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  Abstract. In the paper, a pair of dual operators is introduced with which a 
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separately and comparatively. 
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 1. Introduction 

 

 The concept of coherent states (CSs) was introduced by Schrodinger, in 1926, for the 

linear harmonic oscillator (HO-1D) as the specific quantum state being often described as a state 

which has dynamics most closely resembling the oscillatory behavior of a classical harmonic 

oscillator [Schrodinger, 1926]. Although a few decades later the concept did not seem to have 

aroused much interest in specialized literature, in the middle of the last century physicists began 

to pay more attention to this notion and its specific applications, for a wide scientific field, 

starting with tha mathematical and solid state physics and up to the cosmology. At the same time, 

scientific interest and research were not limited to the coherent states and squeezed states of HO-

1D, but they were also extended to other quantum systems so called nonlinear. This is how the 

concept of generalized or nonlinear coherent states (NCSs) appeared,   based on the deformation 

of the bosonic ladder operators (the annihilation a  and creation 
a  canonical operators for HO-

1D, as well as the number operator aan ˆ ). As a consequence, CSs of HO-1D, also called 

canonical coherent states, were automatically considered to be linear. 

 For the case of HO-1D, the CSs can be derived from four definitions: 

 1.) The CSs are eigenstates of the annihilation operator (also called  Barut-Girardello 

CSs) [Barut, 1971],  

 zzza ||                                                                 (1.1) 

 

with )iexp(|| zz   the complex variable labeling the CSs,  cRz ||0 ,  20  , where 

cR  is the convergence radius of the CSs normalized function.   

 2.) By the quantum groups considerations, i.e. by applying the displacement operator 

)exp()(ˆ azazzD    on the HO-1D vacuum state (the Klauder-Perelomov manner) [Glauber, 

1963], [Klauder, 1963], [Perelomov, 1972],   
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 0|)(ˆ| zDz                                                                             (1.2) 

 3.) The CSs are the states with minimum value of uncertainty relation for the position q̂  

and momentum p̂  operators 

2

1
ˆˆ  zz pq       ,       1                                         (1.3) 

 4.) The CSs form an overcomplete set satisfying the completeness relation, which often is 

called the unity operator expansion 
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 As is well known from quantum optics books (see. e.g. [Walls, 1995], [Vogel, 2006]), for 

the linear harmonic oscillator HO-1D the two ways of defining the coherent states (BG-, 

respectively KP-) lead to the same result: 


















 





  0|||
2

1
exp|

!
||

2

1
exp||| 2

0

2

1 zazn
n

z
zzzz

n

n

DHOKPBG              (1.5) 

 Also, and for this reason, these CSs are also called linear. 

 These states are normalized but not orthogonal, and constitute an overcomplete basis in 

the Hilbert space. At the same time, the CSs must accomplish the continuity condition in the 

label variable z .   

 However, in the case of other quantum systems (called for this reason, nonlinear), these 

definitions are not convergent, leading to different expressions for generalized CSs. The problem 

is to find the reason for this non-convergence. Alternatively, to find a pair of ladder operators 

that leads to the same type of CSs, regardless of their definition. 

 Between the two types of NCSs, that is Barut-Girardello (BG-CSs) and Klauder-

Perelomov (KP-CSs), not long ago it was established that there is a certain duality [Roknizadeh, 

Tavassoly, 2004]. The aim of present paper is to examine the properties of the duality of two 

kind of NCSs, properties which are not appearing in the literature to our knowledge so far. Apart 

from the pure CSs we focused our attention on the mixed (thermal) states the subject which, to 

our knowledge, also has not appearing in the literature.  

 The generalized NCSs was defined by using the generalized annihilation A  and creation 

A  operators. The generalized or deformed annihilation operator is defined as a product between 

the canonical annihilation operator a  and a nonlinear function )ˆ(Nf depending on the operator 

number of particles  nnn ||N̂ , i.e. )ˆ(NfaA  . So, the NCSs are defined as the 

eigenvectors of the deformed annihilation operator. Similar, their conjugate, the generalized 

creation operator is    

  afAA )ˆ(N  [Matos Filho, 1996], [Man’ko, 1997]. The function 

)ˆ(Nf  is called the nonlinearity function and it can be complex or real. Because their phase is 

irrelevant, one may choose to be real and nonnegative, i.e.  )ˆ()ˆ( NN ff 
.  

 In our analysis, we exhaustively used the properties of the generalized hypergeometric 

functions and the G-Meijer functions, which had the consequence of making the calculations 

easier, as well as checking their correctness. 

 The topic we are dealing with was previously examined, from a similar point of view, 

among others, by Roknizadeh and Tavassoly [Ali, 2004], [Roknizadeh, 2005], as well as by 
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[Abbasi, 2010]. In this sense, the present paper takes a new and complementary look at the 

problem of duality in the formalism of generalized coherent states. 

 
 

2. Duality of ladder operators  A   and A
~

 
 

 Let we consider a pair of annihilation and creation operators A and A  , whose action on 

the Fock vectors ,...2,1,0,|  nn  are 

 

  nnenAAnnenAnnenA |)(|,1|)1(|,1|)(|

     

(2.1) 

 

 

If we choose  2)()( nfnne  , where )(nf , with 1)0( f  , is the eigenvalue of the 

nonlinearity function )ˆ(Nf , the above relations becomes  
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 For a real nonlinearity function )ˆ()ˆ( NN  ff , where  nnn ||N̂  is the number 

operator,  is valid the following commutation relation      

 

      0)ˆ(ˆ)1ˆ()1ˆ(,
22

 NNNN ffAA

                                    

(2.3) 

 

which show that generally, the pair of annihilation and creation operators A and A  do not 

commute.  In a special case of linear CSs, in which case 1)ˆ( Nf , the two operators are the 

standard bosonic canonically conjugate operators, i.e.   1,  AA . 

 To avoid this situation, Roy and Roy defined a new pair of conjugate canonical operators, 

B  and B , which, together with the pair A  and A , satisfy the canonical commutation 

relations and allow the construction of two generalized displacement operators [Roy and Roy, 

2000]: 

 Following Roy and Roy's idea, with some little modifications, let we consider two pairs 

of adjoints ladder operators, annihilation and creation, A  and A
~

 , whose action on the Fock 

vectors ,...2,1,0,|  nn  are 
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 We will use the "tilde" sign over the operators to denote their corresponding duality 

property. But, in what follows, for better clarity, for the different coherent states we will give up 

the "tilde" and use the corresponding lower index. 

 It is observed that the "tilde" operation differs from the hermetic conjugation operation, 

in the sense that it does not change the order of the operators in a product. Instead, it is similar to 

the simple operation of complex conjugation of numbers. 

  AAAA
~

)
~~

(     ,            AAAA
~

)
~~

(                                          (2.7) 

 In principle, instead of the basis of the Fock vectors  ,...2,1,0,|  nn , any 

orthonormal basis, e.g.  ,...2,1,0),(  nxn ,   can be used. 

 Let's choose the expression for )(ne  and )(~ ne  in the following manner:  
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where p  and q are positive integers, and we used a short notation for the sequence of real 

numbers is  
paaa ,...,, 21a

 
and  

qbbb ,...,, 21b  . 

 This choice of special form is not random. Her motivation will become evident in what 

follows and will lead to normalization functions of CSs which will be generalized 

hypergeometric functions. 

 The eigenvalues of the products AA
~

 and AA
~

 , respectively their “tilda conjugate” are 
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 Appealing to the well-known expression for the particle number operator,  nnn ||N̂ , 

we can make the identification, N̂
~~

  AAAA  and 1ˆ~~
  NAAAA , so that the 

following commutation expressions are valid 

 

  1,
~
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~

,  AA                                      (2.11) 
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,                                  (2.12) 
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,   ,                     AAN ,           .                      (2.13) 
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 These relations show that the operators dual sets of operators  A
~

 and A   , respectively  

A  and A
~

 are canonically conjugated. On the other hand, the set of operators  N̂,,
~

 AA  

respectively their counterparts   N̂,
~

,  AA , follow a Lie algebra. The algebra defined by the 

above equations is sometimes called the Heisenberg-Weyl algebra.  

 Let's define two new discrete strictly positive parameter functions )(n , and )(~ n  

depending on the main quantum number n , also called the structure functions (as will be seen in 

the chapter on coherent states):   
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such as  2!)(~)( nnn  .                                                                 

 Therefore, here and in the following, the entities x  and x~  can be considered as being 

dual. 

 Using the definition of the dual operators A and A
~

, we obtain 
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 These relations will be useful in the coherent states formalism that follows. 

 

 

3. DOOT as the generalization of IWOP 

 

 It is well known that the ladder quantum canonical bosonic operators, annihilation a  and 

creation 
a , used in quantum optics can be arranged in three forms of ordered products: 1. 

Normal ordering  mn

N

mn aaaa )(:)(:    , i.e. 
a  is to left and a  is to right. Consequently, we 

have ),(|:),(|: zzGzaaGz N

   ;   2. Anti-Normal ordering  nm

AN

mn aaaa )(:)(:   , where 

we have  ),(|:),(|:   zzGzaaGz AN ; and 3. Weyl ordering (or symmetric ordering)   

) and of products symmetric all of (sum:)(:

1
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mn 
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 These three situations can be written as a formula of “s-order power-series expansions” 

[Fujii, 2004] 
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and the indices s  and t  are 1  (for normal), 0 (for Weyl) and 1  (for anti-normal) operator 

ordering. 

 In order to unify the approach for arranging quantum operators of optical fields into 

ordered products, Hong-yi Fan proposed an integration technique within an ordered product of 

operators, which he named, for short, IWOP (see, the review article [Hong-yi Fan, 2003] and 

references therein). This technique refers only to the canonical bosonic operators annihilation a  

and creation 
a , associated with the linear quantum harmonic oscillator (HO-1D).  

 A few years ago we introduced a new approach of normal ordering operator’s products 

connected with the generalized hypergeometric CSs, called the diagonal ordering operation 

technique (DOOT) and denoted it with the symbol  # # [Popov, 2015]. This ordering technique is 

applied to any pair of raising and lowering nonlinear operators A  and A , respectively A
~

 and 

A
~

, being a generalization of the integration within an ordered product (IWOP), introduced by 

Hong-yi Fan [Fan, 1999]. Given that the IWOP is applicable only for Bose operators, referring 

only to the CSs of the HO-1D, and DOOT is applicable to any pair of  raising and lowering 

nonlinear operators, in this way the new formalism, called diagonal ordering operation 

technique (DOOT), contains IWOP as a special case. 

 We generalized the IWOP formalism of Fan by extending it for any pair of dual 

operators  A   and A
~

 , as well as  A
~

  and A .  

The most important rules of the DOOT are (the rule for the pair A
~

  and A
~

 are the 

same):  

a) The order of operators  A   and A  can be permuted inside the symbol #  #, so that 

finally we obtain a function of normally ordered operator product  ## AAf , 
nnnnn AAAAAA )(#)()(##)()(#   ;  

b) inside the symbol # #  we can perform all algebraic operations, according to the usual 

rules;  

c) the operators A  and A  can be treated as simple c-numbers;  

d) the vacuum state projector |00|  , in the frame of DOOT, has the following normal 

ordered form: 
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where in the denominator appear an normal ordered operator function depending on the ordered 

operator product ## AA  as “argument”. In fact, it is a generalized hypergeometric function, as 

we will see below, defined as  

 n

n

n

n
q

j

nj

p

i

ni

qp x
nn

x

b

a

xF 


 









 
00

1

1

)(

1

!
)(

)(

);;(


ba                              (3.4) 

 The motivation of the above equality is simple: starting from the completeness relation 

for the Fock vectors 





0

1||
n

nn  and using the results of the multiple actions of operators A   

and A  on the fundamental (vacuum) state vectors, the above relation is reached. 

 The function );;( AAFqp ba  converges in the following cases [Won Sang Chung, 

2014]: 

For If Condition 
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 As we mentioned, the same rules of the DOOT are also valid for the pair of operators 

A
~

 and A
~

. 

 Calculating the vacuum operator for pairs of dual operators   AA
~

, , respectively 

  AA ,
~

, expressions different from those above are obtained: 
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 #~
exp#|00|  AA                                                      (3.7) 

and similar, 

 #~
exp#|00|  AA                                                      (3.8) 

 The DOOT approach proved useful in studying the properties of CSs related to different 

quantum systems of oscillators: pseudoharmonics, Morse, Meixner, but also for deducing 

integrals in which the hypergeometric and Meijer functions are involved [Popov, 2022]. 

 

 

4. Generalized CSs 

 

 The choice of the above expression for the )(ne , and, as a consequence, for )(n , which 

play the role of nonlinearity function is not accidental: it is closely related to the definition of 

generalized hypergeometric function );;( xFqp ba .  

 We used the Pochhammer symbols, with following properties, for  ... 3,2,1,n : 
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 The generalized hypergeometric function can be represented through Meijer G-function 

 



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


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)(
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/ ab                  (4.2) 

 

 The Meijer's G-function satisfies the following classical integral [Mathai, 1973]: 

   
   







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
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
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








p
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i

q

mj

j

n

i

i

m

j

j
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mj

m

j

p

ni

n

inm

qp

s

sasb

sasb

bb

aa
xGxdx

11

11

11

11,

,

0

1

)()1(

)1()(
1

;

;


            (4.3) 

 Generally, there are following definitions or approaches to generalized or nonlinear 

coherent states (NCSs): 

- The Barut-Girardello coherent states (BG-CSs), defined as eigenstates of the 

nonlinear annihilation operator [Barut, 1971]. 

- The Klauder-Perelomov coherent states (KP-CSs), defined through group-theoretical 

approach [Perelomov, 1972].    

- The Gazeau-Klauder coherent states (GK-CSs), which are nonspreading and 

temporally stable, directly related to the Hamiltonian of the examined system 
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[Gazeau, 1999]. The GK-CSs can be obtained by acting with the exponential operator 

    #i-exp# AA on the non-normalized BG-CSs depending on the real positive 

variable J|  and considering the rules of DOOT (for details see e.g.  [Popov,  

2016]). 

 In the present paper we will deal only with the first two types of NCSs, which we will 

consider as a dual pair and highlight the similarities and differences between their properties.  

 The NCSs, regardless of its type (definition), have the following expansion according to 

the expansion in the Fock vectors-basis:  

 

   
   





 0|
||

1
|

)(||

1
|

2
0

2
zA

z
n

n

z

z
z

n

n

N
NN 

     ,                       (4.4) 

 

and where the normalization function  2|| zN  is obtained from the normalization condition 

1|  zz  : 

     ||
)(

1
||

0

22 





n

n
z

n
z


N .                                                      (4.5) 

 For the states to belong to the Fock space, the condition must be fulfilled    2||0 zN  

or, in other words, the convergence radius cR  of the series to fulfill the following inequality:

)(lim||0 neRz
n

c


 .  

 The minimal conditions that the set of NCSs must fulfill were formulated by Klauder and 

that is why they are also called "Klauder's minimal prescriptions" [Klauder, 1963]: 

 (I). NCSs are normalized but non-orthogonal: 

 
    











',0

',1

|'|||

'
'|

22 zz

zz

zz

zz
zz

NN

N
                                               (4.6) 

but they form an overcomplete set. 

 (II). They must be continuous in the label variable z :   
 

0)'cos('2'lim||'||lim 22

'

''









rrrrzz
rrzz

                                          (4.7) 

 (III). It must be necessary to satisfy the resolution of the identity, i.e. to close a resolution 

of the identity 

    ||ˆ||
0







n

nnIzzzd                                        (4.8) 

with the integration measure      22
2

||||
2

zhzd
dzd

zd





   and weight function  2|| zh  

which must be found for each individual case. 
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 Inserting in the resolution of the identity the expressions of integration measure as well as 

for the expansion of NCSs, in order to be satisfied the completeness relation 





0

1||
n

nn  for 

the Fock vectors, after the angular integration  

    '

2'

2

0

||
2

nn

nnn
zzz

d










                                                     

(4.9) 

as well as the function change    
 2

2
2

||

||
||

~

z

zh
zh

N
  and exponent change 1 sn  we have to 

solve the following moment problem in variable 2|| z :  

      )1(||||
~

||
1222

0




 szzhzd
s

Rc



                                          

(4.10) 

 

 Depending on the value of convergence radius cR  (which is calculable using one of the 

convergence criteria of the power series, for example the ratio criterion), we can have two 

situations [Kla-Pen-Six]: 













 HM)( problemmoment  Hausdorff,

SM)( problemmoment Stieltjes,

)1(

)(
lim

n

n
R

n
c




                           (4.11) 

 In a compact and unitary expression, the moment problem is written as [Roknizadeh, 

2004] 

   
   

  




























 HM

SM
sz

zhzRH

zh
zd

s

c

)1(||
||

~
||

||
~

||
12

22

2
2

0

                (4.12) 

where  2|| zRH c  is the Heaviside step function: 

 









c

c

c
Rz

Rz
zRH

2

2

2

||,1

||,0
||                                                                  (4.13) 

 Generally, the solution  2||
~

zh is proportional to a Meijer G-function and its concrete 

form depends on the type of coherent state. Consequently, the weight function, which must 

necessarily be positive, is 

   
   
    



















q

mj

m

j

p

ni

n

inm

qp
bb

aa
zGzCzh

11

112,

,

22

;

;
||||),(|| Nba                                   (4.14) 

where ),( baC  is a constant that depends on the internal structure of the nonlinearity function 

).(nf  
 Finally, the integration measure becomes: 

   
   
    



















q

mj

m

j

p

ni

n

inm

qp
bb

aa
zGzzd

d
Czd

11

112,

,

22

;

;
||||||

2
),()(    Nba



                         (4.15) 

 Generally, in the frame of DOOT, the projector of NCSs can be written as    
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 As a result, the resolution of identity leads us to the condition 
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      (4.17) 

 Essentially, this is a new generalized integral in which the operators are regarded as 

simple c-numbers, and consequently can be replaced by some constants.  

 After performing the angular integration  
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(4.18) 

the above integral in real space becomes 
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   (4.19) 

 

 In order to obtain equality, the real integral must be 
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 Statistical properties of the NCSs are examined with the help of the expectation value 

 zz s

z

s |ˆ|ˆ NN  of an integer power of number operator N̂ .  

 
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2
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1ˆ
2 zDz

z

s
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 N                                    (4.21) 

 We need to compute the Mandel parameter, defined as [Walls, 1995].  
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           (4.22)                        

 Regarding the behavior of NCSs, i.e. the expression of their distribution function 
 

2|z|
P , 

the following three situations can exist: 

















bunching)-(anti Poissonian-sub be  tosaid states, classical-non ,0

on distributinumber photon or  statistics Poissonian states, canonical,0

states) (bunching Poissonian-super called states, )(classicalordinary ,0

||zQ        (4.23) 
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 This behavior can be verified by comparing the distribution function 
  2

||z
|||P 2  nz

  

versus Poisson distribution  
   

!

||
P

2
||

|z|

2

2

n

z
e

n

zPoisson  , separately for BG- and KP-CSs. Then, we 

have the following situations: 

 
 

2|z|
P      >      Poisson

2|z|
P  super-Poissonian distribution 

 
2|z|

P      =      Poisson
2|z|

P  Poissonian distribution 

 

   
2|z|

P      <      Poisson
2|z|

P  

sub-Poissonian distribution 

 

 

 

 If we refer to the mixed states, the approach is quite different. As a characteristic example 

of mixed states we will refer to the thermal states of a quantum canonical ensemble at 

equilibrium temperature )/(1 TBkT  , with energy eigenvalues nE , whose equilibrium density 

operator ̂  , and also the partition function )(Z  are  
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)(
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ˆ nne

Z n
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nT  
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
           ,      



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T
nTeZ

 )(                    (4.24)                                                                       

 In the frame of NCSs, the ensemble is characterized, on the one hand, by the diagonal 

element of the density operator, i.e. by the Q- distribution function (Husimi’s function) 
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N

                                    (4.25) 

and, on the other hand, by the P- quasi distribution function, which appear as the weight function 

in the diagonal expansion of density operator ̂  with respect to the NCSs projector || zz  : 

||)|(|)(ˆ 2 zzzPzd                                                             (4.26) 

 Furthermore, the concrete expressions for ̂ , respectively the Q- and P- functions are 

different, due to the different expression of )(ne . For example, for a linear energy spectrum 

 0)( enneEn                                                             (4.27) 

the density operator and partition function are 
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    ,                           (4.28)                                                            
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
                           (4.29) 

where   1
1




 Ten  is the Bose-Einstein distribution function.                                                                                     

 For other more complicated energy spectra, specific methods must be applied. For 

example, for a quadratic spectrum (characteristic, e.g. for the Morse oscillator) a specific ansatz 

can be applied [Popov, 2003]. 
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 Generally, using the DOOT rules, the density operator becomes 
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with their diagonal expansion 
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 The angular integral is 
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so that we have 
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 If we perform the function change 
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                                                  (4.34) 

it is obvious that we will have to solve the following problem of moments, similar to the one 

before 

   )(
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||||)|(| 22
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zzhzd nEn

red 
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 ba
                                 (4.35) 

 Next, the calculation depends on the concrete expression of the energy eigenvectors nE  

for each quantum system examined. 

 The statistical behavior of the thermal states can be revealed if we calculate the thermal 

counterpart of the Mandel parameter )( TthQ  (used in [Ghostal, 1995], [Popov, 2003], 

[Laforgia, 2010] ). Their meaning of its values is the same as for the Mandel parameter for pure 

NCSs. The thermal expectations being independent on the representation, it is possible to 

examine the thermal Mandel parameter together for both types of CSs, BG and KP: 
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(4.36) 

where, the thermal averages of the integer powers of number operator are 
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 This leads to 
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(4.38) 

from where the value of the thermal Mandel parameter can be calculated for each quantum 

system separately. For example, for a system that has a linear energy spectrum 

 0)( enneEn    , we have nth N̂  and   22 )(2ˆ nnth  N  and  it is obtained 

that the thermal Mandel parameter is even equal to the Bose-Einstein distribution function: 

  0
1

1
th 



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

Te
nQ T                                                      (4.39) 

This means that the mixed thermal states for the systems with a linear energy spectrum have a 

supra-Poissonian behavior for any temperature. 

  
 

5. Barut-Girardello versus Klauder-Perelomov coherent states 
 

 Following a traditional way (one can even say "classical"), let's build the coherent states 

with the pair of dual operators   AA ,  and   AA
~

,
~

, in the spirit of the founders of this 

concept (see, e.g. [Glauber, 1963], [Sudarshan, 1963], [Barut, 1971], [Perelomov, 1972], 

[Gilmore, 1974], [Klauder, 1985], and not only). First, we will construct CSs using the pair of 

operators   AA , . Next, we will do the same thing using the set of dual operators   AA
~

,
~

, 

in order to establish the connection between the dual coherent states BG-CSs and KP-CSs. 

 Following an idea formulated by B Roy and P Roy [Roy, 2000], with the help of the two 

pairs of dual operators we can construct two dual generalized displacement operators: 
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2
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D                                   (5.1) 

 

 
 

   





  AzAz
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exp)(
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2

2N
D                                   (5.2) 

 It is observed that these expressions can be obtained from each other through the "tilde 

conjugation" operation. The normalization functions  2

1 ||zN  and  2

2 |
~

|zN  will be determined 

from the CSs normalization condition. 

 

 Barut-Girradello nonlinear coherent states (BG-CSs) are defined as eigenvectors of 

the nonlinear annihilation operator  [Barut, 1971], [Roy, 2000]: 

 Definition 1, with the help of the annihilation operator A : 

  BGBG zzzA  ||                                                             (5.3) 

and their expansion according to the Fock vectors is 
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where )()( nnBG   . 

 Definition 2, with the help of the generalized displacement operator )(
~

zD : 

 

   0|)(
~

| zz BG D                                                             (5.5) 
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where 
 

)(

!
)()(~

2

n

n
nn

BG

KP


    and, after normalization,   )||;;(|
~ 22

2 zF|z qp baN  . 

 It is observed, therefore, that both definitions lead to the same expression of BG-CSs. 

 The convergence radius BGR  can be calculated having in mind that nn xnxx )()()( 1  : 
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and strongly depend on the values of the indices p  and q . 

 The BG-CSs projector is 

#
);;(

)|;;()|;;(
#

)||;;(

1
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
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

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                  (5.8) 

 

and the non orthogonality relation becomes 

)|'|;;()||;;(

)';;(
'|

22 zFzF

zzF
zz

qpqp

qp

BGBG

baba

ba 

                             (5.9) 

 To ensure the decomposition of the unit operator, it is necessary to solve the following 

moment problem (where 1 sz ): 
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which leads to the following expression of the integration measure: 
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 Consequently, the resolution of identity becomes 
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 The angular integral is 
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so, particularly we obtain the following new integral in real space     
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(5.14) 

 In the subsidiary, this can constitute another proof of the validity of the DOOT technique. 

 Since, according to the DOOT rules, the operators can be treated as simple c-numbers, 

the validity of the above integral can be checked using the properties of Meijer's G functions 

[Mathai, Saxena, 1973], [Popov, 2022]. 

 The expectation value of an operator Ô  in the BG-CSs representation is 
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         (5.15) 

 

 As an example, the expectation value of the product operator AA , is 
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where 
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z
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||)ˆ|(| 2  and we obtain that, under the sign of 

summation involving  n , each n   from the expression of  )(ne  must be replaced with 2||

2 ˆ||
z

Dz . 

Consequently, we can formulate the following rule for BG-CSs of an arbitrary function: 

if we calculate the expected values for a function depending on the ordered product AA ,, each 

product  AA  can be replaced with  2||

2 ˆ||
z

Dz : 

   )ˆ|(|## 2||

2

zz DzefAAf                                                  (5.17) 

i.e. in the expectation value in the BG-CSs representation the ordered product AA can be 

replaced by the variable 2||

2 ˆ||
z

Dz . 

 This rule may apply, e.g. to calculate expected values for BG-CSs of some oscillators 

with linear energy spectra, like HO-1D, or pseudoharmonic oscillator (PHO) [Popov, 2017 a],
   

k-coherent states [Popov, 2017 b],
 
or to some quantum oscillators with non-equidistant energy 

levels (Pöschl-Teller oscillators) [Popov, 2017 c].
 

 For the integer powers of number operator N̂ , which is diagonal in  n| - basis, we 

have 
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 Consequently, the Mandel parameter becomes 
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and its sign and value must be calculated for each individual case. 

 

 Klauder-Perelomov nonlinear coherent states (KP-NCSs) are defined by the action of 

a displacement operator on the vacuum Fock vector 0| , in the manner of Perelomov 

[Perelomov, 1972]. But, because the nonlinear operators A  and A  are not commutable, we 

have to use the pair of canonical operators A  and A
~

 . So, the KP-NCSs are defined as: 

 Definition 1, with the help of the generalized displacement operator )(zD : 

   0|)(| zz KP D                                                             (5.20) 
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and, after normalization,  
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 With this result, the expansion of KP-NCSs becomes 
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 The convergence radius KPR  of the KP-NCSs is calculated similarly as for BG-CSs: 
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 The inversion of the p and q indices can be observed, compared to the case of BG-NCSs. 

 Definition 2, with the help of the annihilation operator A
~

: 

  KPKP zzzA  ||
~

                                              (5.25) 

and their expansion according to the Fock vectors becomes identical to the one above, where 
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  .  The proof is basically identical to that in Definition 1 for BG-CSs, in 
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  and of course, after 

changing the summation index mn 1 , and eliminating the term with 1m .          

 According to DOOT rules, the KP-NCSs projector is 
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where we used the fact that the vacuum projector can be expressed also through the product of 

pair operators AA
~~

: 
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 Consequently, the resolution of unity becomes 
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 The angular integral above is '
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whose solution is also a G-Meijer function, so that, finally, the integration measure becomes 
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 Substituting this expression in the unity decomposition relation, and performing the 

angular integral   
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after a few simple operations we arrive at a new integral, in the real space, the validity of which 

can be verified by using the properties of the G-Meijer functions: 
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 We remind that, according to the DOOT rules, the operators can be treated as simple c-

numbers, so they can be replaced with some arbitrary constants. 

 

 

6. Similarities between BG- and KP-CSs 

 

 As a partial conclusion, we can say that the pairs of dual operators A  and A
~

(through 

)(
~

zD ) generates the NCSs in the Barut-Girardello sense, BGz | , while the pair of operators A  

(through )(zD ) and A
~

 acts in such a way that it generates a NCSs of the Klauder-Perelomov 

type, KPz |  . 

 Therefore, the following operator links - NCSs result: 
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i.e., the average values of the pairs of dual operators in the two representations are dual. 

 By generalization, the average values of any function that depends on these products 

ordered by operators are equal: 
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which means that, in the calculation of the average value in the NCSs representation, each 
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 For example, the average value of the Hamiltonian  nnen |)(|Ĥ , in the NCSs 

representation will be 
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and similarly, of an integer power of the operator number of particles 
sN̂ : 
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 Consequently, the Mandel parameter in the NCSs representation reads 
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 Starting from the general expression of the density operator, let's see what are the 

concrete expressions for the distribution functions Q- and P-, generated by the mixed operators 

A  and 
A

~
. Because the expression of the density operator is essentially determined by the 

expression of the energy eigenvalues, we will specifically refer to the systems with linear energy 

spectra,   0enEn   . 
 

 For the pair   AA , : 

 

   
   

        # 
)'()(||

1
)|(|)(

1
#

#
1

1
#

1

1
ˆ

0',

'

2

2 






























nn BG

n

BG

n

BG

BGBG

BG

BG

BG

BG

n

Az

n

zA

z
zPzd

AA

AA
n

n

AAn






NN

N
N

   (6.7) 

 

 After angular integration we must have 



22 

 

 

 
 
 

n

BG

R

q

qp

n BG

n

BG

zzPzGzd
n

AA

AA
n

n

n

BG

)|)(||(|
/;,0

;/
||)|(|# 

)(
/

#
1

#
1

1

22

0

20,1

1,

2

0
2  






































1-b

1-a
ba

N



        (6.8) 

 

 Equality is valid if the P-quasi distribution function has the expression: 
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  For the pair   AA
~

,
~
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 After similar calculations, we obtain that the P-quasi distribution function is 
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 The Q – distribution function (also called Husimi’s distribution function), defined as the 

expectation value of the density operator in the CSs representation, can be written as 
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 The thermal counterpart of the Mandel parameter being the same for both type of NCS, 

BG- and KP-, we have examined in the previous section so we will not repeat the calculations 

again here. 

 Let's see now what is the connection between the dual BG- and KP-NCSs. This problem 

was examined for the first time by Ali et al. [Ali, 2004], [Roknizadeh, Tavassolly, 2004]. Similar 

to the idea from the paper of Ali et al. [Ali, 2004], but with some small differences, let's 

introduce a transformation operator and their inverse which makes the jump from one type of 

CSs to another 

 

||
)(

)(

)||;;(

)||;;(
)|(|

2

2

2

, nn
n

n

zF

zF
z

n KP

BG

pq

qp

qp  




ab

ba
T                             (6.13) 

 



23 

 

 

||
)(

)(

)||;;(

)||;;(
)|(|

2

2

21 nn
n

n

zF

zF
z

n BG

KP

qp

pq-

qp,  




ba

ab
T                           (6.14) 

which follows due to the completion relation 1|| 
n

nn  .  

 These operators transform Barut-Girardello type NCSs into Klauder-Perelomov type 

NCSs and vice versa, connecting the two dual types of CSs: 
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 The action of these operators on the pair of NCSs BG- and KP- can be written in matrix 

form as follows: 
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 So, the operator matrix has the same action as the Pauli X̂  gate operator (NOT gate) 
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 Roknizadeh and Tavassoly [Roknizadeh, 2004] used similar operators, which they 

applied to canonical coherent states (for HO-1D), and obtain (up to the normalization function) 

the dual BG- and KP-NCSs.  

 Finally, let's point out another result of the formalism introduced by Roy and Roy [Roy 

and Roy, 2000], [Roknizadeh, 2004]: the two types of dual NCSs, BG- and KP-, can be built 

with the help of a pair of displacement operators )(
~

zD  and )(zD whose component includes the 

mixed generators A  and A
~

, respectively A
~

 and A .  

 In a matrix form, these actions are 
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 In this manner we highlighted different ways of building the two dual types of NCSs, 

BG- and KP-CSs. 
 

7. Some concluding remarks 
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 In the paper we have pointed out some new manners to build two kinds of generalized or 

nonlinear coherent states (Barut-Girardello and Klauder-Perelomov), and examined their 

statistical properties for pure and mixed (thermal) states.  

 

 In conclusion, the following remarks can be made: 

- The "tilde" operation has the same effect as simple complex conjugation. It does not 

change the order of operators in a product. 

- The pairs of operators   AA ,
~

, respectively   AA
~

,  are dual, in the sense that 

they are responsible for the construction of BG-CSs, respectively KP-CSs. 

- The duality between BG-CSs and respectively KP-CSs is manifested through the  

reciprocal interchanges of entities contained in the following table:: 
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 In conclusion, the following points can be made: In general, for the generalized or 

nonlinear coherent states (NCSs), the BG- and, respectively, KP- type coherent states are not 

identical, as in the case of the one-dimensional harmonic oscillator (HO-1D). However, 

analogies or dualities can be found between the two types. These dualities can be revealed by 

introducing some dual operators that can be grouped into pairs that form canonical operators 

(their switch is equal to the unity operator). These pairs of dual operators allow the construction 

of generalized displacement operators.  These pairs of dual operators are responsible for building 

and revealing the properties of the two types of NCSs, so that each type of NCSs can be 

constructed through two different definitions, involving dual operators.   
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