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Several aspects of the Thermodynamics of systems away from equilibrium are considered. Par-
ticular attention is given to the question of the concepts of entropy and temperature in arbitrary
nonequilibrium conditions. Even though such state function and thermodynamic variable are elu-
sive in such conditions, it is elaborated and discussed an approach to them that can be obtained in
the framework of the so-called Informational Statistical Thermodynamics. This is the approach to
Thermodynamics based on the statistical-mechanical foundations provided by a Gibbs ensemble-like
algorithm in nonequilibrium situations. The resulting nonequilibrium temperature-like variable {
dubbed as quasitemperature { is shown to be a quantity measurable with appropriate \thermometric
devices". A comparison of quasitemperatures that arise in di�erent approximated nonequilibrium
statistical-thermodynamic descriptions of the dissipative system is done. The validity of these di�er-
ent approximations is evaluated, and (in the framework of the theory) generalized Gibbs, Clausius,
and Boltzmann's relations, as well as properties of the corresponding entropy-like function (or infor-
mational entropy in Jaynes-Shannon sense), that the theory introduces, are presented. Conceptual
and physical aspects of the question are also discussed, and a partial comparison of these concepts
with those arising in other approaches to irreversible thermodynamics is brie
y attempted. This
article is an enlargement of a paper in Fortschritte der Physik/Progress of Physics, 47, 9 (1999),
where have been added extensive comments on the subject.

I Introduction

Nowadays, whereas the Thermodynamics of equilib-
rium states (or Thermostatics) is a very well established
and successful discipline of long standing, the same can-
not be said of the Thermodynamics of nonequilibrium
states (or Irreversible Thermodynamics), although the
latter has received a good deal of attention in recent
decades, however permeated with lively controversy.
Nonequilibrium Thermodynamics has associated quite
diÆcult conceptual (and also practical) problems: Two
fundamental ones are the de�nition of entropy and tem-
perature out of equilibrium { if such concepts may have
any meaning { along the evolution of irreversible pro-
cesses in Nature, and the eventual setting of steady
states in some cases.

This state function and this intensive variable have
a precise de�nition in equilibrium states. Temperature
is a perfectly measurable quantity in equilibrium states,
and being measurable { that is, its value can be deter-
mined in an experiment (in the case of entropy indirect
determination via calorimetric measurement is possible
but of the di�erence of its values between an initial and

a �nal equilibrium state) { we could say that it has
physical meaning. Out of equilibrium the situation is
not so clear cut and, except for particular situations
that are peculiar or asymptotic cases. Meixner [1] has
forcefully argued that a nonequilibrium entropy func-
tion is either not possible to de�ne or several de�ni-
tions are possible. This is the point of view we pur-
sue, discuss, and illustrate in this paper, however pre-
senting the idea that in a case by case analysis one
may introduce, in a some way controlled approxima-
tion, a satisfactory state function that plays the role of
a nonequilibrium entropy-like function, and let us call
it quasientropy (In section IV we elaborate on the use of
the pre�x quasi, and on the levels of description of Ther-
modynamics). Consequently, there is not an absolute
temperature out of equilibrium, but can be introduced
a quantity (which becomes the reciprocal of the func-
tional derivative of the quasientropy with respect to the
energy of the subsystems of the open system) playing
the role of a nonequilibrium temperature-like variable
to be called { following already existing nomenclature
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in the physics of condensed matter { as quasitempera-

ture.

According to the historical account of S.G. Brush
[2] the concept of temperature preceeds the founda-
tion of Thermodynamics as a well established science
(It appears to go back to Galileo (c. 1592) who in-
vented a thermoscope; Sanctorious (c. 1611) and J.
Ray (c. 1632) developed an open capillar thermometer,
and Duke Ferdinando II of Toscana (c. 1640) a one of
close capillar; Sir Francis Bacon (c. 1640) advanced the
idea that it is not temperature that is transmitted from
hot to cold bodies). As known, the concept of absolute
temperature in equilibrium is due to Lord Kelvin who
set it on the universal thermodynamic basis provided
by Carnot's theory. Outside the domain of equilibrium
states, concepts akin to a nonequilibrium temperature
have been introduced, on phenomenological basis and
for particular subsystems (partial sets of degrees of free-
dom) of a sample under given experimental conditions.
This was done by several authors seemingly beginning
with Lev Davydovich Landau more than half a century
ago: They were given for plasma [3]; for electron or nu-
clear spins [4]; for molecules [5]; for electrons excited in
strong electric �elds [6]; for electrons in superconduc-
tors [7]; for photoexcited carriers (photoinjected itiner-
ant electrons and holes in semiconductors) [8]; for pho-
toexcited phonons [9]; etc. Also theoretically-oriented
de�nitions of quantities playing the role of nonequilib-
rium temperatures were introduced in the context of
existing phenomenological thermodynamic theories [10-
15]; we return to these points in the �nal section where
concluding remarks are presented.

Kinetic and statistical-mechanical theories have also
dealt with these questions, as they should. As known
the grandiose Gibbsian scheme for Statistical Me-
chanics provides well established microscopic founda-
tions for Thermostatics. For nonequilibrium situa-
tions there nowadays exist tentatives to provide mi-
croscopic (statistical-mechanical) foundations to Irre-
versible Thermodynamics, and, therefore, within their
scopes it is possible to look for approaches to the ther-
mal physics of nonequilibrium dissipative macroscopic
systems at the molecular level. One such approach to
irreversible thermodynamics is founded on the Nonequi-
librium Statistical Operator Method (NESOM), a rig-
orous, soundly based, concise and practical formalism,
which is a large generalization of Gibbs' theory (It may
be considered a Gibbs' ensemble algorithm for arbitrary
nonequilibrium systems). NESOM had precursors in,
among others, Kirkwood [16], Green [17], Zwanzig [18],
and Mori [19]. A fundamental piece for the foundation
of the method is the quite relevant concept consisting
in the principle of correlation weakening and the ac-
companying hierarchy of relaxation times introduced
by Bogoliubov [20]. Several approaches to the NE-
SOM are available, some based on heuristic arguments,
others on projection-operator techniques. However, all

these approaches can be brought together under a uni-
fying variational principle, as reviewed in reference [21].
Along this line of thought, the NESOM may be con-
sidered as being encompassed within the framework of
Jaynes' Predictive Statistical Mechanics [22,23], which
is based on the principles of Bayesian probability and
scienti�c inference, together with a criterion for setting
up probability distributions, namely the maximum en-
tropy formalism (MaxEnt) [24]. MaxEnt-NESOM re-
covers as special asymptotic limiting cases equilibrium
statistical mechanics and linear response theory [25],
and therefore provides statistical-mechanical basis for
thermostatics and classical (sometimes called linear or
Onsagerian) irreversible thermodynamics, and classical
hydrodynamics.

Clearly, it is then tempting to look for statisti-
cal foundations within the framework of the MaxEnt-
NESOM for the irreversible thermodynamics of systems
arbitrarily away from equilibrium. This seems to be
possible when resorting to the MaxEnt-NESOM includ-
ing nonlinearities in the basic variables consisting of
conserved (or quasi-conserved) densities and their non-
conserving 
uxes of all orders, as well as nonlocality
(space correlations) and retro-e�ects (time correlations
in the form of a \fading" memory), leading to what can
be referred to as Informational Statistical Thermody-
namics (IST), also sometimes dubbed as Information-
theoretic Thermodynamics. IST was pioneered by Hob-
son [26] after the publication of Jaynes' seminal papers
[27] on the foundations of statistical mechanics based
on information theory. A brief description and partial
historical notes are given in reference [28], and Sieni-
utjcz and Salamon [29] summarize existing extremum-
principle theories in nonequilibrium thermodynamics;
see also references [30,31].

We consider next, in the context of IST, the ques-
tion of the de�nition of an entropy-like function and
a temperature-like variable in arbitrary nonequilibrium
conditions. For that purpose the paper is organized as
follows: In next section we provide a very brief theo-
retical background, indicating the main aspects of the
method and the points relevant to the analysis to fol-
low in section III, where we present the de�nitions of
the �eld of quasitemperatures in two di�erent descrip-
tions of the macroscopic state of the system, as well as
a generalized Gibbs' relation and a generalized Clau-
sius' expression for the change of quasientropy. The
last section is devoted to a discussion of the results and
concluding remarks.

II Theoretical background in
brief

The Nonequilibrium Statistical Operator Method { in
either its heuristic construction or the variational one
referred to as MaxEnt { has been extensively described
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in several papers and books; see for example [21,25,32-
41]. For the sake of completeness we present in this
section a very brief review of this theory, which consists
on the results and expressions which are to be used in
Section III and thereof.

In MaxEnt-NESOM the nonequilibrium macro-
scopic state of the system is characterized in terms of a
basic set of thermodynamic variables (macrovariables),
which are the statistical averages of a corresponding
set of dynamical quantities (micro-mechanical observ-
ables) taken in terms of a statistical operator provided
by the formalism. The main gist behind this proce-
dure is to eliminate all irrelevant information necessary
to characterize the macrostate, and can be considered
a far-reaching generalization of methods introduced by
Zwanzig and Mori [18,19], with details given elsewhere
[21,38]. The construction of the formalism, as already
noticed, is strongly based on the fundamental Bogoli-
ubov's procedure of contraction of description with the
accompanying hierarchy of relaxation times [20], a ques-
tion further discussed by Uhlenbeck [42], and illustra-
tive examples in the case of a spin-lattice system and a
highly excited photoinjected plasma in semiconductors
are given in references [43] and [44] respectively. These
ideas were largely implemented, systematized and ex-
tended by the Russian School, mainly, Zubarev [32-36]
and Peletminskii [39,45]. Two fundamental, and physi-
cally quite relevant, inicial steps are introduced: First,
the separation of the Hamiltonian of the system into
two parts, namelybH = bHo + bH 0 ; (1)

where bHo is called the \relevant" (or secular) part con-
sisting of the kinetic energies of the subsystems and
a part of the interactions, namely { following Bogoli-
ubov's principle { those strong enough to have associ-
ated correlation e�ects with very short relaxation times,

meaning those much smaller than the characteristic
time scale of the experiment (typically the resolution
time of the detecting apparatus), and possessing certain
symmetry properties as described below. The other
term, Ĥ 0, contains the interactions related to long-time

relaxation mechanisms (that is, we emphasize, involving
processes with relaxation times larger than the charac-
teristic time scale of the experiment). Second, the re-
quired symmetry, referred to above, consist in what we
call Zubarev-Peletminskii law, which is

1

i~

h bPj ; bHo

i
=

nX
k=1

�jk bPk ; (2)

where j = 1; 2; :::; n, the upper circum
ex indicates me-
chanical quantities (Hermitian operators), the left side
is the commutator of the basic dynamical variables fP̂jg

with Ĥo, and the �'s are { in an appropriate quan-
tum representation { c-numbers with dimension of fre-
quency. However, may be the case, and this shall ap-
pear more clearly as we proceed in continuation, that

quantities fP̂jg can be dependent on the space vari-
able (i.e. when they are local densities) and then the
quantities � may also depend on the space variable
or be di�erential operators. It is worth noticing the
case of the MaxEnt-NESOM generalized nonequilib-
rium grand-canonical ensemble, as described in [46,47]:
its construction requires introducing - as in the situa-
tion in equilibrium - the local densities of energy and
of particles, say ĥ (~r) and n̂ (~r). Application to them of
the selection rule of Eq. (2) commands that the 
uxes
of energy and particles of all orders must be included
as basic variables, as shown in Section III.

Steps (1) and (2) are of fundamental relevance to
the formalism, and shall be better characterized as we
proceed. At this point let us stress the quite impor-
tant consequence that Eq. (2) provides a selection rule

for the choice of the basic variables in a way to intro-
duce a closure condition in the kinetic theory which
provides the equations of evolution for the basic set of
variables: This is the statistical-mechanical procedure
that in MaxEnt-NESOM implements the so-called prin-
ciple of equipresence of phenomenological irreversible
thermodynamics (That is, if a quantity appears in the
equations of evolution for the chosen set of basic vari-
ables, it ought to be incorporated as an additional vari-
able in the thermodynamic state space) [29,48]. In
certain cases, for example the thermo-hydrodynamic-
like one considered in this paper, the closure condition
of Eq. (2) is not satis�ed in a �nite number of steps
(that is for �nite n), and, therefore, practical use of the
formalism usually requires to introduce an appropriate
truncation procedure at a certain level in the chain of
operations in Eq. (2). This truncation implies in ne-
glecting, that is, in considering as irrelevant the infor-
mation for the problem in hands provided by a certain
subset of basic variables. In other words, one intro-
duces a truncated description of the macroscopic state
of the system and, evidently, a justi�cation of the ap-
proximation is required in each case. For this purpose
one looks for a characterization of the approximation in
terms of a characteristic expansion parameter, say an
analog of the Knudsen number in Chapman-Enskog's
kinetic theory, a question discussed elsewhere [49] with
a particular case already considered in the second of ref-
erences [31]: SuÆce it to say that in space-dependent
problems, as the one considered in this paper, consist-
ing in a thermo-hydrodynamic in terms of the densities
of particles and energy and their 
uxes, a satisfactory
parameter is �c=�, where � is each wavelength in the
Fourier analysis (in the space coordinate) of the mo-
tion of the basic variables, and �c is a characteristic
length of the system (typically an average velocity of
propagation of the motion multiplied by a character-
istic time). From this we can derive the intuitive cri-
terion that when smoother and smoother in space the
movement (the longer the wavelengths as compared to
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�c), the more and more contracted the description we
can use (the shortest description - or stringest trun-
cation - corresponds to the limit of traditional hydro-
dynamics). It may be noticed that this also implies,
because of the existence of a frequency dispersion rela-
tion with low frequencies corresponding to the largest
wavelengths, that, in general, there is a correspondence
with a smoother and smoother in time movement, and
then, summarizing, successive truncations are possible
as the system approaches an increasingly quasi-uniform
and quasi-static behavior. We return to this question
in next section (see also Appendix I).

Once the representative set of basic variables has
been chosen in the way described above, the nonequi-
librium statistical operator is built in the MaxEnt-
NESOM, and therefore in the context of Jaynes' Predic-
tive Statistical Mechanics, using the principle of maxi-
mization of the informational-statistical entropy. This
is done in the generalized way advanced by Zubarev
and Kalashnikov [34] and revisited by us in [21], namely
including retro-e�ects as a fading memory, what is at-
tained through the inclusion of an ad hoc hypothesis
which introduces from the outset irreversible evolution

from an initial condition of preparation of the system:
In this way the advanced solutions of Liouville equa-
tions are disregarded, and it is introduced a general-
ization of Kirkwood's time-smoothing formalism [16].
The procedure amount to incorporating into the for-
malism the concept of Bogoliubov's quasi-averages [50],
which is a symmetry-breaking process that in this case
corresponds to a breaking of the time-reversal symme-
try in Liouville equation [21,32-38]. We stress that
the nonequilibrium statistical operator % (t) does sat-

isfy Liouville equation, but, according to the formal-
ism, irreversibility is introduceded in an ad hoc manner
by disregarding the subset of advanced solutions from
the whole set of solutions of Liouville equation, that
is, those returning in time. This is accomplished by
the fading-memory hypothesis (a particular Kirkwood-
Zubarev time-smoothing procedure) amounting to a
kind of generalized Stosszahlansatz.

The nonequilibrium statistical operator, %(t), thus
obtained, is dependent (superoperator) on the basic
set of dynamical quantities (mechanical observables)
and a corresponding set of Lagrange multipliers (in-
tensive nonequilibrium thermodynamic variables) that
the variational procedure introduces. Moreover, a third

relevant point is that %(t) can be split into two parts,
namely

%(t) = �%(t; 0) + %0(t) ; (3)

where �%(t; 0) is an auxiliary distribution, or coarse-
grained part of %(t), which provides the instantaneous
macrostate of the system but does not account for
the irreversible evolution of the system, what is taken
care of by %0(t): This partial term %0 is the one that
contributes to the production of informational entropy
while �% does not. A fourth important step in the the-

ory consists in the construction of a nonlinear quantum
kinetic theory, that is, the derivation of the equations
of evolution for the basic variables, then providing a
description of the evolution of the macroscopic state of
the system. They are given by the average in terms of
the MaxEnt-NESOM statistical operator of the corre-
sponding Heisenberg's equations of motion, namely

d

dt

D bPj jtE =

�
1

i~

h bPj ; bHi jt� ; (4)

where triangular brackets stand for the statistical aver-
age

h� � � jti = Tr f� � � %(t)g : (5)

Using Eqs. (1) and (3), Eq. (4) can be rewritten as

d

dt

D bPj jtE = J
(0)
j (t) + J

(1)
j (t) + Jj(t) ; (6)

where

J
(0)
j (t) = Tr

�
1

i~

h bPj ; Ĥo

i
�%(t; 0)

�
; (7a)

J
(1)
j (t) = Tr

�
1

i~

h bPj ; Ĥ 0
i
�%(t; 0)

�
; (7b)

Jj(t) = Tr

�
1

i~

h bPj ; Ĥ 0
i
%0(t)

�
: (7c)

Equation (6) is a far-reaching generalization of Mori's
equations [21,47], where J (0) is, in Mori's terminology,
a precession term (or conserving term as better clari�ed
later on) and J (1) is in most cases null because of the
symmetry characteristics of the interactions in Ĥ 0 and
the dependence of �%(t; 0) on the basic variables. The
last term J is a collision operator, the one contributing
to the production of informational entropy. This colli-
sion operator has a formidable structure of unmanage-
able proportions, but it is possible to derive alternative
expressions for it in terms of a series of partial collision
operators, and a truncation of such series can be per-
formed (in a certain order in the interaction strengths in
Ĥ 0) attaining a now mathematically practical approach
[51]. This has been shown to be particularly successful
in dealing with highly excited semiconductors probed
in ultrafast laser spectroscopy experiments [52].

We call the attention to the fact that quantities

P̂j and Qj (t) = Tr
n
P̂j% (t)

o
can be scalars, vectors,

or tensors of any rank, the former even space depen-
dent (densities of dynamical quantities), and the latter
space and time dependent de�ning �elds of thermody-
namic variables. This is the case to be considered be-
low. We noticed that - disregarding J (1) in Eq. (6)
- the equations of evolution for the thermodynamics-
�eld variables always take a general form as given by
the expression [47]

@

@t
Q

[r]
j (~r; t) + div I

[r+1]
j (~r; t) = J

[r]
j (~r; t) ; (8)



Brazilian Journal of Physics, vol. 30, no. 3, September, 2000 621

where r indicates tensor rank (r = 0 for scalar, r = 1
for vector, r � 2 for the usual tensors). In this Eq. (8),
is present the divergence of the tensor of next rank to
the one whose evolution is considered, which is the 
ux
of the latter. The right hand side contains the collision
operator Jj , accounting for sources and sinks that may
be present (that is, takes care of pumping and relax-
ation e�ects). We may noticed that for a null collision
operator we do have the local conserving equation for

the quantity Q
[r]
j (~r; t) :

Finally, the connection with irreversible thermody-
namics is done introducing a state function, a quasien-
tropy in this case dubbed as informational entropy,
given by the expression [21,28,31,53],

�S(t) = �Tr f%(t)P(t)ln %(t))g = �Tr f%(t)ln �%(t; 0)g ;
(9)

that is, the average of minus the logarithm of the coarse-
grained statistical operator. In this Eq. (8) P(t) is a
time-dependent projection operator [21] { a generaliza-
tion of those introduced by Zwanzig [18] and Mori [19]
{ whose role, implying in the increase of the informa-
tional entropy along the evolution of the system (or
H-like theorem), is discussed elsewhere [53]. The infor-
mational entropy production function is then

��(t) =
d

dt
�S(t) = �Tr

�
%(t)

d

dt
ln �%(t; 0)

�
; (10)

where the last equal sign is a result that, we recall,
%(t) satis�es a Liouville equation with an in�nitesimal
source that goes to zero after the trace operation in the
calculation of averages has been performed [21] (imply-
ing in only conserving the retarded solutions).

Equations (1) to (10) contain the main results that
are of relevance for the analysis to be presented in
next sections. As �nal words in this Section we no-
tice that: (i) the nonlinear, nonlocal-in-space, and
memory-dependent MaxEnt-NESOM transport equa-
tions [cf. Eqs. (4) to (7)] recover as particular asymp-
totic results (which follow further imposing quite re-
strictive conditions) Boltzmann's equation [37] and
Mori's equations [21,47]; (ii) In the framework of the
MaxEnt-NESOM can be derived generalized forms for
Glansdor�-Prigogine's thermodynamic evolution cri-
terion and (in)stability criterion, as well as, in the
strictly linear regime, a theorem of minimum produc-
tion of quasientropy [54]; (iii) The MaxEnt-NESOM
allows for the construction of a nonclassical thermo-
hydrodynamic theory of large scope, which recovers as
an asymptotic result classical hydrodynamics [55]; (iv)
As already noticed, the formalism provides microscopic
foundations to phenomenological irreversible thermo-
dynamics [38,53,54], and the results of items (iii) and
(iv) shall be partially used in the analysis that follows.

III On the question of
quasi-thermodynamic vari-
ables

We turn now to the question of a nonequilibrium
temperature-like variable in IST, or better to say to a
�eld of nonequilibrium temperature (quasitemperature

in the nomenclature we proposed) in the framework of
a MaxEnt-NESOM thermo-hydrodynamics. Consider
for simplicity a one-component gas of quasi-particles
(for example carriers or phonons in condensed matter)
in contact with a thermal reservoir, the latter at tem-
perature To. For the choice of the representative set
of basic variables we begin introducing the density of
particles and the density of energy, the associated dy-
namical operators being indicated by bn(~r ) and bh(~r )
(corresponding to the idea of introducing a nonequi-
librium grand-canonical ensemble). According to the
method, once the separation of the Hamiltonian as ex-
pressed by Eq. (1) has been performed, we proceed to
incorporate additional basic variables - as enforced by
the closure condition of Eq. (2) - calculating

1

i~
[bn(~r ); Ho] = �div

b~In(~r ) ; (11a)

1

i~

hbh(~r ); Ho

i
= �div

b~Ih(~r ) ; (11b)

where
b~In(~r ) and b~Ih(~r ) (whose detailed expressions we

omit for brevity; see [46,47]) are interpreted as the dy-
namical quantities representing the 
ux of particles and
of energy respectively, a result that follows from the
work of Peletminskii and Sokolovskii [56] (see also in
[33] Ch. IV, section 19.1). Hence, both 
uxes are in-
corporated to the representative set of basic variables,
and the next step in the chain that the procedure in-
troduces leads to that

1

i~

h
~In(~r ); Ho

i
= �div bI [2]n (~r ) ; (12a)

1

i~

�b~Ih(~r); Ho

�
= �div bI [2]h (~r ) ; (12b)

according to [56] and [46], where the right hand sides
contain the divergence of second rank tensors that are
the 
ux of the 
ux (or the second order 
ux) of parti-
cles and energy respectively. They are incorporated to
the set of basic variables, the procedure of Eq. (2) is
repeated, the divergences of third order 
uxes arise on
the right, and so on inde�nitely. Consequently, in the
present case the representative set of basic variables,
enforced by the closure condition of Eq. (2), is com-
posed of

�bh(~r ); bn(~r );b~Ih(~r);b~In(~r );nbI [r]h (~r )
o
;
nbI [r]n (~r )

o�
;

(13)
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where r = 2; 3; ::: indicates the tensorial rank and order
of the 
ux. Moreover, system and reservoir constitute
an isolated system, and since the reservoir is consid-
ered to be ideal it needs be described only in terms of
its Hamiltonian HR, and the statistical operator is then
expressed as [57]

%tot(t) = %(t)� %R ; (14)

where %R is the canonical distribution in equilibrium
of the reservoir with temperature To, and %(t) the sys-
tem MaxEnt-NESOM statistical operator given by two
terms as indicated in Eq. (3), and � stands for direct
product. The auxiliary coarse-grained part of it is in
this case given by

c

�%(t; 0) = expf��(t)�

Z
d3r[�(~r; t)bh(~r ) +

+A(~r; t)bn(~r ) + ~�h(~r; t) �
b~Ih(~r ) + ~�n(~r; t) �

b~In(~r ) +
+

1X
r=2

F
[r]
h (~r; t)
 bI [r]h (~r ) +

1X
r=2

F [r]
n (~r; t)
 bI [r]n (~r )g : (15)

where, we recall, � (which plays the role of the logarithm of a nonequilibrium partition function) ensures the
normalization of the distribution, andn

�(~r; t); A(~r; t); ~�h(~r; t); ~�n(~r; t);
n
F
[r]
h (~r; t)

o
;
n
F [r]
n (~r; t)

oo
; (16)

are the corresponding Lagrange multipliers that the method introduces [21,32-36,45,54]; dot stands as usual for
scalar product and 
 for fully contracted product of tensors. Finally, the set of basic variables is designated byn

h(~r; t); n(~r; t); ~Ih(~r; t); ~In(~r; t);
n
I
[r]
h (~r; t)

o
;
n
I
[r]
h (~r; t)

oo
; (17)

where h(~r; t) = hbh (~r) j ti = Tr
nbh (~r) % (t)o, etc.

The informational entropy is given by Eq. (9), and then in this case acquires the form

�S(t) = �(t) +

Z
d3rf�(~r; t)h(~r; t) +A(~r; t)n(~r; t) +

+~�h(~r; t)�
!

I h (~r; t) + ~�n(~r; t)�
!

I n (~r; t) +

+
X
r�2

h
F
[r]
h (~r; t)
 I

[r]
h (~r; t) + F [r]

n (~r; t)
 I [r]n (~r; t)
i
g �

�

Z
d3r �s(~r; t) ; (18)

where we have de�ned the informational-entropy density, �s(~r; t) (see [54]). This informational-entropy density
satis�es a generalized Gibbs' relation given by

d�s(~r; t) = �(~r; t)dh(~r; t) +A(~r; t)dn(~r; t) +

+~�h(~r; t) � d~Ih(~r; t) + ~�n(~r; t) � d~In(~r; t) +

+
X
r�2

h
F
[r]
h (~r; t)
 dI

[r]
h (~r; t) + F [r]

n (~r; t)
 dI [r]n (~r; t)
i
: (19)

Furthermore, we call the attention to the important fact that the Lagrange multipliers (which constitute a set
of intensive nonequilibrium thermodynamic variables also giving a complete description of the macrostate of the
system as the basic set of speci�c variables of Eq. (17) does) are di�erential coeÆcients of the informational entropy,
namely

�(~r; t) = Æ �S(t)=Æh(~r; t) ; A(~r; t) = Æ �S(t)=Æn(~r; t); (20a)

~�h(~r; t) = Æ �S(t)=Æ~Ih(~r; t) ; ~�n(~r; t) = Æ �S(t)=Æ~In(~r; t); (20b)

F
[r]
h (~r; t) = Æ �S(t)=ÆI

[r]
h (~r; t) ; F [r]

n (~r; t) = Æ �S(t)=ÆI [r]n (~r; t); (20c)
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where r = 2; 3; ::::;and Æ stands for functional derivative
[58]. These Eqs. (20) can be considered as nonequilib-
rium thermodynamic equations of state.

The informational entropy de�ned above, Eqs. (18)
and (19), goes over the one in classical (linear or On-
sagerian) thermodynamics, and to the one in equilib-
rium when the appropriate limits are taken ([53] and
below); we recall that the description in terms of the
dynamical variables of Eq. (13) amounts to a gener-
alized nonequilibrium grand-canonical statistical oper-
ator, and when �nal equilibrium with the reservoir is
achieved, one recovers the usual grand-canonical distri-
bution in equilibrium [46,47]. Taking this fact into ac-
count we rede�ne the MaxEnt-NESOMLagrangemulti-
plier associated with the energy density h(~r; t) as the re-
ciprocal of a nonequilibrium space- and time-dependent
temperature-like variable to be called, as noted, qu-

asitemperature (or better to say a quasitemperature
�eld), and denoted by �(~r; t); i.e.

��1(~r; t) = kB�(~r; t) ; (21)

where kB is Boltzmann constant. Moreover, for use in
what follows, we introduce the de�nitions: (1) the mass
density

g(~r; t) = mn(~r; t) ; (22)

where m is the mass of the particles in the system; (2)
the drift velocity �eld

~v(~r; t) = ~In(~r; t)=n(~r; t) ; (23)

and (3) the quasiparticle internal energy �eld

"(~r; t) =
h(~r; t)

g(~r; t)
�
1

2
v2(~r; t) : (24)

Furthermore, in all the following analysis we will use -
without loss of generality but in order to have a clearer
picture of the physical ideas - a classical mechanical

approach.

We next turn our attention to the consideration of
the quasitemperature of Eq. (21), which as de�ned by
Eq. (20a) is a functional of the energy density and par-
ticle density and the 
uxes of all order of these den-
sities [cf. Eq. (18)]. Let us consider now a couple of
asymptotic (limiting) situations. This means truncated
descriptions of the macroscopic state of the system con-
sisting into neglecting in the statistical operator of Eq.
(15) certain sets of terms involving higher order 
uxes
which are present in the exponential. We have already
commented on the characterization of this approxima-
tion as implying to go over conditions involving ever
smoother space and time dependence in the motion of
mass and of energy. We consider this truncation pro-
cedure in the case of the photoinjected plasma in semi-
conductors in Appendix I.

III.1 First truncated description: classi-
cal Fourier's heat di�usion

We consider �rst the case when we neglect all contri-
butions in Eq. (14) except for the sets

cn
h(~r; t); n(~r; t); ~In(~r; t)

o
;

�
�(1)(~r; t); A(1)(~r; t); ~�n(1)(~r; t)

	
; (25)

d

for the macrovariables and the Lagrange multipliers re-
spectively; for the latter subindex (1) means those given
in this description, that is, in terms of only h, n, and
~I . Introducing the de�nition

~�n(1)(~r; t) = �m�(1)(~r; t)~v(1)(~r; t) ; (26)

where ~v has dimensions of velocity, taking into account
Eq. (22) and that a straightforward calculation in this
�rst description results in that

~In(~r; t) = n(~r; t)~v(1)(~r; t) ; (27)

we arrive to the conclusion that in this description the
velocity �eld of Eq. (26), related to the two Lagrange
multipliers �(1) and ~�n(1), coincides with the drift ve-
locity of Eq. (23), which is the one in classical hydro-
dynamics, that is ~v(1)(~r; t) = ~v (~r; t).

Moreover, an also straightforward calculation in the
classical limit to be consistently used in what follows,

gives for the energy density the expression

h(~r; t) =
3

2
n(~r; t)��1(1)(~r; t) +

1

2
g(~r; t)v2(~r; t) : (28)

But taking into account Eqs. (21){(24) - however re-
calling that now � is given in the truncated description
of Eq. (25), and then we call it T �(1)(~r; t) { together

with Eqs. ( 27) and (28), it results a dependence of the
quasitemperature in terms of the basic variables given
by

kBT
�
(1)(~r; t) =

2

3

h(~r; t)

n(~r; t)
�
m

3

"
~In(~r; t)

n(~r; t)

#2
=

2

3
"(~r; t) ;

(29)
where " is given by Eq. (24). But this expression is pre-
cisely the de�nition of the so-called kinetic temperature

[59,60], which coincides with the one given in classical
irreversible thermodynamics. We stress that this qua-
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sitemperature (or kinetic temperature) is a functional
of only the energy and particle (or mass) density.

We have subtitled this subsection as classical heat
Fourier description, because when one writes the equa-
tions of evolution for the basic variables, the one for
the energy density requires to be complemented in this
truncated description by Fourier's constitutive equation
for the energy 
ux leading to the parabolic Fourier dif-

fusion equation for the thermal motion (cf. App. I).

III.2 Second truncated description:
Telegraphist-like equation
for the propagation of thermal motion

Consider now in Eq. (15) only the contributions arising
out by keeping the sets

cn
h(~r; t); n(~r; t); ~Ih(~r; t); ~In(~r; t)

o
;
�
�(2)(~r; t); A(2)(~r; t); ~�h(2)(~r; t); ~�n(2)(~r; t)

	
; (30)

d

for the macrovariables and the Lagrange multipliers re-
spectively; for the latter the subindex (2) means those
given in this description, that is, they are functionals
of h; n; ~In; and ~Ih . To clearly evidence the in
u-
ence of the presence of the 
ux of energy ~Ih (and the
accompanying Lagrange multiplier ~�h ) in comparison
with the �rst description of the previous subsection,
we rewrite the auxiliary statistical operator in terms
of a part, called �%0(2), depending on the terms carrying

�; A; and ~�n, plus a second term, called �%(2) , which

carries all the dependence on the contribution ~�h � ~Ih
(for details see App. II). Moreover, we introduce the
de�nitions

~v o
(2)(~r; t) = �~�n(2)(~r; t)=

�
m�(2)(~r; t)

�
; (31)

h(~r; t) = ho(~r; t) + �h(~r; t) ; (32a)

n(~r; t) = no(~r; t) + �n(~r; t) ; (32b)

~Ih(~r; t) = ~Ioh(~r; t) + �~Ih(~r; t) ; (32c)

~In(~r; t) = ~Ion(~r; t) + �~In(~r; t) ; (32d)

where we have introduced

ho(~r; t) = Tr
nbh(~r )%o(2)(~r; t)o ; (33a)

�h(~r; t) = Tr
nbh(~r )�%(2)(~r; t)o ; (33b)

etc., which are functionals of the Lagrange multipliers
in the given representation. We call the attention to

the fact that while ho is a functional of only �(2), A(2),
and ~�n(2), �h is depending on them and also on ~�h(2).
Because of Eqs. (32a) and (32d), the drift velocity of
Eq. (27) can be written as

~v(~r; t) =
~In(~r; t)

n(~r; t)
=

~Ion(~r; t) + �~In(~r; t)

no(~r; t) + �n (~r; t)
; (34)

and then

~v(~r; t) = ~vo(2)(~r; t) + �~v(~r; t) ; (35)

where

~vo(2)(~r; t) =
~Ion(

!
r ; t)=no(~r; t) ; (36)

with ~v o
(2) depending only on �(2); A(2); and ~�n(2), while

�~v(2) depends on them and also on ~�h(2) (going to zero
when ~�h(2) goes to zero). Finally, we introduce the
quasitemperature in this second description, namely

��1(2)(~r; t) = kBT
�
(2)(~r; t) : (37)

Making for simplicity the assumption that the term
~�h � ~Ih included in the description used in this subsec-
tion, Eq.( 30), produces small e�ects, we resort then to
a calculation that keeps only the �rst order contribution
in ~�h in �h, �n, etc. Straightforward mathematical
manipulations lead us to the following results:

~v(~r; t) = ~v o
(2)(~r; t)�(5=2m)~�h(2)(~r; t)

h
kBT

�
(2)(~r; t)

i2
;

(38)
and

c

h(~r; t) =
3

2
n(~r; t)kBT

�
(2)(~r; t) +

1

2
mn(~r; t)v2(~r; t)�

�
5

2
n(~r; t) ~v(~r; t) � ~�h(2)(~r; t)

h
kBT

�
(2)(~r; t)

i2
: (39)
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Taking into account that, as shown, in the �rst description (subsection III.1) the drift velocity ~v(1) and the qua-
sitemperature T �(1) coincide with those of classical (linear or Onsagerian) thermo-hydrodynamics, we conclude that

~v � ~v 0
(2) di�ers by a term proportional (in this linear approximation) to ~�h, and the same is valid for the di�erence

in quasitemperatures, namely, using Eqs. (29) and (39) we �nd that

T �(2)(~r; t)� T �(1)(~r; t) = T �(2)(~r; t)��k(~r; t) '

'
5

3

�
~�h(2)(~r; t) � ~v(~r; t)

�
kB�

2
k(~r; t) ; (40)

d

where �k is the so-called kinetic temperature. Hence,

while, we recall, the kinetic temperature { that is the
quasitemperature in the strongly truncated �rst de-

scription of subsection III.1 - is only a functional of

the densities of mass and of energy, the quasitempera-

ture in the second description of this subsection III.2

is a functional, besides them, of the 
uxes of mass and

of energy (or, alternatively [cf. Eq. (38)] of the drift

velocity and the Lagrange multiplier ~�h).

We have subtitled this subsection as \telegraphist-
like equation for the propagation of thermal motion",

because when one writes the equations of evolution for

the basic variables, the one for the energy density and

also the one for the mass density become hyperbolic-like

equations (of the telegraphist type with sources) imply-
ing in damped undulatory motion. This kind of motion

goes over to overdamped motion, and this one practi-

cally corresponds to the di�usive motion as resulting

from Fourier law, as in the �rst description, in the limit
of long wavelengths (cf. Appendix I). This is in ac-

cord with our previous statement that more and more

contracted descriptions are possible as smoother and

smoother in space and time is the movement. This par-

ticular transition is described elsewhere [61] for the spe-
ci�c case of the photoinjected nonequilibrated plasma

in GaAs (see also Appendix I), and is also evidenced

in an analysis in the framework of IST of experiments

related to the techno-industrial process of thermal laser-
stereolithography [62].

III.3 Measurement of a nonequilibrium
temperature-like variable

We have described how one can de�ne in IST a nonequi-

librium temperature-like variable for a subsystem { the

so-called quasitemperature { which, we stress, is the

Lagrange multiplier that the method introduces, and
which can be expressed as the reciprocal of the vari-

ational derivative of the MaxEnt-NESOM (informa-

tional) entropy with respect to the subsystem energy

density. This is indicated in Eqs. (20) and Eq. (21).
Thus, we emphasize once again, it is a functional of

the complete set of basic variables that the closure con-

dition (principle of equipresence) of Eq. (2) (see also

Eqs. (11) et seq. in the present case) imposes. When
it is introduced a truncation in the description, as done

in subsections III.1 and III.2, we do have an approxi-

mated expression for such quasitemperature for the par-

ticular situations when to neglect higher order 
uxes is
acceptable (that is, the truncation criterion justi�es this

in the given experimental situation). In the description

in terms of the stringent truncation described in sub-

section 3.1, one recovers the limit of classical (linear or

Onsagerian) thermodynamics and the usual expression
for the so-called kinetic temperature (the one in local

equilibrium). Moreover, when the �nal global equilib-

rium (with the reservoirs) is attained, this quasitemper-

ature �, or those arising in any truncated description,
say T �(1) and T �(2) in previous subsections, go over the

absolute temperature of equilibrium.

Clearly, a question to be decided is that of the mea-
surement of these quasitemperatures. As noted, the

quasitemperature is a thermodynamic variable in IST

and then, together with the others, characterizes the

nonequilibrium macrostate of the system that can be
probed in the experiment. A description and interpre-

tation of an experiment, we recall and emphasize, is

irrevocably required to be done in the framework of

a response function theory (that is, in terms of corre-

lation functions [63] over, now in the situation being
considered, the nonequilibrium ensemble). As shown

elsewhere [21,64] the MaxEnt-NESOM allows for the

construction of a response function theory for systems

arbitrarily away from equilibrium, which, di�erently to
the case of experiments near equilibrium conditions,

requires to be coupled to the set of equations of mo-

tion [cf. Eqs. (4) to (7)], i.e. those that arise out

of the generalized nonlinear quantum kinetic theory

that the method produces [21,47,51], which describes
the irreversible evolution of the system. Moreover, be-

sides the case of mechanical perturbations which can

be expressed in terms of an interaction energy between

system and the external source to be included in the
Hamiltonian operator, within the MaxEnt-NESOM it

is possible to develop a response function theory for
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thermal perturbations (the seventh of references [31]),

which has been applied to the study of the photoin-

jected plasma in semiconductors [65]. The response

function theory for mechanical perturbations in far-
from-equilibrium systems was successfully used in the

case of the photoinjected plasma in semiconductors un-

der high levels of excitation, when optical and transport

properties are observed in pump-probe experiments,
and we can perform \thermometric measurements" of

the quasitemperatures of the photoinjected carriers and

also of the phonon modes. Using the very powerful

and high-resolution experimental technique of ultrafast

laser spectroscopy [66] it is possible to follow the ultra-
fast relaxation processes that develop in semiconductor

and biological systems in the femtosecond (10�15 sec)

time scale [52,67,68]. We illustrate the point in Fig.

1 which shows the evolution of the carrier quasitem-
perature in a pump-probe experiment on GaAs, when

time-resolved luminescence spectra are obtained: the

full line is the calculation in MaxEnt-NESOM [68] and

the dots are from the experimental data [69], showing

a very good agreement. Moreover, the in
uence of the
presence in the representative set of basic variables of

the energy 
ux has been analized in the case of pho-

toinjected plasma in semiconductors in the presence of

an electric �eld. The presence of intermediate to strong
electric �elds { what is common in semiconductor de-

vices where a di�erence of a few volts provided by a

simple pocket battery produces strong �elds over small

(nanometers) distances { creates strong electric cur-

rents (strong 
ux of carriers), which is accompanied, as
a result of electro-thermal e�ects, of a relatively strong


ux of energy. Therefore, the in
uence of the terms

proportional to ~�h in Eqs. (38) to (40) [which can also

be expressed as proportional to a cross product of both

uxes, namely ~In(~r; t) � ~Ih(~r; t) in Eqs. (39) and (40)]

becomes relevant at �elds beginning with a few kV/cm.

The calculations in MaxEnt-NESOM [70] are corrobo-

rated by the analysis of the experimental data reported

by Mendez et al. [71] obtained in experiments of modu-
lation spectroscopy in semiconductor heterostructures.

In fact, in this case one can determine the dependence

of the quasitemperature with the electric �eld inten-

sity, on the one hand from the experimental data as
shown in Fig. 2 (right ordinate) and also on the basis

of a calculation performed in the framework of MaxEnt-

NESOM [70]. Furthermore, the di�erence between the

quasitemperature including the presence of the 
ux of

energy and the one excluding it, the latter being then
the so-called kinetic temperature (or the local equilib-

rium temperature albeit the system is uniform), can be

obtained. This is characterized by the function 
, as

described in [70] and shown in Fig. 2 (left ordinate):
this function describes the di�erence between the qu-

asitemperature in the presence of the energy 
ux and

the kinetic (or local equilibrium) temperature. It indi-

cates that in fact [cf. Eq. (40)] because of the presence

of the energy 
ux the quasitemperature is larger than

the one in the description that leads to the equivalent of
classical thermodynamics. In Fig. 3 it is shown this dif-

ference in terms of the electric �eld, and the estimated

values of the contribution to the energy 
ux that is pro-

portional to the MaxEnt-NESOM Lagrange multiplier
~�h [70].

Figure 1. Evolution of the carriers' quasitemperature in the
photoinjected plasma in GaAs. Full line is a parameter-free
calculation in MaxEnt-NESOM, and the dots are from the
experimental data taken from reference [69] (After reference
[68]). Reservoir temperature To is 300 K:

Figure 2. The steady-state carriers' quasitemperature (right
ordinate) dependence on the electric �eld intensity in a
GaAs-GaAlAs heterostructure: the dots are from the ex-
perimental data of reference [71] and the full line is a poly-
nomial interpolation. The function 
 (left ordinate) points
to the dependence of the quasitemperature with the en-
ergy 
ux (After reference [70]). Reservoir temperature To is
300 K:

Therefore, we may say that the concept of quasitem-
perature in IST acquires physical meaning, in the sense
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that such quasi-thermodynamic variable can be charac-
terized and measured experimentally. We stress that it
is a functional of the whole set of macrovariables used
for the description of the nonequilibrium (even arbi-
trarily far from equilibrium) thermodynamic state of
the system, the one established by the selection rule
of Eq. (2) in MaxEnt-NESOM, the counterpart of the
principle of equipresence in phenomenological thermo-
dynamic theories. The fact that such quasitempera-
tures may be calculated in truncated descriptions is a
mere technical question of practical character: resorting
to an appropriate criterion we can introduce approxi-
mations by neglecting unimportant contributions in a
case by case analysis (see Appendix I for an illustra-
tion).

Figure 3. In the case of the system of the caption to Fig. 2,
the percentual value of the change in the local equilibrium
temperature due to the presence of the energy 
ux (right
ordinate). The contribution to the energy 
ux associated
to the MaxEnt-NESOM Lagrange multiplier ~� is shown on
the left ordinate (After reference [70]).

Figure 4. Evolution of carriers'quasitemperature in the pho-
toinjected plasma in GaAs. The full line is a parameter-free
calculation in MaxEnt-NESOM, and the dots are from the
experimental data taken from reference [72]. The dashed
line is a calculation disregarding ambipolar di�usion e�ects,
which we can see are relevant. The arrow indicates the end
of the exciting laser pulse. After Ref. [73].

We complement the illustrations with other exam-

ples. In the case of the experiments of Amand and

Collet [72], it is shown in Fig. 4 the comparison of ex-

perimental data with the calculation { in the conditions

of the experiment { in MaxEnt-NESOM of the evolu-

tion in time of the quasitemperature of the carriers [73].

Moreover, in this case is also reported data on the evo-

lution of the carriers' concentration, which changes in

time due to recombination e�ects and ambipolar di�u-

sion out of the active volume of the sample: the exper-

imental data and the calculation have good agreement

as shown in Fig. 5.

Figure 5. Evolution of the carriers' density in the case of
the caption to Fig. 4. After Ref. [73].

Figure 6. The case of n-doped GaN (n = 1 � 1017cm�3):
evolution of the electron drift velocity for di�erent values of
the electric �eld; reservoir temperature is To = 300K. It is
evident a velocity overshoot for �elds larger than roughly
20kV=cm. After Ref. [74].
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As noticed, in the presence of electric �elds the car-

riers produce a current and then the 
ux of carriers

needs be introduced as a basic variable. In MaxEnt-

NESOM the accompanying Lagrange multipliers can

be interpreted as the drift velocity, ~ve(h) (t), of elec-

trons (e) and holes (h) divided by kBT
�
c (t). The cur-

rent of each type of carriers is proportional (~Ie(h) (t) =

� (+) en (t)~ve(h) (t)) to this drift velocity. The drift ve-

locity is derived in MaxEnt-NESOM and in Fig. 6 we

show the evolution in time of the drift velocity of elec-

trons in n-doped GaN [74] (in this case the carriers are

only electrons). We can see the presence of an expected,

so-called, velocity overshoot, that is, during the tran-

sient the velocity attains a value larger than the one in

the steady state. Compounds of the III-Nitride type,

as GaN, are nowadays of interest because of their use

{ as a result of being of wide gap { in laser and diodes

working in the blue and near ultraviolet region of the

electromagnetic spectrum. We do not present compar-

ison with experimental values because the latter are

not yet available. The dependence of the drift veloc-

ity in the steady state with the electric �eld strength

is also calculated, and in Fig. 7 we show a compari-

son of our results in MaxEnt-NESOM with results of

a calculation in a computer-modelling Monte Carlo ap-

proach [74]. However, in the case of GaAs the calcula-

tion can be compared with experimental results. This

is shown in Fig. 8 for the so-called Ohmic domain (di-

rect proportionality of current and electric �eld), which

extends up to �eld intensity of roughly 2:5 kV=cm; be-

yond this point the results are not valid because of the

intervalley scattering not accounted for in the model

used in the calculation [75]. Furthermore, in the plasma

in semiconductors, the energy in excess of equilibrium

of the carriers, is being transferred to the lattice vi-

brations (mainly the optical phonons) which then be-

come the so-called \hot phonons", that is having a qu-

asitemperature larger than the reservoir temperature.

In Fig. 9 we present the evolution of the quasitemper-

ature in the case of a particular mode of longitudinal

optical phonons in photoexcited GaAs. The calculation

in MaxEnt-NESOM compares well with the experimen-

tal data (dots), and the so-called \hot phonon velocity

overshoot" (during evolution the quasitemperature of

some phonon modes becomes larger than the carriers'

quasitemperature) is evidenced [76].

Figure 7. Comparison of calculations in MaxEnt-NESOM
(analytical ones) eith Monte Carlo computational modelling
in n-doped GaAs. After Ref. [75].

Figure 8. Electron drift velocity in the steady state of n-
doped GaAs, showing in the Ohmic region a comparison of
a calculation in MaxEnt-NESOM with experimental data.
After Ref. [75].

Figure 9. Evolution of the quasitemperature of carriers and
of LO phonons for the mode indicated. Dots are experi-
mental points derived from Raman scattering spectra. The
so-called \hot phonon temperature overshoot" is evidenced.
After [76].
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III.4 Generalized Clausius' and Boltz-
mann's relations and a H-theorem

We close this section noticing that there exist a
Clausius-like expression for the increase of the infor-
mational entropy in IST, resulting as a consequence of
the modi�cation of external constraints imposed on the
system. In fact, consider the informational entropy of

Eq. (18), and let us call �` (` = 1; 2; :::; s) a set of pa-
rameters that characterize the external constraints im-
posed on the system (one of them may be the volume,
others external �elds, etc.). Introducing in�nitesimal
modi�cations, say d�`, the in�nitesimal variation of in-
formational entropy, as shown in the Appendix III, is
given by

c

d �S(t) =

Z
d3rf�(~r; t)Æh(~r; t) +A(~r; t)Æn(~r; t) +

+~�h(~r; t) � Æ~Ih(~r; t) + ~�h(~r; t) � Æ~In(~r; t) +

+
X
r�2

h
F
[r]
h (~r; t)
 ÆI

[r]
h (~r; t) + F [r]

n (~r; t)
 ÆI [r]n (~r; t)
i
g �

�

Z
d3r d�s(~r; t) ; (41)

d

where Æh, etc., are given by

Æh(~r; t) = dh(~r; t)�
D
dbh(~r)jtE ; (42a)

Æn(~r; t) = dn(~r; t)� hdbn(~r)jti ; (42b)

etc: (42c)

The expressions for these nonexact di�erentials are (see
Appendix IV) the di�erence between the exact di�er-
ential of each quantity (dh, dn, etc.) and

D
dbhjtE = Tr

(
sX

`=1

@bh
@�`

d�` %(t)

)
; (43a)

hdbnjti = Tr

(
sX

`=1

@bn
@�`

d�` %(t)

)
; (43b)

etc:; (43c)

which are the average value of the change in the cor-
responding dynamical quantity due to the modi�ca-
tion of the control parameters. The usual case of a

change of volume starting with the equilibrium canon-
ical distribution is presented as a simple illustration
in Appendix IV. From Eq. (41) it is evident that the
MaxEnt-NESOM Lagrange multipliers are integrating
functions for the nonexact di�erentials. Let us now in-
troduce the following rede�nitions of the Lagrange pa-
rameters,

A(~r; t) = ��(~r; t)�(~r; t) ; (44a)

~�h(~r; t) = ��(~r; t)~
h(~r; t) ; (44b)

~�n(~r; t) = ��(~r; t)~
n(~r; t) ; (44c)

F
[r]
h (~r; t) = ��(~r; t)F

[r]
h (~r; t) ; (44d)

F [r]
n (~r; t) = ��(~r; t)F [r]

n (~r; t) ; (44e)

which, together with the use of Eq. (21) which de�nes
the quasitemperature �, allows us to write a space-
dependent (in a in�nitesimal region around point ~r)
Clausius-like expression for arbitrary nonequilibrium
conditions, namely

c

�s(~r; t)� �s(~r; to) =

Z t

to

dt0
d�s(~r; t0)

dt0
=

Z t

to

dt0
Æ
�
q (~r; t)

kB�(~r; t)
; (45)

where we have introduced the rate of change of a nonexact di�erential for a generalized heat function, expressed by
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Æq (~r; t) = dt0Æ
�
q (~r; t) = Æh(~r; t)� �(~r; t)Æn(~r; t)�

�~
h(~r; t) � Æ~Ih(~r; t)� ~
n(~r; t) � Æ~In(~r; t)�

�
X
r�2

h
F

[r]
h (~r; t)
 ÆI

[r]
h (~r; t) +F [r]

n (~r; t)
 ÆI [r]n (~r; t)
i

: (46)

In Eq. (45) is to be understood that the time integration extends in the time interval from to to t, along the
trajectory of evolution of the nonequilibrium dissipative evolution of the system, where to is the initial time of
preparation of the system and t the time a measurement is performed. As shown later on, cf. Eq. (61), the quantity
in Eq. (45) integrated over the volume of the system is nonegative.

Moreover, using the rede�nitions of Eqs. (44), we may noticed that the generalized Gibbs relation of Eq. (19)
becomes

�(~r; t)d�s(~r; t) = dh(~r; t)� �(~r; t)dn(~r; t)�

�~
h(~r; t) � d~Ih(~r; t)� ~
n(~r; t) � d~In(~r; t)�

�
X
r�2

h
F

[r]
h (~r; t)
 dI

[r]
h (~r; t) +F [r]

n (~r; t)
 dI [r]n (~r; t)
i

; (47)

d

where on the left it has been evidenced the quasitem-

perature �. In this Eq. (47), � plays the role of a

quasi-chemical potential, ~v of a drift velocity, and ~
;

F
[r]
h and F

[r]
n are, say, nonclassical nonequilibrium ther-

modynamic variables, playing the role of higher order

drift velocities as discussed in [46,47].

At this point, without going into details to be pre-

sented elsewhere [53], we comment on an interesting

result. It consists in a kind of relation of the informa-
tional entropy in IST and Boltzmann's famous expres-

sion for the entropy in terms of the number of complex-

ions at the microscopic mechanical level of description

of the system, which are compatible with the macro-
scopic constraints. The nonequilibrium macroscopic

constraints in IST are, we recall, the set of informa-

tional variables, for example the set of Eq. (17) which

are the average values over the nonequilibrium ensemble

of the mechanical quantities of Eq. (13) (we note again

that this is the case of a generalized nonequilibrium

grand-canonical-like ensemble). The informational (or

IST) entropy is, as seen, a functional of these variables
[cf. Eq. (19)], which in the thermodynamic limit satis-

�es that

�S(t)! lnW fQ(~r; t)g ; (48)

where Q stands for all the variables in the set indicated

in Eq. (17), and W is the number of complexions {

phase space volume or number of quantum states (in

classical and quantum mechanics respectively) { com-
patible with the imposed macroscopic constraints. The

demonstration follows a similar line than the one used

in equilibrium statistical mechanics.

Also, it is worth noticing that de�ning the quasi-

entropy operator

c

^
�S (t; 0) = �P(t) ln %(t) = � ln �%(t; 0) = (49)

= �(t) +

Z
d3rf�(~r; t)bh(~r ) +A(~r; t)bn(~r ) +

+~�h(~r; t)�
^

~Ih (~r ) + ~�n(~r; t)�
^

~In (~r ) +

+
X
r�2

h
F
[r]
h (~r; t)
 Î

[r]
h (~r ) + F [r]

n (~r; t)
 Î [r]n (~r )
i
g ; (50)
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whose average value with the statistical operator [cf.
Eq. (9)] produces the IST entropy of Eq. (18), has the
interesting property that, if L is the Liouville operator
of the system, then [77]

Tr

("
iL;

b
S (t; 0)

#
%(t)

)
= ��(t) ; (51)

where

��(t) = Tr

8><>:d
b
S (t)

dt
%(t)

9>=>; =
d �S(t)

dt
; (52)

is the IST-entropy production of Eq. (10).
This result is a manifestation in the MaxEnt-

NESOM-based IST, of the idea of complementarity be-

tween the microscopic and macroscopic levels of de-
scriptions of many-body systems, as seemingly �rstly
considered by Niels Bohr [78], and elaborated by Rosen-
feld [79] and Prigogine [80]; this topic is considered else-
where [77]. The question of the diagonalization of the
informational entropy operator, the analysis of its spec-
trum of eigenvalues, and some physical implications are
given in the Ref. [81].

Finally, we notice that the informational entropy
has associated a H-theorem in Jancel's sense [82]. The
informational entropy density �s(~r; t) satis�es a continu-
ity equation of the form [54]

@

@t
s(~r; t) + div ~Is(~r; t) = �s(~r; t) ; (53)

where ~Is is the 
ux of informational entropy, namely

c

~Is(~r; t) = �(~r; t)~Ih(~r; t) +A(~r; t)~In(~r; t) +

+~�h(~r; t)� I
[2]
h (~r; t) + ~�n(~r; t)� I [r]n (~r; t) +

+
X
r�3

[F
[r�1]
h (~r; t)
 I

[r]
h (~r; t) + F [r�1]

n (~r; t)
 I [r]n (~r; t)] ; (54)

d

and the use of the de�nitions of Eqs. (44) and (22) allow

us to introduce a generalized heat 
ux ~Iq given by

~Iq(~r; t) = �(~r; t)~Is(~r; t) : (55)

Moreover, �s is the local in space informational-entropy
production function, de�ned in Ref. [54], which is com-
posed of two contributions, namely

�s(~r; t) = ��(~r; t) + �f (~r; t) ; (56)

where �� is

��(~r; t) = d�s(~r; t)=dt ; (57)

with d�s de�ned in Eq. (19) and

�f (~r; t) = ~Ih(~r; t) � O�(~r; t)) + ~In(~r; t) � OA(~r; t) +

+
X
r�2

[	
[r]
h (~r; t)
 gradF

[r�1]
h (~r; t) +

+	[r]
n (~r; t)
 gradF [r�1]

n (~r; t)] : (58)

The local in space informational-entropy prodution
is composed of two terms, the �rst on the right of
Eq. (56) is the one due to relaxation e�ects arising out
of the interactions Ĥ 0 in Eq. (1) and contained in the
contributions to the nonequilibrium statistical opera-
tor in Eq. (3), which, after the equations of evolution {
Eqs. (4) to (7) { are used, can be expressed as

c

��(~r; t) = �(~r; t)Jh(~r; t) +A(~r; t)Jn(~r; t) +

+~�h(~r; t) � ~Jh(~r; t) + ~�n(~r; t) � ~Jn(~r; t) +

+
X
r�2

h
F
[r]
h (~r; t)
J

[r]
h (~r; t) + F [r]

n (~r; t)
J [r]
n (~r; t)

i
; (59)
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where Jh;Jn, etc. are the collision operators of Eq.
(7c) in the particular present case, that is, associated
to the equations of evolution for the energy and par-
ticle densities and their vectorial and tensorial 
uxes
in the description of Eq. (17). We recall that J (0) in
Eq. (6) [the generalized Mori's precession term, and
the one given rise to the divergence of the 
ux in Eq.
(8)] does not contribute to the informational-entropy
production �� (see Ref. [54]). The second term on the

right of Eq. (56) [cf. Eq. (58)] is a contribution in the
form of products (scalar and tensorial) of 
uxes and
thermodynamic forces (the latter being the gradients
of the Lagrange multipliers or intensive nonequilibrium
thermodynamic variables), in a similar form to the one
that appears in phenomenological thermodynamic the-
ories. It should be noticed that after integration over
space of the informational-entropy production density
of Eq. (56) we obtain that

c

�s(t) =

Z
d3r �s(~r; t) =

Z
d3r ��(~r; t) = ��(t) = d �S(t)=dt ; (60)

which is the bulk informational-entropy production, since the integral of �f vanishes (see Appendix IV). This bulk
informational-entropy production has associated what we have called a weak principle of non-negative informational

entropy production [53,54], namely

��S(t) = �S(t)� �S(to) = �S(t)� SG(t) =

=

Z t

to

dt0
Z

d3r�s(~r; t
0) =

Z t

to

dt0 ��(t0) � 0 ; (61)

d

where, we recall, to stands for the initial time of prepa-

ration of the system in the given experiment and t is

the time when a measurement is performed. It ought

to be noticed that this theorem implies in an increase

of the informational entropy along the evolution of the

macroscopic state of the system as irreversible processes

develop in the medium, starting at time to. But it

does not tell us that the increase is monotonic, or more

speci�cally, locally monotonic, a property imposed by

some authors in other theories. However, it is conjec-

turable that this may be so - at least for the instanta-

neous bulk informational-entropy production { because

along the evolution of the system it seems reasonable

to expect a continuous loss of information. But this is

not the case when a truncation is introduced (that is,

the closure condition, imposed by Zubarev-Peletminskii

selection rule of Eq. (2), is violated): during the irre-

versible evolution of the system at certain intervals the

production of informational entropy may be negative

[83], but, however, it is predominantly positive, so that

the integral form of Eq. (61) is satis�ed [84]. Fig. 10

provides a graphical description of this increase of in-

formational entropy: We recall that the procedure in-

volves the de�nition of a space of, what can be called,

\relevant" (or informational) variables, that is, those

chosen on the basis of the selection rule of Eq. (2).

An \orthogonal" space is composed by the \irrelevant"

variables, that is, those absent from the informational

constraints in MaxEnt-NESOM [85]. The role of the

time-dependent projection operator in Eq. (9) can now

be better understood: It introduces a coarse-graining

procedure implying that it projects the logarithm of

the \�ne-grained" statistical operator onto the sub-

space of the relevant (i.e. basic) variables, producing

the logarithm of the \coarse-grained" statistical oper-

ator �%(t; 0). We stress that the coarse-graining which

follows by application of the projection procedure is

time dependent, what is a result that the operation is

dependent on the macroscopic state of the system at the

time the projection is performed. The procedure elimi-

nates the \irrelevant" variables, which are hidden in the

statistical operator in the contribution %0(t), since the

time derivative present in its de�nition drives it outside

the informational subspace. Topological and geometri-

cal analyses of the question are provided by Balian et

al. [85]. (See also Fig. 4). The result of Eq. (61) can

be considered as a H-theorem in Jancel's sense [82],

and the increase in informational entropy is a result of

the loss in information arising out of the chosen con-

tracted description of the macrostate of the system (or

incompleteness of information). At this point we do not

claim any clear cut connection with the phenomenolog-

ical second law of thermodynamics, and with Clausius'

concept of uncompensated heat, except for the analo-

gies [e.g. Eqs. (18), (19), (46), (48)], and the fact that

in the proper asymptotic limit one recovers the well

known and established results of local equilibrium and

full equilibrium thermodynamics. Additional consider-

ations on this topic are presented in Appendix IV.
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Figure 10. Graphical description of the Gibbs' and informa-
tional entropies depending on the MaxEnt-NESOM statis-
tical operator. The projection { depending on the instan-
taneous state of the system { introduces a coarse-graining
procedure consisting into projecting onto the subspace of
the \relevant" variables associated to the informational con-
straints in MaxEnt-NESOM (cf. Eqs. (8) and (60); After
reference [38]).

IV Discussion and concluding
remarks

We have considered some general aspects of the thermo-
dynamics of dissipative systems in conditions arbitrar-
ily away from equilibrium; in this concluding section
we further elaborate on the matter. On the previous
sections particular attention was given to the question
of entropy-like and temperature-like concepts in the
nonequilibrium thermodynamics of dissipative systems.
Concerning temperature out of equilibrium, we have al-
ready mentioned in the Introduction the use of nonequi-
librium temperatures on phenomenological bases dat-
ing back apparently to a �rst proposal by Lev D. Lan-
dau more than half a century ago [3-9]. In the case of
the classical irreversible thermodynamics no diÆculty
arises since it is postulated local equilibrium (as noted
a reasonable approximation in the linear regime around
equilibrium for quasi-static and quasi-uniform condi-
tions). For arbitrarily away-from-equilibrium situations
di�erent concepts of nonequilibrium temperatures have
been considered by several authors in several thermo-
dynamic approaches. Meixner sets the concept of \dy-
namical temperature" [10]; M�uller introduces \cold-
ness" [11]; Muschik postulates a \contact temperature"
[12]; Keizer introduces a nonequilibrium temperature in

the framework of the postulation of a nonequilibrium
thermodynamics based on statistical considerations of
molecular 
uctuations [13]; Nettleton considers the con-
cept of a \kinetic temperature" related to the kinetic
energy per particle [59]. Within the framework of Ex-
tended Irreversible Thermodynamics (EIT [86,87]) it
is de�ned a nonequilibrium temperature stemming as
the partial derivative of a postulated nonequilibrium
entropy-like function characteristic of EIT which incor-
porates the dissipative 
uxes [88].

More recently, Garcia-Colin and Chan-Eu at-
tempted to set a concept of an absolute nonequilibrium
temperature strictly based on the zeroth law and the
second law described in a Carnot-Clausius' framework
[60]. In the process, a quasientropy is introduced, called
calortropy, which possesses a di�erential form similar in
appearance to the one in our Eq. (46) above, but where
a local equilibrium temperature and a momentum ex-
pansion, the latter expressed in terms of a complete set
of tensor Hermite polynomials are present instead of
the tensorial 
uxes of all orders in Eq. (43). Accord-
ing to these authors, in the proposed decomposition
of a Carnot cycle into an in�nite number of in�nitesi-
mal Carnot cycles, the temperature of the working sub-
stance undergoing an irreversible process characteristic
of the in�nitesimal Carnot cycle of interest is neces-
sarily the same as the temperature of one of the heat
reservoirs, and must be regarded as the local tempera-
ture of the body in question [60]. Viewed in this way
the heat reservoir of the in�nitesimal cycle in question
may double as a thermometer in the absolute tempera-
ture scale that indicates the temperature value T: The
body undergoes an irreversible process and T is the
thermodynamic temperature of the in�nitesimal body
as well as the heat reservoir { a thermometer [60,89].
It seems to us that, on the one hand, this implies that
local equilibrium has been achieved and thus a restric-
tion is introducing loosing generality; and on the other,
in general conditions, as pointed out by Jaynes [90], T
denotes the temperature of a heat bath with which the
system is momentarily in contact and this may or may

not be the temperature of the system [emphasis is ours].
Moreover, Carnot's principle (in its original form) de-
scribes only the net result of a process that begins and
ends in thermal equilibrium; it does not permit us to
draw any such conclusion as dS=dt � 0 at intermediate
times: Indeed entropy has been de�ned only for equilib-
rium states, in which there is no time dependence. The
calortropy function cannot be directly measured but is
to be determined in terms of the local temperature and
the other variables in the thermodynamic state space
(energy, the Hermite polynomials, etc.), and therefore,
one needs to obtain and solve the constitutive equa-
tions for those variables. The calortropy is considered
as representing a �ling cabinet containing information
on the physical properties of the macroscopic system
of interest, made up on a careful analysis of the system
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properties via constitutive equations [60,89]. It is worth
noticing that the idea closely resembles what is done in
the case of IST in terms of the informational entropy.
Finally, the authors of reference [60] conclude that there
is no other temperature admissible than that by the ze-
roth law and the second law, the quantity which is as-
sociated with the heat reservoirs, even when the system
is away from equilibrium, and that, when this notion of
temperature does not hold valid, the extended theory
of irreversible processes as known of in the literature
is no longer applicable and one whould pass from the
realm of irreversible thermodynamics governed by the
thermodynamic laws into a nonthermodynamic realm
of many-body phenomena as yet uncharted [60].

These considerations seem to arise out of a partic-
ularly chosen level of description, as shall be discussed
later on. First some comments. The considerations of
Chan-Eu and Garcia-Colin (let us call the theory Or-
thodox Irreversible Thermodynamics { OIT for short)
are also present in, at least, two other theories, namely
EIT and IST. In both the functions corresponding to
the calortropy of OIT are the quasientropies, which are
functionals of the basic set of variables in the chosen
thermodynamic state space. In EIT the quasientropy
is postulated, and it is constructed on symmetry con-
siderations in terms of invariant terms involving the
densities of energy and of particles, and their �rst vec-
torial 
uxes, but all higher order vectorial 
uxes can
also be introduced [91]. The equations of evolution for
the basic variables (densities and 
uxes) are derived,
and, in principle, once solved the proposed quasientropy
can be calculated, if desired. The basic di�erence with
OIT resides in the de�nition of the di�erential coeÆ-
cients of the EIT quasientropy: The fundamental one
is the variational derivative of the quasientropy with
respect to the energy density, taken as the de�nition
of a nonequilibrium temperature in EIT, and which is
the local equilibrium temperature of classical (linear)
irreversible thermodynamics, and of OIT, plus terms
depending on the 
uxes. Moreover, of course, there
are di�erences in the other di�erential coeÆcients, as
well in their interpretation, mainly in what concerns to
those related to the 
uxes in EIT [92], or in OIT those
related to the tensor Hermite polynomials.

Let us now consider IST. The mechano-statistical
approach provides a description with a foundation at
the molecular (microscopic) level. As discussed else-
where [93] the statistical approach in MaxEnt-NESOM
brie
y described in Section II, contains the main requer-
iments in phenomenological theory: the principle of
equipresence (to which we have referred to previously),
the principle of objectivity (that is invariance under
Galilean transformation), and memory e�ects (which
maybe can also be referred to as historicity). The �rst
one is accounted for, as already noticed, by the selec-
tion rule imposed by Zubarev-Peletminskii law [cf. Eq.
(2)]. Therefore, as we have seen in previous sections,

the nonequilibrium thermodynamic state space in IST
is composed of the average values of mechanically de-
�ned quantities which we have called the \relevant" or
informational variables. As shown, in IST a quasien-
tropy is de�ned, the so-called informational entropy (in
Jaynes-Shannon's sense [23,94]) as given by Eq. (9). It
is a functional of the representative set of basic vari-
ables [cf. Eqs. (17) to (19)], and then its di�erential
coeÆcients { which are the MaxEnt-NESOM Lagrange
multipliers { are functionals of the basic variables that
de�ne the nonequilibrium thermodynamic state space
in IST [cf. Eqs. (20) and (21)]. One particular dif-
ference with OIT is that the functional derivatives of
the informational entropy in IST is with respect to the
average values of mechanical quantities that have pre-
cise physical meaning, while in OIT is with respect to
the tensor Hermite polynomials not directly related to
observables. The fundamental di�erence is in what con-
cerns the variational derivative of the calortropy in OIT
and of the informational entropy in IST with the energy.
In the �rst case there appears the reciprocal of the local
equilibrium temperature (the one in IST in the trun-
cated description described in subsection III.1), while
in the second is a generalized nonequilibrium tempera-
ture [cf. Eqs. (20a) and (21)] dubbed as quasitempera-
ture. This nonequilibrium temperature-like variable in
IST goes over, as already noticed, to the local equilib-
rium temperature (in the limit of quasi-static and quasi-
uniform hydrodynamic motion; the case dealt with in
subsection III.1), and to the absolute temperature when
global equilibrium is achieved. Same arguments ap-
ply to the case of the Lagrange multiplier associated
to the density of particles, which can be interpreted
as a quasi-chemical potential divided by the quasitem-
perature [cf. Eqs. (44a)]; the other Lagrange multipli-

ers, ~�h; ~�n; F
[r]
h ; F

[r]
n [cf. Eqs. (44b) to (43f)] go to

zero in the asymptotic limit when global equilibrium
is achieved. Moreover, as shown [cf. Eq. (61)] there
follows a weak principle of non-negative informational
entropy production (graphically described in Fig. 10).
This, in principle, resides in the coarse-graining condi-
tion imposed by the use of the time-dependent projector
in Eq. (9) (see Fig. 10) implying in the use of a sub-
space (the so-called informational space) of the whole
space of dynamical variables: the result of Eq. (61),
which as noticed is a kind of H-theorem in Jancel's
sense [82], was also obtained along a di�erent, albeit
apparently equivalent, approach by del Rio and Garcia-
Colin [95], who have interpreted it as characterizing the
fact that every time the system is observed, information
is lost (what, in our approach, is realized by the pro-
jection of the �ne-grained Gibbs entropy on the given
informational space as depicted in Fig. 10). Again
we stress that this does not imply in a direct connec-
tion with the second law. Furthermore, it does not im-
ply in a monotonic increase of the entropy-production
function, but in a permanent increase of its integra-
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tion along the trajectory of evolution, starting at to;
of the state of the system in the given thermodynamic
informational space, as indicated by Eq. (61). It is
conjecturable that the production of informational en-
tropy is in fact monotonically increasing in time, since
it cannot be perceived how information can be gained
in some partial time intervals. However, this may only
be true when the selection rule [Zubarev-Peletminskii
law of Eq. (2)] for the choice of the representative set
of basic variables is satis�ed. The monotonic increase
of ��(t) may be lost when a truncation of the represen-
tation is performed, but ameliorated as more and more
higher order 
uxes are incorporated into the descrip-
tion [83,84,49]. The informational-entropy production
also satis�es, as already mentioned, generalized forms of
Glansdor�-Prigogine thermodynamic criterion for evo-
lution and (in)stability criterion for systems arbitrarily
away from equilibrium and governed by nonlinear ki-
netic laws, as well as a theorem of minimum informa-
tional entropy production in the strictly linear regime
around equilibrium [54].

An important point to emphasize is that the infor-
mational entropy �S(t) of Eq. (18) also follows from the
maximization of its expression as given by Eq. (9) sub-
ject to the normalization of the coarse-grained statisti-
cal operator �%(t; 0) and the constraints consisting in to
give the average values of the basic variables (the den-
sities, vectorial 
uxes, and all order tensorial 
uxes) at
the given time t only. The auxiliary distribution �%(t; 0)
provides the so-called instantaneously \frozen" quasi-
equilibrium distribution - we recall that the irreversible
evolution of the system is described by %0 in Eq. (3)
-, producing at each time the same average values for
the basic variables as does % (t) : This is quite in accord
with Meixner's statement that \one is so much accus-
tomed to the concept of a nonequilibrium entropy that
one would like to retain it as a quantity of physical
signi�cance. This is indeed possible on a higher level
of description in which the state at time t is not char-
acterized by the histories of the external variables up
to time t; but instead by these external variables and
by a set of internal variables, all of them being taken
at the same time t. The resulting theory is essentially
the classical thermodynamics of irreversible processes
and its entropy is the well-de�ned entropy of frozen
equilibrium which is a function of the independent ex-
ternal and of the internal variables. It is a di�erent
matter whether in a given material the internal vari-
ables can always be properly identi�ed with molecular
processes" [1]. Therefore, the informational entropy in
IST satis�es these requirements and, moreover, the, in
Meixner's nomenclature, internal variables are identi-
�ed with molecular processes, that is, as already no-
ticed, they are the average values over the nonequi-

librium ensemble of well de�ned mechanical quantities.

On the other hand, the �ne-grained (or Gibbs) entropy,
we recall, contains the retro-e�ects - going back to the

initial time to of preparation of the sample -, but in the
form of a fading memory [present in %0(t) of Eq. (3)]
and is conserved (see Fig. 10). Moreover, and the equa-
tions of evolution for the representative set of basic vari-
ables, that the associated kinetic theory produces [cf.
Eqs. (4) to (7)], are memory-dependent, and besides, as
noticed, nonlocal in space, nonlinear, and encompassing

irreversibility, the latter property characterized by the
H-theorem-like result of Eq. (61). In that way we may
say that IST, which right now is having a robust devel-
opment, arises as a quite promissing approach to irre-
versible thermodynamics. These results are partially il-
lustrated elsewhere [96], in a study of a nonequilibrated
fermion system in interaction with a system of bosons,
and in contact with an external heat reservoir. This sys-
tem grossly represents a n-doped semiconductor, with
the interaction of the electrons with the phonons rep-
resented by a deformation potential interaction.

An important observation needs be stressed at this
point: The informational entropy, and consequently
also its production, is de�ned in terms of the basic
variables and therefore it is mathematically obtained
from Eq. (18) once the equations of evolution (for given
initial and boundary conditions) for the basic vari-
ables have been solved, and the Lagrange multipliers
(which include the quasitemperature � and � or log-
arithm of the nonequilibrium partition function) have
been obtained. Therefore, we stress, the quasitemper-
ature, quasi-chemical potentials, and all the other La-
grange multipliers are obtained from appropriate equa-
tions of evolution (for example, see Eq. (59) in reference
[21], and also particular applications in semiconductor
physics in reference [97]), and after that, as noticed,
the informational entropy can be calculated. A careful
and detailed description in the case of the photoinjected
plasma in semiconductors will be reported in a future
article [98]. Furthermore, hydrodynamic and transport
properties of the photoinjected plasma in semiconduc-
tors, based on IST, are reported elsewhere [99-102].

Consequently, and as already stated in the Intro-
duction, it is presently available a powerful, concise,
and soundly based statistical formalism for the descrip-
tion of systems arbitrarily away from equilibrium where
strong dissipative processes are in action { the so-called
MaxEnt-NESOM {, which provides, as shown, the foun-
dations for IST. As noticed, of the di�erent approaches
to MaxEnt-NESOM , the one due to D.N. Zubarev (re-
cently deceased [103]) appears as a physically sound
as well as elegant method of quite practical applica-
tion. We recall that IST involves a thermodynamics
that is nonlinear, nonlocal in space (incorporates space
correlations), and including fading memory (incorpo-
rates dampened correlations in time, that is decaying
retroe�ects). It also provides microscopic foundations
to EIT, which is recovered under particularly restric-
tive conditions (the limit of weak nonlinearity, absence
of space and time correlations, etc.). Moreover, in IST
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the transport coeÆcients and other correlation func-
tions are not open or adjustable quantities, but are
given at the microscopic mechano-statistical level, that
is, derived from the many-body quantum or classical
mechanics averaged over the nonequilibrium ensemble
characterized by the MaxEnt-NESOM statistical distri-
bution [46,47]. In that way we do have a theory in the
realm of many-body physics, showing at present a satis-
factory degree of development, and which was initiated
in the decade of the �fties by Jaynes and Hobson, and
presenting a quite promising future.

Concerning the already noticed point that there
apparently exists controversy { or maybe bet-
ter to say confusion { on the approach to the
construction of a thermodynamics for irreversible
processes outside the Onsagerian domain [10-
15,26,29,30,31,53,59,60,86,91,93,95,104,106], such sit-
uation, we think, arises out of the kind of level of de-
scription to be chosen. It is considered [107] that there
exist four levels of description of Thermodynamics:

(i) The one based on the two fundamental laws of
thermodynamics and the rules of operation of the
Carnot cycles. This is sometimes referred to as
the engineering point of view or CK Thermody-

namics (for Clausius and Kelvin).

(ii) The mathematical approach, as the one based
on di�erential geometry instead of Carnot cy-
cles, sometimes referred to as CB Thermodynam-

ics (for Caratheodory and Born).

(iii) The axiomatic point of view, replacing Carnot cy-
cles and di�erential geometry by a set of basic ax-
ioms, that try to encompass the previous ones and
extend them, or TC Thermodynamics (for Tisza
and Callen).

(iv) The statistical-mechanical point of view, based of
course on the substrate provided by the micro-
scopic mechanics (at a molecular, or atomic, or
particle level) plus theory of probability, which
can be referred to as Gibbsian Thermodynamics

or Statistical Thermodynamics.

It is not an easy task to readily classify all attempts
within this scheme, but we can try that for the three
specially mentioned in the text. The approach of Chan-
Eu and Garcia-Colin [60,89] belongs to level (i), and
for that reason we have called their theory as Ortho-
dox Irreversible Thermodynamics; EIT belongs to level
(iii) that is, being based on a set of plausible axioms;
and IST is clearly within the scope of level (iv). More-
over, it may be considered that Truesdell's Rational
Thermodynamics [106] belongs to the level (ii), being
built on the inclusion of thermodynamic-like concepts
in the mechanics of continuum media. IST, belonging
to level (iv), is associated to the statistical-mechanical
approach which is considered to be by itself richer, and

the point of departure of a whole array of generaliza-
tions [107].

In what concerns IST, since it is based on the
MaxEnt-NESOM and Jaynes' Predictive Statistical
Mechanics, it has also associated the controversies that
accompany this statistical approach, as for example an-
alyzed by Dougherty [108]. One in particular is the one
that opposes Jaynes' School and the Brussels' School
[104], but we side with Dougherty's point of view that
the controversy may be void since the di�erences may
not exist or be partial, with both approaches having
common or at least partially overlapping domains of va-
lidity [109]. It may be noticed that the nonequilibrium
statistical ensemble formalism is considered to have by
far the most appealing structure, and be a most e�ec-
tive method for dealing with nonlinear transport equa-
tions [108].

In a �nal statement we restate our previous mani-
festation that we follow J. Meixner [1,10] lead in that
state functions and state variables which have well de-
�ned meaning and foundations in the case of Thermo-
statics, are unlikley to surface under such clear cut out-
look in the case of nonequilibrium dissipative systems.
Di�erent approaches along di�erent levels of descrip-
tion are possible, as noted above, with each one to be
evaluated under its own merits [107]. We have here at-
tempted a partial contribution to the subject, empha-
sizing the merits of IST, namely, (1) determination at
the microscopic (statistical-mechanical) level of trans-
port coeÆcients; (2) derivation of the nonlocal-in-space,
retro{e�ects-dependent, and highly nonlinear equations
of evolution for the basic macrovariables as nonequilib-
rium averages over the MaxEnt-NESOM ensemble of
the mechanical equations of motion of the many-body
system; (3) construction of a nonclassical nonlinear
thermo-hydrodynamics of an apparently large scope;
(4) and the quite important fact of a connection with a
response function theory for far-from-equilibrium sys-
tems. However, we restate the important point in what
refers to the second law, noticed at the end of Section 3,
in that we do not claim any clear cut connection with
the phenomenological second law of thermodynamics,
and with Clausius' concept of uncompensated heat, ex-
cept for the analogies [e.g. Eqs. (18), (19), (46), (48)],
and the fact that in the proper asymptotic limit one
recovers the well known and established results of local
equilibrium and full equilibrium thermodynamics. Ad-
ditional considerations on this topic are presented in
Appendix IV. Response function thory allows for the
fundamental step of establishing the connection of the-
ory and experiment, and then permiting to obtain mea-
surements of the quantities that the theory introduces,
hence given them physical meaning. Those quantities
that play a role similar to the ones de�ned in local equi-
librium and global equilibrium (to whose values tend in
that limits) like temperature, chemical potential, and
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pressure, we have called them in IST as quasitempera-
ture, quasi-chemical potential, and quasipressure. We
recall that according to the Webster Dictionary, \ quasi,
adj. 1: having some resemblance (as in function, e�ect
or status) to a given thing: seeming, virtual { often
joined to second element with a hyphen". Since they
are the di�erential coeÆcients of a function of state,
which in equilibrium is the entropy of the system, such
function may be dubbed as quasientropy (informational
entropy in IST). Once again we stress that the quasi-
thermodynamic variables in IST are related to the ex-
periment via the MaxEnt-NESOM response function
theory, and then can be measured: Figs 1 and 2 present
a couple of examples relative to the quasitemperature
and Fig. 11 illustrates the case of determination of
the quasi-chemical potential from the gain spectrum of
platelets of CdS (dots are experimental points and the
full curve is the calculation in MaxEnt-NESOM) [110].

Figure 11. The gain spectra in platelets of CdS. The ex-
perimental conditions are indicated in the inset, where it
is also indicated the value of the quasitemperature of the
carrier system, and the arrow indicate the position of the
quasi-chemical potential (After reference [105]).

We conclude pointing out that, as we wrote before,

in the present paper we did not make any attempt to

work the diÆcult task of describing and comparing dif-

ferent approaches to irreversible thermodynamics, or

even classify them into the program of four levels re-

ferred to above. We have concentrated the attention

only in the case of OIT at the, say, orthodox level,

EIT at the axiomatic level, and IST at the statistical-

mechanical level. We have emphasized the latter call-

ing the attention to the fact that it appears to have a

broad scope, allows for practical calculations based on

a substrate provide by the dynamics of many-particle

physics, and the quite relevant fact that associated {

in a consistent way { with a response function theory

allows for a connection with the experimental realm:

di�erent properties of dissipative systems can be cal-

culated and compared with the experimental data thus

validating the theory and providing veri�cation and cor-

roboration of, among other things, the quasitempera-

ture and quasi-chemical potentials that IST de�nes, as

shown in some of the �gures presented.
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Appendix I. The Truncation Pro-
cedure

In the main text we have noticed that the closure con-

dition of Eq. (2) (or Zubarev-Peletminskii law for a

closure in the choice of the quasi-conserved variables

in Mori's sense, and which implies in a statistical-

mechanical condition which have a clear relation to the

principle of equipresence in phenomenological thermo-

dynamic theories) requires, when inhomogeneous pro-

cesses are present, to incorporate the 
uxes of energy

and matter of all orders. Truncation procedures are

then necessary for, in general, an accessible mathemat-

ical handling of the problem, and, evidently, such ap-

proximation needs be evaluated in each case. In other

words, a criterion needs be devised allowing to assert

that the information retained in the description is, for

the purposes of the analysis of the problem at hands,

the relevant one and the rest can be neglected (that is to

say - in practical terms in the way used in section III -

that one may use in the statistical operator the dynam-

ical quantities densities and their 
uxes up to a certain

order r, accompanied by the corresponding Lagrange

multipliers, and neglecting the terms with order larger

than r). Such criterion can be devised, and is reported

in Ref. [49]. We have noticed in section II that it im-

plies, in words, that when smoother and smoother the

space and time variation of the densities of matter and

of energy, the shorter the description needed. We have

also pointed to the fact that a quantifying parameter is

the ratio �
(r)
c =�, where � is the shorter wavelength in-

volved and �c a quantity with the dimension of length

of the order of the average velocity of propagation of
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the motion multiplied by a characteristic time, related

to the relaxation times for the space and time correla-

tions of the involved quantities to die down.

For illustration we brie
y summarized here a par-

ticular case, namely the hydrodynamic behavior of the

carrier system in the photoinjected plasma in semicon-

ductors (second and last of references [31]). First we

evaluated the frequency dispersion relation for plasma

waves in several truncated descriptions, and the results

were compared with the exact one (a well known re-

sult that can be found in the literature on the theory

of many-electrons, which is the equivalent to solving {

what is possible in this case { the description involv-

ing the in�nite 
uxes). The group velocity in the fre-

quency dispersion relation is determined and compare

with the one in the exact result for di�erent ranges of

wavelength. It is shown that to obtain the correct re-

sult up to the square in the wavenumber (square on

the reciprocal of the wavelength) one needs to intro-

duce 
uxes up to order r = 4. The control parameter

is in this case 
 = (v�p`=�)
2; where �p` is the plasma

wave period at in�nite wavelength, and v the average

velocity of propagation of the plasma waves.

The equations of evolution for the plasma and sec-

ond sound for such system have been derived in what we

call IST of zero rank, IST(0) (when only the densities

are introduced as basic variables) and IST of �rst rank,

IST(1) (when we introduce the densities and their �rst

(vectorial) 
uxes) [100]. Consider second sound: with-

out going into details which are given in [100], in IST(1)

the equation of evolution for the energy density is�
1

c2h

@2

@t2
+

1

Dh

@

@t
�O2

�
h(~r; t) = 0 ; (I:1)

where ch is the velocity of propagation and Dh the

thermal di�usivity, and we have neglected on the right

sources that are dependent on the space variation of the

energy 
ux and which are small in the range of wave-

length being considered. Eq. (I.1) is a hyperbolic-type

equation known as the telegraphist equation, which also

appears in the domain of phenomenological extended ir-

reversible thermodynamics. From Eq. (I.1) we can de-

rive the frequency dispersion relation for second sound,

solution of the characteristic equation

!2

c2h
+ i

!

Dh

�Q2 = 0 ; (I:2)

where Q is the wavenumber. Solution of Eq. (I.2),

namely,

!�(Q) = �i
�
c2h=2Dh

�
�
h
c2hQ

2 �
�
c2h=2Dh

�2i 1

2

;

(I:3)

tells us that, depending on the wavenumber and the

macroscopic state of the system which determines the

values of ch and Dh (in the case considered they are

dependent on the carrier quasitemperature), the prop-

agation of the second sound acquires the form of a

damped undulatory motion for values of wavelength

� < ch�h (where �h is the energy relaxation time given

by �h = 2Dh=c
2
h, and therefore dependent on the car-

rier quasitemperature), or simple di�usive movement

for � > ch�h, which is the region corresponding to over-

damped motion. In the latter region the motion is well

described by the solution of Fourier di�usion equation

of classical irreversible thermodynamics�
@

@t
�DhO

2

�
h(~r; t) = 0 : (I:4)

Figure 12. The energy-relaxation time (right ordinate) for
a range of values of the carrier quasitemperature. The full
line separates the regions of values of the wavenumber (left
ordinate), the one on the lower right being the domain of
validity of classical irreversible thermodynamics. Outside
this region one needs to resort to extended forms of thermo-
dynamics (in the present case are informational statistical
thermodynamics of rank zero and one respectively). The
numerical parameters used are those of GaAs, and the car-
rier concentration is n = 1:4 � 1017 cm�3 (After reference
[95]).

Hence, clearly, there exists, as indicated, a control pa-

rameter, which in this case of second sound propa-

gation is �
(01)
h =� with �

(01)
h = ch�h = 2Dh=ch, such

that, we restate, for � > �
(01)
h second sound prop-

agation can be well described in IST(0), correspond-

ing to classical (Onsagerian) irreversible thermodynam-

ics (and when di�usive motion predominates), and for

� < �
(01)
c one needs to introduce IST(1), providing in

this case results similar to those of phenomenological

extended irreversible thermodynamics. In Fig. 12 it

is shown, as a function of the carrier quasitempera-

ture, the energy-relaxation time (see right ordinate),
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and the critical curve that separates the domains of

IST(0) and IST(1). A way to experimentally corrob-

orate these results is, for example, Raman scattering,

with the expected Raman spectra shown in Fig. 13:

Three spectra are drawn corresponding to the condi-

tions indicated by cross points in Fig. 12, going from

weakly damped, to strongly damped, to overdamped

movement. In the �rst case one should expect a dou-

blet of Brillouin lines with linewidth ��1h ; in the second

case the bands are shifted with respect to those in the

�rst case and very broad; and �nally in the third case

the Brillouin-doublet colapses in a unique shiftless band

(the so-called Rayleigh band), with a bandwidth related

to the di�usivity and the square of the wavenumber

(when multiplied by Planck constant the wavenumber

is the momentum transfer in the scattering event, and

the frequency shift is the transferred energy). Closing

this Appendix, it is worth noticing that if we consider

T � = 400 K, then the energy relaxation time is nearly 1

ps, and the wavelength at the boundary of the domain

of validity of IST(0) is nearly 1:3� 10�4 cm; moreover,

it may be noticed that since the carrier concentration

is nearly 1:4 � 1017 cm3, the average spacing between

carriers is of the order of 2� 10�6 cm.

Figure 13. A description of the Raman spectra for the three
situations indicated by cross points in Fig. 12: T � = 100 K
{ upper full lines; T � = 200 K { lower full lines; T � = 300 K
{ dashed lines (After reference [95]).

Appendix II. Energy-
ux Contri-
bution to the Statistical Operator

In the second truncated description of subsection III.2,

Eq. (31) gives the corresponding basic sets of macrovari-

ables and Lagrange multipliers. On the basis of that,

the auxiliary statistical operator is

c

�%(2)(t; 0) = expf��(2)(t)�

Z
d3r[�(2)(~r; t)bh(~r; t) +A(2)(~r; t)bn(~r )+

+~�n(2)(~r; t) �
b~In(~r ) + ~�h(2)(~r; t) �

b~Ih(~r )]g : (II:1)

This statistical operator can be rewritten as

�%(2)(t; 0) =
ebA(t)+bB(t)

Tr
n
ebA(t)+bB(t)

o ; (II:2)

where

bA (t) = �

Z
d3r[�(2)(~r; t)bh(~r) +A(2)(~r; t)bn(~r ) + ~�n(2)(~r; t) �

b~In(~r )] ; (II:3a)

bB (t) = �

Z
d3r ~�h(2)(~r; t) �

b~Ih(~r ) ; (II:3b)

and, evidently,

�(2) (t) = ln Tr
n
ebA(t)+bB(t)

o
: (II:4)

According to Heims-Jaynes perturbation expansion for averages [111], the average value of a quantity cM can be

written as

Tr
ncM �%(2)(t; 0)

o
= Tr

ncM �%o(2)(t; 0)
o
+�M(t) ; (II:5)
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where the �rst term on the right is the average with the partial auxiliary operator

�%0(2)(t; 0) = exp bA=Tr fexp( bA)g ; (II:6)

that is, a quantity independent of bB of Eq. (II.4), and �M is an in�nite series of terms which are correlation-like

functions of operator cM and increasing powers in operator bB (what consequently implies a series in powers of the

Lagrange multiplier ~�), and �M goes to zero when bB (i.e. ~�) goes to zero.

To �rst order in bB (which implies cases when one can expect weak contributions from the term containing the


ux of energy), we �nd that

n(~r; t) = n0(~r; t)� n0(~r; t)
h
5kBT

�
(2)(~r; t)=2

i h
~v0(1)(~r; t) � ~�h(2)(~r; t)

i
; (II:7)

with

no(~r; t) = Tr
nbn(~r )%o(2)(t; 0)o ; (II:8)

and ~v(~r; t) and h(~r; t) are given in Eqs. (38) and (39) respectively. Moreover,

~I0n(~r; t) = n0(~r; t)~v0(2)(~r; t) ; (II:9a)

~I0h(~r; t) =
�
n0(~r; t)=2

� h
5kBT

�
(2)(~r; t) +mv2(~r; t)

i
~v0(~r; t) ; (II:9b)

�~In(~r; t) = �
�
5n0(~r; t)~�h(2)(~r; t)=2m

� h
kBT

�
(2)(~r; t)

i2
; (II:9c)

and

�~Ih(~r; t) = �
�
35n0(~r; t)~�h(2)(~r; t)=4m

� h
kBT

�
(2)(~r; t)

i3
: (II:10)

Finally, completing these details, one �nds that the Lagrange multipliers ~�n (associated to the 
ux of mass) in both

descriptions are related by the expression,

~�n(2)(~r; t) = ~�n(1)(~r; t)

�
1�

5

3
~�h(2)(~r; t) � ~v(~r; t)kBT

�
(1)(~r; t)

�
�
5

2
~�h(2)kBT

�
(1)(~r; t) : (II:11)

d

Appendix III: Extremal Con-
straints and Informational En-
tropy

From the knowledge of the generating functional �(t)

in Eq. (18), which is related to a kind of quasi-

thermodynamic potential, we can derive by simply dif-

ferentiating it with respect to the variables on which it

depends, namely the Lagrange multipliers in MaxEnt-

NESOM, the average values of the basic dynamical vari-

ables, that is

h(~r; t) = �Æ�(t)=Æ�(~r; t) ; (III:1a)

n(~r; t) = �Æ�(t)=ÆA(~r; t) ; (III:1b)

etc:

where, we recall, Æ stands for functional derivative [58].

Because of Eqs. (III.1) there follows the generalized

Gibbs relation of Eq. (19). But the system also de-

pends on external parameters, call them �1, �2, : : :, �s;

and let us consider the modi�cations introduced by very

small variations of these external constraints, say d�1,

: : : , d�s: Such parameters may be, say, the volume,

external �elds, etc.

Let us look on the variation of the informational

entropy as a consequence of introducing the variations

d�j (j = 1; ; 2; : : : ; s). We have
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d �S =

sX
j=1

�
@�

@�j
+

Z
d3r

�
@�

@�j
h+ �

@h

@�j
+ � � �

��
d�j ; (III:2)

where, for simplicity we omitted to write the ~r� and t�dependence of all the quantities and the dots stand for all
the other contributions involving the particle density n and all the 
uxes of both densitites. But

@�

@�j
=

@

@�j
lnTr

�
exp

�Z
d3r

h
��(~r; t)bh(~r ) + � � �

i��
=

= �Tr

(
�%(t; 0)

Z
d3r

"�
@�

@�j

�bh+ �
@bh
@�j

+ � � �

#)
=

= �

Z
d3r

"
h(~r; t)

@

@�j
�(~r; t) + �(~r; t)

*
@ĥ(~r )

@�j

���t++ � � �

#
; (III:3)

d

and then

d �S =

sX
j=1

Z
d3r [�(~r; t)Æh(~r; t) + � � �] ; (III:4)

where

Æh(~r; t) = dh(~r; t)�
D
dbh(~r)jtE ; (III:5)

etc. , with

dh =

sX
j=1

@h

@�j
d�j ; (III:6a)

D
dbhjtE =

sX
j=1

*
@bh
@�j

d�j j t

+
; (III:6b)

etc., and, we recall,D bAjtE = Tr
n bA%(t)o ; (III:7)

for any dynamical variable. Therefore, as already
stated in the main text, the non-exact di�erentials of
Eq. (III.4) are the di�erence between the di�erential of
the macrovariable and the average value of the varia-
tion of the corresponding dynamical variable, as a con-
sequence of the change in the external parameters. Let
us take a simple case for illustration, namely a system
in equilibrium described by the canonical distribution,
and let us perform an in�nitesimal variation dV in the
volume. Then

%eq: = Z�1(T; V;N) exp
n
� bH=kBT

o
; (III:8)

and, according to the results above,

TdS = dU �
D
d bHE

eq:
; (III:9)

whereD
d bHE

eq:
=

*
@ bH
@V

dV

+
eq:

= �pdV ; (III:10)

once we take into account that p = �h@H=@V ieq: =
�@U=@V is the pressure and U the internal energy,

U =
D bHE

eq:
. Hence,

dU = TdS � pdV = �Æq + �Æw ; (III:11)

which is a particular well known form of the �rst law,
with �Æq and �Æw being the nonexact di�erentials associ-
ated to changes in heat and work.

Appendix IV: Additional Consid-
erations on the Informational En-
tropy (or its Entropy or Quasien-
tropy)

According to the results described in subsection
III.4,

� �S(t) = �S(t)� �S(to) = �S(t)� SG(t) =

= Tr f%"(t) [ln [�%(t; 0) + %0"(t)]� ln �%(t; 0)]g :
(IV:1)

But, at this point we can introduce in this Eq. (IV.1)
the result of Eq. (III.5) in Appendix III, and then, after
some algebra it follows that

��S(t) = Tr f%"(t) [lnf[1 +D"(t)] �%(t; 0)g � ln �%(t; 0)]g =

= Tr f%"(t)ln [1 +D"(t)]g =

= Tr

�
%"(t)

�
ln 1 +

Z 1

0

duY (�"ju)e
ubS(t;0)�

Z t

�1

dt0e"(t
0�t)b�(t0; t0 � t)e�ubS(t;0)�� ; (IV:2)
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where

b�(t0; t0 � t) = �
d

dt0
ln �%(t0; t0 � t) : (IV:3)

Eq.(IV.2) is a expression, in principle, quite diÆcult to
calculate along this line (which of course is not practi-
cal at all). But before going into the practical one, we
can derive some simple general considerations: First
we notice that, as the informational entropy is the av-
erage of the operator bS(t; 0) of Eq. (50), the production
of informational entropy is the average of the operatorb�(t; 0) = dbS(t; 0)=dt = 1

}

hbS(t; 0); bHi ; second, if the
latter is null, that is, the informational entropy opera-
tor is conserved, no dissipation follows and %0 in Eq. (3)
is null (this reinforces the fact already stated that re-
laxation processes are contained in this contribution to
the statistical operator, while the coarse-grained part
does not contain dissipative e�ects); third, Eq. (IV.2),

once the integral equation for the operator is solved via
the iterative process, becomes composed of an in�nite
series of terms involving correlations of all orders in
the production-of-informational-entropy operator; this
allows to classify the dissipative processes in �rst, sec-
ond, etc., orders. To illustrate the matter, let us take
the lowest (�rst) order, and also assume that the con-
tribution in Eq. (IV.2) arising out of the contribution
in D" is much smaller than the one from the constant,
i.e. 1, term, and then

� �S(t) '

Z t

�1

dt0e"(t
0�t)Tr fb�(t0; t0 � t)%"(t)g :

(IV:4)
Taking into account the case we have been consider-
ing, that is, as described by the statistical operator of
Eq. (15), after some algebraic manipulations we �nd
that Eq. (IV.4) becomes

c

��S(t) '

Z t

�1

dt0 e"(t
0�t)

Z
d3rTrf[�(~r; t0)

d

dt0
bh(~r; t0 � t)+

+A(~r; t0)
d

dt0
bn(~r; t0 � t) + ~�n(~r; t

0) �
d

dt0
b~In(~r; t0 � t)+

+~�h(~r; t
0) �

d

dt0
b~Ih(~r; t0 � t) +

X
r�2

F [r]
n (~r; t0)


d

dt0
bI [r]n (~r; t0 � t)+

+
X
r�2

F
[r]
h (~r; t)


d

dt0
bI [r]h (~r; t0 � t)]%" (t)g : (IV:5)

But, instead of the time derivatives we can introduce the corresponding equations of motion, and then

� �S(t) �

Z t

�1

dt0 e"(t
0�t)

Z
d3rTrf[�(~r; t0)�

�

�
�div

b~Ih(~r; t0 � t) +
1

i~

hbh(~r; t0 � t); H 0
i
+ � � �

�
%" (t)g ; (IV:6)

Integrating by parts in the space coordinate the contribution containing the divergence of the 
ux and taking

into account that the 
uxes vanish on the system boundaries, we �nd that

��S(t) �

Z t

�1

dt0 e"(t
0�t)

Z
d3rTrf[O�(~r; t0) �

b~Ih(~r; t0 � t)+

+
1

i~

hbh(~r; t0 � t); H 0
i
+ � � �]%" (t)g � 0 ; (IV:7)

a non-negative quantity as shown in [53-54,100].

d

Moreover, we recall, the space and time-dependent

informational-entropy production is the one of Eq. (52),

composed of a contribution that involves the known
form of a product of thermodynamic forces and


uxes plus a term involving the collision operators J .

Eq.(IV.7), we stress once again, is the approximate ex-

pression for the increase of the informational entropy
in the lowest order in the relaxation e�ects.
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The informational-entropy production of Eq. (56),

we recall, satis�es generalized forms of Glansdor�-

Prigogine's evolution and (in)stability criteria, as well

as, in the strictly linear regime, a generalized form of
Prigogine's theorem of minimum entropy production

(the informational one in the present case), results that

are an immediate consequence of the principle of max-

imization of informational entropy, as demonstrated in
reference [54].
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