 0.09557 0.11010 0.14111 0.12386 0.12237 0.07546 0.08594 0.08705

2.50% 0.06388 0.04530 0.06217 0.07043 0.06687 0.07701 0.06541 0.05327 0.06146 0.06216

0.50% 0.05347 0.03889 0.05156 0.05549 0.05663 0.06555 0.05936 0.04695 0.05295 0.05353

0.00% Min 0.05279 0.03823 0.05081 0.05310 0.05564 0.06495 0.05911 0.04650 0.05233 0.05281

(d) Result collected in Feb. 2020

T4 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

100.0% Max 0.69234 0.58137 0.75280 0.81979 0.88688 0.76428 0.75530 0.57925 0.71348 0.60727

99.50% 0.69011 0.58013 0.74885 0.81572 0.88415 0.75961 0.75159 0.57562 0.71106 0.60582

97.50% 0.67469 0.57537 0.72466 0.78957 0.86611 0.73158 0.72878 0.55663 0.69281 0.59762

90.00% 0.66113 0.56421 0.70432 0.76716 0.84874 0.71266 0.70832 0.54513 0.67646 0.58834

75.00% Quartile 0.63442 0.53596 0.65837 0.71827 0.79102 0.68320 0.63876 0.52099 0.64133 0.56869

50.00% Median 0.53035 0.41207 0.53566 0.61162 0.64247 0.57004 0.54949 0.38933 0.52360 0.44741

25.00% Quartile 0.29460 0.21123 0.29788 0.37216 0.34893 0.32017 0.31377 0.19212 0.29187 0.23656

10.00% 0.13727 0.07522 0.08810 0.12950 0.12334 0.11725 0.10230 0.07843 0.10932 0.11082

2.50% 0.07223 0.05043 0.06347 0.08409 0.07496 0.07966 0.07260 0.05448 0.07742 0.05723

0.50% 0.06632 0.04378 0.05006 0.07126 0.06707 0.06780 0.06573 0.04855 0.07085 0.05441

0.00% Min 0.06620 0.04354 0.04908 0.06992 0.06689 0.06697 0.06553 0.04842 0.07060 0.05424

Hyperspectral data in intraspecific variation in P. juliflora, Saudi Arabia  287



The first group involves the positive samples of

S1–S4–S5–S6, and the negative group involves the sam-

ples S2–S3–S7–S8–S9–S10. PCA is a statistical process

that aims to increase the interpretation of information

by using JMP Statistical software.

Classification of different indicators was possible

because of PCA, which identifies the similarities and dif-

ferences in all samples [70]. The abovementioned sample

(a–d) represents the grouping to different indices accord-

ing to PCA on covariance [71,72]. The samples were cate-

gorized into two positive and negative groups, but it was

not precisely determining the behavior; and to ensure

that a quantitative segmentation analysis of the samples

was performed for further clarification [2].

Table 1 shows the quantiles’ slicing for the four per-

iods (T1, T2, T3, and T4.) where the data was extracted by

equations 5–7. The table was divided from 0.00% (min

value) to 100% (max value), while the median specifies

the 50% of the recorded reflection values. Interpreting

the data in the tables maintained the stability behavior

of the tested sample when it was exposed to different

wavelengths reflecting from 0 to 100%; while between

75 and 25%, the targets had other interpretations that

will not be further addressed.

Table 2 shows the spectral signature stability beha-

vior of P. juliflora as clarified in the previous tables, since

the spectrum behavior was stabilized in (T1) in the IR

samples (4,5), the SWIR (3,4,5), and TIR (3,4,5,6) at the

quantile range >75. While in the quantile range <25,

we found that the stability behavior in the IR samples

(2,8,10), the SWIR (2,7,8,10), and in TIR (2,7,8,10).

In (T2) in the IR samples (1,4,5), the SWIR (4,5), and

TIR (4,5)were at the quantile range of >75. In the quantile

range of <25, the stability behavior in the IR samples was

(2,8,10), the SWIR (2,8,9,10), and TIR (1,2,8,10). In (T3) at

the quantile range of >75, the IR samples were (4,5,6,9),

the SWIR (4,5,6,9), and TIR (4,5,6). In the quantile range

of <25, the stability behavior in the IR samples was

(2,8,10), the SWIR (2,8,10), and TIR (2,8,10). In (T4) at

the quantile range of >75, the IR samples were (4,5),

the SWIR (4,5), and TIR (4,5). In the quantile range

of <25 the stability behavior in the IR samples was

(2,8,10), the SWIR (2,8,10), and TIR (2,8,10).

This explains the significance of the difference in the

chemical content, leaf content, or water content. This is

confirmed by a study carried out by Hoshino et al. [73]

and Vidhya et al. [71], which showed that the NIR reflec-

tance of the P. juliflora leaves correlated significantly with

a leaf content.

The common factor between wavelengths and reflec-

tances is the stability behavior that was established in

two groups: the first group >75, the samples were (4,5),

and the second group <25 the samples were (2,8,10).

These results confirm that the P. juliflora, under different

ranges of wavelengths, exhibited different spectral beha-

viors, although there is a great similarity in the external

appearance of the plant. This also confirms that the

hyperspectral spectroradiometer is an effective device,

as it gave a good result, and, therefore, it can be effec-

tively used in plant classification [74].

The implementation of the FGD algorithm extended

to a robust and reliable classification function of two

overlapped plant samples. The plant materials under

investigation belong to two different classes along the

broad spectral wavelengths. The temporal analysis con-

firms the designation of the two groups (4 and 5, 2 and 8,

and 10) which is a solid finding of the current research of

P. juliflora spectral classification. The classification algo-

rithm was performed based on labeling the class vari-

ables and the corresponding class quantiles to attain

equality.

This is consolidated by the findings of the study car-

ried by Suleiman et al. [75] which confirmed that the

hyperspectral spectroradiometer is an effective device

as the wavelength of numerous IR absorption bands is

a definite category of chemical bonds in the leaf samples

of plants [76,77] (Figures 6 and 7).

4 Conclusions and

recommendations

The extended use of remote sensing concepts in the form

of hyperspectral data analysis plays an important role

Table 2: Spectral signature stability behavior of Prosopis juliflora

Quantiles

range

Infrared SWIR Thermal IR Stability

behavior

T1 >75 4,5 3,4,5 3,4,5,6 4,5

75 > x < 25 1,3,6,7,9 1,6,9 1,9

<25 2,8,10 2,7,8,10 2,7,8,10 2,8,10

T2 >75 1,4,5 4,5 4,5 4,5

75 > x < 25 3,6,7,9 1,3,6,7 3,6,7,9

<25 2,8,10 2,8,9,10 1,2,8,10 2,8,10

T3 >75 4,5,6,9 4,5,6,9 4,5,6 4,5

75 > x < 25 1,3,7 1,3,7 1,3,7,9

<25 2,8,10 2,8,10 2,8,10 2,8,10

T4 >75 4,5 4,5 4,5 4,5

75 > x < 25 1,3,6,7,9 1,3,6,7,9 1,3,6,7,9

<25 2,8,10 2,8,10 2,8,10 2,8,10
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Figure 7: (a) The flower length of Prosopis juliflora number 5, (b) the fruit (Legume), (c) the leaf (compound), (d) the leaflet (compound), and

(e) the tree of sample 5.

Figure 6: (a) The flower of Prosopis juliflora number 10, (b) the fruit (legume), (c) the leaf (compound), (d) the leaflet (compound), and

(e) the tree of sample 4.
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in plant taxonomy. The overlapped plant species are

usually distinguished in more complicated gene-level

classification to retain their separability. In the current

research study, the hyperspectral data of P. juliflora col-

lected by temporal screening using the functional gra-

dient decent classification algorithm, which successfully

distinguished two separable groups based on the spectral

reflectance obtained from different wavelengths.

Prosopis trees play a vital part in the ecology and the

economy of many arid and semi-arid zones. They play an

integral part in several sustainable lands while pre-

venting further soil degradation and assisting land recla-

mation use systems that are improving the livelihoods of

rural desert populations. Most of the silvicultural con-

straints to arid zone development have already been

overcome, particularly in plantation and establishment

nursery, making the most of the best genetic material

available, with so many Prosopis trees already planted

and often spreading widely by natural regeneration.

P. juliflora is one of the rare wood-producing plant

species capable of developing in the Arabian Peninsula.

The following are some recommendations stated by

the researcher in this study. It is the tree best recom-

mended for reclaiming sand dunes in Saudi Arabia in

sandy areas. It is a natural source of wood, fuel, and

coal. It contributes to regulating bowel movement and

helps preventing constipation because it absorbs water,

which causes the intestine to normally work. Finally, it is

recommended that more research is performed to study

about this very important tree, focusing on other aspects

such as the medicinal values of the seeds, fruits, flowers,

and leaves.
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