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Abstract

Encapsulation of pancreatic islets allows for trans-
plantion in the absence of immunosuppression. The
technology is based on the principle that transplanted
tissue is protected for the host immune system by an
artificial membrane. Encapsulation offers a solution
to the shortage of donors in clinical islet transplanta-
tion because it allows animal islets or insulin-produc-
ing cells engineered from stem cells to be used. Dur-
ing the past two decades three major approaches to
encapsulation have been studied. These include in-
travascular macrocapsules, which are anastomosed
to the vascular system as AV shunt; extravascular
macrocapsules, which are mostly diffusion chambers
transplanted at different sites; and extravascular mi-
crocapsules transplanted in the peritoneal cavity.
The advantages and pitfalls of these three approaches
are discussed and compared in the light of their appli-
cability to clinical islet transplantation. All systems

have been shown to be successful in preclinical stud-
ies but not all approaches meet the technical or phys-
iological requirements for application in human be-
ings. The extravascular approach has advantages
over the intravascular because since it is associated
with less complications such as thrombosis and infec-
tion. Microcapsules, due to their spatial characteris-
tics, have a better diffusion capacity than macrocap-
sules. Recent progress in biocompatibility of micro-
capsules has brought this technology close to clinical
application. Critical issues such as limitations in the
functional performance and survival are being dis-
cussed. The latest results show that both issues can
be solved by the transplantation of microencapsulat-
ed islets close to blood vessels in prevascularized sol-
id supports. [Diabetologia (2002) 45: 159-173]
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A major challenge in the treatment of Type I (insulin-
dependent) diabetes mellitus is the prevention of late
complications, and thereby improvement of the qual-
ity of patient life. There is no dispute that euglycae-
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mia is of essential importance to reach that goal. Eu-
glycaemia can be achieved by insulin treatment and
the results of the Diabetes control and complications
trial clearly show that insulin treatment delays the
onset and reduces the progression of diabetic compli-
cations [1]. Intensified treatment, however, is not a
simple chore because it requires multiple daily injec-
tions, frequent monitoring, dosage adaptations and,
thus, patient compliance. It is also associated with
frequent episodes of severe hypoglycaemia and with
glycaemic unawareness. A different approach to eu-
glycaemia is to provide the diabetic patient with an
endogenous rather than an exogenous source of insu-
lin by the transplantation of the endocrine pancreatic
tissue. Pancreatic organ transplantation is now an es-
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tablished mode of treatment with 15000 cases world-
wide [2, 3]. Results have substantially improved dur-
ing the past two decades and the current patient and
graft survival rates almost equal those of kidney
transplantation. A successful pancreas transplant
provides almost normal glucose homeostatis but it re-
quires lifelong immunosuppressive medication. It is
still not clear whether the advantages of a pancreas
transplant over continued insulin treatment out-
weighs the disadvantage of obligatory immunosup-
pression. Most transplant centres still restrict them-
selves to combined pancreas and kidney transplanta-
tion in diabetic patients with end-stage renal failure
[2, 4]. Islet transplantation, in contrast to pancreas
transplantation, requires no major surgery. More-
over, successful islet transplantation without immun-
osuppression might be achieved by relatively simple
methods as immunoisolation by encapsulation. Such
an approach utilizes a semipermeable membrane
which forms a mechanical barrier separating the graft
from the host antibodies and immune cells but allows
for the diffusion of glucose, insulin, nutrients and is-
let waste products.

Macroencapsulation of pancreatic islets

The two major encapsulation systems are macroen-
capsulation and microencapsulation. In the first one,
the macrodevices contain many islets in one immu-
noisolating membrane. The intravascular device is
usually composed of a microporous tube with blood
flow through its lumen and with a housing on its out-
side containing the implanted tissue [5, 6]. The device
is implanted into the vessels of the host by vascular
anastomoses. The concept of extravascular devices
does not require vascular anastomoses because it is
based on the principle of diffusion chambers [7]. The
geometry could be planar in the form of a flat, circu-
lar double layer or tube-like as a so-called hollow fi-
bre [7].

The most intensively studied intravascular device
is the modified diffusion chamber of Chick et al [8].
It is technically advanced and has been tested exten-
sively in small [9] as well as in large animals [9, 10].
The original device was composed of a number of
small diameter artificial capillaries contained by one
large diameter tube. The artificial capillaries were
composed of polyacrylonitrile and polyvinylchloride
copolymer (PAN-PVC) ultrafiltration capillaries
[11], and the remaining lumen of the large diameter
tube, ie. the outside of the artificial capillaries, was
loaded with hormone producing cells. The design al-
lows close contact between the islets and blood which
are separated only by the microporous walls of the
capillaries. These devices were found to induce nor-
moglycaemia in diabetic rats [9], dogs [10] and mon-
keys [9] but required systemic anticoagulation. The
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duration of this normoglycaemia was usually restrict-
ed to several hours and successes of a somewhat long-
er duration were exceptional. Clotting of the blood in
the lumen of these small diameter artificial capillaries
proved to be a major obstacle, in spite of anticoagu-
lant medication in massive doses. This thrombus for-
mation was an early sign of insufficient biocompati-
bility and has led to the use of tubular membranes
with larger diameters in the hope of minimising or
eliminating clot formation in the absence of systemic
anticoagulation. The present device is composed of a
single, coiled and tubular membrane with an internal
diameter of 5-6 mm. The membrane has been modi-
fied but is still composed of PAN-PVC with a nomi-
nal molecular weight cutoff of 50 kD. This approach
was found to be rather successful because these de-
vices implanted as high flow arteriovenous fistulas
could remain patent for periods of 7 weeks in the ab-
sence of systemic anticoagulant therapy [12]. This
success can be explained in part by the high flow rates
through the device which prevents adhesion of cells
to the membranes or collection of those cells in the
immediate vicinity [13]. However, high flow arterio-
venous fistulas are not without risk and much longer
patency rates are required for effective applicability.
Obviously, more thromboresistant materials are re-
quired for this type of device.

Although the intravascular devices have shown
some degree of success, the problems mentioned
above should be solved if clinical application is con-
sidered. Even then, the complications associated
with any type of vascular prosthetic surgery — such as
thrombosis, either primary or secondary to intimal
hyperplasia at the venous anastomosis, defects of the
device, or infection — remain a serious threat. This is
a major drawback for application in large numbers
of diabetic patients.

The surgical risks are much lower with extravascu-
lar than with the intravascular devices. Biocompati-
bility problems are usually deleterious only to the
function of the encapsulated tissue and have no or
only minimal risk for the recipient. The relative safe-
ty is an important advantage of extravascular over in-
travascular devices but the interactions of tissue-ma-
terial are of similar complexity. These biocompatibil-
ity problems are usually related to toxicity and activa-
tion of non-specific foreign body reactions resulting
in fibrotic overgrowth with subsequent necrosis of
the encapsulated tissue.

Macrocapsules can be implanted with minimal sur-
gery in different sites such as the peritoneal cavity
[14-17], the subcutaneous site [18-24], or the renal
capsule [25]. They can also be readily retrieved and
produced in a relatively simple way.

Many different biomaterials have been applied for
the production of macrocapsules. The most common-
ly applied are nitro-cellulose acetate [26], 2-hydroxy-
ethyl methacrylate (HEMA) [27], acrylonitrile and
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sodium-methallylsulfonate [28], and alginate [29].
The hollow fibre geometry is usually preferred over
the planar membranes for their smaller foreign body
response [30]. Most studies on hollow fibres use fibres
made of PAN-PVC [13, 31], similar to those used in
intravascular devices. They have been produced with
a smooth and fenestrated outer skin with the same
spongy matrix as applied in the intravascular. The de-
sign with the smooth outer skin proved to be the most
successful because it provokes much less fibrosis than
the rough fenestrated surface which allows host tissue
to grow into the spongy matrix. Many modifications
of this concept have been proposed in order to fur-
ther improve the biocompatibility. One of those was
the coating of the membranes with poly(ethyleenox-
ide) to reduce protein adsorption [32].

Initial studies with macrocapsules were not very
successful. This was not so much the consequence of
fibrotic overgrowth but rather of aggregation of the
encapsulated tissue into large clumps [18]. Extensive
necrosis occurred in the centre of the clumps as a re-
sult of diffusion limitations for nutrients. This prob-
lem was readily solved by preventing contact be-
tween the encapsulated tissue elements through per-
manent solitude immobilization in a matrix such as
collagen [33, 34], Ca-alginate [18], or chitosan [11].
Usually in PAN-PVC fibres islets are immobilized in
alginate. The islet density is kept quite low and never
exceeds 5-10% of the volume fraction because via-
bility has been found to be substantially reduced
with higher densities. When transplanted in BB-rats,
islets encapsulated in fibres were found to induce nor-
moglycaemia for up to 8 months but glucose toler-
ance remained disturbed and decreased rapidly with
time, in spite of prolonged normoglycaemia [31, 35].
A major factor is that hollow fibres, as a consequence
of their shape, tend to break when forced to bend un-
der physiological stress [11, 36]. Another factor is the
low number of islets implanted which could be insuf-
ficient for achieving long-term graft survival. The
use of higher numbers, however, is impractical be-
cause enormous lengths of fibres would be required
as a consequence of the low seeding density of the
membranes. A modification was to use tubes with a
wider lumen of several millimetres. This, however, is
associated with a substantial increase in diffusion dis-
tance, which enhances rather than reduces problems
such as necrosis as a consequence of insufficient nu-
trient supply, and accumulation of waste materials.
Some success with these devices has been reported
in diabetic rats, but extreme amounts of islets, ie.
30000 islets/kg, were required to maintain normogly-
caemia for only a few months [36]. In addition, after
intraperitoneal implantation, the membranes still
provoked a foreign body reaction which resulted in
overgrowth by a thin, but avascular fibrotic cellular
infiltrate, which implies further limitations in the dif-
fusion capacity and in the life span of the islets.
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During the past few years, an interesting trend has
been the growing number of groups applying hydro-
gels for macroencapsulation. Hydrogels provide a
number of features which are advantageous for the
biocompatibility of the membranes. Firstly, as a con-
sequence of the hydrophilic nature of the material,
there is almost no interfacial tension with surround-
ing fluids and tissues which minimises the protein ad-
sorption and cell adhesion. Furthermore, the soft and
pliable features of the gel reduce the mechanical or
frictional irritations to surrounding tissue. And, final-
ly, they provide a high degree of permeability for low
molecular weight nutrients and metabolites, which is
required for the optimal functioning of living cells.

Many hydrogels have been applied, such as gels
prepared from alginate [37-39], agarose [17, 40],
HEMA [27, 41] and a copolymer of acrylonitrile and
sodium-methallyl sulphonate, AN69 [28]. Primary at-
tention has been focussed on the hydrogel membrane
ANG69, which induced only minimal fibrosis in the
peritoneal cavity of rats [42, 43] but had low perme-
ability for insulin [42, 43]. Recently, Corona discharge
has been introduced to obtain a membrane with a
more hydrophobic surface [42, 43]. Fewer molecules
adhered to the surface of such membranes, improving
not only the permeability for insulin but also its long-
term biocompatibility. One year after implantation in
rats, only a few macrophages were found on the
membranes’ surface. Moreover, encouraging results
were reported by Jain et al who demonstrated func-
tional porcine islets transplanted in agarose macro-
beads almost 200 days after intraperitoneal trans-
plantation into BB rats [28].

Microencapsulation of pancreatic islets

Microencapsulation is the technique by which each
islet is enveloped in its own, spherical semipermeable
membrane. Several arguments favour microcapsules
over macrocapsules. Their spherical shape offers bet-
ter diffusion capacity because of a better surface-to-
volume ratio. Microcapsules cannot be easily disrupt-
ed, are mechanically stable, do not require complex
or expensive manufacturing procedure, and can be
implanted into the patient by a simple injection pro-
cedure.

Reportedly, the clinical experience is still restrict-
ed to one recipient [44] but several research groups
are concentrating on transplantation of microencap-
sulated islets in the experimental setting [45] [22, 23,
46, 47, 47-68]. Although successful encapsulated islet
grafts do induce normoglycaemia in streptozotocin
diabetic rodents recipients, some authors have re-
ported reduced functional performance in response
to glucose challenge [59, 69-72].

For several years, we have concentrated on mic-
roencapsulation and we have directed our efforts to
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a stepwise analysis of the factors influencing perfor-
mance of the microencapsulated grafts. To this end,
we have been using only one technique of alginate-
polylysine microencapsulation as initially introduced
by Lim and Sun [73], instead of testing other materi-
als in a trial and error approach. Our aim is to define
the conditions which must be met for successful trans-
plantation of microencapsulated islets as a feasible
treatment of Type I diabetes mellitus.

Technical considerations for the production of
microcapsules

Microcapsules are almost exclusively produced from
hydrogels, and Table 1 lists the most popular bioma-
terials applied in this technique. A major distinction
exis between water soluble polymers such as algi-
nates and water insoluble polymers such as HEMA-
MMA. Water insoluble polymers are preferred by a
number of groups [41, 74-76] because they are as-
sumed to be more stable than water soluble polymers
after implantation. However, a major obstacle in us-
ing water insoluble polymers for encapsulation of
cells is the use of an organic solvent, which usually in-
terferes with cellular function [41, 77].

We, like others [62, 67, 68, 78-80], have concen-
trated on alginate-based capsules because they have
consistently been found not to interfere with cellular
function. Despite their solubility in aqueous solu-
tions, they have been shown to be stable for years in
small and large animals and recently also in human
beings. The most commonly used alginate-based cap-
sules are formed by the alginate-polylysine system.
The technique is based on entrapment of individual
islets in an alginate droplet which is transformed
into a rigid bead by gelification in a divalent cation
solution, mostly rich in Ca®*. Alginate-molecules are
composed of mannuronic (M) and guluronic acids
(G). In the first step of the microencapsulation pro-
cess (ie. the gelification) the alginate-molecules are
connected by Ca?* through binding of consecutive
blocks of G-molecules on each of both molecules. Af-
ter gelification the beads are coated with a polylysine
membrane by suspending the beads in a poly-L-lysine
(PLL) solution. During this step, PLL binds to mixed
sequences of G and M in the alginate molecules [81,
82]. This induces the formation of complexes at the
capsule surface consisting of a-helical PLL surround-
ed by superhelically orientated polysaccharide chains
[82]. The presence of these complexes decreases the
porosity of the membrane. By varying the molecular
weight and the concentration of the polylysine, and
the incubation time the porosity of the capsule mem-
brane can be modulated [58, 83-88]. Usually, 10 min
incubation in 0.1% polylysine with a molecular
weight of 22 kDa is sufficient to form an immunopro-
tective membrane. However, binding of polylysine
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Table 1. Main components of capsules proposed for microen-
capsulation of pancreatic islets

Main component of the Source  Initially proposed by
capsule

Alginate Alga Lim and Sun 1980 [73]
Chitosan Alga Zielinski 1994 [131]
Agarose Alga Iwata et al. 1989 [60]

Poly(hydroxyethylmet-
acrylate-methyl methacry-
late)(HEMA-MMA)

Copolymers of acryloni-
trile (AN69)

Polyethyleneglycol (PEG)

Synthetic Dawson et al. 1987 [132]

Synthetic Kessler et al. 1991 [28]

Synthetic Cruise et al. [48]

does not only depend upon the incubation time and
the molecular weight of the polylysine but also on
the type and concentration of alginate [87, 89] as
well as on the temperature of an incubation [86, 87,
89]. In a final step to provide biocompatibility, the
capsules are suspended in a solution of alginate or
other negatively charged molecules [86, 89] to bind
all positively charged polylysine residues still present
at the capsule surface.

Another very important aspect of adequate bio-
compatibility, which requires a lot of experience in
microencapsulation process, is a smooth and me-
chanically stable microcapsule. In our laboratory we
have observed that high rather than low viscosity al-
ginates produce smooth beads with no obvious tails
or strains. Moreover, we have found that after im-
plantation, alginates with low-G concentrations had
a tendency to swell with subsequent breakage of the
PLL membrane followed by cellular overgrowth of
the capsules. Therefore, for our studies we have cho-
sen the alginate with an intermediate G-concentra-
tion.

The stability of a capsule is determined by stability
of a membrane and stability of an alginate core. The
stability of a membrane can be controlled by the
PLL-step because shorter incubation time, lower
PLL concentrations, and lower PLL molecular
weight than described above, were associated with
an increase of the number of capsules with broken
membranes. Additionally, incubation at 4°C instead
of room temperature led to less stable microcapsules.
Finally, we did not apply EGTA or citrate [77] to
liquify the inner core of the capsule. The reason for
this modification of the original method [73] was
that many capsules were observed to lose their integ-
rity during the treatment. In spite of all the improve-
ments in the stability of the capsules, tissue reactions
still continued to interfere with longevity of the graft
survival. We have found that other factors, not direct-
ly related to the production procedure, were respon-
sible for the tissue reaction as signalling insufficient
biocompatibility of microcapsules.
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Fig.1. Alginate-polylysine capsules after provoking a foreign
body reaction in the peritoneal cavity of an AO rat. At
1 month after implantation the capsules adhere to the omen-

tum and overgrown by fibroblasts. (GMA-embedded section,
syrius red staining, original magnification x 50)

The biocompatibility issue I: chemistry of the capsule

Failure of microencapsulated islet grafts is usually in-
terpreted as the consequence of insufficient biocom-
patibility, which induces a non-specific foreign body
reaction against the microcapsules and results in pro-
gressive fibrotic overgrowth of the capsules (Fig.1).
This overgrowth interferes with adequate nutrition
of the islets and consequently causes islet cell death.

We have tested the hypothesis that the lack of bio-
compatibility is caused by impurities contaminating
the alginate. Alginates are crude products extracted
from alga and contain several substances which are
known to provoke inflammation [59, 87, 90-92].
Therefore, we designed the purification procedure,
which is basically composed of a filtration step, an ex-
traction step, and a dialysis step. The procedure is asso-
ciated with a loss of 25 % to 40 % of the alginate but it
had no influence on its chemical composition [59, 93].

Empty capsules prepared of either crude or puri-
fied alginate were implanted in the peritoneal cavity
of normoglycaemic AO/G rats and retrieved by peri-
toneal lavage at varying time points after implanta-
tion. Crude alginate capsules were always overgrown
by fibrotic tissue. In contrast, 80 % to 100% of the
purified capsules could routinely be retrieved up to
12 months after implantation, and less than 10% of
those retrieved capsules showed fibrotic overgrowth
(Fig.2). Similarly to empty capsules, capsules con-
taining islets and prepared from purified alginate
were found to be adequately biocompatible. After al-
lotransplantation and isotransplantation, the majori-
ty was found freely floating in the peritoneal cavity
and 80% to 100% of capsules could be recovered
and less than 10 % of retrieved microcapsules showed
signs of fibrotic overgrowth.
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Fig.2. Alginate-polylysine capsules prepared from purified
alginates. Capsules were retrieved at 12 months after implan-
tation in the peritoneal cavity of AO rats. The arrow indicates
one of the few capsules with fibrotic overgrowth (GMA-em-
bedded section, Romansky-Giemsa stain, original magnifica-
tion x 50). Capsules are deformed as the consequence of inho-
mogeneous water extraction during processing for histology

We have also studied the biocompatibility of alg-
inates composed of different proportions of gulu-
ronic acid blocks (G) to mannuronic acid blocks
(M). Empty capsules with varying G/M ratio were
implanted into the peritoneal cavity. We found that
the biocompatibility of alginate-polylysine capsules
strongly depends on the alginate G-content. Empty
capsules prepared from high-G alginate provoked a
severe inflammatory response, while capsules pre-
pared from alginates with an intermediate G-con-
tent remained free of overgrowth. This could be
due to different binding properties of polylysine to
high-G and intermediate-G alginates [90]. When in-
adequately bound to alginate, polylysine can be a
strong initiator of fibrosis. This was shown by others
[94] and by us [90] when comparing the biocompati-
bility of high-G alginate-polylysine capsules and
high-G alginate beads in the absence of polylysine.
The high-G beads remained free of any obvious
overgrowth while all of high-G alginate-polylysine
capsules were overgrown by several layers of fibro-
blast within the first month of implantation in AO-
rats.

In summary, our findings show that purification of
alginate is associated with a clear-cut and long-lasting
improvement in biocompatibility. They also show
that the majority but not all capsules stay free of fi-
brotic overgrowth. A small minority of the capsules
shows signs of bioincompatibility in spite of the fact
that all are composed of the same material. Appar-
ently, factors other than the purity and composition
of the material play a role. Such factors might be as-
sociated with the mechanical aspects of the produc-
tion process and are discussed in the following sec-
tion.
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The biocompatibility issue II: adequacy of
encapsulation

The observation that only a small percentage of the
capsules show cellular overgrowth after implantation
suggests that physical imperfections of individual
capsules might be responsible for inducing insuffi-
cient biocompatibility. Such physical defects imply in-
adequate encapsulation of individual islets, and
thereby inadequate immune protection as well as in-
sufficient biocompatibility.

In order to further analyse the issue of individual
capsule inadequacies we first have designed an assay
to identify individual islets which had been inade-
quately encapsulated. The assay is based on a binding
of lectin and FITC labelled with RCA-I (Vector Lab-
oratories, Burlingame, UK), and allows for quantifi-
cation of the percentage of inadequately encapsulat-
ed islets under varying experimental conditions. Lec-
tin, which has a high affinity for pancreatic islets, has
a high molecular weight (120 kD), which prevents
the lectin molecules from the diffusion through the
pores of an adequate microcapsule. Inadequately en-
capsulated islets are identified by positive fluores-
cence (Fig.3), and the overall adequacy of an islet en-
capsulation procedure can be quantified by express-
ing the number of inadequate capsules as the percent-
age of the total number of capsules containing islets
[58, 95].

When this assay was applied after encapsulation of
Wistar rat islets using a 3 % solution of Keltone LV to
produce microcapsules with the usual 800 um diame-
ter, 6.3 + 0.2 % of the capsules was found to be inade-
quate. Interestingly, when the droplet generator was
set to produce smaller capsules with a diameter of
500 um, the percentage of inadequate capsules rose
approximately fourfold to 24.2 + 1.5%. When tested
in vivo by transplanting Lewis islets encapsulated in
either larger or smaller capsules into streptozotocin
diabetic AO/G rats, inadequate encapsulation was
found to carry substantial significance because nor-
moglycaemia and prolonged graft survival was ob-
tained with the larger but not with the smaller cap-
sules [95]. These observations are rather disturbing,
because small capsules reduce diffusion distances as
well as the total graft volume. The retrieval rate with
peritoneal lavage was more than 80 % with the larger
capsules but only 5.5 % with the smaller capsules. Of
those retrieved capsules, only 12 % of the larger cap-
sules but 65 % of the smaller capsules showed fibrotic
overgrowth. Clearly, inadequate encapsulation en-
hances fibrotic overgrowth and reduces the chance
of graft survival. The cellular overgrowth is com-
posed of fibroproliferative connective tissue, ED-1
and ED-2 positive macrophages, T-cells but no beta
cells, and occasionally some multinucleated giant
cells. This composition suggests that two distinct
causes are simultaneously responsible for the ob-
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Fig.3. Inadequate encapsulation of pancreatic islets. The islet
is incompletely encapsulated. Islet cells protruding from the
capsule are specifically labelled by the FITC-labelled lectin
RCA-I. (original magnification x 100). Reproduced from De
Vos et al. [58] with permission of the publisher
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Fig.4. Schematic presentation of the process of swelling and
shrinkage during the encapsulation procedure. After gelifica-
tion, the calcium-alginate beads are washed with Ca-free
HRH buffer, causing partial displacement of Ca by Na. This
process initiates the formation of an anionic interface which in-
teracts with PLL and becomes semipermeable. The exchange
of Ca for Na also induces an increase of the alginate bead di-
ameter. As a consequence, the islets tend to be displaced to-
wards the periphery of the alginate bead. During the subse-
quent step of PLL binding, shrinkage occurs while islets main-
tain their peripheral location and consequently tend to readily
protrude from their capsules. Reproduced from De Vos et al.
[58] with permission of the publisher

Poly-L-Lysine Capsule

served reaction. One is that the islet, by its incom-
plete protection, induces an allograft reaction. The
other is that the inadequate capsule itself, by its bro-
ken integrity, induces a foreign body reaction.
Factors other than diameters could also influence
the adequacy of the microcapsules. When Manugel
(55% G-content) instead of Keltone LV (45% G-
content) alginate is used to produce the smaller type
of 500 um capsules, the percentage of inadequate
capsules decreases from 24 % to 12%. The different
results with Keltone LV and Manugel alginates are
related to differences in swelling and subsequent
shrinkage properties during the consecutive steps of
the encapsulation procedure [58] (Fig.4). The higher
G/M ratio of Manugel is associated with less swelling,
which is associated with a reduced chance for islets to
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Fig.5. Survical of encapsulated islet isografts (n = 6, open sym-
bols) and allografts (n = 8, closed symbols) in streptozotocin
diabetic AO-rats. Note the similar if not identical survival
times

protrude and, consequently, inadequate encapsula-
tion. Apparently, alginates with a high G/M ratio
should be applied to reduce the percentage of inade-
quate capsules.

In conclusion, to provide complete immunopro-
tection and optimal biocompatibility, application of
purified and fully biocompatible material is not en-
ough; the capsule production process itself should re-
sult in mechanically adequate microcapsules. This is
an important consideration because variable factors
like the capsule diameter and the type of alginate
were shown to influence these mechanics.

Functional performance of microencapsulated islet
grafts

Intraperitoneal transplantation of a microencapsu-
lated islet graft restored normoglycaemia in strepto-
zotocin diabetic rat recipients within 1 week after
transplantation. This normalization of blood glucose
concentrations was associated with an evident meta-
bolic improvement as illustrated by a normalization
of body weight gain and by a dramatic reduction in
daily urine production. Regretfully, however, graft
functional survival times were limited and hypergly-
caemia returned between 5 and 16 weeks after trans-
plantation [59, 95]. These results were confirmed in
later experiments with survival times of 6 to
20 weeks, which were similar if not identical in iso-
grafts and allografts [59] (Fig.5). This latter observa-
tion proves that rejection was not the cause of graft
failure. Graft failure could not be explained either
by fibrotic overgrowth and subsequent cell death be-
cause this was observed in only a small minority of
capsules as described above. It could also not have
been caused by insufficient viability of isolated islets
because isogenically transplanted naked, non-encap-
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Fig.6. Blood glucose and plasma insulin levels after sponta-
neous ingestion of a meal (n = 5) in AO-recipients of microen-
capsulated islet allografts (closed symbols) and in normal con-
trol rats (open symbols). The animals were trained to consume
a meal of 2 gram chow within 5 mins. Values represent means
+ SEM

sulated islets survived after intraperitoneal implan-
tation [96].

When functioning grafts were tested by oral or in-
travenous glucose challenge, glucose tolerance was
found to be rather adequate as indicated by normal
HBA_ levels and maximum glucose levels of
8.3 mmol/l after the consumption of a glucose-rich
meal but a rise in systemic insulin was never observed
(Fig.6).

We have further substantiated this observation ex-
perimentally by assessing portal and systemic insulin
responses and glucose concentrations after gradual
infusion of low amounts of insulin into the peritoneal
cavity, thereby mimicking the gradual release of insu-
lin from the capsules of an intraperitoneal graft. We
found that the dose-dependent rise of insulin and de-
crease of glucose levels with intraperitoneal insulin
infusion were strongly delayed and reduced as well
as prolonged in comparison to intraportal insulin in-
fusion [70, 97] (Fig.7).

In the subsequent experiments on function of in-
traperitoneally transplanted microencapsulated is-
lets, we assessed C-peptide in the systemic circulation
instead of insulin. C-peptide is released in equimolar
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Fig.7. Effect of intraperitoneal (@) and intraportal (O) infu-
sion of different concentrations of insulin on plasma insulin
and glucose concentrations. Insulin was infused in a dose of
20 pmol - I'' - min™! (A, n = 6), 40 pmol - I"! - min™! (B, n = 5),
and 80 pmol - I'! - min~! (C, n = 7), during 15 min. The dose of
20 pmol - I"! - min~! induces a rise in systemic insulin concen-
trations after portal infusion similar to that observed in AO-
rats consuming a meal. Values are means + SEM of levels ex-
pressed as delta levels with the ¢ = 0 level as the zero reference.
Reproduced from De Vos et al [70] with permission of the pub-
lisher

concentrations with insulin, is not readily absorbed
by the abdominal organs and does not undergo he-
patic extraction. With this approach, we have found
a glucose-induced response from the encapsulated is-
lets as shown by an increase of C-peptide in systemic
circulation when diabetic mice were subjected to
meal challenge [71]. The increase, however, was de-
layed when compared to normal non-diabetic control
mice (Fig.8 A). Generally, when compared to the
normal control mice, the C-peptide levels in plasma
were considerably lower in the mice transplanted
with either naked or encapsulated islets. In accor-
dance with this lower C-peptide production, we ob-
served a reduced body growth rate in the mice trans-
planted with either naked or encapsulated islets. Sur-
prisingly, glucose clearance was about the same as
that of mice transplanted with naked islets (Fig.8 B).
Similar delay and relatively low response of C-pep-
tide during intravenous glucose tolerance test were
reported in NOD mice transplanted with microen-
capsulated islets [68]. One potential explanation of
that phenomenon is that the peritoneal cavity is
known to be less accommodating to transplanted is-
lets. It has been shown that naked syngeneic islets
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transplanted under the kidney capsule or into the
portal vein of diabetic rats were much more efficient
in normalising glucose concentrations than when
transplanted into the peritoneal cavity [96, 98, 99].
Additionally, islets in microcapsules in the absence
of the vascularization of a graft, could be exposed to
relative hypoxia [11, 100].

A vascularized transplantation site for
microencapsulated islets

The absence of revascularization of the encapsulated
islets interferes with both the functional performance
and the longevity of the grafts. Apparently, a site
where encapsulated islets are in close contact with
the blood stream is obligatory for clinical applica-
tion. Unfortunately, it is difficult to find such a site
because it should combine the capacity to bear a
large graft volume in the immediate vicinity of blood
vessels. Reported sites allowing for successful islet
transplantation such as the liver [101-104], the
spleen [101, 105-107], and the renal capsule [20,
108, 109] do not meet these requirements because
they can never carry the volumes of more than
100 ml of capsules required for transplantation in hu-
man beings [44, 87, 110]. To overcome this obstacle,
we recently introduced the concept of an intraperito-
neally implanted solid support system for pancreatic
islets [111]. This site allows for implantation of high
numbers of islets, which can readily be retrieved
and, theoretically, can be designed to be highly vas-
cularized.

We developed a solid support system of expanded
PTFE (ePTFE) because ePTFE have been shown to
be biocompatible and to become neovascularized af-
ter implantation in the peritoneal cavity. Initially, we
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Fig.8 (A, B). Meal challenge performed 9 weeks after intra-
peritoneal transplantation of either microencapsulated xeno-
geneic rat islets (n = 7) or syngeneic non-encapsulated mouse
islets (n = 5) into STZ diabetic B6AF, mice. A Plasma C-pep-
tide concentrations and B plasma glucose concentrations dur-
ing a meal challenge. As controls, age-matched normal non-di-
abetic BOAF; mice were used (n =9). Data are presented as
means + SEM; * p < 0.01 microcapsules and syngeneic vs nor-
mal, B p <0.02 microcapsules vs normal and syngeneic,
#p <0.001 syngeneic vs normal. Reproduced from Tatar-
kiewicz et al. [71] with permission of the publisher

applied solid supports coated with collagen type IV
(ie. the collagen type predominantly present in the
basal membrane) and acidic-fibroblast growth factors
(a-FGF) to facilitate the ingrowth of blood vessels
[111-113]. These supports were always implanted
4 weeks before the introduction of the islets to pre-
vent islet dysfunction as the consequence of inflam-
matory reaction against the ePTFE - a reaction
which is usually complete within 4 weeks [111]. Be-
fore implanting encapsulated islets, we tested the effi-
cacy of these ePTFE solid support systems as a trans-
plantation site for naked, non-encapsulated islet graft
by comparing the functional performance of islet iso-
grafts implanted in the solid supports to those im-
planted in the unmodified peritoneal cavity. These
experiments indicate that the solid supports were
much more efficacious than the unmodified perito-
neal cavity because when we implanted 10 ul of islet
tissue in the solid support we found that all rat recipi-
ents became normoglycaemic while only 40 % with
transplantation of the islets in the unmodified perito-
neal cavity did [111].
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In the subsequent histological evaluation of the
solid supports, we assessed the degree of vasculariza-
tion of the grafts and compared it with the vascular-
ization of the liver. The liver was chosen because it is
an organ allowing for successful transplantation of is-
lets both in experimental animals and in human be-
ings [101, 109, 114, 115]. Unfortunately, we found
that the degree of vascularization of the solid sup-
ports was far behind that of the liver. Another obser-
vation illustrating the inadequate vascularization of
the supports was that transplantation of an subopti-
mal non-encapsulated islet volume of 5 ul, ie. half
the volume of the islet tissue present in the pancreas
of a control rat, was associated with normoglycaemia
in 60% of the recipients while it was 100 % after
grafting in the liver [111].

In our subsequent studies on vascularization of
solid supports, we focussed on VEGF-165 [116-118],
which is considered to have the greatest potential as
an angiogenic stimulus when compared to other an-
giogenic growth factors such as acidic-fibroblast
growth factor, basic-fibroblast growth factor, plate-
let-derived growth factor, epidermal growth factor,
epidermal growth factor, alpha and beta transforming
growth factor, interleukines (IL-8 and TNF) or pro-
staglandines.

Our approach to stimulate vascularization by ad-
ministration of angiogenic factors is shown in Figure
9. Firstly, angiogenic stimuli degrade the basal mem-
brane and components of the extracellular matrix
around capillaries in the immediate vicinity of the
solid support. Subsequently, the endothelial cells start
to proliferate and migrate into the site of release of
the angiogenic factors. Finally, the endothelial cells
form tubular structures after which they differentiate
into cells aligning full mature blood vessels. The
whole sequence of events leading to the formation of
blood vessels is under control of a wide variety of an-
giogenic growth factors which are endogenously pro-
duced by cells in the immediate vicinity of the solid
supports.

Figure 10 shows our present experimental ap-
proach to stimulate vascularization of the solid sup-
ports applicable for encapsulated islets. These sup-
ports were prepared from flat sheets of ePTFE which
were coated with collagen type IV and subsequently
implanted in the peritoneal cavity in the immediate
vicinity of the liver in order to promote portal drain-
age of insulin. The supports were infused with a solu-
tion of saline containing VEGF-165 and heparin (to
stabilize the VEGF).

After 4 weeks of infusion with VEGF-165, we
found, macroscopically, much more blood vessels
running over and into the supports when compared
to injections of aFGF. Subsequent staining with
RECA-1 (ie. a specific rat endothelial cell marker),
showed a degree of vascularization of 66 + 8 vessels/
mm? in VEGF-165 treated supports (at a dose of 80
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Fig.9. The process of angiogenesis after exogenous adminis-
tration of angiogenic stimuli. Basal membrane and matrix deg-
radation facilitates the migration of proliferation endothelial
cells to the angiogenic stimulus

ng/day) which was similar to the 72 + 7 vessels/ mm?
found in the liver. Control supports, ie. supports in-
fused with saline and heparin in the absence of
VEGF-165, showed a lower degree of vascularization
of 44 + 12 vessels/mm?>.

At present we are exploring the possibility of re-
peated replacement of encapsulated islet grafts from
VEGF-165-treated supports because this could be
mandatory for clinical application in case of limited
function of encapsulated grafts. This is done by in-
jecting encapsulated islets into the supports in a solu-
tion of alginate with a high-M content. These high-M
alginates chelify in the human body and therefore
can keep the capsules at its place in the solid support.
If replacement is required the high-M alginates can
easily be solved by the administration of Ca-gelators
such as EGTA. Liquification of the solution allows
aspiration of the alginate in combination with the en-
capsulated islets in a procedure, which requires only
minor surgery.

Longevity of microencapsulated islets

As follows from the preceding sections, minor modi-
fications in the encapsulation procedure could have
an important impact on the capsule’s biocompatibili-
ty and thus on the functional outcome of the graft.
However, the factors contributing to the quality of
microcapsules are not standardized. As a conse-

——— Capillary
Erythrocytes

Basement membrane
and matrix breakdown
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quence, there are many different encapsulation pro-
cedures, each resulting in capsules with different po-
rosities and with specific chemical and mechanical
characteristics. Obviously, these differences contrib-
ute to the enormous variations in reported success
rates of encapsulated islet allografts and xenografts.

It has been assumed that indefinite survival would
be achieved with islet-containing microcapsules
which elicit a minimal foreign body reaction [78, 87,
119]. However, even when the foreign body reaction
affected only an insignificant number of capsules
[59, 91], long-term survival of the encapsulated islet
grafts in rats was not achieved. This phenomenon of
graft failure in the absence of overgrowth of the cap-
sules has been reported before [120-122] and is usual-
ly explained by exhaustion of the graft as a conse-
quence of a combination of a too high glycaemic
load on an insufficient number of transplanted encap-
sulated islets. In our studies in rats, however, neither
the volume of the graft nor the glycaemic load on
the islets caused graft failure. We found that after
transplantation of a sufficient islet volume of 10 ul,
the functional mass of the graft decreased rapidly
not only in diabetic but also in normoglycaemic recip-
ients.

Some dispute excist as to the effect of the ongoing
activity of the immunological rejection process on
the survival of immunoprotected islets. It has been
shown that cytotoxic antibodies can be formed
against the islets in spite of the presence of a capsule
around the tissue [16, 29, 123, 124]. It has also been
shown that cytokines produced during the rejection
process, such as IL-15 can pass through the capsule
membrane [125]. In our in vivo studies, we found no
effect of the histoincompatibility of the encapsulated
islets on the graft survival because isograft had identi-
cal survival times as allografts [59]. These findings
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Fig.10. Schematic presentation of the principle of grafting of
encapsulated islets in prevascularized solid support systems.
ePTFE solid supports are coated with collagen type IV and
subsequently implanted in the peritoneal cavity. The solid sup-
ports are infused with an ALZET osmotic pump for 4 weeks
with VEGF-165 in order to stimulate the ingrowth of blood
vessels. The collagen type IV functions as a matrix to prevent
the VEGF-165 from immediate diffusion into the surround-
ings. After 4 weeks, the osmotic pump is removed and algi-
nate-PLL encapsulated islets are infused in a solution of high-
M alginate (which forms a gel in the presence of the physiolog-
ical Ca—concentration) to keep the encapsulated islets at their
place in the solid support

suggest that capsules can adequately protect against
the allograft reactions initiated by the encapsulated
islets after transplantation.

Our results suggest that the long-term graft surviv-
al might depend on the access of encapsulated tissue
to blood supply and, consequently, on sufficient sup-
ply of nutrition and/or growth factors delivered to
the encapsulated islets. Although this issue is not cov-
ered by the current definition [126], it should be con-
sidered to be a biocompatibility problem because
long-term survival of the tissue is required for this
specific application but, regretfully, is not compatible
with the presence of the biomaterial around the tis-
sue.

Concluding remarks

It is clear that important advances have been made in
immunoisolation of pancreatic islets during the last
few decades. This view is corroborated by the results
of the restricted experience obtained in human be-
ings [21, 44, 127]. Very few reports from clinics on
transplantation of encapsulated islets might be ex-
plained by not only scientific reasons. Limited avail-
ability of human islets, recent concerns about using
pig tissue in humans, and extremely high expenses
probably contribute to sluggish progress in clinical
application of microencapsulation approach. In view
of the recent successful transplantation of pancreatic
stem cells [128-130], one might expect unlimited
sources of allogeneic insulin-producing tissue in the
near future. Additionally, enhanced survival of grafts
supported by induced neovascularization might result
in encapsulation technology which will be the ulti-
mate solution to cure Type I diabetes.

Sources. This review is based on the relevant litera-
ture published in the English language during the pe-
riod 1980-2001, and seminal prior contributions. The
sources available to the authors were integrated with
sources identified through PubMed searches for “en-
capsulation of pancreatic islets” and “vascularization
and transplantation of microencapsulated islets”.
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