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Abstract

The spatiotemporal transfer function for a needle or reflectance-based fiber-optic hydrophone is 

modeled as separable into the product of two filters corresponding to frequency-dependent 

sensitivity and spatial averaging. The separable hydrophone transfer function model is verified 

numerically by comparison to a more general rigid piston spatiotemporal response model that does 

not assume separability. Spatial averaging effects are characterized by frequency-dependent 

“effective” sensitive element diameter, which can be more than double the geometrical sensitive 

element diameter. The transfer function is tested in simulation using a nonlinear focused pressure 

wave model based on Gaussian harmonic radial pressure distributions. The pressure wave model is 

validated by comparing to experimental hydrophone scans of nonlinear beams produced by three 

source transducers. An analytic form for the spatial averaging filter, applicable to Gaussian 

harmonic beams, is derived. A second analytic form for the spatial averaging filter, applicable to 

quadratic harmonic beams, is derived by extending the spatial averaging correction recommended 

by IEC 62127-1 Annex E to nonlinear signals with multiple harmonics. Both forms are applicable 

to all hydrophones (not just needle and fiber optic hydrophones). Simulation analysis performed 

for a wide variety of transducer geometries indicates that the Gaussian spatial averaging filter 

formula is more accurate than the Quadratic form over a wider range of harmonics. Additional 

experimental validation is provided in Part II. Readers who are uninterested in hydrophone theory 

may skip the theoretical and experimental sections of this paper and proceed to the Graphical 

Guide for practical information to inform and support selection of hydrophone sensitive element 

size (but might be well-advised to read the Introduction).
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I. Introduction

Measurement of acoustic output is important for characterizing safety and effectiveness of 

medical ultrasound devices and for rigorously documenting ultrasound experiments. An 

ultrasound wave can be detected with a hydrophone, which senses the pressure distribution 

incident on its sensitive element and produces an output voltage [1-3]. Hydrophones 

unfortunately produce distorted versions of incident pressure waves. This distortion arises 

from two main factors: frequency-dependent sensitivity and spatial averaging across the 

sensitive element. The main objectives of this paper are 1) to provide a guide for the effect 

of sensitive element size on distortion of pressure measurements of nonlinear ultrasound 

signals performed with needle and fiber-optic hydrophones and 2) to provide inverse filters 

to correct for this distortion.

Needle and fiber optic hydrophones have many applications in medical ultrasound and non-

destructive evaluation. Needle hydrophones are less expensive and more compact than 

membrane hydrophones and are often used for characterization of transcranial [4-11], high-

intensity therapeutic [12-14], and gene-delivery [15] systems. They are also used for high-

frequency transducer characterization [16], cavitation detection [17], and other medical 

applications [18, 19]. Reflectance-based fiber optic hydrophones can withstand very high 

pressures (e.g., up to 70 MPa and beyond [20-23]) and have been used for high-intensity 

therapeutic ultrasound (HITU) [13, 20-28] and lithotripsy [29] applications.

Sensitive element size affects both sensitivity and spatial averaging. As sensitive element 

size increases, sensitivity tends to increase but spatial averaging artifacts also tend to 

increase. Needle and fiber-optic hydrophones come in a wide variety of sensitive element 

sizes ranging from 7 μm [24] to 1 mm and above, making the choice difficult. This guide 

will help researchers make appropriate choices for hydrophone sensitive element size for 

their experiments and compensate measurements for distortion if necessary.

The first main factor responsible for hydrophone distortion is frequency-dependent 

sensitivity, ML(f), which is defined as

ML( f ) =
V( f )

PNP( f ) (1)

where V(f) is the hydrophone voltage output at a temporal frequency f and PNP(f) is the 

pressure of a normally-incident ultrasound wave that appears quasi-planar across the 

sensitive element. Sensitivity depends on frequency, resulting in a filtering effect on the 

input waveform. The amount of distortion is related to the degree of frequency dependence 

of hydrophone sensitivity over the band of frequencies in the incident pressure spectrum. 

This is a concern for nonlinear pressure signals that contain multiple harmonics that can 

span many MHz or even tens of MHz (e.g., for HITU). Some investigations have shown that 

distortion of quasi-planar pressure waves due to frequency-dependent hydrophone sensitivity 

can be substantially mitigated by deconvolution of sensitivity from the measured voltage 

signal [14, 30-36].
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The second main factor responsible for hydrophone distortion is spatial averaging across the 

sensitive element [37-46]. Some investigations have shown that distortion of quasi-linear 

pressure waves due to spatial averaging can be mitigated by spatial deconvolution of the 

receiver aperture function from the measured voltage signal [43, 44].

The problem becomes more challenging for signals that are neither quasi-planar nor quasi-

linear. Nonlinear beams have 1) broad bandwidths that lead to frequency-dependent 

sensitivity artifacts and 2) high-frequency content in harmonics that is susceptible to spatial 

averaging artifacts.

Most investigations of hydrophone distortion consider either frequency-dependent sensitivity 

[30-36] or spatial averaging [37-41, 43, 44, 46-48] but not both. For cases when both 

distortions are significant, it would be convenient if the two distortions could be considered 

independently so that, for example, one deconvolution could be performed first and then the 

second deconvolution afterward. This approach implicitly assumes that the hydrophone 

spatiotemporal response, Hp(f), is separable into a product of two factors arising from 

frequency-dependent sensitivity and spatial averaging.

H p( f ) = ML( f )Sp( f ) (2)

where Sp(f) is a spatial averaging filter. The subscript p is a reminder that a function depends 

on the particular spatiotemporal pressure field distribution.

The present paper investigates the validity of the separable form of the spatiotemporal 

response through comparison to a theoretical rigid piston hydrophone spatiotemporal 

response [49, 50] that does not assume separability and has been validated for predicting 

sensitivity [51, 52] and directivity [53] of needle hydrophones and sensitivity [52] and 

directivity [54] of reflectance-based fiber-optic hydrophones. This paper is relevant to 

reflectance-based fiber optic hydrophones that measure changes in a fluid refractive index 

caused by pressure changes [20, 25, 54-57]. This paper does not consider fiber optic 

displacement sensors [58]. Fabry-Perot interferometic fiber optic hydrophones [33, 59-62], 

other Fabry-Perot sensors [63], or other fiber optic designs [64-66]. A formula for the 

frequency-dependent “effective” sensitive element diameter, which determines spatial 

averaging effects, is obtained from the theoretical directivity. The framework can be applied 

to pressure fields with circular or rectangular symmetry. Calculations are performed here 

more fully for circularly-symmetric fields but suggestions are made for how to extend the 

framework for rectangularly-symmetric fields. Although analytic analysis is easier for 

circularly-symmetric fields, numerical analysis based on this framework is straightforward 

with either symmetry. The theoretical spatiotemporal response is tested in simulation using a 

focused pressure wave model, which is itself validated by comparison to hydrophone 

measurements of acoustic output from three source transducers.

This paper also presents a new model for spatial averaging effects due to integration of the 

pressure wave across the hydrophone sensitive element. This model is applicable for many 

hydrophone designs, not just needle and reflectance-based fiber optic hydrophones but also 

membrane and capsule hydrophones if their frequency-dependent sensitive element size is 
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known from separate measurements or modeling. This expression offers advantages over the 

method recommended in IEC 62127-1 Annex E, including 1) it provides an analytic 

expression for the spatial averaging filter, 2) it does not require a separate off-axis 

measurement of pressure, and 3) it does not assume a quadratic radial pressure distribution 

that limits applicability roughly to within the full width half maximum (FWHM) of the 

beam. This last feature allows greater extension to high frequency fields, whether generated 

by a high fundamental frequency or harmonics of a low fundamental frequency (in the case 

of HITU).

Finally, this paper offers a graphical guide to help investigators choose and defend 

hydrophone sensitive element size for their experiments.

II. Theory

A. Rigid Piston Model for Needle and Fiber Optic Hydrophones

The rigid piston (RP) model [49, 50] has been validated for predicting sensitivity [51, 52] 

and directivity [53] of many needle hydrophones and sensitivity [52] and directivity [54] of a 

reflectance-based fiber optic hydrophone. One RP model expresses spatiotemporal response 

in the form of an integral that may be evaluated numerically [50]. The theory does not 

simply perform a spatial average of the free-field pressure across the sensitive element of the 

hydrophone. Rather, it accounts for the fact that the hydrophone perturbs the pressure field 

by imposing a boundary condition that the component of velocity normal to the sensitive 

element must be zero (rigid piston assumption).

When the angle of incidence for an incoming plane wave is zero, the RP model describes 

frequency-dependent sensitivity in the absence of spatial averaging and reduces to

HRP( f , θ = 0) = 2 −
1

πa2
2 ∫

0

2π

∫
0

a2

e
−i2π f b(r, ϕ)/c

rdrdϕ (3)

where f = frequency, c = sound speed in the fluid, a2 = sensitive element radius (e.g., fiber 

optic cable core), a1 rigid piston radius (e.g., core plus cladding) and

b(r, ϕ) = r
2
cos

2
ϕ + (a1

2 − r
2) − rcosϕ . (4)

Fig. 1 illustrates the zero-angle transfer function and shows its effect on a quasi-planar tone 

burst. The zero-angle transfer function is a high pass filter up to a maximum response 

frequency at fmax = 1.2c / (πag), where the hydrophone geometrical sensitive element radius 

ag=a1=a2. In Fig. 1, ag = 150 μm and therefore fmax = 3.8 MHz. The high pass filter boosts 

harmonics relative to the fundamental, resulting in higher, sharper compressional peaks and 

lower, more rounded rarefactional peaks [52]. A needle hydrophone model, which accounts 

not only for diffraction but also for multiple reflections within the layered structure of 

polyvinylidene fluoride (PVDF), predicts similar frequency dependence for sensitivity [67].
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The full RP model provides HRP(f, θ) as the sum of two integral expressions that may be 

evaluated numerically [50]. For brevity, the mathematics is not reproduced here. Note that 

HRP(f, θ) mathematically describes the effects of integration of the pressure field across the 

sensitive element and is dimensionless while Hp(f) in (2) has dimensions of voltage divided 

by pressure (e.g., V/MPa).

B. Effective Sensitive Element Size

A pressure field incident upon a hydrophone may be decomposed into an angular spectrum 

of plane waves incident upon the sensitive element. The dependence of hydrophone response 

on angle of incidence is called directivity. Spatial averaging is zero for normally incident 

plane waves and monotonically increases with angle of incidence. Therefore, spatial 

averaging effects are related to hydrophone directivity.

Empirical studies suggest that spatial averaging effects may be accurately predicted by 

integrating the free field (that is, the field in the absence of a hydrophone) over the surface of 

an imaginary hydrophone sensitive element with an appropriate “effective” sensitive element 

size [45, 68]. The effective sensitive element radius aeff can differ from the geometrical 

sensitive element radius ag and can depend on frequency.

IEC 62127-3 Section 5.6 recommends estimation of aeff(f) by fitting directivity 

measurements for a circular receiver to the rigid baffle (RB) directivity model [1]

DRB(k, θ) =
2J1(kasinθ)

kasinθ
(5)

where k = 2π / λ, λ is wavelength, a is sensitive element radius (adjustable fitting 

parameter), and θ is the angle of an incident plane wave [68]. There are multiple methods 

for measuring directivity [45, 53, 54, 69-72]. The RB-model approximation may be useful 

for needle and fiber optic hydrophones because it offers an expedient alternative to 

numerical evaluation of the integral form of the RP model [50]. However, the RB-model 

approach requires knowledge of aeff(f). In the present paper, aeff(f) will be designated as the 

value of a in (5) that gives the minimum least-squares difference between an RB directivity 

with a=aeff (f) and an RP directivity with a1=a2=ag. The RB directivity based on aeff(f) will 

be compared with directivity predictions obtained directly from the RP model based on 

a1=a2=ag in order to evaluate the validity of the expedient RB approach.

C. Parametric Model for Nonlinear, Focused Beam: Temporal Dependence

An analytic expression for the spatiotemporal pressure distribution will be useful for 

predicting hydrophone filtering effects for some practical pressure measurement tasks. In 

this section, a form for pressure will be derived for a circularly-symmetric transducer. A 

previous investigation [52] showed that, for the purpose of investigating distortions due to 

frequency-dependent sensitivity of a rigid cylinder hydrophone, the temporal dependence of 

pressure may be accurately modeled using the formula of Ayme and Carstensen [73], 

modified according to the model of Zeqiri and Bond [40] that incorporates coefficients, 

Bn(σ), derived by Blackstock [74] to describe weights for harmonics. The real part of a 
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circularly symmetric pressure field can be denoted by preal(r, t). The real part of the axial 

field is given by

preal(r = 0, t) = ∑
n = 1

N

Bn(σ)sin 2πn f 1t +
π

4 (6)

where f1 = the fundamental frequency. For the shock-free region, 0 ≤ σ < 1, Bn(σ) = (2/

nσ)Jn(nσ) (“Fubini solution” [74]). More generally,

Bn(σ) =
2

nπ
Vb +

1
σ ∫

Φ
min

π

cos[n(Φ − σsinΦ)]dΦ (7)

where shock amplitude Vb = sinΦmin = sin(σVb). Blackstock’s theory was derived for plane 

waves. This paper will provide experimental tests for the extension of Blackstock’s Bn(σ) 

coefficients to model spectral weights for focused beams. In complex phasor notation,

p(r = 0, t) = ∑
n = 1

N

Bn(σ)exp i 2πn f 1t −
π

4 (8)

where preal(r, t) = Re [ p(r, t) ] and the identity cos(φ) = sin(φ+ π/2) has been used. The 

temporal Fourier transform of p(r=0, t) is

P(r = 0, f ) = exp −i
π

4 ∑
n = 1

N

Bn(σ)δ( f − n f 1) (9)

where δ(f) is the Dirac delta function.

Finite pulse duration effects could be modeled by multiplying p(r=0, t) by a time-dependent 

envelope function, m(t), as previously [52]. However, this added complication would not add 

much practical value to the model when tone bursts are investigated, as the following 

discussion will argue. The effects of finite pulse duration would be to replace the delta 

function, δ(f − nf1), in (9) with the Fourier transform of the envelope function, 

M( f ) = ℱ[m(t)], giving each spectral lobe, M(f − nf1), a finite width in frequency domain 

(Δfm) inversely proportional to the temporal duration of the envelope (Δtm) so that Δfm = 1/ 

Δtm. Fig. 2 illustrates the justification for retaining the simple harmonic delta function 

spectrum in (9). Fig. 2a shows a sensitivity filter (red dashed line) and a spatial averaging 

filter (blue solid line). Fig. 2b shows a general spectrum with finite-width harmonics (red 

dotted line) and a simple harmonic delta function approximation (vertical blue lines). 

Validity of the simple harmonic delta function approximation requires that the sensitivity 

and spatial averaging filters do not vary greatly across the width of a harmonic lobe in the 

true spectrum. This assumption will be satisfied by many practical examples in nonlinear 

medical ultrasound when tone bursts are used. For example, pulses of durations of 1 μs or 

more will have spectral lobes of width on the order of 1 MHz or less, which is less than the 

scale of significant variation of 1) sensitivities of needle and fiber optic hydrophones with 

sensitive element diameters in the range of 100 μm to 600 μm [52] and 2) spatial averaging 
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correction factors for a 150 μm diameter hydrophone measuring pressure from acoustic 

sources with f-numbers in the range of 3.84 to 19 [47]. This assumption will be tested for 

hydrophone diameters ranging from 200 μm to 1000 μm and acoustic source f-numbers 

ranging from 1.4 to 2.0 in the sequel to this paper, which will provide experimental 

validation for this model [75].

D. Parametric Model for Nonlinear, Focused Beam: Spatiotemporal Dependence

Prediction of spatial averaging effects will require a model for the radial dependences of 

harmonic pressure waves. Now assume that each harmonic component is separable into the 

product of axial and radial components [76].

p(r, t) = ∑
n = 1

N

Bn(σ) exp i 2πn f 1t −
π

4
wn(r) (10)

where r is the radial coordinate and wn(r) gives the radial dependence of the complex beam 

for the nth harmonic. Note that the axial temporal dependence is similar to an expression 

given by Muir and Carstensen for a converging spherical wave (Equation 7 in [77]). 

However, the radial dependence is different in that it results in a form for p(r, t) that is 

separable in cylindrical coordinates, which is convenient for modeling spatial averaging 

effects with hydrophones.

A Gaussian form will be employed to model wn(r)

wn(r) = exp(i gn r
2)exp −

r
2

2σn
2 (11)

This Gaussian form is assumed to be a good approximation within the range of r 

corresponding to the spatial extent of the hydrophone sensitive element. The coefficient gn is 

related to the rate of phase change with the radial coordinate. The FWHM of each harmonic 

component is σ
n
2 2ln2 (where σn should not be confused with Blackstock’s σ). Fig. 3 

compares a Gaussian form for the fundamental frequency component with the quadratic 

form used in the IEC 62127-1 Annex E spatial averaging method. Both forms are quite close 

to the theoretical diffraction pattern for a circular, concave piston transducer at radial 

coordinate r < the half width half maximum (HWHM) of the focused beam. For pressure 

fields with rectangular symmetry, (11) could be adapted by replacing gnr2 in the first factor 

by gnxx2+gnyy2 and by replacing r2 / σn
2 in the second factor by x2 / σnx

2 + y2 / σny
2.

One advantage of the Gaussian form over the quadratic form used in IEC 62127-1 Annex E 

is that as the radial coordinate r increases, the pressure amplitude goes to zero rather titan 

−∞, which makes more sense physically. The quadratic form was not intended for nonlinear 

ultrasound beams and is adequate for a fundamental component when the hydrophone 

sensitive element diameter is much smaller than the FWHM of the beam, as it should be. 

However, nonlinear beams will contain multiple harmonics with beam widths decreasing as 

harmonic number increases. The Gaussian form allows for more realistic asymptotic 
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behavior of harmonic components than the quadratic form. A second advantage of the 

Gaussian form is that it has a straightforward spatial two-dimensional Fourier transform 

(i.e., another Gaussian) that corresponds to an angular spectrum of plane wave components. 

This makes it compatible with the RP model, which represents the hydrophone 

spatiotemporal transfer function in terms of response to incident plane waves as a function 

of angle of incidence. A third advantage of the Gaussian form is that it leads to an analytic 

form for the spatial averaging correction (see next section). Gaussian representations have 

been shown to be useful for modeling moderately nonlinear HITU pulses that contain many 

acoustical cycles [76]. The present paper will provide experimental validation for the 

Gaussian harmonic beam approximation for three circular focused piston transducers in the 

focal plane.

This approach resembles previous efforts to model nonlinear Gaussian beams [76, 78, 79]. It 

is important to note, however, that previous theories assume a Gaussian source (unlike the 

present approach). Those theories predict beam properties over an extended range of 

propagation distance. The present approach is only valid where a beam may be 

approximated as a Gaussian, which, in the case of a circular focused piston source, may 

limit it to near the focal region [80]. The fundamental diffraction pattern from a circular 

focused piston source departs from Gaussian shape beyond the FWHM, but this is also true 

for the quadratic form used in IEC 62127-1 Annex E. See Fig. 3. Some theories solve for a 

complex multiplicative factor that depends on axial propagation distance but not on radial 

position. This factor is important for modeling axial variations as in [76] but is not required 

here since only a measurement plane perpendicular to the propagation direction is of 

interest.

Now the task is to obtain forms for gn and σn in (11) in terms of experimental geometrical 

parameters. These may be obtained theoretically, numerically, or experimentally by fitting 

Gaussian functions to harmonic beam radial profiles. One useful case to consider is the 

pressure field distribution in the focal plane of a circular focused piston transducer. For n = 

1, a Gaussian form may be fit to the radial dependence of the theoretical diffraction pattern 

[81],

w1(r) ≈ exp ik1
r

2

2D

2J1(k1asr /D)

k1asr /D (12)

where k1 = 2π/λ1, λ1=c/f1, c = speed of sound, as = the radius of the source, and D = the 

focal length of the source. The 2J1(πx)/(πx) function is sometimes called the jinc, besinc, or 

sombrero function. For pressure fields with rectangular symmetry, (12) could be adapted by 

replacing r2 in the phase factor by x2 + y2 and replacing the jinc function with the product of 

two orthogonal sinc functions where sinc(x) = sin(x) / x (see section 4-2 in [82]). This theory 

has been validated in the focal plane and along the transducer axis throughout an extensive 

range in the axial dimension [81]. However, it should be noted that for sufficiently intense 

beams, the shape of the radial distribution for the fundamental component can become 

distorted due to preferential loss of energy (that is, conversion to higher harmonics) from the 

center of the beam, where the intensity is highest [83]. In addition, for sufficiently high 

source pressures, shocks can form prefocally, resulting in wider focal beam widths [21, 84]. 
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In the present paper, the magnitude of this beam distortion will be investigated by solving 

the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation numerically for a variety of circular 

focused piston transducer parameters and levels of nonlinearity. The set of conditions under 

which (12) is valid for the fundamental radial pressure distribution will be referred to as 

classic-jinc-fundamental (CJF) conditions to distinguish them from general Gaussian (GG) 

conditions that do not assume (12).

The validity of (12) becomes increasingly challenged as f-number (F# = ratio of focal 

distance to aperture diameter) decreases [85, 86]. Table I tests criteria for validity [81] of 

(12) for an F/1 transducer with frequency and dimensions typical for therapeutic 

applications, such as the Sonic Concepts (Bothell, WA) H-101. The criteria are mostly met, 

except the third criterion at 3.3 MHz. Nevertheless, Table I shows that (12) predicts FWHM 

consistent with values obtained by simulation [87] and experiment [14]. For smaller f-

numbers, alternative diffraction models may be required [85, 86].

A form for g1 in (11) for a circular focused piston transducer under CJF conditions may be 

found by comparison of phase factors in (11) and (12), which results in g1 = k1 / 2D. The 

phase factor may be extended to higher harmonics by using the form from quasi-linear 

Gaussian beam propagation theory [76], resulting in gn = n k1 / 2D. This assumption might 

seem to limit the model to quasi-linear conditions. However, as will be shown in the next 

section, it is plausible that for typical transducers, magnitude considerations are far more 

important than phase considerations for predicting spatial averaging effects. Therefore, the 

quasi-linear phase assumption may not limit the model severely. Note that the IEC 62127-1 

Annex E spatial averaging correction, which is based on work by Preston et al. [38], ignores 

phase effects altogether. The validity of the phase model will be tested experimentally in a 

companion paper [75].

A form for σ1 in (11) for a circular focused piston transducer under CJF conditions may be 

found by minimizing the mean-square difference between the magnitudes of (11) and (12) 

over the HWHM of the beam, which results in σ1 = 1.93 D / (k1as) in the focal plane. The 

magnitude factor may be extended to higher harmonics by postulating that σn = σ1 / nq. This 

harmonic-dependent beam width model has been applied empirically to measurements of 

nonlinear ultrasound beams, with a measurement of q = 0.61 [88]. In the quasi-linear limit 

for Gaussian sources, q = 0.5 [76, 78, 79]. Under CJF conditions, σn = 1.93 D / (nq k1as). 

This paper will provide results of KZK-equation simulations and experiments to 1) identify 

conditions when a power law is appropriate to model the dependence of harmonic beam 

width on harmonic number and 2) determine appropriate values for q.

As stated previously, the variant of the RP model used here gives the rigid piston response to 

an incident plane wave as a function of temporal frequency and plane wave angle of 

incidence. Therefore, it is helpful to decompose each harmonic component into its angular 

spectrum, which is given by the two-dimensional Fourier transform (which for a field with 

circular symmetry is also the Fourier-Bessel or Hankel transform) of wn(r). In order to 

accomplish this, it is useful to express the radial dependence of harmonic pressure as
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wn(r) = exp −
bn

2
r

2

2
(13)

where

bn
2 =

1

σn
2 − i2gn (14)

The CJF form for σn may be used if appropriate. Otherwise, σn may be obtained from 

theory, simulation, or experiment. The Fourier-Bessel transform of each harmonic 

component of the Gaussian beam is given by

Wn(ρ) =
2π

bn
2 exp −

(2πρ)2

2bn
2 (15)

This expression gives weighting factors for plane wave components of the nth harmonic as a 

function of spatial frequency, ρ, or equivalently, angle of incidence, 

θ
z
(ρ, f ) = cos−1 [ 1 − (cρ/n f 1)2] [82]. Now the complex phasor pressure field transformed to 

both temporal-frequency domain and angular spectrum frequency domain becomes

P(ρ, f ) = exp −i
π

4 ∑
n = 1

N

Bn(σ) δ( f − n f c)Wn(ρ) (16)

Finally, the spatiotemporally transformed hydrophone output voltage may be predicted by 

taking the product of P(ρ, f) in (16) with HRP(ρ, f). HRP(ρ, f) may be obtained from HRP(θz, 

f) predicted by the RP model [50] and knowledge that θ
z
(ρ, f ) = cos−1 [ 1 − (cρ/n f 1)2]. 

Time-domain signals may be obtained by inverse Fourier transformation.

E. The Spatial Averaging Filter

The reduction of measured pressure due to spatial averaging across the hydrophone sensitive 

element is given by the integral of the incident pressure field divided by the effective area of 

the sensitive element [38, 40, 46-48]. When expressed as a spatial averaging filter with a 

frequency-dependent effective sensitive element size,

Sp( f ) =
∫ 0

2π∫ 0

a
e f f

( f )
p(r, f )rdrdθ

πae f f
2 ( f )

(17)

where aeff(f) is the frequency-dependent hydrophone effective sensitive element radius. This 

applies to all hydrophones, not just rigid piston hydrophones. The integral in the numerator 

can be simplified if phase effects are negligible. Phase effects are negligible if, as r moves 
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outward from the axis, the magnitude of each harmonic pressure wave falls significantly 

before the phase begins to deviate substantially from 0 radians. Consider the fundamental 

wave under CJF conditions. In the focal plane of a circular focused piston transducer, the 

phase of the fundamental component reaches 10° (π/18 radians) when r = r10 or

k1r10
2

2D
=

π

18
or r10

2 =
λ1D

18
(18)

Meanwhile the – 6dB point in the beam occurs at r−6 dB = 0.705 λ1 F#. The ratio is

r10
r− 6 dB

=
0.34
F#

D

λ1
(19)

So if the focal plane is many fundamental wavelengths away from the transducer (D >> λ1) 

and the F# is not too large, then r10 > r−6 dB so phase does not greatly affect the integral for 

the fundamental component. This example suggests that it is plausible that phase effects do 

not greatly affect the integral for harmonics. For sufficiently high harmonic numbers, the 

sensitive element may encompass one or more sidelobes in addition to the main lobe of a 

harmonic component of the beam. Although the diffraction pattern may undergo sign 

changes (phase shift = π radians) at nulls surrounding sidelobes, contributions to the spatial 

averaging integral from sidelobes may be small compared to the contribution from the main 

lobe so neglecting these sign changes may not have a big effect on the spatial averaging 

filter. The sequel to the present paper will show experimental data to investigate the 

importance of the phase factor for some nonlinear beams [75].

If phase can be ignored for all harmonics, then it can be shown that for Gaussian beams 

(either GG or CJF conditions),

Sp(n f 1) =
1

Ωn
2 1 − e

−Ω
n
2

(20)

where

Ωn
2 =

ae f f
2 (n f 1)

2σn
2 (21)

and the following indefinite integral has been used.

∫ xe
−vx

2
dx = −

1
2v

e
−vx

2
(22)

Again, the CJF form for σn may be used if appropriate. Otherwise, σn may be obtained from 

theory, simulation, or experiment. The spatial averaging filter may be seen to be a function 

of the ratio of the frequency-dependent effective size of the hydrophone to the beam width. 
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Recall that the FWHM of each harmonic component is σ
n
2 2 ln2. As the ratio approaches 

infinity, Sp(f) approaches zero, as expected. As the ratio approaches zero, Sp(f) approaches 

one, as expected. (This can be seen by expanding the exponential in (20) as a Taylor series 

and retaining the first two terms).

F. Extension of the Quadratic Spatial Averaging Model

Preston et al. derived a formula for spatial averaging based on the assumption that the radial 

pressure distribution near the beam axis could be approximated as quadratic [38].

p(r) = 1 − br
2 (23)

This model applies to all hydrophones, not just rigid piston hydrophones, and assumes that 

effects due to phase are negligible. Preston et al. derived a formula for a spatial averaging 

correction factor C (inverse of the spatial averaging filter) that requires one measurement on 

axis and another measurement one hydrophone radius off axis. Their result is

C =
3 − β

2 (24)

where

β =
signal at one hydrophone radius f rom the axis

signal on axis
(25)

This formula is the basis for the spatial averaging correction method in IEC 62127-1 Annex 

E [89]. Interestingly, it can be shown that this result holds regardless of the value of the 

quadratic coefficient b, provided the hydrophone sensitive element is small enough so that 

both measurements are within the zone of the beam where the radial pressure distribution 

may be accurately modeled as quadratic. Accordingly, Preston et al. did not provide a 

formula for b.

This formulation will be extended here to nonlinear pressure waves by applying (23) – (25) 

to each harmonic component. This can be denoted by adding the subscript n to Preston et 

al.’s notation as follows: pn(r), bn, Cn, and βn. While Preston et al.‘s formulation could have 

been applied to linear experimental hydrophone voltage signals in time or frequency domain, 

the nonlinear extension is probably more easily applied after Fourier transformation of time 

domain hydrophone voltage signals, so that harmonic magnitudes may be evaluated 

individually.

The harmonic extension of Preston et al.’s method may be used to estimate the spatial 

averaging filter from measurements regardless of whether CJF conditions apply. First, βn 

may be evaluated using (25) on all measureable harmonic components of Fourier 

transformed hydrophone voltage signals. Then, Cn may be evaluated from βn using (24). 

Finally, the spatial averaging filter may be evaluated with Sp(nf1) = 1 / Cn. (As with Preston 

et al.’s method, this method requires knowledge of aeff(nf1), which can be obtained from 
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directivity measurements or theoretical considerations (see Results section). Harmonic beam 

widths, σn, can be estimated by equating the empirical and theoretical (20) spatial averaging 

filters. Of course, σn can also be estimated from lateral hydrophone scans (see Results 

section).

A theoretical form for the spatial averaging filter may be derived under quadratic beam and 

CJF conditions, obviating the need for measurement of βn. Although Preston et al. did not 

show this, it can be shown, by using (23) in (17), that the spatially-averaged mean value of 

the quadratic field corresponding to the nth harmonic over the hydrophone sensitive element 

is

Sp(n f 1) = 1 −
bnae f f

2 (n f 1)

2
(26)

A formula for b1 for the fundamental wave may be obtained by minimizing the mean square 

difference between the diffraction pattern under CJF conditions (12) and a quadratic 

approximation over the FWHM of the beam. The result is

b1 = 0.108
k1as

D

2
(27)

Approximating the fundamental as a Gaussian under CJF conditions, the relation σ1 = 1.93 

D / (k1as) can be used to obtain

b1 =
0.402

σ1
2 (28)

For a nonlinear Gaussian beam,

bn =
0.402

σn
2 (29)

This gives a spatial averaging filter of

Sp(n f 1) = 1 −
0.201ae f f

2 (n f 1)

σn
2 (30)

This formula is valid throughout the zone in which a Gaussian beam can be adequately 

approximated by a quadratic function or roughly for r < HWHMn = 2 ln2σ
n

= 1.18σn (see 

Fig. 3). The maximum difference between a Gaussian function, exp(−r2/2σn
2), and a least-

squares quadratic fit remains below 5% for r < 1.27σn. This occurs for r = aeff (nf1) when
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ae f f (n f 1)

σn

< 1.27 (31)

For a beam obeying a power law dependence of beam width vs. harmonic number,

ae f f (n f 1)

σ1/nq
< 1.27 (32)

or

n
q < 1.27

σ1
ae f f (n f 1) (33)

where σn = σ1 / nq as discussed in Section II.D. In the focal plane of a circular, focused 

piston, if the fundamental lobe shape has not undergone significant nonlinear distortion, the 

relation σ1 = 1.93 D / (k1as) can be used in (33).

Simulation analysis will be performed to compare the quadratic form of the spatial 

averaging correction with the more general form derived in the previous section.

III. Methods

A. Computation for Rigid Piston Transfer Function

Krucker et al. obtained an expression for the spatiotemporal transfer function of a rigid 

piston due to an incident plane wave as a function of frequency, angle of incidence, sensitive 

element radius, and the radius of a rigid outer layer surrounding the sensitive element (e.g., 

cladding of a fiber optic hydrophone) [50]. For normally incident plane waves this 

expression gives similar results to those derived by Jones [49, 52].

The transfer function is the sum of two integrals. The first integral corresponds to angular-

dependent averaging of the incoming plane wave due to phase cancellation over the sensitive 

element. This integral is the same as the RB model and is easy to compute.

The second integral corresponds to diffracted and reflected waves and is evaluated 

numerically. It is a double integral, one integral over the sensitive element (e.g., fiber core) 

and another integral over the entire piston surface (e.g., core plus cladding). The integrals 

were performed in polar coordinates of radius r and angle ϕ. For each harmonic, the radial 

grid spacing Δr was set to the minimum of ag /10 and λ / 2.09 where λ = c / (nf1). The non-

integer value of 2.09 was chosen to avoid repeated samplings at the same phase of the 

pressure field. For each value of r, the angular spacing Δϕ was initially set to 2 tan−1 (Δr / 2r) 

to make spatial sampling consistent for radial and angular integrals. The value of Δϕ was 

then reduced to the highest value below the initial value such that the angular integral would 

contain an integer number of angular intervals. These choices for grid spacing have been 

validated previously by comparison of computations with measurements of directivity of 
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needle [53] and fiber optic [54] hydrophones for kag ranging from 0.4 to 21.2 and ϕ ranging 

from 0 to 90°.

Computations were performed using Matlab (Natick, MA) on a Dell notebook computer 

with a 2.6 GHz i7 processor with 16 GB of RAM. Computation time of the second integral 

increased rapidly with kag. It has been shown previously that the first integral (RB model) 

dominates the second integral (diffraction and reflection) for kag > 4 [53]. Therefore, in the 

present paper, the RB model was used to approximate the spatiotemporal transfer function 

for kag > 8.

B. Approximation of Rigid Piston Transfer Function with Rigid Baffle Transfer Function 
with Frequency-Dependent Effective Sensitive Element Radius

Frequency-dependent hydrophone effective radius aeff(f) was determined by fitting the RB 

directivity model (5) to the reference directivity (here, the theoretical RP model instead of 

experimental measurements). RB model directivities, 2J1(ka sinθ) / (ka sinθ), were least-

squares fit to RP model predictions, HRP(θ, f) (based on ag), using a as the adjustable fitting 

parameter. Root mean square differences (RMSDs) between RP and RB model directivities 

were computed for trial values of a = 10, 20, 30, … 1000 μm. Computations were repeated 

for frequencies f = 1, 2, 3, … 10 MHz and geometrical sensitive element radii ag = 50, 100, 

150, 200, and 250 μm. For each value of frequency f and geometrical sensitive element 

radius ag, the value of a that minimized RMSD was chosen for aeff(f). A similar approach 

was taken by Wilkens and Molkenstruck to estimate aeff(f) from directivity measurements 

for a membrane hydrophone [90] (i.e., a non-RP system where sensitivity and directional 

responses may be significantly affected by internal waves within the sensing element). 

Benefits of using equivalent RB models to describe RP systems include 1) the RB model is 

easier and faster to compute, 2) the RB model offers a simpler, more intuitive formula for 

spatial averaging effects, and 3) the method recommended in IEC 62127-3 Section 5.6 for 

determination of hydrophone effective radius is based on the RB model [68]. The cost of 

using equivalent RB models to describe RP systems is that the less realistic model can lead 

to loss of accuracy, which will be investigated and quantified in the present paper.

The curve-fitting approach for determining aeff(f) was preferable for the present application 

to the approach recommended in IEC 62127-3 Section 5.6, which gives formulas for 

effective radius based on measurements of −3 dB and − 6 dB angles for directivities. The 

preference is because for low values of kag, RP directivities might not fall below −6 dB or 

even −3 dB within the range of angles investigated even if these angles go up to 90° (see Fig. 

1 in [53] and Fig. 2 in [54]). The curve-fitting approach provides values for aeff(f) over a 

wider range of kag than the IEC 62127-3 approach.

In principle, optimal model parameters derived from the fitting procedure could depend on 

the range of angles of plane wave propagation included in the fits. Ideally, the range of 

angles in the model fits should match the range of angles in the angular spectrum of the 

beam. In order to investigate the dependence of model parameters on angle range, model fits 

were performed for multiple angle ranges: ±10° ±20°, ±30°, … ±90°. The range of ±90° is 

appropriate for hemispherical arrays used in transcranial applications.
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C. KZK Simulation Methods

Simulations were performed to test for when a power law, σn = σ1 / nq, is appropriate to 

model the dependence of harmonic beam width on harmonic number and to estimate the 

value of the exponent q as a function of experimental parameters. Simulations utilized HIFU 

Simulator software [91] available at the MathWorks web site. HIFU Simulator solves the 

KZK equation, which is the quadratic approximation of the Westervelt equation (not to be 

confused with the quadratic spatial averaging model discussed previously). The KZK 

equation is theoretically valid up to angles of about 15-20° from the propagation axis 

(roughly equivalent to F# > 1.5) [86, 92]. However, it has been reported that the KZK 

equation can be relatively accurate in the frequency domain about 25° from the transducer 

axis (F# = 1) [92]. The parameters for water used in the simulations were sound speed c = 

1480 m/s, density ρ = 1 g/cm3, absorption at 1 MHz = 0.217 dB/m, exponent of absorption 

vs. frequency curve = 2, and nonlinear coefficient β = 3.5 (where the nonlinear coefficient β 
should not be confused with the variable β from section II.F). One hundred harmonics were 

used in each simulation.

Table II lists sets of transducer parameters used in simulations. One set of parameters 

corresponded to the Sonic Concepts H196, which is designed for HITU applications. Three 

sets of parameters corresponded to the transducers made by Blatek (State College, PA) and 

Panametrics (Waltham, MA) that were used in the experiments (see next section). Each 

simulation was repeated for a range of input powers in order to generate non-linear 

propagation parameter σm [93] and local distortion parameter σq [94] values for the focal 

point waveforms up to 5 and 6 respectively. Note that σm is approximately equal to the local 

distortion parameter σq when the local area factor Fa (square root of the ratio of the source 

aperture area to beam area) is between 2 and 12 [94, 95]. The range of σm and σq 

investigated corresponded to spectral index SI values ranging from 0.01 to 0.54. SI is the 

fraction of the power spectrum contained in frequencies above the fundamental frequency 

[96, 97].

D. Experimental Methods

Experiments were conducted to test the suitability of extending Blackstock’s relative 

spectral weights from plane to focused waves, to test the Gaussian beam approximation, and 

to measure the exponent q where σn = σ1 / nq. Table II lists the transducers used.

A Tektronix (Beaverton, OR) AFG 3102 function generator was used to generate tone bursts 

containing 6-10 cycles of the driving frequency. Each source transducer was driven at its 

center frequency and perhaps one or two additional frequencies off resonance to expand the 

parameter space for the measurements. The output of the function generator was connected 

to an Amplifier Research (Souderton, PA) 150A 100B 150 Watt power amplifier. The output 

of the power amplifier was connected to the source transducer. The ultrasound signal was 

received using an Onda (Sunnyvale, CA) GL-0085 capsule hydrophone with a nominal 

geometric sensitive element diameter of 85 μm. The hydrophone signal was digitized using a 

Tektronix TDS 3012 digital phosphor oscilloscope. The digitization rate was 1 GHz.
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Axial hydrophone measurements at the geometrical focal point based on transducer surface 

curvature were used to test the suitability of using harmonic strengths with relative 

magnitudes computed from Blackstock’s theory (which was derived for plane waves) to 

model focused beams. Spectra were obtained from Fast Fourier Transforms (FFTs) of axial 

hydrophone voltage signals. Complete, rectangular-windowed tone bursts (rather than 

windowed intervals from the middle) were analyzed. Spectra were deconvolved for 

sensitivity using the frequency-dependent sensitivity for the GL-0085. Blackstock’s σ (not 

to be confused with the Gaussian beam width parameter σn) was estimated by finding the set 

of coefficients Bn(σ) from (7) with the minimum mean squared difference with the 

magnitudes of the experimental harmonics (maxima of spectral peaks near integer multiples 

of the fundamental frequency) in the FFT. Both Bn(σ) and the experimental harmonic 

strengths were normalized to the magnitude for the fundamental spectral peak. Model 

spectra, which were constrained to be consistent with Blackstock’s theory, were obtained by 

multiplying experimental spectra by the ratio of Bn(σ) to the experimental harmonic spectra 

in the vicinities of each of the first 4-5 harmonics. Inverse FFTs were applied to model 

spectra to obtain model time-domain waveforms. Model time-domain waveforms were 

compared to measured waveforms.

Lateral hydrophone scans in the focal plane were used to 1) test the suitability of the 

Gaussian beam approximation and 2) measure the exponent q where σn = σ1 / nq. Three 

lateral scans were performed for each combination of source transducer and driving 

frequency. The hydrophone was laterally scanned in spatial increments of 0.05 (Panametrics) 

– 0.06 (Blatek) mm. Lateral hydrophone scan data were Fast Fourier transformed to generate 

lateral beam plots for 4-5 harmonics. As before, complete tone bursts (rather than windowed 

intervals from the middle) were analyzed. Again, harmonic magnitudes were computed from 

maxima of spectral peaks near integer multiples of the fundamental frequency. The exponent 

q was estimated by fitting HWHM to a power law proportional to 1 / n q. Similar 

methodology was reported by Ward et al. [88]. HWHM were measured by linear 

interpolation between the two lateral shifts corresponding to harmonic beam magnitude 

values just above and just below half the maximum (zero lateral shift) value.

IV. Results

A. Approximation of Rigid Piston Transfer Function with Rigid Baffle Transfer Function 
based on Frequency-Dependent Effective Sensitive Element Size.

Fig. 4 shows a scatter plot of kaeff vs. kag where aeff is the value of a in the RB directivity (5) 

that minimizes the mean square difference between RB model (for a = aeff) and RP model 

(for a1=a2 =ag) directivities (over the range from −60° < θ < 60°). It appears that kaeff 

exhibits the same dependence on kag for all frequencies investigated. This is expected 

because the RP model is a purely geometrical model and therefore the response should only 

depend on the relative sizes of diameter and wavelength as described by the kag values. For 

kag > 4, kaeff is approximately equal to kag. This is consistent with previous measurements 

of directivity for needle [53] and fiber optic [54] hydrophones. For kag < 4, kaeff tends to be 

greater than kag. At kag = 0.5, kaeff ≈ 2.25 kag. At kag = 1, kaeff ≈ 1.75 kag.
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Fig. 5 shows the relative difference between aeff and ag as a function of kag obtained with 

fits over the range of −60° < θ < 60°. The decline of aeff with frequency is qualitatively 

consistent with reported measurements for needle [45, 53, 98] and fiber optic [54, 98] 

hydrophones. (Recall that k =2πf/c.) Table III shows results of parametric fits for (aeff − ag) / 

ag for various angle ranges. The exponential fit has two parameters (A and B) and fits the 

data more closely than the single parameter inverse law fit. Exponential fits have also been 

found to be appropriate for experimental data from membrane hydrophones [90]. Parameters 

exhibit gradual dependences on angle range. Estimates for the numerator (C) values for the 

fit of the form C / kag may be compared with previous reported measurements. (The 

numerator C should not be confused with the correction factor C defined in Section II.F. In 

both cases, the variable C was chosen in order to be consistent with previous publications 

[38, 53, 54]). Wear et al. estimated C using fits over the range of −70° < θ < 70° for four 

needle hydrophones with nominal geometric sensitive element diameters of 200, 400, 600, 

and 1000 μm. Their value of 0.52 (95% CI: 0.45 – 0.59) [53] is close to the value in Table III 

over the same angle range: 0.51 (95% CI: 0.46 – 0.56). Wear and Howard estimated C using 

fits over the range of −90° < θ < 90° for a reflectance-based fiber optic hydrophone with 

nominal geometric sensitive element diameter of 105 μm. Their value of 0.67 (95% CI: 0.55 

– 0.79) [54] is close to the value in Table III over the same angle range: 0.57 (95% CI: 0.52 

– 0.62).

Fig. 6 shows magnitude and phase of directivity functions for four values of kag for the RP 

model evaluated for a1=a2=ag and two versions of the RB model evaluated for a=ag and aeff 

(f). The top row of Fig. 6 illustrates that the directivity magnitude predicted by the RP model 

can be closely approximated by the directivity magnitude predicted by the RB model 

provided the effective sensitive element radius, aeff(f), is used. The bottom row of Figure 6 

shows that the phase differences between the two models tend to be small, except sometimes 

near nulls in the directivity pattern. Since incident plane waves near angles corresponding to 

nulls are highly suppressed anyway, discrepancies in phase shifts between RP and RB 

models near nulls are unimportant.

Fig. 7 shows differences in magnitude and phase between the RP model directivity evaluated 

for a1=a2=ag and RB model directivity evaluated for a= aeff (f). Phase differences as 

functions of angle were weighted by directivity magnitude as a function of angle before 

averaging. The magnitude difference reaches a maximum of less than 3% near kag = 5. Fig. 

7 suggests that the RP model evaluated for a1=a2=ag can be replaced by the RB model 

evaluated for a = aeff (f) for modeling spatial averaging effects of needle and reflectance-

based fiber-optic hydrophones for many practical situations. This is convenient because the 

RB response can be easily and quickly computed by averaging the free field in space domain 

over the effective sensitive element area. This is easier than the implementing the RP 

directivity, which requires transformation to the spatial frequency domain and numerical 

computation of an integral.

B. KZK Simulations

Fig. 8 shows simulation results for FWHM as functions of harmonic number for 6 

transducers (see Table II) and a range of values for the nonlinear propagation parameter σm 
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[93]. The data presented include all harmonics for which harmonic power is at least six 

hundredths of one percent of the fundamental power. For σm < 2.4, σm was highly correlated 

with the spectral index SI [96], with the approximate formula σm ≈ 5.9 SI achieving an 

RMSD of 0.1 compared with direct computation of σm. This approximate factor of 6 is 

similar to that found by Duck for a pulsed single element 3.38 MHz transducer with a focal 

depth of 95 mm (see Fig. 7 in [96]) and Duncan et al. for many transducers when energy 

transferred from the fundamental frequency to higher harmonics was less than 20 percent 

(see Fig. 5 in [94]).

For σm < 2.4 (which corresponds approximately and conservatively to σq < 3: SI < 0.4), the 

functions appear as straight lines on the log-log plots, indicating approximate power law 

relationships. For σm > 2.4 (σq > 3; SI > 0.4), the functions lose the straight-line appearance, 

indicating deviations from power laws. This suggests that the power law dependence of 

beam width on harmonic number is valid for σm up to 2.4 and σq up to 3 for the six 

transducers investigated. For σm > 2.4 (σq > 3; SI > 0.4), the beam widths for high 

harmonics are greater than would be predicted from a power law extension of low harmonic 

behavior (resulting in less spatial averaging), implying that a power-law model based on low 

harmonic behavior would yield an upper bound for spatial averaging reduction (i.e., a lower 

bound for the spatial averaging filter), which may be useful for some applications.

Fig. 8 shows a slight upward trend for the fundamental FWHM (y-intercept) with σm. This 

might be attributable to loss of energy (that is, conversion to higher harmonics) from the 

center of the beam (where pressure is most intense) increasing with nonlinearity as discussed 

previously [83]. However, for all six transducers in Fig. 8 and all σm values ranging from 

0.02 to 5, the fundamental beam width remained within 6% of its theoretical value from 

(12), indicating that beam broadening was a small effect. This suggests that CJF conditions 

were valid for σm up to 5 (σq up to 6) for the transducers investigated in tone burst mode.

Fig. 9 shows simulation and experimental results for the dependence of the exponent q of 

FWHM vs. harmonic number (based on a power law fit of the first 5 harmonics) on σm. For 

σm < 5 (σq < 6), q mostly falls in the range between 0.6 and 0.8. A least-squares linear fit to 

the data (red line) is given by q = 0.79 – 0.042 σm (which corresponds to q = 0.78 – 0.32 

σq).

C. Experimental Results to Test Assumptions Underlying Theoretical Framework

Fig. 9 shows that the experimental values for q were consistent with simulated values (based 

on the first 5 harmonics), considering the range of σm. This supports the idea that measured 

harmonics were due to nonlinear propagation rather than by spurious harmonics generated at 

the transducer surface. (The presence of harmonics generated at the transducer surface 

would drive q upward toward a value of 1 because their focused beam widths would be 

simply inversely proportional to frequency [81]). The nonlinearity metrics were σm < 0.7, σq 

< 0.9, and SI < 0.1. Nonlinearity was high enough to ensure multiple detectable harmonics 

but low enough to prevent 1) damage to hydrophones and 2) compromised measurements 

due to cavitation.
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Fig. 10a shows a spectrum of a hydrophone measurement at the focus of the Blatek 3.5 MHz 

transducer. Relative harmonic magnitudes Bn(σ) from Blackstock’s theory (7) (red x’s based 

on σ=0.35 and normalized to the fundamental magnitude) are consistent with measurements. 

Fig. 10b shows the corresponding time-domain radio-frequency (RF) signals. The 

measurement is shown in the blue line. A best-fit signal with relative harmonic strengths 

corresponding to Blackstock’s theory (7) with σ=0.35 is shown in the red dashed line. The 

RMSD between experimental and best-fit theoretical harmonic coefficients was 16% ± 1% 

for three transducers (Blatek and two Panametrics transducers in Table II). Therefore, 

although Blackstock’s spectral coefficients were derived for plane waves, they appear to 

provide reasonable spectral weights to model focused beams considered in this study.

Fig. 11 shows lateral beam scans for harmonics for the Blateck 3.5 MHz transducer. The 

solid black line shows the theoretical CJF radial profile at the fundamental frequency. The 

dotted black line shows a Gaussian fit to the lateral profile at the fundamental frequency. The 

dotted lines for the harmonics were generated by reducing the width parameter for the 

fundamental radial profile by a factor of 1 / n q, where q was obtained by fitting HWHM(n) 

to a power law proportional to 1 / n q. The RMSD between experimental HWHM and 

functional fits was 0.0097 ± 0.0049 mm (4.0 ± 1.9%) for the first 4 harmonics over all 5 

transducer / frequency combinations. The data support the Gaussian form for the 

fundamental and harmonic components of the beam. Estimates for the exponent q were 

approximately 0.8 as shown in Table II. This is larger than the quasilinear value of 0.5 [76, 

78] and the experimental value of 0.61 reported by Ward et al. [88], but consistent with KZK 

simulations (see Fig. 9).

D. Simulation Examples of Hydrophone Transfer Functions and Their Effects on Signals

Fig. 12 shows simulated RP (a1=a2=ag) and RB (a= aeff (f)) transfer functions, HRP(f) and 

HRB(f), for the case of a Sonic Concepts H101 transducer operated at its lower frequency 

mode of 1.05 MHz (under CJF conditions) for q = 0.8. The simulated hydrophone sensitive 

element geometrical diameter was 200 μm. HRP(f) and HRB(f) are essentially identical, 

which supports the separable model and the expedient usage of the RB transfer function, 

provided aeff (f) is used rather than ag. As frequency increases from 0, HRP(f) and HRB(f) 

increase until f reaches fmax = 1.2c / (πag) = 5.7 MHz. Beyond fmax, the hydrophone 

sensitivity ML(f) is relatively flat and therefore HRP(f) and HRB(f) decrease due to spatial 

averaging effects. Fig. 12 also shows the spatial averaging filter for the RP model, SRP(f) = 

HRP(f) / ML(f), which is very consistent with 1) the integral form computed from the 

pressure wave model combined with the numerical RP model (17) and 2) the analytic 

(Gaussian) formula for Sp(f) (20). Since the numerical integral form (17) accounts for phase 

of the diffraction pattern and the analytic (Gaussian) form (20) neglects phase of the 

diffraction pattern, their similarity suggests that phase of the diffraction pattern may be 

safely neglected when predicting spatial averaging effects. The quadratic form for Sp(f) 

given by (30), a harmonic extension of IEC 627127-1 Annex E, is valid up to about n = 19 

as predicted by (33), corresponding to f = 20 MHz as shown in the black vertical chain-dash 

line.
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Fig. 13 shows the effects of HRP(f) and HRB(f) from Fig. 12 on a tone burst. The time 

domain effects of HRP(f) and HRB(f) are essentially identical, which again supports the 

separable model and the expedient usage of the RB transfer function, provided aeff(f) is used 

rather than ag. All harmonic frequencies up to about 25 MHz are boosted relative to the 

fundamental (see HRP and HRB in Fig. 12). Since most of the energy in the signal spectrum 

lies mostly below 25 MHz, this results in high-pass filtering, producing higher, sharper 

compressional peaks than in the undistorted case.

Fig. 14 shows simulated RP (a1=a2=ag) and RB (a= aeff(f)) transfer functions, HRP(f) and 

HRB(f), for the case of a Sonic Concepts H101 transducer operated at its higher frequency 

mode of 3.3 MHz (under CJF conditions) for q = 0.8. Again, the simulated hydrophone 

geometrical sensitive element diameter was 200 μm. HRP(f) and HRB(f) are essentially 

identical, which supports the expedient usage of the RB transfer function, provided aeff(f) is 

used rather titan ag. At 3.3 MHz, unlike 1.05 MHz, the high-pass filter effect of ML(f) at low 

frequencies is not very apparent because the fundamental frequency is relatively close 

(within a factor of 2) to fmax = 1.2c / (πag) = 5.7 MHz. Therefore, Fig. 14 mostly shows the 

effects of spatial averaging. Fig. 14 also shows the spatial averaging filter for the RP model, 

SRP(f) = HRP(f) / ML(f), which is very consistent with 1) the integral form computed from 

the pressure wave model combined with the numerical RP model (17) and 2) the analytic 

(Gaussian) form for Sp(f) (20). Since the numerical integral form (17) accounts for phase of 

the diffraction pattern and the analytic (Gaussian) form (20) neglects phase of the diffraction 

pattern, their similarity suggests that phase of the diffraction pattern may be safely neglected 

when predicting spatial averaging effects. The quadratic form for S(f) given by (30) is valid 

up to about n = 4 as predicted by (33), corresponding to f = 13 MHz as shown in the black 

vertical chain-dash line.

Fig. 15 shows the effects of HRP(f) and HRB(f) from Fig. 14 on a tone burst. The time 

domain effects of HRP(f) and HRB(f) are essentially identical, which again supports the 

expedient usage of the RB transfer function, provided aeff(f) is used rather than ag. At 1.05 

MHz, high-pass filter effects dominate spatial averaging effects, leading to higher, sharper 

compressional peaks (Fig. 13). In contrast, at 3.3 MHz, spatial averaging effects dominate 

high-pass filter effects, leading to smaller, rounded compressional peaks (Fig. 15).

V. Graphical Guide

Fig.s 16 – 18 show the Graphical Guide for visualizing the effect of F# and ratio of 

geometrical sensitive element diameter to fundamental wavelength on hydrophone 

sensitivity (“M”, blue circles) and spatial averaging filter (“S”, red squares) for the CJF 

model. The total spatiotemporal transfer function is the product of M and S. Sensitivities in 

the Graphical Guide have been normalized so that their values at the first harmonic are equal 

to one. The spatial averaging filter was computed for q = 0.2, 0.4, 0.6, and 0.8 where the full 

width half maxima of harmonic beams are proportional to the FWHM of the fundamental 

beam divided by nq where n is the harmonic number. For nonlinear propagation parameter 

σm < 2.4 (σq < 3) or spectral index SI < 0.4 (that is, less than 40% of signal power contained 

harmonics above the fundamental), q=0.81-0.38SI for the six transducers investigated here 

(see Table II) so that q mostly ranges from 0.6 to 0.8 (see Fig. 9). (See next section for 
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further discussion of values for q in quasi-linear applications.) For σm > 2.4 (σq > 3: SI > 

0.4), the relation between FWHM and n deviates from a power law and effective values for q 

would be expected to decrease below 0.6, as may be seen from the slopes (i.e., power law 

exponents) of the curves in Fig. 8. (Note that the values for q in Fig. 9 are based only on the 

first 5 harmonics and would be lower if based on all significant harmonics for σm > 2.4 or σq 

> 3.)

In order to maximize the utility of the Graphical Guide, an investigator should have some 

idea of the effective number of harmonics in the signal to be measured. Then the investigator 

can look at the plots in the Graphical Guide over the effective range of harmonics to 

determine whether a sensitivity deconvolution or a spatial averaging correction or both 

would be required. If the sensitivity M varies considerably over the effective range of 

harmonics, then a sensitivity deconvolution would be advisable. If the spatial averaging filter 

S decreases substantially below one over the effective range of harmonics, then a spatial 

averaging correction would be advisable.

(Note that a sensitivity deconvolution might also be advisable even for linear signals if the 

hydrophone sensitivity is not sufficiently uniform over the band of frequencies in the signal 

[89].)

While the RP model has been demonstrated to accurately represent needle sensitivity at low 

frequencies, experimentally measured sensitivity can deviate from the RP model at 

frequencies above 2fmax, where fmax = 1.2c / (πa) [52]. This is likely due to design 

complexities in real needle hydrophones that are not captured by the RP model such as 

thickness-mode resonances of the sensing element and limited bandwidth due to amplifier 

electronics. The frequency range for validity for fiber optic hydrophones appears to be 

greater than that for needle hydrophones (see Fig. 10 in [52]). In actual practice, it is 

probably advisable to deconvolve with experimentally-measured sensitivity if available 

rather than theoretical model sensitivity. However, this may not be possible in the planning 

stages of an experiment, before a hydrophone has been acquired. The Graphical Guide gives 

reasonable projections for many RP hydrophone sensitivities for frequencies at least up to 

2fmax.

VI. Discussion

Most investigations of hydrophone signal distortion have considered frequency-dependent 

sensitivity [14, 30-36] or spatial averaging [37-41, 43, 44, 46-48] but not both. The present 

paper combines both sources of distortion in a model appropriate for hydrophones that can 

be accurately modeled as rigid pistons, including needle and reflectance-based fiber optic 

hydrophones. The model demonstrates conditions under which the hydrophone transfer 

function may be represented as separable in cylindrical coordinates. Separability provides 

convenience in that the two deconvolutions can be applied independently. The model allows 

deconvolution for beams in which the fundamental and harmonic radial pressure 

distributions may be approximated as Gaussians (at least within the spatial extent the 

hydrophone sensitive element), provided that the harmonic-dependent beam width is known. 

In the special case of a classic-jinc-fundamental (CJF) beam, the formulas for beam widths 
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may be simplified. When the harmonic-dependent beam width can be approximated as 

decreasing as nq (which was verified for σm up to 2.4, σq up to 3, and SI up to forty percent 

for a variety of transducer geometries), additional simplification is possible.

The method for correction for spatial averaging provided in the present paper applies to all 

types of hydrophones with circular symmetry, not just needle and fiber optic hydrophones. 

The method offers some advantages over the method prescribed in IEC 62127-1 Annex E, 

which is based on the seminal work by Preston et al. [38]: 1) It offers an analytic expression 

for the spatial averaging filter (the reciprocal of the spatial averaging correction factor) in 

terms of beam and hydrophone dimensions. 2) It does not require an additional measurement 

at one hydrophone radius from the axis. Such a measurement creates an extra experimental 

burden and there may be error if the hydrophone off-axis displacement differs from exactly 

one hydrophone radius. (Note that IEC 62127-1 specifies that this displacement should be 

equal to the effective hydrophone radius, which is frequency-dependent and not as 

accessible as the geometrical hydrophone radius.) Also, such a measurement may not always 

be available, especially when data are analyzed retrospectively. 3) It accommodates 

nonlinear signals that contain many harmonics, as are commonly encountered today in 

therapeutic and Doppler applications. To be fair, Preston et al. could not have been expected 

to foresee the substantial rise of nonlinear ultrasound that has occurred since 1988, when 

their pioneering paper was published. Preston’s formula was adequate for most situations 

that were encountered at the time. 4) In combination with the formula that relates effective 

hydrophone radius to geometrical hydrophone radius, the spatial averaging filter obtained in 

the present paper can be used to predict spatial averaging in terms of the easily accessible 

geometrical hydrophone radius rather than the less accessible frequency-dependent effective 

hydrophone radius, which is often estimated from directivity measurements (as 

recommended in IEC 62127-3 Section 5.6). 5) It does not assume a quadratic radial pressure 

distribution that limits applicability roughly to within the full width half maximum (FWHM) 

of the beam. This feature allows greater application to high frequency fields, whether 

generated by a high fundamental frequency or harmonics of a low fundamental frequency (in 

the case of HITU). Finally, although the spatial averaging correction in the present paper 

assumes Gaussian harmonic beams (within the spatial extent of the hydrophone sensitive 

element), this approximation should not be more objectionable than Preston et al.’s 

assumption of quadratic beams (as may be seen in Fig. 3).

An important variable in determining spatial averaging effects is the exponent q that gives 

the power law dependence of beam width with harmonic number, σn = σ1 / nq. It is 

instructive to compare the values of q measured in the present paper with values reported 

from previous studies. In the present study, q ranged from 0.76 – 0.84, consistent with 

predictions using the KZK equation as shown in Fig. 9. O’Reilly and Parker measured beam 

widths that varied approximately as 1/ n (q = 0.5) for the fundamental through fifth 

harmonic (f1 = 1.75-3.38 MHz, as = 12.7 mm, D = 80 mm) [99]. Ward et al. measured q = 

0.61 from 4 harmonics (f1 = 2.25 MHz, as = 19 mm, D = 262 mm) [88]. Cherin et al. 

reported measurements of beam widths for the fundamental at 20 MHz (136.9 ± 1.4 μm) and 

a harmonic at 40 MHz (77.3 ± 2.0 μm) (f1 = 20 MHz, as = 3 mm, D = 10 mm). Based on 

these two values, their beam widths were consistent with q = 0.82. Although Averkiou and 
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Hamilton made similar measurements of harmonic radial beam patterns, they presented their 

results graphically but not numerically, precluding an accurate estimate of q [80]. One 

source for disparity in values for q is that, as Fig. 9 shows, q depends on σm. Another source 

of disparity is hydrophone technology used to measure harmonic beam widths. The 

measurements of harmonic beam widths required for the estimation of q in the present paper 

may have benefitted from higher resolution hydrophone measurements than were possible 

with the hydrophone technology available when some of earlier papers were published. 

Hydrophone sensitive element diameters were 85 μm (present paper), 1mm [99], 1 mm [88], 

and 25 μm [100].

While the present paper together with its sequel [75] investigated (analytically, numerically, 

and experimentally) hydrophone spatial averaging of nonlinear tone bursts, Cooling et al. 

investigated (numerically) spatial averaging of nonlinear waveforms containing just a few 

cycles [46], which can be important in the context of hydrophone calibration [30, 90, 101]. 

While the present paper computed spatial averaging filters only at harmonic frequencies 

(where most of the tone burst signal energy is). Cooling et al. obtained quasi-continuous 

spatial averaging filters. Therefore, the present paper is particularly relevant to tone burst 

signals such as those used in diagnostic Doppler mode, HITU, and quasi-continuous-wave 

applications. (The effects of RP sensitivity on broadband signals are considered in [52].) 

Spatial averaging filters at harmonic frequencies in both papers were low-pass filters that 

decrease monotonically from 1 to 0 as frequency increases from 0 to infinity. Radulescu et 

al. investigated numerically-computed spatial averaging filters for linear signals in the 

context of correcting hydrophone calibrations [47] and also found monotonic, low-pass, 

spatial averaging filters. The present paper, unlike the other two, derived an analytic 

expression for the spatial averaging filter. The model incorporated a validated theoretical 

model (RP model) for needle and fiber optic hydrophones to derive frequency-dependent 

effective sensitive element size.

Some limitations of this paper are as follows. First, if the source is a circular focused piston 

transducer (the most common source geometry), the separability and Gaussian beam 

assumptions may limit the model to near the focal region. (For example, Averkiou and 

Hamilton showed quasi-Gaussian behavior for propagation distances between 75% and 

156% of the focal distance for an F/4.25 transducer [80].) It should be noted, however, that 

the focal region is where the beam is most intense and pressure measurement is most 

critical. Second, while the RP model has been demonstrated to accurately represent needle 

sensitivity at low frequencies, experimentally measured sensitivity can deviate from the RP 

model at frequencies above 2fmax where fmax = 1.2c / (πa) [52], especially for needle 

hydrophones, due to design complexities not captured by the RP model. Third, while the 

general Gaussian (GG) form of the model allows for distortion of the classic-jinc-

fundamental (CJF) form for the fundamental radial pressure distribution, it requires 

knowledge of the harmonic-dependent beam widths, which can be difficult to ascertain. On 

the other hand, the CJF version of the model requires minimal distortion of the fundamental 

radial pressure distribution. However, Fig. 8 shows little change in FWHM (y-intercept 

value) with σm and therefore suggests that this assumption is valid for circular focused 

piston transducers for σm up to 5, and therefore applicable to a wide variety of nonlinear 

ultrasound beams. Fourth, the CJF form of the theory is valid for F#s of approximately one 

Wear Page 24

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2019 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and above. HIFU transducers can have lower F#s. The experimental validation and KZK 

simulations were limited to transducers with F#s between 1.4 and 2.5.

VII. Conclusion

The spatiotemporal transfer function for a needle or reflectance-based fiber-optic 

hydrophone was modeled as separable into the product of two filters corresponding to 

frequency-dependent sensitivity and spatial averaging. The separable hydrophone transfer 

function model was verified by comparison to a more general rigid piston spatiotemporal 

response model that did not assume separability. An analytic formula for a spatial averaging 

correction that applies to all hydrophones (not just needle and fiber optic hydrophones) was 

derived. Simulation analysis indicated that the spatial averaging correction is valid for highly 

nonlinear signals. The spatial averaging correction recommended by IEC 62127-1, Annex E, 

was extended to nonlinear signals with multiple harmonics. A graphical guide was presented 

to help investigators choose and defend appropriate hydrophone sensitive element size for 

their measurements of ultrasound signals.
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Fig. 1. 

a) spectrum of a nonlinear signal (solid line) and hydrophone frequency-dependent 

sensitivity (dash line). b) unfiltered waveform (dotted line) and waveform distorted by 

hydrophone (solid line). The hydrophone boosts harmonics relative to the fundamental, 

resulting in a waveform with reduced rarefactional pressure and exaggerated high-frequency 

content, which is manifested as sharper, taller, compressional peaks.
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Fig. 2. 

a) Theoretical sensitivity filter, ML(f), (red dashed line) and spatial averaging filter, Sp(f) 

(solid blue line), b) Model true spectrum (red dotted line) and harmonic approximation (blue 

solid line).
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Fig. 3. 

Gaussian and parabolic approximations to radial diffraction pattern for the fundamental 

frequency component where k1 = 2π/λ1, λ1=c/f1, c = speed of sound, as = the radius of the 

source, and D = the focal length of the source. Both approximations are accurate for radial 

coordinate < half width half maximum (HWHM) of the beam.
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Fig. 4. 

Scatter plot of kaeff estimated from RB model directivity, 2J1(ka sinθ) / ka sinθ vs. ag for a 

needle hydrophone that obeys the RP model, H(ρ, f) with a1 = a2 = ag. The effective radius, 

aeff, was chosen by selecting the value of a that minimized RMSD between the two models. 

The angle range for the directivity fit was −60° < θ < 60°.
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Fig. 5. 

Relative difference between aeff and ag plotted as a function of kag. The root mean square 

difference (RMSD) between fit and data is lower for the exponential fit than the inverse fit. 

The angle range for the directivity fit was −60° < θ < 60°.
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Fig. 6. 

Magnitude and phase of directivity functions for four values of kag for the rigid piston (RP) 

model evaluated for a1 = a2 = ag and two versions of the rigid baffle (RB) model evaluated 

for a = ag and aeff. The angle range for the directivity fit was −60° < θ < 60°.
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Fig. 7. 

Differences in magnitude and phase between the RP model directivity evaluated for a1 = a2 

= ag and RB model directivity evaluated for a = aeff(f).
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Fig. 8. 

−6 dB beam width (FWHM) vs harmonic number for six transducers. The title above each 

plot gives center frequency, diameter, and focal length. The symbol σm refers to the 

nonlinear propagation parameter. The threshold for approximate power law dependence of 

FWHM vs. harmonic number (straight line on log log plot) is σm < 2.4 (σq < 3) for the six 

transducers investigated.
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Fig. 9. 

Simulation and experimental results for exponent for power law dependence (based on the 

first 5 harmonics) of FWHM vs nonlinear propagation parameter σm. A least-squares linear 

fit is shown (red line).
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Fig. 10. 

Hydrophone measurements at the focus of the Blatek 3.5 MHz transducer. a) Spectrum. 

Measurement is shown in the blue line. Fits to harmonic strengths based on spectra with 

relative harmonic strengths according to Blackstock’s theory are shown in red x’s. b) time-

domain radio-frequency (RF) signal. Measurement is shown in the blue line. A best-fit 

signal with relative harmonic strengths corresponding to Blackstock’s theory with σ = 0.35 

is shown in the red dashed line.
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Fig. 11. 

Lateral beam scans for harmonics of Blatek transducer operated at 3.5 MHz. The solid black 

line shows the theoretical lateral profile at the fundamental frequency. The dotted lines show 

Gaussian fits for the fundamental and harmonics based on a model in which HWHM is 

proportional to 1 / nq and n = harmonic number. The harmonics show approximately 

Gaussian behavior at least up to radial distances of 0.5 mm, corresponding to a maximum 

hydrophone diameter of 1 mm and therefore suggesting relevance to most hydrophones used 

in ultrasonics.
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Fig. 12. 

RP and RB hydrophone transfer functions HRP(f) (with a1=a2=ag) and HRB(f) with a= aeff(f), 

RP spatial averaging filter SRP(f) = HRP(f) / ML(f), and numerical, Gaussian, and quadratic 

forms for the spatial averaging filter, SNumericall(f) (17), SGaussian(f) (20), and SQuadratic(f) 

(30). Transducer parameters are for the Sonic Concepts H101 transducer operated at its 

lower frequency option of 1.05 MHz. The hydrophone sensitive element geometrical 

diameter was 200 μm. The vertical chain-dash line gives the limit predicted by (33) of the 

validity of the quadratic approximation for the spatial averaging filter given by (30).
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Fig. 13. 

Simulated hydrophone output voltage for a tone burst produced by the Sonic Concepts H101 

transducer operated at its lower frequency option of 1.05 MHz. The hydrophone sensitive 

element geometrical diameter was 200 μm. Voltage is in arbitrary units.
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Fig. 14. 

RP and RB hydrophone transfer functions HRP(f) (with a1=a2=ag) and HRB(f) with a= aeff 

(f), RP spatial averaging filter SRP(f) = HRP(f) / ML(f), and numerical, Gaussian, and 

quadratic forms for the spatial averaging filter, SNumericall(f) (17), SGaussian(f) and 

SQuadratic(f) (30). Transducer parameters are for the Sonic Concepts H101 transducer 

operated at its higher frequency option of 3.30 MHz. The hydrophone sensitive element 

geometrical diameter was 200 μm. The vertical chain-dash line gives the limit predicted by 

(33) of the validity of the quadratic approximation for the spatial averaging filter given by 

(30).
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Fig. 15. 

Simulated hydrophone output voltage for a tone burst produced by the Sonic Concepts H101 

transducer operated at its higher frequency option of 3.30 MHz. The hydrophone sensitive 

element geometrical diameter was 200 μm. Voltage is in arbitrary units.
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Fig 16. 

Graphical Guide for hydrophone spatiotemporal response. M: hydrophone sensitivity. S: 

spatial averaging filter. Total spatiotemporal transfer function = MS. dg: geometrical 

sensitive element diameter, λ1: wavelength of fundamental component. F#: ratio of 

transducer focal length to diameter. M is normalized to its value at the fundamental 

frequency. Note that M can vary from theory, especially for frequencies above the frequency 

corresponding to the maximum theoretical sensitivity, due to hydrophone design 

complexities not captured by the RP model. Spatial averaging filter depends on q, which 

determines the dependence of harmonic beam width on harmonic beam number. See text for 

details.
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Fig 17. 

Graphical Guide for hydrophone spatiotemporal response. M: hydrophone sensitivity. S: 

spatial averaging filter. Total spatiotemporal transfer function = MS. dg: geometrical 

sensitive element diameter, λ1: wavelength of fundamental component. F#: ratio of 

transducer focal length to diameter. M is normalized to its value at the fundamental 

frequency. Note that M can vary from theory, especially for frequencies above the frequency 

corresponding to the maximum theoretical sensitivity, due to hydrophone design 

complexities not captured by the RP model. Spatial averaging filter depends on q, which 

determines the dependence of harmonic beam width on harmonic beam number. See text for 

details.
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Fig 18. 

Graphical Guide for hydrophone spatiotemporal response. M: hydrophone sensitivity. S: 

spatial averaging filter. Total spatiotemporal transfer function = MS. dg: geometrical 

sensitive element diameter, λ1: wavelength of fundamental component. F#: ratio of 

transducer focal length to diameter. M is normalized to its value at the fundamental 

frequency. Note that M can vary from theory, especially for frequencies above the frequency 

corresponding to the maximum theoretical sensitivity, due to hydrophone design 

complexities not captured by the RP model. Spatial averaging filter depends on q, which 

determines the dependence of harmonic beam width on harmonic beam number. See text for 

details.
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TABLE I

VALIDITY OF DIFFRACTION FORMULA FOR H-101

Criterion Frequency: 1.05 MHz 3.3 MHz

k1as >> 1 [71] k1as 143 448

Criterion met? Yes Yes

sin2α0 << 2 [71] sin2α0 0.26 0.26

Criterion met? Yes Yes

sin3α0 << 16π / (k1as) [71] sin3α0 0.13 0.13

16π / (k1as) 0.35 0.11

Criterion met? Yes No

FWHM theory (mm) 1.95 0.62

FWHM simulate (mm) [76] 1.92 0.62

FWHM expt (mm) [13] 1.97 0.63

Numbers based on Sonic Concepts H-101: as = 32 mm, D = 62.6 mm, F# = D/(2as) = 1, sin α0 = as / D. Theoretical FWHM = 1.41 λ1F#.
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TABLE II

TRANSDUCER PARAMETERS

Manufacturer Diam
eter
(mm)

Focal
Length
(mm)

Center /
Driving
Frequency
(MHz)

q Simulation
or
Experiment

- 40 60 1 / 1 Simulation

- 30 45 2 / 2 Simulation

Sonic Concepts 40 100 3.4 / 3.4 Simulation

Blatek 63.5 88.9 3.5 / 2.5 0.80 ± 0.09 Experiment

3.5 / 3.5 0.84 ± 0.05 Both

3.5 / 4.5 0.77 ± 0.07 Experiment

Panametrics 19.1 38.1 3.5 / 3.5 0.76 ± 0.02 Both

Panametrics 19.1 38.1 5 / 5 0.79 ± 0.09 Both
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TABLE III

PARAMETRIC FITS FOR (aeff – ag) / ag.

Angle
Range

(°)

Ae−Bkag C

ka
g

A B RMSD
(%)

C 95% CI RMSD
(%)

∣θ∣ < 10 1.81 1.07 3.2 0.44 0.41 – 0.48 14.8

∣θ∣ < 20 1.87 1.09 3.3 0.45 0.42 – 0.49 15.5

∣θ∣ < 30 1.85 1.05 3.2 0.46 0.42 – 0.50 16.1

∣θ∣ < 40 1.84 1.02 3.3 0.47 0.43 – 0.51 16.8

∣θ∣ < 50 1.86 1.02 3.8 0.47 0.43 – 0.51 13.9

∣θ∣ < 60 1.90 0.99 4.2 0.49 0.45 – 0.53 18.6

∣θ∣ < 70 1.96 0.96 5.1 0.51 0.46 – 0.56 20.9

∣θ∣ < 80 2.07 0.96 3.9 0.54 0.50 – 0.59 20.7

∣θ∣ < 90 2.13 0.94 4.5 0.57 0.52 – 0.62 22.5
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