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Genomes are organized into nuclear compartments, separating active from
inactive chromatin. Chromatin compartments are readily visible in a large
number of species by experiments that map chromatin conformation genome-
wide. When analyzing thesemaps, a common step is the identification of genomic
intervals that interact within A (active) and B (inactive) compartments. It has also
become increasingly common to identify and analyze subcompartments. We
review different strategies to identify A/B and subcompartment intervals, including
a discussion of various machine-learning approaches to predict these features.
We then discuss the strengths and limitations of current strategies and examine
how these aspects of analysis may have impacted our understanding of chromatin
compartments.
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1 Introduction

Genomic DNA is organized into intricately folded structures, providing the context for
storing and accessing genetic information. Thanks to 3D genome folding, loci separated by
hundreds of kilobases of sequence can influence each other via long-range chromatin-
chromatin interactions (Rowley and Corces, 2018; Fulco et al., 2019). Chromatin
organization can drastically differ between cell types, in response to stimuli, during
differentiation, and due to disease, indicative of a highly responsive and functionally
important nuclear environment (Shlyueva et al., 2014; Dixon et al., 2015; Chakraborty
and Ay, 2019; Lu et al., 2020; Winick-Ng et al., 2021; Rocks et al., 2022). Genomes are
organized into several distinct architectural features which can be measured by various high-
throughput sequencing approaches (Rowley and Corces, 2018), including both Hi-C and
Micro-C which measure chromatin conformation genome-wide (Lieberman-Aiden et al.,
2009; Rao et al., 2014; Hsieh et al., 2015; Hsieh et al., 2020; Krietenstein et al., 2020). These
maps display a distinctive plaid-like pattern indicative of the physical segregation of active
and inactive chromatin into compartments (Lieberman-Aiden et al., 2009) (Figure 1).

The term “compartment” refers to a group of loci that preferentially interact with each
other, likely because of similarities in chromatin activity status (Rowley and Corces, 2018).
While the term “compartment” refers to the biological phenomenon, chromatin contacts
that comprise compartments can be referred to as compartmental interactions. To
differentiate these 3D and 2D features from the 1D genomic loci that make up these
features, we can refer to a stretch of loci within the same compartment as a compartment
interval. Importantly, compartment interactions are not restricted to long-range, and
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compartment intervals form a domain-like pattern, i.e., a triangle in
Hi-C, which we refer to as compartment domains (Rao et al., 2017;
Rowley et al., 2017) (Figure 1).

While not the focus of this review, we should mention that
several other features can make domain-like structures, including
CTCF loop domains as well as intervals that are excluded from
loops, termed “ordinary” domains (Rao et al., 2017). Therefore,
domains that are identified by chromatin conformation assays can
be composed of multiple distinct organizational principles. Others
have discussed the relationship between these distinct features and
Topologically Associated Domains (TADs) (Szabo et al., 2019;
Beagan and Phillips-Cremins, 2020).

Chromatin compartments are relatively ubiquitous features of
genome organization, having been detected in Hi-C maps across
many of the tested eukaryotic phyla as well as in archaeal species
(Dong et al., 2017; Rowley et al., 2017; Takemata et al., 2019).
Despite their prevalence, mechanisms explaining the formation,
regulation, and function of compartments remain somewhat
mysterious. By discussing current methods of compartment
analysis, we shed light on limitations that may contribute to the
debate concerning the biological nature and responsiveness of
compartmental features.

2 Identification of A/B compartments

2.1 Eigenvector (PCA-based approach)

A plaid-like pattern was evident from the first Hi-C map
published, denoting the broad separation of activity states into A
and B compartments (Lieberman-Aiden et al., 2009). To assign
genomic intervals to these two segregating states, the authors
obtained the leading eigenvector from Principal Component
Analysis (PCA) on the Hi-C contact matrix. The leading
eigenvector represents a continuous signal along the genome with

both positive and negative values serving to categorize loci as either
A or B compartment intervals (Figure 1). This eigenvector-based
approach has been the predominant method to identify A and B
compartment intervals, and many different Hi-C data analysis tools
implement PCA for compartment interval identification (Durand
et al., 2016; Giorgetti et al., 2016; Kruse et al., 2020; van der Weide
et al., 2021). These tools, however, sometimes differ in data
preparation steps that occur before the calculation of the
eigenvector, and it is not clear how much, if at all, these subtle
differences impact the results.

2.1.1 Visibility correction
A common initial step is to normalize the map to account for

the “visibility” of each bin (Figure 2). The rationale for this step is
to help account for digestion preferences, locus mappability, GC
content, and other known and unknown influences (Yaffe and
Tanay, 2011; Imakaev et al., 2012; Rao et al., 2014; Servant et al.,
2015). Several different normalization schemes are available for
visibility correction, examples of which include probabilistic
models (Yaffe and Tanay, 2011), iterative correction and
eigenvector decomposition (ICE) (Imakaev et al., 2012),
Knight-Ruiz (KR) matrix balancing (Knight and Daniel, 2013;
Rao et al., 2014), among others. Interestingly, one study
compared various normalization methods and found
advantages and disadvantages (Lyu et al., 2020). However, it is
not clear how these different methods specifically impact
compartment identification.

2.1.2 Distance decay
Genome-wide maps of chromatin contacts display a decay of

interaction signal in that the frequency of interactions decreases with
genomic distance (Lieberman-Aiden et al., 2009). While this
diagonal decay likely reflects the physical properties of chromatin

FIGURE 1
An illustration of the checkerboard pattern commonly found by
whole-genome chromatin conformation assays such as Hi-C and
Micro-C. The top tracks illustrate an example eigenvector as well as A/
B and subcompartment classification.

FIGURE 2
An example of the steps involved in A/B compartment
identification, including matrix balancing, distance normalization,
Pearson correlation, and PCA. Contact Map from Rowley et al., 2017.

Frontiers in Molecular Biosciences frontiersin.org02

Kalluchi et al. 10.3389/fmolb.2023.1168562

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1168562


(Sanborn et al., 2015), it means that Hi-C and Micro-C signals are
low and/or sparse at long distances. Typically, PCA-based
compartment identification considers the whole chromosome,
making it essential to account for distance-based effects.
Therefore, in addition to locus visibility adjustment,
compartment identification methods often implement distance-
based normalization (Figure 2). This can be done by dividing the
signal at each bin-pair (i.e., observed) by the average signal at that
distance (i.e., expected): Observed

Expected (Durand et al., 2016). While
frequently used, there are alternate distance normalization
methods. For example, we often use Observed+1

Expected+1 to help mitigate
long-distance value inflation that can occur when the expected
value drop too low (Rowley et al., 2020). Others account for
distance effects by loess normalization (Giorgetti et al., 2016).
Because of the widespread use, but varying methods of distance
normalization, it will be valuable to explore alternatives and their
impact on compartment identification.

2.1.3 Bin-to-bin correlation
Many algorithms use the visibility corrected, and distance

normalized values to then create Pearson correlation matrices
(Figure 2). The intensity within this matrix no longer represents
contact strength, but rather represents the Pearson correlation
coefficients between each pair of genomics bins. Essentially this
matrix describes the similarity between locusx and locusy when
considering their signal patterns across the entire chromosome.
While this can relate to signal strength to some degree, it is possible
to derive high correlation values for highly similar loci that do not
have high-intensity interactions. Therefore, the eigenvector is not a
measure of compartment interaction strength. Instead, the
eigenvector typically reflects locus correlations.

The above steps represent a general workflow commonly
employed to prepare contact matrices for PCA. We described
this workflow to highlight the large number of processing steps
that typically occur before eigenvector calculation. However,
available compartment identification tools vary, and it is not
clear how differences in each step may alter the compartment
calls at various resolutions. In the future, a detailed analysis of
the impact of each step would be informative.

2.2 Limitations of compartment
identification by PCA

While PCA for compartment analysis is a common and valuable
approach, users should be aware of some limitations. The first
eigenvector represents the principal component with the largest
variance, which may or may not represent genomic compartment
segregation. Indeed, in some Hi-C maps the first principal
component reflects other prominent features. For example, Hi-C
maps inD. melanogaster display a plaid compartment pattern within
each chromosome arm, but interactions that span the arms are
exceptionally weak. When run on the whole chromosome, the
leading eigenvector reflects the separation of arms instead of
compartments (Hou et al., 2012; Sexton et al., 2012; Rowley
et al., 2017) (Figure 3). Therefore, the first principal component
may not always depict the plaid A/B pattern, even when there is an
apparent plaid-like pattern within the segments. It is possible that

the second principal component could be used in such cases.
However, because the eigenvector is derived on a per-
chromosome basis, the results of each chromosome must be
inspected to ensure each represents the plaid pattern.

One secondary and minor drawback is that A/B compartments
are typically assigned to each chromosome, or sometimes each arm,
independently. Because the initial sign of the eigenvector is
somewhat arbitrary, the resultant profile must be examined on a
per-chromosome basis and overlapped with active chromatin
activity states, genes, or GC content. Indeed, a decision of
whether or not to invert the eigenvector is made per
chromosome to ensure that positive and negative values
consistently correspond to features within the A and B
compartments, respectively (Durand et al., 2016; Giorgetti et al.,
2016; Kruse et al., 2020; van der Weide et al., 2021). While this is
typically viewed as a minor inconvenience, assigning positive/
negative signs for each chromosome could lead to potential
mistakes, especially considering experiments that might impact
the relationship between compartments and chromatin marks.

Our recent work suggests that bin size should be a major
consideration, as it can impact the results of compartment
identification (Rowley et al., 2017; Gu et al., 2021). Below, we
discuss the impact of bin sizes on our understanding of
compartments, but there are a few PCA-relevant considerations.
In Hi-C and similar whole-genome methods, data binning is often
necessary to ensure adequate signal, particularly at long distances.
Obtaining a sufficiently deep signal across the entire chromosome is
essential for PCA to derive states. In the first published Hi-C map,
data was binned at 1 Mb, a bin size that has since been often used for
A/B compartment identification (Lieberman-Aiden et al., 2009).
However, methodological and technological advancements are
making it possible to achieve finer scales which continues to
revise our understanding of these organizational features (Gu
et al., 2021; Goel et al., 2022). Yet this refinement brings its own
challenges. For PCA-based analysis, fine-scale binning can lead to
extensive memory and computation time requirements for data in
dense matrix format (Gu et al., 2021). These requirements become
increasingly prohibitive with finer scales. For example, a 10-fold
change in resolution leads to a 100-fold larger matrix (Figure 4).
Indeed, creating a dense matrix of human chromosome 1 at 1 kb
would have c.a. 62 billion entries and require an estimated nearly
500 GB of RAM just to read the dense matrix into memory. As

FIGURE 3
Illustration of how other organizational features may be detected
by the leading eigenvector instead of A/B compartments. Contact
map from Rowley et al., 2017.
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sequencing costs lower and with the development of fine-scale
methods such as Micro-C (Hsieh et al., 2015; Hsieh et al., 2020;
Krietenstein et al., 2020), algorithms will need to find ways to
perform memory-efficient fine-scale compartment analysis.

2.3 POSSUMM (PCA of sparse, super massive
matrices)

To overcome computational limitations, POSSUMM calculates the
eigenvector from massive matrices in sparse format. This algorithm,
combined with high sequencing depth, enabled our recent high-
resolution compartment identification (Gu et al., 2021). POSSUMM
combines matrix-vector product calculation with the power method to
enable the computation of principal components without the need to
perform calculations on the dense matrix. Due to these features,
POSSUMM was recently able to identify compartment intervals in
human lymphoblastoid cell lines at 500 bp resolution within minutes
using minimal RAM (Gu et al., 2021). This resolution of compartment
identification enabled the discovery of multiple new insights regarding
the size and nature of compartments. Notably, fine-scale compartment
identification at this extremely fine-scale resolution was only possible
thanks to the unprecedented sequencing depth within the map,
33 billion contacts. Thus, even with solving computation
considerations, eigenvector-based compartment identification at
exceptionally high resolution is still unachievable with the
sequencing depths obtained by the majority of currently published
maps. However, othermethods, such as reported in the new preprint on
Region Capture Micro-C, have potential to detect fine-scale
compartmental features within specified regions (Goel et al., 2022).

2.4 Alternative methods of A/B
compartment identification

While searching for tools that identify A/B compartment
intervals from Hi-C maps, we noticed that most studies use an
eigenvector-based approach. As an alternative, CscoreTool is a
compartment identification tool that calculates the probability of
each bin being in the A compartment (Zheng and Zheng, 2018). This
method defines compartments by considering and learning
parameters including distance-based effects, Hi-C experimental

bias factors, and compartmental probability scores. These
parameters are randomly initialized, followed by iterative
refinement using maximum-likelihood estimation. CscoreTool
was able to report compartment intervals in 1 kb bins, which
were not obtainable by the dense-matrix PCA approach. At other
resolutions, CscoreTool had reportedly lower memory and time
requirements than dense-matrix PCA but still required nearly 3 days
to calculate compartment intervals in 1 kb bins. The compartment
intervals identified by CscoreTool and eigenvector were similar, yet
not 100% identical. Indeed, correlation with accessibility indicated
that CscoreTool could be more reflective of the chromatin
accessibility state. Thus, while a PCA-based method is the most
used, the strengths and weaknesses of other methods should be
considered. During the innovation and testing of new algorithms, it
will be valuable to compare to current methods without equating the
eigenvector-based compartments as ground truth. The innovation of
compartment algorithms will provide alternative perspectives and
ensure rigor in detecting and analyzing such prominent features.

3 Subcompartment identification

3.1 Unsupervised clustering

Several groups have proposed that a two-state A/B compartment
model may be insufficient to reflect compartmental patterns
accurately. Indeed, in 2011, k-means clustering was used to
assign interactions to 3-states (Yaffe and Tanay, 2011). In 2014,
in-situ Hi-C allowed further categorization into subcompartments,
predominately done at 100 kb resolution (Rao et al., 2014). Using
unsupervised clustering methods, Hidden Markov Model (HMM),
K-means, and Hierarchical, the authors noted that chromatin can
segregate into at least six subcompartments. Two were denoted as A
(A1, A2) while four as B (B1, B2, B3, B4).

Like PCA, subcompartment identification required several data
preparation steps, including read binning, matrix balancing,
removal of low coverage rows and columns, and z-score
calculation. As with any approach, there are several limitations.
For example, k-means partitions loci into a user-defined number of
clusters. Rao et al. explored several values, noting that 4–8 clusters
matched the visible pattern in their dataset. However, it is unclear
whether this number of clusters is always suitable for maps of cells
under different conditions, in different cell types, or in other
organisms. It will be valuable to examine the appropriate number
of clusters for each scenario.

3.2 Tools for subcompartment identification

Many tools have been several recently developed for
subcompartment identification. These differ in methodology,
tested bin sizes, and the number of identified subcompartment
states. We highlight a few aspects of some of these tools.

3.2.1 Subcompartments from interchromosomal
contacts

Subcompartment iNference using Imputed Probabilistic
ExpRessions (SNIPER) employs a neural network and denoising

FIGURE 4
Illustration of the relationship between bin size and matrix size.
Heatmap sizes are proportional to the number of bins. Contact map
from Rao et al., 2014.
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autoencoder with multi-layer perceptron (MLP) to impute inter-
chromosomal interactions and categorize loci into
subcompartments (Xiong and Ma, 2019). SNIPER produces low-
dimensional latent variables to classify genomic intervals into one of
five primary subcompartment classes—A1, A2, B1, B2, and B3. SCI:
Sub-Compartment Identifier (SCI) uses graph embedding and
k-means clustering on inter-chromosomal interactions (Ashoor
et al., 2020). Using gap statistics, SCI determined that nine
clusters were optimal but noted that a few of the clusters had
similar chromatin marks.

3.2.2 Subcompartments from intrachromosomal
contacts

In contrast to the above methods, Calder looks at short-range
intra-chromosomal interactions to classify domains into a
compartmental hierarchy (Liu et al., 2021). The creators of
Calder report on eight subcompartments at 10 kb resolution, but
the use of hierarchical clustering allows one to adjust the number of
subcompartments. In theory, each node of the dendrogram could be
used to define a separate subcompartment. MOSAIC: The first
eigenvector is often used to identify A/B compartment states, but
a recent study found that the other eigenvectors can be used for
subcompartment annotation (Wen et al., 2022). Modularity and
Singular vAlue decomposition-based Identification of
Compartments (MOSAIC) uses intrachromosomal interactions to
derive the first two eigenvectors. These eigenvectors are then
assigned as subcompartments through k-means clustering. This
method identifies four optimal clusters and provides increased
concordance in cell-type specificity of subcompartments and gene
expression.

These examples highlight the diversity of employed
subcompartment identification strategies. It is remarkable,
therefore, that the eigenvector-based strategy predominates A/B
compartment identification. Subcompartment strategies differ on
many aspects, including bin-size and the number of identified
subcompartments. A major difference is the use of
interchromosomal v.s. intrachromosomal interactions. While
using interchromosomal interactions can help interference from
other types of architectural features, interchromosomal interactions
are sparse thanks to the partitioning of loci into chromosome
territories. In contrast, methods that use intrachromosomal maps
take advantage of the higher signal but must include strategies that
can account for other prominent interaction features. In considering
these differences, it is remarkable that compartmental interactions
span between separate chromosomes, despite territories. It would be
interesting to define a potential differential impact of chromosome
territories on subcompartments by comparing these features inter-
v.s. intra-chromosomally.

4 Compartment prediction

Highly related to A/B compartment and subcompartment
identification, many groups have made progress in predicting
these features. Noting the relationship between compartments
and chromatin marks, a 2015 report predicted A/B compartment
intervals from a bin-to-bin correlation between DNAmethylation or
DNAse hypersensitivity (Fortin and Hansen, 2015). Using this

genomic feature correlation method in 100 kb bins, they obtained
approximately 0.70–0.89 correlation with the eigenvector. Similarly,
we previously predicted compartmental interactions from a bin-to-
bin correlation of transcription (e.g., from Global Run On
sequencing, GRO-seq). We used this method to predict the 2D
compartmental interaction pattern in D. melanogaster at 5 kb
(Rowley et al., 2017). While GRO-seq alone performed well (R =
0.82), simulating insulation by incorporating insulator protein
ChIP-seq data improved the correlation (R = 0.91). This simple
correlation-based method also helped demonstrate that similar
principles of compartmental organization exist in a species of
worms, plants, and fungi. These basic methods also reveal that
the 1D chromatin activity status can predict 2D A/B compartments.

The application of machine learning further improves the
prediction of the 3D genome. For example, a convolutional
neural network (CNN) trained on compartment annotations and
the reference genome sequence predicted A/B compartment
intervals with ~80% accuracy at 100 kb (Kirchhof et al., 2021).
That is quite a remarkable feat given that the method solely
considers the genomic sequence as input (Kirchhof et al., 2021).

While it is intriguing how well genomic sequence can predict
compartments, it is generally accepted that compartments vary
between cell types (Kim et al., 2020; Nichols and Corces, 2021;
Chakraborty et al., 2022). Implementing cell-type specific signals, a
preprint article describes CoRNN, which uses histone modification
ChIP-seq data with recurrent neural networks to predict
chromosome compartments at 100 kb (Zheng et al., 2022). This
strategy improves the accuracy of predictions for compartmental
intervals that differ between cell types. Interestingly, while a
combination of histone modifications worked best, H3K27ac and
H3K36me3 were the most relevant for accurate A/B prediction.
Another example, MEGABASE + MiChroM, relates ChIP-seq data
with compartments to infer chromatin structural types using neural
networks (Di Pierro et al., 2017). These chromatin types are then
used within an energy landscape model to predict compartmental
interactions at 50 kb. In contrast to the above methods, this neural
network approach found that, while H3K27ac is high in the A
compartment, it is a poor predictor within this method. Instead, a
combination of histone modifications and nuclear proteins served as
a better predictor. Indeed, somewhat distinct from the A/B and
“sub’compartment models, different combinations of chromatin
marks may create distinct compartments. For example,
H3K9me3 may actually represent a third compartment, seen by
strong interactions with other H3K9me3 sites, and generally weak
interactions with A or B compartment intervals (Nichols and
Corces, 2021). Indeed regression-based machine learning found
that H3K27ac, H3K27me3, and H3K9me3, as well as the absence
of all three, were the best indicators of multi-state compartments,
and demonstrated an ability to simulate the compartmental pattern
at 100 kb using attraction-repulsion maps (Nichols and Corces,
2021).

Many of the above compartment prediction strategies used
50–100 kb bins. However, it is becoming increasingly clear that
compartment intervals are smaller than previously supposed
(Rowley and Corces, 2018; Gu et al., 2021). It will be interesting
to test the effectiveness of these methods when predicting small
compartment intervals. To do this, computational efficiency, and the
ability to validate higher-resolution predictions in a cell-type specific
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manner will be important considerations. Additionally, the above
prediction methods are almost always evaluated relative to
eigenvector-based compartment calls. Because the eigenvector
method of defining compartments has its own limitations, it
would be of value to reexamine these algorithms with alternative
compartment identification strategies.

In addition to these strategies focused on compartment prediction,
we wish to note that there are several methods that are designed to
predict signal de novo or to enhance low-depth signal within 2D contact
maps (Zhang et al., 2018; Carron et al., 2019; Liu et al., 2019; Liu and
Wang, 2019; Schwessinger et al., 2020; Cheng et al., 2021; Tan et al.,
2023). These methods often use neural networks and are now
demonstrating remarkable accuracy. It will be interesting to use
these methods to learn more about fine-scale compartments and to
compare to high-resolution Hi-C/Micro-C maps.

5 Potential limitations in compartment
analysis

5.1 Bin size/resolution

As mentioned above, chromatin interaction map analysis often
includes data binning into large 2D matrices, where each bin
represents the sum of read-pairs connecting two genomic
intervals. While this strategy reduces sparsity, data binning blurs
distinct components. Indeed, large bins make it difficult to detect
small patterns (Figure 5A). Previously, we speculated that coarse-
binned data contributed to the past discussion of compartments as
largely multi-megabase features, within a hierarchical model
(Rowley and Corces, 2018). Only a few years ago was it
demonstrated that compartments represent a fairly independent
structure from CTCF loops, and that alternating compartment
intervals are often smaller than CTCF loop domains (Nora et al.,
2017; Rao et al., 2017; Rowley et al., 2017). Indeed, small
compartment intervals can even lie inside CTCF loop domains
(Rowley et al., 2017; Gu et al., 2021).

Largely due to sequencing costs and experimental considerations,
many Hi-C maps contain less than 1 billion read-pairs (Figure 5B).
Indeed, sequencing depth has likely been a limiting factor for analysis
considering the exponential relationship between 2D matrix filling and
bin size. Illustrating this issue, a simplistic calculation indicates that a
10-fold increase in 2D coverage requires approximately 100-fold more
sequenced reads: 2Dcoverage � reads

bins2 (Figure 4). Thus compartment
calling at higher resolutions has exponentially less data per bin. It is
important to consider how sequencing depth impacts our
understanding of compartments as ultra-deep sequencing reveals
many new aspects of fine-scale compartmental organization (Gu
et al., 2021). The increasing ability to use machine learning to
impute high-resolution data from maps with low sequencing depth
may also help in this regard (Zhang et al., 2018; Carron et al., 2019; Liu
et al., 2019; Liu andWang, 2019; Schwessinger et al., 2020; Cheng et al.,
2021; Tan et al., 2023). As the cost of sequencing decreases and deeply
sequenced Hi-C and Micro-C maps become more common, it will be
valuable determine the effectiveness of these imputation methods at
fine-scale.

5.2 Data normalization

In 3D genome contact maps, there are several factors that can lead
to inherent visibility bias (Lieberman-Aiden et al., 2009; Yaffe and
Tanay, 2011), and a typical workflow will try to normalize for these
effects (Figure 2). However, normalization schemes make assumptions
which should be considered during the analysis. For a simple example,
coverage normalization assumes that each bin has the same potential to
form interactions as every other bin; albeit with the consideration that
some bins may interact more randomly than others. Interestingly, one
study examined six different Hi-C normalization strategies, comparing
them in several metrics, including their impact on visual quality,
replicate comparison at various resolutions, consistency of the
distance stratum, and TAD identification (Lyu et al., 2020). Each
normalization scheme has its own advantages and disadvantages,
and caution should be taken to avoid normalizations that may

FIGURE 5
(A) Demonstration of how data binning results in the lost ability to detect smaller features. Bottom: Binning of Hi-C data within a 500 kb region.
Contactmap fromRao et al., 2014. Top: The same binning of an image depicting theCarina Nebula from the JamesWebb Space Telescope; Credit: NASA.
(B) Histogram of the reported number of combined contact pairs for Hi-C experiments uploaded to the 4DNucleome database.
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impact the interpretation of the data as it pertains to the specific
research question. To illustrate how normalization may impact data
analysis, we can imagine a matrix displaying a checkerboard pattern of
signal (Figure 6) along with a hypothetical treatment that depletes all
interactions in one compartment (i.e., the A compartment) (Figure 6,
Treatment). In this scenario, differences between the matrices are
readily evident without normalization (Figure 6, top row). However,
these differences are muted after matrix balancing (Figure 6, bottom
row). This extreme illustration serves as an example of how matrix
normalization can obscure differences, but a counterargument is that
avoiding the false detection of differences due to artificial visibility biases
may be worth the cost of missing actual widespread changes. It is worth
considering how the assumptions of normalization schemes may
influence the interpretation of experimental results, particularly for
compartmental interaction patterns that are spread across the entire
chromosome.

5.3 Categorization vs. quantification of
compartment states

Compartment states are often analyzed as categorical features,
e.g., intervals either belong to A or B. It is fairly common to report
changes in compartments as the number of loci that switch from A
to B or vice versa. While this simplification is useful to describe a
dramatic and complete switch, it lacks quantitative power to
examine changes to the intensity of compartmental association.
Illustrating this point, our simple example demonstrates that large
differences could be missed by categorical analysis (Figure 6) To
overcome this challenge, many perform separate measurements of
compartment interactions, such as comparing within v.s. between
compartment states, e.g., AA+BBAB2 . Interactions can also be sorted by
the eigenvector for a saddle plot analysis (Kruse et al., 2020; van der
Weide et al., 2021; Magnitov et al., 2022) (Figure 7). While useful to

independently measure the segregation of candidate loci, these
metrics typically do not assign statistical significance to
differential loci. Surprisingly, there are relatively few algorithms
to statistically identify differential compartment intervals. One
recently developed algorithm, dcHiC, compares quantile
normalized eigenvectors, using the Mahalanobis distance with
chi-square tests and p-value correction to assign statistical
significance (Chakraborty et al., 2022). This method provides a
statistical test to identify significantly differential compartment
intervals between maps. Importantly, quantitative analyses
provide mechanistic insights that could be missed by categorical
approaches. In the future, implementing statistical measurements
for differential interaction analysis will be essential to ensure robust
and quantitative interrogation of compartments.

6 Discussion

Chromatin compartments are a widespread and prominent
feature of chromatin organization, seen by chromatin
conformation capture methods like Hi-C and Micro-C, non-
ligation methods like Genome Architecture Mapping (GAM) and
Split-Pool Recognition of Interactions by Tag Extension (SPRITE),
by immunoprecipitation-based methods like HiChIP and ChIA-
PET, and by high-resolution imaging like OligoStorm (Lieberman-
Aiden et al., 2009; Fullwood et al., 2010; Mumbach et al., 2016;
Beagrie et al., 2017; Rowley et al., 2017; Nir et al., 2018; Quinodoz
et al., 2018; Hsieh et al., 2020; Krietenstein et al., 2020). While we
focused on the identification of A/B compartments and sub-
compartments from Hi-C and Micro-C, other methods have used
the same or similar algorithms. For example, the eigenvector was
recently used to identify A/B compartments in High throughput
Pore-C (HiPore-C) (Deshpande et al., 2022; Zhong et al., 2023) data
as well as in data from GAM and SPRITE, which are both non-
ligation based methods (Beagrie et al., 2017; Quinodoz et al., 2018).
Therefore, while current strategies have been exceedingly useful
among multiple methods and propelled our knowledge of genome
organization, looking to the future, we have suggested several aspects
of compartmental analysis that should be considered, from data
preparation steps to identification methods. Even common steps,
such as data normalization and choice of bin-size, vary between
studies and could lead to alternate findings. Considering these
aspects ensures that the data preparation and analysis fit with the
experimental question. These factors are particularly relevant to

FIGURE 6
Demonstration of howmatrix balancing can obscure widespread
changes. Top row: An example checkerboard matrix (control) where
the signal along the A compartment becomes decreased (treatment),
the differences shown by the intensity of blue signal on the right
(difference). Bottom row: The same checkerboards and the
differences after matrix balancing.

FIGURE 7
Illustrative example of how saddle plot analysis can detect
changes in compartment interaction intensity. The example matrices
from Figure 6 were used to demonstrate how resorting interactions
can provide a useful visualization.
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experiments that explore differential genome organization, as
considering the limitations of an approach helps to ensure that
actual differences are not missed by factors such as sequencing
depth, coarse binning, matrix normalization, or inherent issues with
categorization v. s. quantification. As our understanding of
compartmental organization progresses, it will be important to
evaluate the impact of these aspects more closely.

7 Tools and terminologies
(alphabetical)

Calder (Liu et al., 2021)—A tool for calling subcompartments
using hierarchical clustering. Uses intra-chromosomal contacts.

Chromatin Compartment—The organization and segregation of
genomic loci into distinct chromatin states.

CoRNN (Zheng et al., 2022)—Compartment prediction using
Recurrent Neural Network is a tool for predicting A/B
compartments from histone modifications.

CScoreTool (Zheng and Zheng, 2018)—A tool for calculating
A/B compartment intervals using iterative parameter tuning by
maximum-likelihood estimation.

dcHiC (Chakraborty et al., 2022)—differential compartment
analysis of Hi-C is a method for statistical testing of
compartment differences.

GAM (Beagrie et al., 2017)—Genome Architecture Mapping
provides chromosome contact maps by laser microdissection and
sequencing.

GRO-seq (Core et al., 2014)—Global Run On Sequencing data
provides a genome-wide measurement of active transcription.

H3K9me3—Histone 3 Lysine 9 tri-methylation is a chromatin
modification typically associated with heterochromatin.

H3K27ac—Histone 3 Lysine 27 acetylation is a chromatin
modification typically associated with active chromatin,
particularly at active regulatory elements.

H3K27me3—Histone 3 Lysine 27 tri-methylation is a chromatin
modification typically associated with silenced/repressive
chromatin.

H3K36me3—Histone 3 Lysine 36 tri-methylation is a chromatin
modification typically associated with the bodies of transcribed genes.

Hi-C (Lieberman-Aiden et al., 2009)—A genome-wide method
of measuring chromatin contact maps by restriction enzyme
digestion followed by ligation and sequencing.

HiChIP and ChIA-PET (Fullwood et al., 2010; Mumbach et al.,
2016)—Methods of immunoprecipitating chromatin interactions
bound by proteins of interest.

HiPore-C and Pore-C (Deshpande et al., 2022; Zhong et al.,
2023)—A chromatin conformation capture method using Nanopore
sequencing to enable identification of multi-way contacts.

ICE and KR (Imakaev et al., 2012; Knight and Daniel, 2013; Rao
et al., 2014)—Iterative Correction and Eigenvector decomposition
and Knight-Ruiz matrix balancing are popular normalization
schemes for Hi-C matrices.

Micro-C (Hsieh et al., 2015; Hsieh et al., 2020; Krietenstein et al.,
2020)—A genome-wide method of measuring chromatin contact
maps by Micrococcal Nuclease digestion followed by ligation and
sequencing.

MiChroM (Di Pierro et al., 2017)—Minimal Chromatin Model
is a tool to predict compartments from ChIP-seq data within an
energy landscape model of chromatin structure.

MOSAIC (Wen et al., 2022)—Modularity and Singular vAlue
decomposition-based Identification of Compartments is a tool for
calling subcompartments using clustering of PCA eigenvectors. Uses
intra-chromosomal contacts.

OligoSTORM (Beliveau et al., 2017; Nir et al., 2018)—Oligopaint
with Stochastic Optical Reconstruction Microscopy is a high-
resolution microscopy-based method of measuring chromatin
organization at individual loci which has been used to walk along
compartmental domains.

PCA (Principal Component Analysis) leading eigenvector—A
vector corresponding to the axis which captures the largest amount
of variance in the data, often used to define A/B compartments from
genome-wide maps of chromatin conformation.

POSSUMM (Gu et al., 2021)—PCA of Sparse SUper Massive
Matrices is a tool for calculating the compartmental eigenvector
from large matrices in sparse format.

SCI (Ashoor et al., 2020)—Sub-Compartment Identifier is a tool
for calling subcompartments using graph embedding and k-means
clustering. Uses inter-chromosomal contacts.

SNIPER (Xiong and Ma, 2019)—Subcompartment iNference using
Imputed Probabilistic ExpRessions is a tool for calling subcompartments
using a neural network. Uses inter-chromosomal contacts.

SPRITE (Quinodoz et al., 2018) - Split-Pool Recognition of
Interactions by Tag Extension provides chromosome contact maps by
split-and-pool barcoding. See also RNA and DNA (RD-) SPRITE which
measures the organization of RNA and DNA (Quinodoz et al., 2021).
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