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In this article we discuss selected topics relevant to the genetics 
of obesity.

Do genes participate in the regulation of 
boDy weight?
Human adiposity resolves complex interactions among genetic, 
developmental, behavioral, and environmental influences (1). 
Evidence for potent genetic contributions to human obesity is 
provided by familial clustering of increased adiposity, includ-
ing a three- to sevenfold increased relative risk (λs) among sib-
lings (2). Genetic factors are currently estimated to account for 
40–70% of the variance in human adiposity (2).

human twin studies
Based on twin studies, the heritability (fraction of the total 
phenotypic variance of a quantitative trait attributable to genes 
in a specified environment) of measures of adiposity is higher 
than for most other complex diseases or quantitative traits. 
Estimates of heritability range from 0.50 to 0.70 for body mass 
index (BMI) (3,4), 0.71 to 0.86 for total and regional body fat 
distribution (5), 0.75 to 0.8 for total body fat (6–8), 0.72 to 0.82 

for skinfold thickness and waist circumference, 0.36 to 0.61 for 
waist–hip ratio (9), 0.59 for cognitive restraint in eating, 0.60 
for emotional eating, and 0.45 for uncontrolled eating (10). The 
high heritability of phenotypes related to increased adiposity 
supports the contribution of genes, but does not indicate the 
number of genes or how those genes interact with modifiable 
environmental factors.

rodent and human monogenic obesities
As with other complex phenotypes, there are rare examples 
of mono/oligogenic causes of obesity that serve as models for 
understanding the complex hormonal and neural networks 
that regulate adiposity, and also provide insight into pathways 
that may account for more common causes of obesity. There 
are over 25 human genetic syndromes associated with obesity 
as a cardinal feature of the condition including Prader Willi, 
Alstrom, Bardet-Biedl, Cohen, Albright hereditary osteodys-
trophy, Borjeson Forssman Lehmann, and MEHMO (11). In 
addition, there are several nonsyndromic monogenic forms 
of obesity in humans due to mutations in LEP, LEPR, MC4R, 
POMC, and PCSK1. Mutations in many of these same genes, or 
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large number of tests performed in the GWAS, P values of 
<5 × 10−7 are necessary to provide a study-wide P < 0.05. These 
GWAS have identified 11 confirmed genomic regions and 
found six new replicated regions for diabetes susceptibility 
within Europeans. Five of the six genes were replicated across 
at least three studies. Implicated regions demonstrated statis-
tical confidence ranging from 1 × 10−12 to 1 × 10−19. Although 
the statistical significance of these loci was great, the risk con-
ferred by the individual variants was modest, with the odds 
ratio ranging from 1.10 to 1.20 for all but one of the loci. The 
exception was transcription factor TCF7L2 which had previ-
ously been implicated in diabetes susceptibility (21), and has 
the highest odds ratio of 1.37 for each T allele and was the 
most statistically significant with P < 1 × 10−48. Of the other 
10 loci implicated in the GWAS, PPARG, KCNJ11, TCF2, and 
WFS1 had been previously implicated in diabetes, but the 
other six genes HHEX-IDE, SLC30A8, CKAL1, CDKN2A-2B, 
IGF2BP2, and FTO were novel genes for diabetes/obesity sus-
ceptibility. Several genes that have been previously implicated 
in diabetes susceptibility such as Calpain 10 were not identi-
fied in the GWAS and may indicate ethnic-specific difference 
or insufficient power even in these large studies. For the five 
loci for which there are data for mechanism of action, all five 
show effects through altered insulin secretion and provide evi-
dence that a substantial portion of the genetic susceptibility 
to T2DM is conveyed through decreased insulin production 
(β-cell genes), with excess insulin resistance conveyed through 
increased adiposity produced through a combination of genes 
and environmental factors.

Through the GWAS of T2DM has come the first GWAS of 
 obesity. While analyzing ~30,000 European adults to identify 
novel genes for T2DM, FTO was found to be associated with 
T2DM, but the effect was eliminated after controlling for BMI. 
FTO was then found to be associated with increased adipos-
ity, independent of diabetes (22). Sixteen percentage of the 
European population carries two copies of the at-risk allele and 
were 1.0 kg/m2 or 2.3 kg heavier than those homozygous for 
the protective alleles (22), with an attributable risk of 22% (23). 
Furthermore, studying 5,000 children at 9 years of age suggests 
that the association is with fat mass with no effect on lean body 
mass (22). The association between FTO and weight and hip 
circumference has also been replicated in Hispanic Americans 
but not African-Americans (24). This region of chromo-
some 16 had been previously implicated in obesity based on 
a case of a syndromic form of obesity characterized by obes-
ity, anisomastia, mental retardation, and dysmorphic features 
associated with an interstitial duplication in this region (25). 
Meta-analysis of nonparametric genome-wide linkage stud-
ies with BMI from 37 studies of 31,000 subjects and >10,000 
families demonstrated only nominal evidence of linkage with 
16q12.2 around FTO, although this was one of the most sig-
nificant findings of the meta-analysis. This result suggests 
that even large linkage studies may be insufficiently powered 
to identify genes with modest risk for obesity susceptibility, 
that genetic heterogeneity may limit the utility of such meta-
 analyses, and/or that association studies may identify different 

other members of their molecular pathways, were first identi-
fied in rodents: Lep, Lepr, Agrp, and Cpe. The phenotypes in 
humans and rodents are remarkably similar in all cases (12,13). 
Additional monogenic causes/modifiers of obesity in rodents 
include mutations in Tub, Atrn, and Mgrn1.

Mouse genetics
There are >244 genes that when altered in the mouse affect 
body weight or adiposity (14). Transgenic and knockout mice 
support roles for a diverse array of genes and pathways (15) in 
the regulation of energy homeostasis.

Chemical mutagenesis using ethylnitrosourea (ENU) has also 
been used to obtain new single gene mutations associated with 
obesity. Currently, many of the obese mice resulting from ENU 
mutagenesis are in the process of being crossed and mapped, 
although no genes have yet been identified using this strategy. 
Additionally, 408 quantitative trait loci (QTL) for obesity and 
body weight have been mapped in mice (14,15). These QTLs 
map to every chromosome except the Y chromosome, with 
highest density and replication in different crosses on chromo-
somes 1, 7, and 11. In general, most of these QTLs have modest 
effects, but a few contribute as much as 20% of the phenotypic 
variance in a cross. Many of these genetically manipulated or 
naturally occurring alleles demonstrate effects of background 
strain, differential response to a high-fat diet, and interac-
tions with each other to modify the phenotype underscoring 
the ability to model some of the genetic complexity of human 
studies in more readily studied rodent models.

linkage and candidate gene associations and recent 
genome-wide association studies
The number of genes implicated in human obesity continues 
to grow. The 253 QTLs for human obesity have been identi-
fied from 61 genome scans (14). Fifty-two of these genomic 
intervals have been replicated in two or more studies. Positive 
association studies have been reported in 127 genes with 22 of 
those genes supported by at least five studies (14).

In the past year, the decrease in the cost of genotyping on 
large, robust single-nucleotide polymorphism genotyping 
platforms, and advances in our understanding of the patterns 
of sequence variation in the human genome provided through 
the International Hap Map Consortium, have led to a flurry 
of reports from genome-wide association studies for complex 
diseases, the first among which those reported were for obes-
ity and type 2 diabetes (T2DM). For T2DM, five independent 
groups of investigators performed genome-wide association 
studies (GWAS), and three groups have collaborated and 
combined their data sets to increase their power (16–20). In 
each study, ~1,000–2,000 cases and controls were used in the 
first stage followed by at least as many subjects in the second 
stage replication study. This two-staged strategy is the optimal 
approach to maximize sensitivity and eliminate false positive 
results from the first stage. Across both stages of all five studies, 
>55,000 subjects were analyzed. The large sample size attained 
through the combined analysis was essential for robust detec-
tion of susceptibility genes with modest effects. Due to the 
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instance of obesity (28). In addition, it seems to be frequently 
forgotten that obese individuals—when weight stable—are 
in precise energy balance, with energy expenditure rates that 
are superimposable on those of never-obese subjects when 
adjusted for the larger metabolic mass of the obese; at such 
equilibrium points, the obese are ingesting calories that are 
perfectly matched to energy expenditure (29). Hence, efforts to 
identify mechanistically relevant differences between obese and 
nonobese individuals by examining them when stable at their 
customary weights are not likely to be revealing. Prospective 
analysis of the relevant phenotypes in the dynamic phase of 
weight gain or characterizations of responses to experimental 
weight perturbations are required.

Some of the genes underlying the physiological pathways 
governing energy expenditure and intake are known (30). 
However, the apparent contribution of many genes of relatively 
small effect on net body mass and composition indicates that 
we have certainly not identified all the relevant genes in either 
pathway.

The genes involved in energy homeostasis will have primary 
effects on:

1. Energy expenditure
2. Energy intake: regulatory, hedonic, reward, executive 

control
3. Partitioning: the proclivity to store calories ingested in 

excess of expenditure as fat, protein, carbohydrate.

Single genes may influence one or more of these, a phenom-
enon that might be predicted from the importance of integrat-
ing these physiologic responses in the organism. An example 
of such protean effects of a single gene is the impact of leptin 
deficiency in the Lepob mouse (31) that shows reduced energy 
expenditure, increased energy intake, and strong partition-
ing of stored calories toward fat. Other genes—such as Mc4r, 
Mch, Cnr1—shown by mouse and/or human genetics to play a 
role in the control of energy homeostasis have effects on both 
energy intake and expenditure, resulting in coordinate effects 
that favor weight loss (Mc4r) or gain (Mch, Npy, Cnr1). These 
reciprocal effects are consistent with evolutionary and physio-
logical considerations that would favor selection of genes with 
reciprocal actions on the major pathways regulating energy 
balance, hence energy  storage (32,33).

what do genetics and natural history suggest regarding 
the most likely major locus of physiology among these 
three processes?
The bias in energy homeostasis would be expected to favor the 
storage of some excess of calories against environmental vicis-
situdes and the cost of gestation and breast-feeding. Some of 
the data supporting this inference are described later. The phys-
ics and biochemistry of energy homeostasis make the choice of 
predominant mechanism for such physiology simple: energy 
intake will be the quantitatively most important means for such 
control. The amount by which energy expenditure can be safely 
lowered in service of favoring weight/fat gain is far less than 

loci than linkage studies due to the inherent power limitations 
and sampling bias of family studies (26).

gene × environment interactions
Clearly, changes in our genes cannot account for the recent 
trends toward increased adiposity. However, what is likely 
genetically determined is the relative rank of adiposity of an 
individual within a population living in a specific environ-
ment. As the environment becomes more, or less, conducive 
to the development of obesity (ease of access to food, need 
for physical exertion to obtain it, putative intrauterine and 
perinatal influences), the median adiposity of the population 
shifts accordingly. The distribution of adiposities represent-
ing the population would not be expected to shift in perfect 
Gaussian symmetry around this median. In other words, as 
a population is exposed to these environmental “pressures,” 
the “tails” of the distribution may not change proportionately. 
Those who are thinnest may show disproportionate resistance 
to upward pressure by the environment, while those who are 
fattest may show greater sensitivity to the upward bias imposed 
by the environment (27). The opposite responses would char-
acterize these tails in the context of environmentally mediated 
restriction of access to food. There are reasonable evolution-
ary arguments for such asymmetries in response, based on the 
likelihood that strong selective pressure in favor of energy effi-
ciency and proclivity in the acquisition and storage of calories 
has prevailed. The phenotypic differences among individuals at 
these extremes of adiposity presumably reflect allelic variation 
at genes that affect energy intake, expenditure, and the chemi-
cal form in which excess calories are stored (“partitioning”).

where in regulatory cascaDes are the critical 
genes liKely to resiDe?
physiology of control of body weight
At one level, the physiology underlying the control of body 
weight (body fat) is quite simple. The degree of balance 
between energy intake and expenditure, over time, determines 
whether body weight will change. In children—especially dur-
ing the periods of rapid somatic growth in infancy and ado-
lescence—positive balance is required to enable deposition of 
new body mass. The arithmetic in all instances is a biological 
version of the first law of thermodynamics: energy in − energy 
out = delta body mass. The average adult ingests about 700,000 
kcal/year. Hence, even small imbalances in this relationship 
can lead to large changes in body mass. For example, assum-
ing an energy equivalence of 6,000 kcal/kg of body weight, a 
3% difference between intake and expenditure will result in a 
3.5 kg weight change in 1 year. These effects are mitigated in 
the upward direction by the gain of metabolic mass, and in 
the downward direction by a reduction in energy expenditure 
per unit of metabolic mass. A salient point of this calculation 
is the substantial effect on body mass of sustained, very small 
differences between intake and expenditure. Neither energy 
intake nor expenditure in free-living humans can be measured 
to these tolerances, making it difficult to directly quantify the 
respective contributions of these mechanisms to any specific 
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expenditure are invoked to “defend” body fat. This threshold 
determines the physiological “floor” for each individual’s body 
fat. The strength of the compensatory responses is equal in 
obese and never-obese individuals, indicating that both types 
are appropriately and effectively defending minimum amounts 
of body fat that are determined by these genetic and devel-
opmental forces (42). The response to reductions of fat mass 
below the threshold is powerful, involves effects on both intake 
and expenditure, and accounts for the high recidivism to initial 
weight of normal weight or obese individuals who lose weight 
due to illness or therapeutic interventions. The defense against 
gain in body fat is weaker due to presumed lower evolution-
ary pressure to develop such responses, and, in fact, the sur-
vival and reproductive advantages of carrying some additional 
 adipose tissue (42,43).

In studies in which mono- and dizygous twins pairs have 
been either overfed for up to 6 weeks or put into negative energy 
balance via an exercise regime, the resulting changes in body 
weight are highly correlated within twin pairs, but range widely 
among these pairs (44). The strength of the inter-twin correla-
tions is stronger for weight loss than for gain, suggesting tighter 
biological control of the response to the hypocaloric state.

are defenses against movement of weight in both 
directions mediated by reciprocal actions/effects of the 
same genes, the actions of direction-specific genes, 
or a combination of both?
This is an important basic question in molecular physiology, 
but also has implications for the development of effective 
therapeutic interventions (for both obesity and cachexia) and, 
perhaps, for predicting specific biologic responses of individu-
als to weight perturbation. Genes protecting against exces-
sive weight gain seem most likely to have been selected for as 
a mechanism for preventing the organism from experiencing 
incessant and possibly overwhelming drives to eat—interrupt-
ing other behaviors critical to survival, for example reproduc-
tion and attention to offspring. Short-to-intermediate satiety 
signals, such as those emanating from the gut (GLP1, PYY, 
CCK, ghrelin), mediate meal-to-meal variation in frequency 
and size. Molecules sensitive to longer-term changes in energy 
stores (leptin, insulin) have effects that are to some extent pro-
portional to their circulating concentrations, but the responses 
to their lowering (reflecting reduced energy intake or stores) 
are stronger than those to their elevation. Cell bodies of the 
hypothalamus, brain stem, and rostral projections express 
receptors for these circulating peptides, as well as endogenous 
neuropeptides with powerful orexigenic (NPY/AGRP, MCH) 
and anorexigenic (POMC) effects. These neuropeptides and 
circuits presumably underlie the region-specific effects of abla-
tive and stimulatory manipulation of the hypothalamus. We 
have argued elsewhere that in the basal/weight steady state, the 
catabolic “tone” of this regulatory system is somewhat greater 
than the anabolic tone due to ambient levels of leptin and insu-
lin (45). Caloric restriction suppresses catabolic and increases 
anabolic tone, the strength and speed of response enhanced 
by the fact that both pathways are reciprocally affected. The 

the ease with which calorie intake can be increased for the same 
purpose. A few thousand extra calories of intake can be read-
ily achieved, whereas reduction of energy expenditure—neces-
sarily comparatively mild—to achieve this same end would, at 
best, have to be imposed for a much longer period of time with 
possible adverse collateral impact on muscle and other aspects 
of metabolic performance. The use of “partitioning” —i.e., the 
preferential shifting of calories toward fat—would deprive the 
organism of critical lean mass in muscle and the brain. This 
partitioning phenotype is, in fact, seen in pair-fed Lepob mice. 
Based on such arguments, the main genes with major impact 
on facultative energy balance are likely to have their largest, 
though not necessarily exclusive, effects on energy intake.

are the genes regulating responses to nutrient 
eXcess the saMe as those MeDiating responses to 
caloric Deficiency?
what does the physiology of response to over- or 
underfeeding indicate about this question and the nature 
of participating genes?
This is a very important question from both a basic physiologi-
cal perspective as well as the framework for the design of inter-
vention strategies. There is general acceptance of the idea that 
movement of body weight (fat) in either direction is to some 
extent opposed by physiological adjustments whose apparent 
purpose is to prevent excessive gain or loss of body fat. Studies 
in rodents, nonhuman primates, and humans support this gen-
eral idea, though the magnitude and nature of the responses 
are contested (34–37). Assuming that the evolutionary history 
of our mammalian predecessors involved greater exposure 
to environments in which available calories were more often 
restricted than in excess, and that considerable physical effort 
was required to access such calories, it would seem likely that 
selection would favor genes conserving energy. From a physi-
ological perspective this certainly seems to be the case in mod-
ern humans, who have little difficulty gaining body fat when 
exposed to a predisposing environment, but who experience 
great difficulty in the maintenance of reduced body weights. 
The current increase in the prevalence of obesity proves the 
point but does not, of course, define the underlying molecular 
physiology.

Elsewhere we have suggested that the central nervous sys-
tems subserving the regulation of energy balance comprise a 
threshold-like mechanism for the assessment of humoral and 
other peripheral signals that denominate the amount of adi-
pose tissue and any acute changes in that mass (38). Leptin 
is a major signal in this pathway, but insulin, fatty acids, and 
various gut hormones also play a role in these processes that 
are mediated in part via neurons in the hypothalamus and 
brain stem (39–41). Genes that control the development of 
the constituent neurons, their connections, and the expres-
sion of neuropeptides (e.g., NPY/AGRP, POMC, MCH) and 
other neuromediators (e.g., endocannabinoids) and their 
cognate receptors—interacting with developmental proc-
esses—determine the threshold for signals of body fat below 
which increases in energy intake and reductions in energy 
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use of endophenotypes should help
An important aspect to addressing this problem is a refine-
ment of the phenotype. Ideally, phenotypes would include total 
caloric intake, composition of food intake, ingestive behavior, 
taste preferences, tasting ability, hedonic characterizations of 
food ingestion, body weight, BMI, body composition, fat dis-
tribution, energy expenditure, energy expenditure in response 
to diet challenges, metabolic profiles, and functional imag-
ing to understand the neurological response to feeding cues. 
The cost of such intensive endophenotyping must ultimately 
be balanced against the potentially large numbers of subjects 
 necessary to statistically demonstrate association.

study the cell biology and molecular genetics of 
responses to perturbations of body weight—naturally 
occurring and drug-induced
An additional strategy involves intentionally perturbing the 
system to determine the differential response to the perturba-
tion. This approach was used in the weight perturbation stud-
ies of twins mentioned earlier. An important clinical example 
of this is the weight gain among schizophrenics in response 
to the second generation antipsychotics (49). By focusing on a 
single drug and differential response among nonobese patients 
to an equivalent pharmacological intervention, researchers can 
identify a subset of subjects predisposed to substantial weight 
gain with concomitant insulin resistance, diabetes, and lipid 
abnormalities. Early studies in this area have suggested that 
genetic variation at the 5-hydroxytryptamine 2C and adrener-
gic alpha 2a receptor genes may play a role in the differential 
responses to antipsychotic treatment (50). Other challenges 
can be studied such as differential responses to overfeeding, 
or “doses” of exercise (44), changes in diet palatability/com-
position, etc. Although difficult to accomplish on a large scale, 
elimination of environmental variability can be achieved by 
placing subjects in a uniform environment such as an in-pa-
tient setting for short periods of time and may be most use-
ful in provocative studies such as those using antipsychotics. 
Quantification of relevant social networks (51) may enable 
control for some important environmental influences.

study the effects of genes prospectively in subjects 
selected by genotype, prior to onset of obesity or other 
relevant endophenotypes
Many novel genes and alleles have been and will continue to 
be identified in the GWAS. Follow-up of these initial leads 
will require replication in additional populations. In addi-
tion, studies of other ethnic groups, African-Americans spe-
cifically, will be used in some instances to refine the genomic 
intervals containing the disease-causing variations due to their 
smaller regions of linkage disequilibrium. Additionally, it will 
be necessary to analyze association between these genetic vari-
ants and multiple endophenotypes, longitudinally across the 
lifespan. Longitudinal and/or prospective data will be par-
ticularly important to enable understanding of the primary 
effects of these variants rather than the secondary and terti-
ary effects occurring once obesity is established. Once a small 

response to weight loss, in this formulation, is stronger than 
that to weight gain because weight loss lowers the tonically 
increased anorexic tone, while driving orexigenic signals 
upward. The response to weight gain is weaker because ano-
rexic signals are already activated in the basal state and orex-
igenic tone is low in the basal state and stays that way with 
weight gain. This formulation would suggest that separate 
genes—though necessarily acting in coordinate fashion—have 
primary roles in responses to weight gain or loss.

how to finD anD Vet releVant genes in huMans
example of t2DM
Given the foundation of previously defined single gene muta-
tions, linkage studies, and genes/regions identified by asso-
ciation studies, what is the optimal strategy to identify and 
validate genes relevant to the pathogenesis and maintenance of 
obesity? The goal of identifying such genetic susceptibilities is 
both to stratify risk for disease development and to individual-
ize therapeutic intervention, as well as to identify molecular 
mechanisms for energy homeostasis that can be ultimately 
used as targets for intervention. The elucidation of the genetic 
basis for obesity in humans has many parallels to that of the 
genetic basis for T2DM. Susceptibility to T2DM is mediated 
by effects on beta cell mass, beta cell function and insulin 
secretion, and insulin resistance (which is affected by adipos-
ity as well as fat distribution). In addition to genetic complex-
ity, there are developmental determinants that are imposed in 
part by maternal effects during gestation and early postnatal 
environment, as well as the timing of development of obesity. 
To date, the preponderance of genes identified for T2DM sus-
ceptibility have been those presumably affecting beta cell mass 
and function. The genetics of increased adiposity are likely to 
be similar but probably even more complicated.

why is finding obesity genes harder?
The phenotype of increased adiposity is much less specific 
than T2DM, and the mechanisms governing the excess stor-
age of calories relate to the three endophenotypes listed ear-
lier. The mechanisms governing these processes are complex 
and encompass the neurological circuits governing myriad 
aspect of ingestive behaviors, energy expenditure, and their 
interactions with social contexts. Similar to diabetes, there are 
likely to be intrauterine effects on the fetus that will have long-
standing impact on the neural circuitry underlying control of 
energy homeostasis, the number and location of adipocytes, 
and genetic and metabolic imprinting of molecules participat-
ing in these processes (46–48). The phenotype most commonly 
used to assess obesity, the BMI, is actually a composite of fat 
and nonfat mass which can reflect varying degrees of adiposity 
among individuals even with the same BMI. Finally, it is likely 
that the genetics of obesity are complicated and heterogeneous. 
There may be genetic heterogeneity among ethnic groups, ages, 
and sexes. There are also likely to be complex gene by gene, 
gene by environment, and gene by development interactions 
that could involve epigenetics and copy number variations that 
have heretofore been little studied in relationship to obesity.
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shows genetic variants in the FTO gene are associated with obesity-
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hybridization and microsatellites to 16q13 (D16S419–D16S503). J Clin 
Endocrinol Metab 2000;85:3396–3401.

26. Sauders CL, Chiodini BD, Sham P et al. Meta-analysis of genome-wide 
linkage studies in BMI and obesity. Obesity 2007;15:2263–2275.

27. Flegal KM, Troiano RP. Changes in the distribution of body mass index 
of adults and children in the US population. Int J Obes Relat Metab 
Disord 2000;24:807–818.
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1997;337:396–407.
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resulting from altered body weight. N Engl J Med 1995;332:621–628.
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number of these potentially pathogenic variants are identified 
and validated, in vitro and in vivo studies in tissue culture and 
animal models will be necessary to prove causality. We have 
already performed similar experiments and have created a 
mouse model to examine the Gln(223)Arg genetic variant in 
LEPR (52) and propose using similar strategies as new genes 
are identified.

In addition to the strategies of linkage and GWAS, analysis of 
copy number variation in syndromic and nonsyndromic forms 
of obesity will provide novel genes and regions for analysis. We 
are only now beginning to characterize normal copy number 
variation (53,54), but the research tools have been developed 
to analyze copy number variation in the same data sets that 
were used to generate genotypes for the GWAS. Analysis of 
these copy number variants may identify additional genetic 
susceptibilities for increased adiposity. Additionally, although 
rarer, larger genomic deletions or duplications incorporating 
multiple contiguous genes are likely to be a common cause of 
syndromic obesity and can be readily detected by array com-
parative genomic hybridization and/or SNP oligonucleotide 
microarray analysis (55,56). Identification of specific genotypes 
and genes associated with these deletions/duplications may be 
extremely useful in identifying genes and pathways important 
in energy homeostasis and ingestive behavior and will be ame-
nable to intensive endophenotypic characterization to eludi-
cate the mechanisms mediating contributions to adiposity.

Finally, we will need to develop sophisticated, complex 
algorithms for studying gene-by-gene interactions, gene net-
works, and integration of inherited genetic variation with gene 
expression profiles, metabolite profiles, and multiple endophe-
notypes. Such analyses will require large numbers of subjects, 
but as the data from multiple GWAS become publicly available 
and as the cost of genotyping DNA sequencing continues to 
decrease, and computing power to increase, such experiments 
will be feasible.
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