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ABSTRACT

- An extended interpretation of the term of the “cyclic net” defined by Scheidegger leads
to a better understanding of the laws of drainage composition and the evolution of drainage
basins.

The average number «€, of streams of order \ entering a stream of order x from the sides
provides two parameters: €; = (Ex_; and K =(«€x/ x€«_1)"/*"* 1. A model of
drainage basins is built on the assumption that each of the parameters is constant for various
values of k and X in a network. The law of stream numbers of the model is formulated as
WA =Q(Q A P A1y (24 €, —P)[(Q—P)+P* M 1(2+€,), where ,uy is the average
number of streams of order A in a basin order x, P = [2+ € +K—V(2 + € +K)* — 8K] /2
and 0=[2+ €, +K+(2+ € +K)? —8K] /2. On some reasonable assumptions, the law
of basin areas and the law of stream lengths are also formalized by using €; and K, viz.,
Ay =0"""4, and Lx= Q()‘_’)/zL,, where [ is the lowest order of streams or basins, 4 is
the average area of basins of order A, 4; is the average area of basins of the lowest order,
Ly is the average length of streams of order A and L, is the average length of stream of the
lowest order. The condition of the “cyclic net” is satisfied basically in the model, because
the relation of the streams of order A to the streams of order (A +n) is the same as the
relation of the streams of order (A + 1) to the streams of order (A + 1 + 7).

The equation which describes the law of stream numbers gives graphs on the Horton
diagram which tend to be concave upward, except the case of K =0, and seems to be more
adequate to describe the relationship between stream orders and numbers of actual drainage
networks than Horton’s formula. The average values of €; and K in infinite topologically
random channel networks are 1 and 2 respectively for various values of k and A. The most
probable networks in the set of infinite topologically random channel networks also satisfy
€;=land K=2.

The law of allometric growth of drainage basins is formulated by using €; and K as
m(t) =[5t +In{(Q — P)/ 2+ €, — P)}] / InQ +1, where m(¢) is the order of a basin at
time ¢ and & is constant. This equation holds exactly for basins of infinitely large value of
[m(f) — I] and to a fairly good approximation for basins of a comparatively large value of it.

It can be said that the model corresponds to basins in an equilibrium state and
encompasses basins of the maximum entropy as a special case. The model seems to be very
~advantageous not only to investigate the composition of drainage networks but also to

1=



explain their development.

1 INTRODUCTION

In a paper famous amorig students of geomdrphology and hydrology, Horton (1945)
published an ordering system of streams and two important empirical laws of drainage
composition. In his law of stream numbers, the relation between stream order and number
of streams of each order in a basin is expressed as an inverse geometric series and, in his
law of stream lengths, the relation between stream order and average length of streams of
each order as a geometric series (Horton, 1945).

The two laws were originally conceived in terms of Horton’s ordering method. But a
modification was later proposed by Strahler (1952) in order to avoid the necessity of
subjective decisions of parent streams, which is inherent in Horton’s system. Further, it was
proved by Scheidegger (1968) that, in a basin in which the two laws are satisfied in Horton’s
system, they are also satisfied in Strahler’s system and vice versa. In this paper, Strahler’s
system is used exclusively by following examples of most recent students.

Horton (1945) also implied that there should be a law analogous to the law of stream
lengths for basin areas, and the law of basin areas was later formalized by Schumm (1956).

The first attempt to give a theoretical explanation to these three laws was made by
Leopold and Langbein (1962) based on statistical thermodynamics. Their explanation was
made by using a model created by a graphical method (Leopold and Langbein, 1962). Such
a method has some disadvantages: it requires rather highly simplified basic stream patterns
in order to be practical, and it inherently involves Monte Carlo methods which make
difficult the control of variables, such as the number of streams of the first order or the
order of networks (Shreve, 1966).

A firm analystic approach to investigate topological and metrical characteristics of
drainage networks based on the random graph theory was initiated by Shreve (1966, 1967).
Shreve’s concepts of link magnitude and topologically random channel networks provide
the equations which describe the law of drainage composition of the expected state of
randomly generated networks and contribute to clarify properties of these networks (Shreve,
1966, 1967, 1969; Tokunaga, 1972a, 1972b, 1974, 1975, 1977; Werner, 1972).

A different type of approaches to explain the laws of drainage composition theoretically
has been made by Woldenberg (1966) and Scheidegger (1970). Then the explanation was
made on the assumption that a drainage network is the result of a regular and cyclic growth
process, in which new parts of the network are created with ever the same bifurcation ratio.
This picture was formalized based on the allometric growth theory (Woldenberg, 1966;
Scheidegger, 1970).

It can be said that the two types of models, the cyclic model and the randam graph
models, have been widely introduced. It should be, however, noted that both the types
have also disadvantages. The cyclic model shows mathematical inconsistency in any network
except “‘structurally Hortonian networks” (Tokunaga, 1966; Smart, 1967; Scheidegger,
1968), and the random graph models themselves provide no equation to describe the
composition of networks of which topology and metric are affected by non-random force.
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Furthermore, the two types of models are not compatible with each other, because the
expected state of subbasins in infinite topologically random channel networks does not
satisfy Horton’s law of stream numbers (Shreve, 1969; Tokunaga, 1974).

This paper is written to show that the model proposed by the writer (1966) not only
satisfies the condition of the “cyclic net” defined by Scheidegger (1970) in a different way
from Horton’s law of stream numbers but also encompasses one of the random graph models
as a special case (Tokunaga, 1974), that two parameters used in the model combine the law
of stream numbers with the law of basin areas, the law of stream lengths, and so on
(Tokunaga, 1975), and that the allometric growth of drainage basins is also explained by
using the model (Tokunaga, 1979).

This paper summarizes the writer’s previous publications (Tokunaga, 1966, 1972a,
1972b, 1974, 1975, 1977, 1979). Some detailed and additional considerations on properties
of the model are referred to in those publications.

II CYCLIC SYSTEM

The term of the “cycle of rivers” was used at first by Scheidegger (1968). By his
definition, a drainage network is considered to be cyclic, when it satisfies the condition
that “each cycle (referring to a particular stream order) is entirely similar to the previous
and following cycles” (Sheidegger, 1970). Then we may define a term “‘cyclic system” as a
system which satisfies the above condition. Then Horton’s law of stream numbers is
considered to be a mathematical expression of such a system. Horton himself, in fact, had
essentially an idea of the cyclic system and has attempted a hydrophysical explanation of
his laws in terms of a growth process (Horton, 1945).

It is, however, clear that, in any network except “structurally Hortonian networks”
(Scheidegger, 1968), Horton’s law of stream numbers itself proves to be mathematically
inconsistent, because, in a network which exactly satisfies Horton’s law of stream numbers,
the subbasins do not satisfy it at all, or not with the same bifurcation ratio as the main
basin (Tokunaga, 1966; Smart, 1967). This requires us to examine Horton’s law of stream
numbers itself but by no means enforces us to abandon the concept of the cyclic system.
A model proposed by the writer (Tokunaga, 1966) not only satisfies the definition of the
cyclic system in a different way from Horton’s law of stream numbers but also provides
adequate equations to describe the laws of drainage composition (Tokunaga, 1966, 1974,
1975).

The model is built as follows. The average number « €, of streams of order A entering a
stream of order k from the sides provides parameters €; and K, on the assumption that the
following relations are satisfied in a network.
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where m is the highest order and / is the lowest order on maps of a given scale. The validity
of the assumption in actual drainage basins will be discussed later in this chapter. It will
also be shown in Chapter IV that the average or most probable state of infinite topologically
random channel networks* satisfies the assumption. A hypothetical network with &; =1

and K =2 is illustrated in Fig. 1.

——— Stream of order /

—===— Stream of order ( + 1)

5/ / \ /
2’>7___\ (Y % . —==- Stream of order (/ +2)
H .. \ ‘\ l=
RS ~ '.k"\\.‘;‘%é \/ } —— Stream of order (! + 3)
Tame T \\ / ’_‘. 7 1 '/" .
g !/ -~ Drainage devide
1

,{Z/& Interbasin area in contact with
stream of order (/ + 3)

The term of infinite topologically random channel networks is used in this paper to mean a set of
topologically distinct channel networks with an infinite number of streams of the lowest order which
are equally likely (cf. Chapter IV) as well as in the writer’s previous publications (1972b, etc.).
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The following equations are derived from the assumption (see Fig. 1).

K

KMA = 2ty T n=§+l€1Kn_)\—1K#n (1-1)
K
et = 2uadiaea * o 2 €K R n (11-2)

where xuy is the average number of streams of order A in a basin of order «, «iy = 1 and
«Mx_1 =2+ & ;. Subtracting equation (II-2) x K from equation (II-1) yields the equation

kA = 2+ & +K)pin+1 — 2Kk (11-3)

This recurrence equation provides the following equation in which «u is given in the
form of sum of series (Tokunaga, 1966, 1974).

QK—A-1 _ prk=r-1
e oGP QQrE-P) + P2 E (11-4)

where P=[2+€,+K—V(2+ €,+K)2—8K] /2 and Q= [2+ €, +K+/(2+E+K)? —8K] /2.
The mathematical procedure to obtain equation (II-4) is shown in Appendix I. Equation
(11-4) expresses the law of stream numbers of the model. The model satisfies the definition
of the cyclic system, because the relation of the streams of order A to the streams of order
(A +n) is the same as the relation of the streams of order (A + 1) to the streams of order
(\+1+n), where n=%1, 2, ... (see Fig. 1). Equation (II-4) gives graphs on the Horton
diagram which tend to be concave upward in the part of the higher orders except the case of
K=0.When K=0and € #0, we obtain €, =€3=----. = €n = 0. Then equation (11-4)
expresses the law of stream numbers of “structurally Hortonian networks™ and gives
straight lines on the Horton diagram (Tokunaga, 1966, 1972a, 1972b).

Shreve (1966) applied a parabolic curve to each plot of 246 actual networks on the
Horton diagram and calculated the value of coefficient of quadratic term to give the best
fit to each plot. The sample mean values of coefficient are consistently positive, showing
that the curves tend to be slightly concave upward, and these values decrease monotonically
with increasing order of networks (Table 1). The values obtained by the similar application
to plots given by substituting €; =1 and K =2 into equation (II-4) are also presented
in Table 1. The values show the similar tendency with the above sampled mean values. This
implies that equation (II-4) is more adequate than Horton’s formula to describe the

Table 1. Average of values of coefficient of quadratic term. (After Tokunaga 1974)

order of networks or value of (m—I[+1)
3 4 5 6 7
Actual networks 0.160 0.095 0.042 0.013 0.010
(Shreve (1966)) (152) (64) (23) (5 2)
Network with
€,=1and K=2 0.084 0.053 0.035 0.025 0.018

The numbers in parentheses indicate the numbers of networks.
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relationship of stream numbers to orders of actual drainage networks. The assumption that
each of parameters €; and K is constant in a network is examined in four subbasins in the
Toyohira River Basin (Tokunaga, 1966). The calculated values of (€, approximately
satisfy the assumption (Table 2).

Table 2. Values of «€),&n and K of four subbasins in the Toyohira River Basin*.
(After Tokunaga 1966)

Subbasin 1€ 1+2&141 1+3€142 1+4€ 143 Average, €,
AA 1.26(214/170) | 1.13(44/39) | 1.2909/7) 1.23
AB 1.13(196/174) | 1.11(42/38) | 2.17(13/6)** 1.00(3/3)** 1.12
BA 1.37(127/93) 1.21(23/19) | 1.25(5/4) 1.28
BB 1.20(332/277) | 1.05(59/56) | 0.64(9/14)** 1.00(3/3)** 1.13

Average 1.24 1.13 1.27 1.00** 1.19
1+2€1 1+3€141 1+4 €142 Average, €,
AA 2.44 (95/39) 3.57(25/7) 3.01
AB 2.87(109/38) 3.67(22/6) 1.67(5/3)** 3.27
BA 3.37(64/19) 4.25(17/4) 3.81
BB 3.23(181/56) 2.86(40/14) | 4.33(13/3) 347
Average 2.98 3.59 4.33 3.39
1+3€1 Average, €3
AA 9.00(63/7) 9.00
AB 8.67(52/6) 8.67
BA 13.25(53/4) 13.25
BB 9.29(130/14) 9.29
Average 10.05 10.05
Subbasin | K(€5/€) K(E3/€5) Average, K
AA 2.45 2.99 2.72
AB 2.92 2.65 2.79
BA 2.98 3.48 3.23
BB 3.07 2.68 2.88
Average 2.86 2.95 2.91

* Miscalculations in the original paper are corrected.
** The values are not used for the calculations of €nand X.
Let (k —\) — o in equation (II-4), then we obtain

_, 2+€,-P
iy = Q77 ———Q_‘P (11-5)

Here the value of Q which corresponds to the gradient of the asymptote to the plot in
the part of the lower order points on the Horton diagram, does not depend on the orders of



networks. Thereby Q was defined anew as a bifurcation ratio (Tokunaga, 1966).

Parameters €; and K give us more information about the topology of a network than
Q or Horton’s bifurcation ratio, because even a given value of Q or Horton’s bifurcation
ratio provides many types of drainage patterns, depending on the values of €; and K.

III INTERBASIN AREAS, BASIN AREAS AND STREAM LENGTHS

The law of stream numbers concerns the topology of a drainage network. On the
contrary, the laws of basin areas and stream lengths concern the metric. Some students
have paid effort to prove empirically that these three laws are not independent of each
other (Morisawa, 1962; Smart, 1968). Theoretical considerations on such a problem need
some assumptions (Shreve, 1967, 1969; Tokunaga, 1975). Shreve (1967), for example,
derived the law of stream lengths from the law of stream numbers on the assumption that
all of links have the same length in a topologically random channel network. He also derived
the law of basin areas from the laws of stream numbers and stream lengths on the
assumption that a basin area is proportional to the sum of the number of exterior links and
the number of interior links in it and the drainage density is uniform in the whole basin.
The writer does not agree to the latter assumption because the drainage density in the
neighbourhood of streams of the higher order seems higher comparing with the density
around the divide in an actual drainage basin. This will be discussed by using the writer’s
model in Chapter IV.

Shreve’s equations describe only the expected state of subbasins in an infinite topologi-
cally random channel network and therefore the stream length ratio and the basin area ratio
are given numerically in them (Shreve, 1969). Such equations are not given in the parameter
representations.

It has been shown that the parameters €, and K provide the equations which express the
laws of numbers of interbasin areas, basin areas, areas of interbasin areas and stream lengths
(Tokunaga, 1975). The equations are given as follows:

elK(K')\—l— 1_ 1)

Ny =2+€&; + T (111-1)
Ay = QM 4, (111-2)
[QA—I_ 2QX—1—1 _ el(QA_I—KA_I)]AI
Bus = e X am-3)
v + EKEMTT-D
! K—1
Ly = L;,Q*~h/2 (111-4)

where N,.; is the average number of interbasin areas in contact with a stream of order A,
A, is the average area of basins of order A, 4, is the average area of basins of the lowest
order, B.; is the average area of interbasin areas in contact with a stream of order A, L is
the average length of streams of order A and L, is the average length of streams of the lowest
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order, when the lowest order is given by / (see Fig. 1).

The number of streams entering directly a stream of a given order is equal to the number
of interbasin areas in contact with it (see Fig. 1). Consequently, we obtain equation (1II-1)
by summing up numbers of streams of each order entering directly a stream of order A
according to the assumption stated in the previous chapter (Tokunaga, 1975).

The last three equations are derived on some or all of the following assumptions. (1) A
basin is divided into infinitesimally small subbasins and interbasin areas according to the
assumption in the previous chapter. Then we can define A4;, Nx.; and By.; for smaller
integral j, to the extent of j=—oco, than [/ in all the same way as to define 4, , N,.; and
Bx.; (see Appendix II). (2) The average area of subbasins of order 7 is larger than the average
area 8).n of interbasin areas to the extent of n=—oo, (3) The value of K/ (2+§€,) is smaller
than 1. (4) The following relation exists between basin areas and stream lengths.

L = CVA,

where C is a non-dimensional coefficient concerning the shape of basins.
Equation (IlI-1) and the assumption in the previous chapter provide the following
equation (see Fig. 1):

A—1 A—l—1_
Ay = Uy + 3 elK’\—"—lA,,+[2+e, + elK(’;_ 1 1)]3;\.1(111-5)

A shift of index in the above equation gives

Aoy = 24, o+ B G KN, ¢ [2 rE + elK(’?_’Iz‘ 1)]ﬁ>\_1.,(lll-6)
A recurrence equation which expresses the relation between Ax, Ax_ and Ay_, is
derived from the above two equations on the assumptions (1), (2) and (3), and it provides
equation (I1I-2) on assumption (1). The mathematical procedure is shown in Appendix I

The total area of interbasin areas in contact with a stream of order A is obtained by
subtracting the total area of subbasins of orders lower than X which feed streams entering
directly a stream of order A from the area of basin of order A (see Fig. 1). Therefore,
equation (III-3) is derived from equations (1I-4), (1II-1) and (11I-2) (Tokunaga, 1975). The
mathematical procedure is shown in Appendix III.

Substituting La= Cv/Ay and L, = C\/A; into equation (I11I-2) and eliminating C from
the consequential equation yield equation (III-4).

Let us examine the assumptions. In infinite mathematical models, i.e. infinite topologi-
cally random channel networks, the unit of basin area is given arbitrarily and only the
relative size of basin area has a meaning (Shreve, 1967, 1969, 1974; Tokunaga, 1975). Then
it is considered mathematically reasonable to assume a basin of finite size consisting of
infinitesimally small subbasins of the lowest order and interbasin areas, instead of an infinite
basin consisting of subbasins of the lowest order and interbasin areas of finite size.
Therefore, assumption (1) does not raise any problem in the above mentioned models. This
assumption is satisfied approximately in an actuall drainage basin of comparatively large



area, because a very small value of 4,/A4) can be obtained for a large value of (A —n)
while the value of 7 is given finite. Assumption (2) is considered reasonable because, if the
average area §5.n of interbasin areas is larger than the average area of subbasins of order 7,
streams should appear in many of the interbasin areas and such areas can not be any longer
interbasin areas. The average state as well as the most probable state of topologically random
channel networks satisfies € =1 and K=2 (shown in the next chapter). This supports
assumption (3). This assumption is also confirmed in the Toyohira River Basin (Table 2).
Assumption (4) is considerd reasonable from the aspect of dimensional analysis because
both sides of the equation have the same dimension. Some students have stated that
mainstream length in drainage networks varies statistically in proportion to basin area raised
to a power (Hack, 1957; Gray, 1961; Shreve, 1974). Equations (III-2) and (III-4) provide an
equation which gives the values of slopes of plots of mainstream length versus basin area on
a logarithmic paper for various values of (A —/). Then the value of slope decreases
monotonically as (A —1[) increases and reaches 1/2 for (A —1) > o (Tokunaga, 1975). The
scatter diagram for 461 actual drainage basins shows the same tendency (Shreve, 1974).
This is highly encouraging for assumption (4).

IV. TOPOLOGICALLY RANDOM CHANNEL NETWORKS

Within the set of all topologically distinct channel networks, the number N (i, n) of ways
in which n streams of a given order (here, let it be (n — 1)) can produce i streams of the
next higher order is (Shreve, 1966; Werner, 1972)

5 (21’ - 1)
. _(n- n—2i ! -

NG n) (n—Zi)z 2i—1 (IV-1)
This equation provides the equation which gives the average E(n) of the distribution NV (i, n)
as follows (Werner, 1972):

np2
- "Eivan
E(n) = :— =

nf2 <1 * : ) (v-2)
i§1 N, n)

Equation (IV-1) also provides the equation which gives the average number E; (n) of streams
of (n—1) entering a link of order higher than (n — 1) from the sides in infinite topologically
random channel networks as follows (Tokunaga, 1974):

"éj (n—20)NG, n)
Ei(m) = ;/2
'S (21~ DNGm)

(IV-3)

n/2 n/2 .
Elimination of '21 iN(i,n) and _EIN(i, n) from equations (IV-2) and (IV-3) leads to the
i= i=
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following result.

Ein) =—L2 22 By () = 1 (1V-4)

n2 —3n+3 =
This implies that the average state of infinite topologically random channel networks
satisfies €; = 1. The implication is confirmed by proving that the average number of streams
of order (n — 1) entering a link of order n from the sides is equal to the average number of
streams of order (n—1) entering a link of order higher than 7 in infinite topologically
random channel networks (Tokunaga, 1974). The proof is given in Appendix IV. Then we
can picture the cycles that a stream of order (n— 1) enters a stream of order i from the
sides on the average dividing the latter into two links and each of these links receives a
stream of order (n— 2) on the average, when the streams of order (n — 2) join the networks,
and so on. This means the average state of infinite topologically random channel networks
also satisfies K =2.

The writer has proved by using set-theory that the values of €; and K of the most
probable networks in infinite topologically random channel networks are also 1 and 2
respectively (Tokunaga, 1977). The proof and the brief explanation of the mathematical
procedure are given in Appendix V. Substituting €, =1 and K=2 into equations (I1I-4),
(11I-1), (111-2), (I1I-3) and (I1I-4) yields the equations which express the average or most
probable state of compositions of infinite topologically random channel networks. The
equations are written as follows:

2 a1
chy = 342 (1V-5)
Nag =2M141 (1V-6)
Ay = 42y, (Iv-7)
2}\7171
Bri = oxmi 4 (Iv-8)
Ly =2M1, (IV-9)

Equations (IV-5), (IV-6), (IV-7), (IV-8) and (IV-9) are respectively special cases of
equations (I1-4), (Il1-1), (I1I-2), (111-3) and (I1I-4). Equation (IV-5) shows that the average
or most probable state of infinite topologically random channel networks does not satisfy
Horton’s law of stream numbers. Shreve (1969) proved that the expected magnitude of a
randomly drawn link of order k is (22*~!+1)/3 in an infinite topologically random
channel network. The same equation is obtained by substituting A=/=1 into equation
(IV-5). This means that the expected values of €, and K of a randomly drawn subnetwork
from an infinite topologically random channel network are 1 and 2 respectively.

The amount of length of a stream of order A divided by the total area of the interbasin
areas in contact with the stream of order A\ represents approximately the drainage density
of area around the stream of order A. The average value of such amounts in infinite
topologically random channel networks is calculated by using equations (IV-6), (IV-8) and
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(IV-9) as follows:

Ly _2?
Nx.1Br1 L,

This value reaches twice as high as the average value C?/L, of drainage densities of the basin
areas of order / which represents approximately the drainage density of area around the
divide. Then Shreve’s assumption that the drainage density is uniform in the whole basin is
not confirmable on the writer’s model. If one still wishes to make Shreve’s assumption to be
compatible with equation (IV-7), he has to restrict the application of equation (IV-9) to
the streams of orders equal to and higher than (/ + 1) and to assume the average length of
streams of order / the same as that of streams of order (/+ 1) (Shreve, 1969). Data obtained
from the measurement in actual drainage basins, however, do not support it so strongly
(Shreve, 1969). Furthermore, it can be said that it is not so reasonable to break a cycle
concerning stream lengths to make a cyclic system concerning basin areas. Therefore, it can
be presumably concluded that the writer’s assumptions are more favourable than Shreve’s,
to derive the laws of basin areas and stream lengths from the law of stream numbers even in
infinite topologically random channel networks. Besides, the writer’s assumptions present
the additional laws: the laws of numbers of interbasin areas and areas of interbasin areas.

In finite topologically random channel networks, the average values of €; and K of the
most probable networks are very close to 1 and 2 respectively, inspite of exhibiting certain
systematic deviations, and the deviations decrease monotonically as the magnitude of
networks increases, especially in lower order subbasins (Tokunaga, 1972a, 1972b). This
implies that the larger the basin, the more sufficiently the assumption stated in chapter II is
satisfied in it, especially in its lower order subbasins, even in the case that €; and K take
values other than 1 and 2 respectively.

(IV-10)

V ALLOMETRIC GROWTH OF DRAINAGE NETWORKS, OR BASINS

The idea to explain the laws of drainage composition in terms of a growth process was
formalized at first by Woldenberg (1966). Then his work was done by recognizing Horton’s
law of stream numbers as a reliable law (Woldenberg, 1966). Scheidegger (1970) investigated
the allometric growth of drainage networks based on the cyclic model as well as the random
graph model. Then he regarded only the networks which obey Horton’s law of stream
numbers as cyclic, although he had noted that Horton’s law has mathematical inconsistency
in a strict sense as stated in Chapter II and is not exactly satisfied even in the random graph
model. Such cyclic networks, viz. “structurally Hortonian networks”, are very rare as
Scheidegger himself mentioned (Sheidegger, 1970). Consequently, he had to conclude that
“nature seems to favour the random graph model” (Sheidegger, 1970). Then he considered
both the cyclic model and the random graph model to indicate stationary states respectively.
Should the problem be solved by adopting the alternative of the two stationary models?

The writer’s model also explains the allometric growth of drainage basins which satisfy
the definition of the cyclic system encompassing the average or most probable state of in-
finite topologically random channel networks (Tokunaga, 1979). The mathematical pro-
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cedure is carried out in similar way to Scheidegger’s (1970).
Substitute m into k, and / into A in equation (II-5), then the equation becomes as follows:

_[2+€1 ——P
0-P

where m is the order of a basin.

Comparatively large basins are considered to satisfy approximately equations (III-2) and
(V-1). The following equation is derived by substituting A=m into equation (III-2) and
eliminating Q™ ! from the consequential equation and equation (V-1).

miy = Q™ (V-1)

Am = Cmby (vV-2)

where a« = (Q —P)A,; | (2+ €, — P) and « is regarded as constant in a drainage basin.

Scheidegger used a similar relation to the above as an assumption in his cyclic and random
graph models (Scheidegger, 1970). It should be, however, noted that the relation is applied
fairly well in a comparatively large basin. The allometric growth of basins which satisfy
equation (V-2) is formalized in much the similar way to Scheidegger’s method (1970). The
number of streams of the lowest order in a basin is assumed to be a continuous function of
time 7.

Let ,,u; (¢) denote the number of streams of the lowest order at time ¢ and substitute
mi; = mity (£) into equation (V-1), then the following equation is obtained.

- mh (1) (Q—P) .
m-[ln—m—]/loggu (V-3)

Equation (V-3) gives the order of the basin at time ¢.

Here let ,,i,; (f) denote the rate of addition of streams of the lowest order to the basin at
time ¢, then the following equation is derived from equation (V-2) on Woldenberg’s
assumption that the rate of growth of the basin (capture of streams of the lowest order) is
proportional to the size of the basin (Woldenberg, 1966).

ml:‘l(t) = YAm = Smiy (2) (V-4)

where ¥ and & are constants. Then the consequences of Woldenberg’s assumption are as
follows:

miy (1) = €® (V-3)

Let a certain number of streams of the lowest order be present at the beginning
(for t=t,) and let m (z) denote the order of the basin at time ¢, then the following equation
is obtained by substituting equation (V-5) into equation (V-3).

Q-P
= — + V-6
m(t) [6t+1n 7+E,-P [log Q +1 (V-6)

The above equation expresses approximately the allometric growth of large drainage basins
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satisfying the definition of the cyclic system mentioned in Chapter II.

Setting €, =1, P=1 and Q=4 (these correspond to €; =1 and K=2) and substituting
these values into equation (V-6), leads to the equation which expresses approximately the
allometric growth of a basin corresponding to the average or most probable state of
subbasins in infinite topologically random channel networks (Tokunaga, 1979).

The values of ,,u; calculated by equation (1I-4) and by equation (II-5) are very close to
each other for a considerably large value of (m — ). For example, we obtain ,,u;=171 by
equation (II-4) and ,,u;=170.667 by equation (II-5) for (n —I)=4, when €;=1 and K=2.
On the contrary, we obtain (m —/)=4 by the former equation and (mn —I)=4.001 by the
latter for ,,u; = 171. These values should also be regarded as to be very close to each other.

The allometric growth of drainage basins can be more precisely expressed by displaying
the numerical values calculated by equation (II-4) for various values of €;, K and (k — A).
It is, however, inferred from the above sampled examination that such a procedure is not
necessary to understand the allometric growth of basins.

VI NON-RANDOM FORCE ACTING ON DRAINAGE NETWORKS

The composition of any actual drainage basin is strongly controlled by randomness
(Leopold and Langbein, 1962; Shreve, 1966, 1967, 1969, 1974; Liao and Scheidegger, 1968;
Werner, 1972; Tokunaga, 1972a, 1972b, 1974, 1975). It is also true that the composition
of most of actual drainage basins is affected by non-random force (Werner, 1972; Tokunaga,
1974). Some facts and evidences to prove it can be easily presented. If the composition of
a network of which magnitude exceeds 1000 is determined completely at random, it rarely
happens that the value of ,,u;/ M+ is larger than 4.5 or smaller than 3.1 (Tokunaga,
1977). However, such networks which satisfy the above condition can be easily found out in
nature (Morisawa, 1962; Tokunaga, 1966). The averages of values of coefficient for actual
networks in Table 1, as regards the samples of which populations are considered to be large
enough, reach 1.2~ 1.9 times as large as the values obtained by similar application to the
plots by equation (IV-5). This means that any of the average values of Q of the samples
given by applying equation (II-4) to actual drainage basins is larger than 4.

An equilibrium state of a system is kept on the balance of two opposing forces, viz.,
randomness and non-random force. Therefore, thermodynamics theory requires that the
equations to describe the composition of a network in an equilibrium condition encompasses
the equations to describe the composition of a network in the state of the maximum
entropy. The cyclic system which grows allometrically is considered to be attained
equilibrium (Woldenberg, 1966) and the average or most probable state of topologically
random channel networks indicates a network of the maximum entropy. Then equations
(11-4), (1II-1), (111-2), (111-3) and (I11-4) satisfy the above mentioned requirement.

Certain intensity of the non-random force acting uniformly on a network should give the
corresponding values to the parameters of these equations. It is needed, at present, to find
any methods to identify the non-random force isolating adequately from the randomness
(Werner, 1972; Tokunaga, 1975, 1977). More advanced researches on these equations will
lead to finding such a method and make it possible to explain regional differences of the
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values of the parameters.

VII CONCLUSION

The model of drainage basins proposed by the writer encompasses the average or most
probable state of infinite topologically random channel networks as a special case as well as
satisfies the definition of the cyclic system, viz., the condition of the “cyclic net” defined by
Scheidegger (1970). The model also encompasses “structurally Hortonian networks”.

The equation which describes the law of stream numbers of the model seems to be more
suitable for actual drainage networks than Horton’s formula. The parameters used in the
equation also provide the laws of numbers of interbasin areas, basin areas, areas of interbasin
areas and stream lengths. The allometric growth of drainage basins is also explained fairly
well by using the model. Therefore, the model is considered to correspond to drainage basins
in an equilibrium state encompassing basins of the maximum entropy as a special case.
Further advanced researches on the model will provide a method to identify the non-random
force acting on networks in such a state and explain regional differences of the composition
of drainage networks.

In addition to the above conclusion, it is considered to be worth noting that the larger the
basin, the more favourable the assumption in Chapter 11, assumption (1) in Chapter III and
equation (V-3) become for the basin, because the reason why the considerable parts of the
continents are occupied by so large basins, e.g., the Amazon basin, might be expected in it.
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Appendix 1
Equation (II-3) holds for all A< ¥—2. Then, substiting (A +n — 1) into A, we obtain

kMaen—1 = (2+&; +K)liasn — 2K Mpin+y (A-I-1)
By using P and Q, the above equation is rewritten as follows:

ka1 — Petiaen = Quiarn — QPuliainsy (A1-2)
Equation (A-I-2) x Q" 1 is

Q" Nkasn—y — Q" "Pubiain = Qbarn — Q"Pukirsnir (A13)
The product of equation (A-1-3) forn=1,2, «eeveeeee ,k—A—11is

K;rzll_ I(Qn_lxllun—l — Q" 1Pyptasn)

K—A—1
= A (Q"kur+n — Q"Pukrsn+1) (A-1-4)

where ,ux,=1. This means

kn —Puiney = QM1 (24€)) — QXA (A-L-5)

This relation holds for all A £X-1. Substituting (A + » — 1) into X in equation (A-I-5) and
multiplying consequential equation by P~ !, we obtain

Pl tasn_y — P ebiasn = QK—A—nPn—1(2+€1) — QK= A=Tpn (A-1-6)
The sum of equation (A-I-6) for n=1,2, -cceveen (kK —A—=1)is
K—A—1
ki —P* Ao, o= nEI [Q AP (2+€1) — Q*7ATPT] (A7)

Rearranging equation (A-I-7), we obtain equation (11-4).

AppendixII

Let us suppose basins of orders lower than / in the interbasin areas of which average areas
are denoted by B).; and B, _;.; and interbasin areas among these basins and streams of order
A and order (A—1), according to assumption (1). Then equations (III-5) and (I1I-6) are
rewritten as follows:

A=1 -1
Ay =245 4% T € KN4, + Wz €K1y,

€ KKMNI-1
+ [2+€1 + -1 (K—l )}BM (A-1I-1)
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A—2 -1
Ay_q = 245_, + nglelKk—"*An + nz_jslk’\— "4,

A—j-2 _
s [2+e1 + EIK(KK_I 1)]3}\—1'/' (A112)

where j is the lowest order. A basin of a given order contains (2 + €,) subbasins of the next
lower order on the average. Then

AA >(2+€1)A)\_1> .......... > (2+€1)A—IAI >
.......... > (2+€1)7‘_"A,- (A-I1-3)
—j 1 _j _;
SR (g )N A > ek, (A14)

Therefore, when A, has a finite value, as (A —j) = o, SIKA"'A]-*O in basins in which
assumption (3) holds. Assumption (2) means that Brj<A; and Br_;.;<A; Then

A-j—1 —j-
€1K(K J - 1)]6}\] _)0 and [2+€1 + €1K(K1?_] 12 — 1)]‘3}\_11__)0 as

K-1
(A —7) = o=. Then, subtracting (A-II-2) x K from (A-II-1), we obtain the recurrence equation

[2+€1+

Ay = 2+&+K)A,_, —2K A4, _, (A-11-5)
By using P and Q, this equation is rewritten as follows:
AN—PAx_, = QAx_, — QPA,_, (A-11-6)

This relation holds for all A 2 /+2. Then substituting (\ —n+ 1) into X in equation (A-II-6)
leads to

Ayone1 —PA_y = QUa_q —PAx_n_1) (A-I1-7)
The product of equation (A-II-7) forn=1, 2, --eeeeer s A—I—11s
A—l=1 A-i=1
il @aener —PAx ) = T [QUy_n —PAy_n_1)] (A-11-8)
This means
Ay —PAy_y = QM (A, - PA) (A-I1-9)

This relation holds for all X 2 /+ 1. Then, substituting (\ —n+ 1) into A in equation (A-1I-9)
and multiplying the consequential equation by P~ !, we obtain

P NAy _n+y — PAx_n) = QM TP, - PAY) (A-11-10)
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The sum of equation (A-II-10) forn=1,2,..... ,A—1is
A=l A-1-1 MNP noa
Ay —P¥ 4, =0 (Aper —PAYx Z ( ) ) (A-1I-11)

Rearranging the above equation, we obtain

A—1 _ pr—l

Ay = Q_Q_.:}{’_(A,+1 _ P4 +PN4, (AI1-12)

Then
A1 A=l AH‘I PA}
1-— = "+
. (1= P £yl ]
= A-II-13
A}\—l Q}\_I_l{{l _(i))\—l—l} A;+1— P4, +( ))\ I lA ] ( )
0-P Q0 !

Let (A — ) ~> o0 in the above equation, then we obtain

Ax = Q4,5 (A-11-14)

We may suppose the same relation between A4,,; and A4, according to assumption (1).
Then we obtain equation (III-2) by substituting 4+, = @4, into equation (A-II-12).

Appendix III

The area S(Bx.;) occupied by the interbasin areas, of which average area is denoted by
B».;, is obtained by subtracting the sum total of areas of the subbasins of orders from [ to
(A —1) from 4,.

Namely ,
SPBr.)) = A\ —(Q+E€DA 1 —E KA 5 — -+ — €,k 11y,
e Q)\—I_K)\—l)
_[pormt _Apr-1-1_ &1
[0+-20 o4

Dividing S(8).7) by Na.; gives equation (III-3).

Appendix IV

When n streams of order (n — 1) form a network, the average number E, ;(n) of streams
of order (n— 1) entering a link of order n (here a stream of order ) from the sides and the
average number E; ;(n) of streams of order (n— 1) entering a link of order higher thann in
the set of all topologically distinct channel networks are given as follows:

"/2 (n— 21)1

i=1 20— NG n)

Ee,(n) = (AIV-1)

n/2
S iN (i, n)
i=1
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n2 (n—2i)(i—1) ..
s B
Eii(n) = ; (AIV-2)

n/2
2 G=1DNGn)
Put A(Z, n)=[(n—20)N(i, n)] /(2i— 1), then the following equation is derived for E; [(n)/E. ().

n/2 n/2
izzl iN(, n)i =2)1 A@n)(@i-1)

Ejin) _
E. (n /2 /2 /
() ["z iNG,n)— = NG, n)] "$? 14, n)

i=1 i=1 i=1

" 4G n)

LN

a nn—1) =1
=2 =3 [1 T iz (ATV-3)
T idGm)

/2 /2
This equation shows that ,lgn [Ei ()| E (n)] =1 if lim [','ZIA(I', n)/ TlEliA(i, n)] =0.
o0 @ li= i=

The proof is given below. Let us evaluate

AGn) _ (n—2i+t1)(m=2i) ,2i-3
AG-1,n) ~  4G-1D@i—-1) (=)

(A1V-4)

if i 2 4, then (2i —3)/i> 1, and[(n—2i+1) (n — 20)]/[4(G— 1)(2i—1)] decreases as i increases
for a given value of n. Here substitute i=n/8 into [(n — 2i + 1) (n — 20)] /[4( — 1) (2i — 1)]

SR E

45-D(G-1) 4

Therefore, A(i, n) [ A(i —1,n) > 1 for 4 < i < n/8. Substitute i =2, 3 into equation (A-IV-4),
then

A@2,n) _ (n=3)(n—4) AGB,n) _ (n-5)(n—6) (A-IV-5)

A(l,n) 24 > A2, n) 40

These are larger than 1 for n > 16. Hence the sequence is monotonically increasing for i
< n/8 at least, when n > 16,50

n

4(75

1,n) <A(%+2,n)
2A(1i6_z,n) <2A(% +3,n)
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iA(ln6 tn)<1A( +i+1,n)
n
16—1)A(1 n)<( -DA(g.n)
Therefore,
ni16-1 p . N e R .
i=1 (ﬁ DAGn) ot lA(lé i n)
A vy = % ~1)4
Bl i = T2 G- fe DA
(A-IV-6)
Here
"Lidiny = "84 " _1)AG )+
& AGn) = tz:ll @ n)+ tn/16+2( 16 VA, n)
") " AGmyr R iaG AIV-7
(76 )i=n/16+1 @ n) i=nfB+1 @ n) (ATV-7)
From inequality (A-IV-6) and equation (A-IV-7), it follows that
n/Z)l6‘A . +n/zl:6—1 4 + + n/8 n/2 A
ZiAGn+ 2 (g - DAGM+ ({e+ 1) "2 aGm+ "% idGn)
= P80 4y + e+ " AGmy+ Y idG
T 16 =1 @n) ( )z =nj16+1 @ m) i=n/8+ll @n)
-y + A AGn) < "Eiad
T 16 =1 @ m) =nj16+ 1(l’n) i=n /8+l(l 16) @n) &' @ n)
Therefore |
nn/2 X n/2. .
= S Al n) < T iAGn) (A-IV-8)
16i=1 i=1
Here
n/2
ZAGn)
lim ———— =0 (A-IV-9)
e nZ/J A(i, n)
16 i<
Therefore
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n/2
2,40 n)

ZiA(i, n)
i=1
From equations (IV-4), (A-IV-3) and (A-IV-10), it follow that

limEe ;(n) = imE;;(n) = 1

Appendix V

The number N(ny, nyyq, -eeeeees N 3 NRIETINE IS (P YRR , 1) of topologically distinct channel
networks of order A having sy, nyy 1, --eeeee s Ly wreeenvene S TN, eresevenes ,1 streams of order /,(I + 1),
---------- 3 My woseseeeney N, e, (2 reSPecCtively is given by the following equation (Shreve, 1966).

= tﬁ l2”m—2”o.:+1("w:2 ) (A-V-1)

The equation which expresses the number N(ny, nyy g, -eeveeer s Fgpy woeeeenees , ) of topologically
distinct channel networks having n;, fy4 1, --eeeeee , Am, evneenees , h streams of order /, (I +1),
---------- s M, oo, A, 1espectively, is derived from equations (A-V-1) and (IV-1).

2n) —1

A=1
= R ~2ng41[Hw—2 LN
[wr=112 “ ( ) 2ny—1

N(nlvnl+ls .......... s Fpgy weeeeeenes ’n)\) )

Mes—Myey (AV-2)
Let S(n;) be the set of all topologically distinct channel networks having n; streams of the
lowest order and S(n;, nyyq, -emeeeeer , Hipyy weeeesenns , 1) be the set of all topologically distinct
channel networks having ny, nyy q, = , Fpy weseseeens , h streams of order I, (I+1), «--veoveee ,
1), weeererens , A, respectively, then the following two relations are derived.

S(n) O Sy, npey) D -

D Sy, My, oeveeeees 78 e
D S(”h”lﬂ; .......... A, eereenenes ,na) (A-V-3)
mi+q
S(ny) = n1+21:=OS(n”nIH) S
My mny
= n,+?=o ..... nnziOS(nl’ TP JAp) = e
mi+1 m my
= =0 nZo n}\z=0S(nl, Ppg gy woeeeeeees J Plggy weerenens R n}\) (A-V-4)
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where my =12 or (g1 —1)[2, «+oeereeee sMp=nn_1[2 01 (Rn_y—1)[2, reeeenee S MA=n,_1/2

or (n’\_l_l)/2’ and S(nl, Rppg, soeeeeeees s gy weeeesees s "A)=S(”h”l'+1» .......... s Mn_1, 1)’ when
nn=1. If ny, mpyq, =oeeeee , A, seeeneeeee , By .1 values are given and these values are sufficiently
large, there exists a subset of S(r;, nyeq, «oeeeer y Fqy weeevesees s My—1, ny) for every nj value

which satisfies 1 Sn, Sn,_,/2or(n\,_;—1)/2. Then we can take out all the topologically
distinct channel networks which are given by n) value to provide a maximum value of

Ny, nppq, woeeeeeees y Ag, seeeenenes , x_1, 1) from the collection of the subsets of S(n;, n744,
---------- , Bm, =eoeeee, A1, n3) and define the set of these networks. Let denote the set by
Sh-max(Ry, Appq, oo , Py, eeeveeees , Ny_1, 1y). The procedure to obtain the value of n, of
Shemax(Pa, Rppq, oo 7T RO » Ny_1, 1) is shown below.

If a small variation in n) value leaves N(ny, ny4. 1, ++eeeeer S A, seeeeenne , y_1, 1)) unchanged
when 1y npgy, oo Py eeeeenee , Na_ 1 values are given, then N(ry, Hyy g, +-eeeveer Ry weeseeneees ,

na—1, Ny ) has a maximum. Thus n) value which satisfies

N(nl’ Apgq, ooeeeeeeee L T s Ma—1, n?\_)_ =1 (A'V-S)
N(nbnl+ls .......... y Py eeeenens ,n}\_l,n)\_l)

provides the maximum value. From equations (A-V-5) and (A-V-2), it follows that

(n;\_, —-2}1)\ +2) (n;\_l ——2n;\+ 1) =
4ny(ny—1)

For very large values of n,_, and #,, this expression is replaced by

1 ; (A-V-6)

(na—1—2m)* _
Taci ) <y (A-V-7)

By solving equation (A-V-7), we obtain
ny = ﬂ4‘—‘ (A-V-8)

From this result and the definition of S.,max(P5, Pysq, -oooeeees s Hmp, weeeeeeees , Ba—1, My), it
follows that

S}‘.max(nl, Mg gy woeemeeeee s Agyy eneeneene ’nh—l’nk)
= 1
= S("u Rppqy e s Hiygy seeeeeeees ’n}\—l’zn)\—l) (A-V-9)

This relation holds for A=+ 1~oo, Thus the following relations are obtained sequencially
by substituting in relation (A-V-9) the consecutive integral values of X starting with A=1+1.
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1
St+1:max (s M) = S(y, 4y
St 2-maxns 3 M142) = S im, (1)
1+2-max\M 11> i+ 2 ”1,4’11, 4 ny)

1 |
Sn-max(t, an, """"" ; (Z)n ! lnla”n)
\ (A-V-10)
_ 1 1. n—1-1 1 .n-1
= S(ﬂl, an, .......... ’(Z) nh(z) nl)
1 1 n—1 1 A—1-1
Sxemax(Pis i R ’(Z) [y e ’(Z) ny, ny)
1 1.n-1 1 A-I-1 1 A-1
= S(nl’ an’ .......... ’(Z) PRRTRITE , (4) nl,(z) nl)/
When ny, ny_q, --eeeeeee , Nn_ values are given, let Sn.pmax(fy, Apeq, oo , An, %nn, ---------- ,
(%)A_ - lnn, (%)A_nnn) be the set of all topologically distinct channel networks with 7y
value which provides a maximum value of N(ny, nyyq, = , hn, %nn, ---------- , (%))‘_nnn).
Then nypvalue of Sn. pax(fg, B ps oo , N, %nn, ---------- , (%)Kﬁnnn) is obtained by solving
1 1A
N(nl’ Pppqy oeeeeees ,”n’znn’ .......... ’(Z) nnn)
=1 (A-V-11)
1 1.A-n
N(nl’ Ry oeeeeee s nTI_LZnﬂ’ .......... ’(Z) nn)

From equations (A-V-11) and (A-V-2), it follows that

(nn—2) (ny_y —2nn+2) (nn_y— 2nn+1) _
nn(2nn—2) @nn—3) -

1 (A-V-12)

For very large values of n,_; and nn, the constant terms in the parentheses may be omitted.
Then equation (A-V-12) leads to

ny = 201 (A-V-13)

This relation holds for n=I+1~X. Thus the following relations are derived sequentially
by decreasing the consecutive integral values n starting with n =A.

_2



S)vmax(nl:nhly .......... ’n}\—l’n}\.) \
_ 1
"S(”I,”H-l, .......... ’nk—l’znk—l)
1 1. A-n
Sn-max(”b Apgqseeeeeenes ’nn,znn, """"" ,(Z) ”n)
‘ (A-V-14)
=5 1 1 A-n+1
= (nl’nH-l’ .......... ’"n—1’4"n—1’ .......... ,(4) "7—1)
1 A—1-1
Ste1-max(My, Rpg g, oo ; (Z) ni+1)
1 |
= S(nl’ an’ .......... , (Z) nl) J
When n, takes an infinite value, there exists a subset of Sy, npy g, ooeeeeeees , A, oeeeeeeeee s HN_1s
ny) for every set of ny, , «-oeeeeee , H, seeeeneens » Ba—1, np values in S(n;). Let us take out only
the subsets of which n,_ is infinite from S(n;, nyyq, =oeeeer y Agy weeeeeen , Max_1, ny)and
consider the collection of these subsets. Then equation (A-V-14) means that S(n,, 2
---------- ( )n Ty, e ( ) n,) is the subset which has the largest population of
topologlcally dlstmct channel networks in the collection. This implies S(n;, i ---------- ,
( )77 'y, e ( ) nl) has the largest population of topologically distinct channel
networks among all subsets of S(ny, nyy q, -oveeeees s Mg,y seveeenne , Ba_1, 1)) with a given infinite

value of n;. The implication is confirmed by proving that there exists no subset of which
number of streams of order n is finite and population of topologically distinct channel

networks is larger than N(n,, %n,, ---------- , (%)n— In,, ---------- ( 1 )h ln,). Let ny, oo ,
ny_y denote only finite numbers of streams of order 7, .......... , (§—1), respectively to distin-
guish from numbers 727, -+oeeoee » Ng_y and n} be 1, then N(n,, Pppq, soeeeeeees y gy cemvereees ,
ne_1, 1) represents the number of topologically distinct channel networks in a subset of
S(ny, Nyt gy oo s Aqy weeeenees , 1) of which the number of streams of order 7 is finite. Put

D(}’ll) - N(nh Ppgq,y weomeneees y Ry, veneenns S M1, 1) (A.V.IS)

1 1. a—n+1
N(nl’n“_l’ .......... ,”n—l:znn—lr .......... ’(Z) Mn_y

and let us evaluate the value of D(n;). By using equation (A-V-2), D(n;) is written as follows:
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n
D(n) = n—1 n
( l) (nn_1—2>22nn_1
=Hp_1
X A(nhbn"'l+la """"" :nlg)
1 1 1 A=n+1
B(Z"n—lr(z)znn—l, .......... ’(Z) n—1)
- [“n-l /1_21—2’1';] Nn_1 -2i-2
i=1 Ny —2nn—i+1
« A(nfn’n,;H_l’ .......... ,né')
1 1 1 A-n+1
B(Znn—l’(Z)znﬂ—l, """"" :(Z) Nn—1) (A-V-16)
where
fﬁl Rew—2 néy-2n,
A(nn’nn+1’ .......... JHE_1s 1) = w=n<n’w—2n{‘,+1) Mw w+l
and
1 1 1 A—n+1
B(gnno1, (3) nn_ys s ()7 Ao
—r+1
( )w 1_2 11 n+1
- <G " g -
= w]':[n 11 w-n+1 22(4) n—1
2(3) Ny—1
-n+L
2(y ))\ n-1—1
—n+1
(—)k Nn_1
X A=+
2(g ) Np_y—1
/2 210 ( pp_y—2i-2
M1 - L ,
In equation (A-V-16), 1 (;;_"T_‘zn_n_l__ﬁ) -0 and A(ny, Npyq, oo s ey,
1 At 1 A=m+1

1)/3(2%_1,(‘) R q, woeeeeees ( ) nn_1)~0, as( ) np_q > . Namely

D(n))=0, when( )7\ Ty n—1 = 0. Now, from relations (A-V-l4), if follows that

1. n—1 1. n-1
N(nl’ 4n1’ .......... R (Z) Ry, eeeeeent ,(4) l)
1 1 A-n+1 k
2 Ny, gy g, oo gy ghno 1y ’(Z) 1) (AV-1T)
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—n+1

when ( % )A ny_y = o . Therefore,

1 T s 1 ; =0 (A-V-18)
n— A—

N(nl, an, .......... ’(Z) Ry, eemeeeeee ’(4) I)

when ny=o0, Here, let S, (n, Hypq, rooeeeeees y By ereennens » ") be the subset of S(ny, nyyq

---------- , Ay, ===, 1) Which has the largest population of topologically distinct channel

networks for a given value of #;. When n; =oo, the following relation is derived from relations
(A-V-14) and equation (A-V-18).

n;) (A-V-19)

This means that the bifurcation ratio of the most probable channel networks in infinite
topologically random channel networks is 4.

The value €; of the most probable channel networks is obtained by using the above
result. Let n..,_; be the total number of streams of order (n — 1) entering the streams of
order n from the sides, then, within the set of all topologically distinct channel networks, the
number N(nn_y, nn) of ways in which n,_, streams of order (n— 1) can produce n,
streams of order 7 is given by the following equation.

N(np_q,nq) = " )2"8'17—1

nﬂ‘lz— 2nn (nn"‘ He.p—1— 1
en—1=0

Re.n—1

5 [Mn-1"Ne-n—1 —Nn— 2) Mn—1 —ne.n_1—2nn]
Np_1—HNen—1 —2nn

<2nn — 1>
w~__Mn 7 (A-V-20)
2”17 -1
nn+ne.n_1—1 Heoopo1 3 . .
Here n 2"e-n~1is the number of ways in which #e.n—1 steams of order (n—1)
e-n—1

"71—1“ne-n—l—nn—2)2nn_1—ne.n_1—2nn is
Np_1—MNe.n—y—2hn
the number of ways in which (ny,_y—n,.,_;—2ny) streams of order (n— 1) enter (nn—1)

enter nn streams of order n from the sides, (

links constituting streams of orders higher than n and (Zn Z— l) /(2n,—1) is the number of
n

topologically distinct channel networks having n, sources. When the general term of the
sum in equation (A-V-20) has a maximum value, a small variation in the distribution of
streams of (n— 1), i.e., a small decrease in the number of streams of order (n— 1) entering
streams of order n from the sides and the compensating increase in the number of streams of
order (7 — 1) entering links of orders higher than 7, leave this value unchanged.
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(nﬂ+ne.n_1 -1 ) 2ne.n_1 (nﬂ—l—ne-n—l _nn_z) 2nn_1—-ne.n~1—2nn
Ne.n—1 nn_l—ne.n41—2nn

(nn+ne"n—1 _2) zne.n_l—l(nn—l _ne"n—l —”77‘1 ) znn_l—ne.n_l 42nn+1

ne‘n_‘l—‘l nn_l—ne.n_l—Znn+1

- (nn+ne.q_1—1)(n_y —Ne.n_y —2nn+1)

Hen_1(Nn_1—He.qy—Hn—1)

=1

For very large values of n,_;, this expression may be replaced by

(nntne.n_y) (Mn_y —Ne.ny — 21n)

=1 (A-V-21)
Nem—1(Mn_1—Nem_1—Nn)

Substituting equation (A-V-13) into equation (A-V-21) leads to

— Nna

ne -1 4
Finally we obtain

€ = n€ny =—’2'n"—n‘1— =1 (A-V-22)

for the most probable networks in infinite topologically random channel networks.
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