Considering the Dynamic in Knowledge Based
Configuration

Ingo Kreuz'

Abstract. Learning from previous solutions could be a key for
improving both the solution process and the quality of the solution.
Unfortunately knowledge (i.e. components) in technical
configuration domains changes quickly and learning brings with it
a certain amount of conservatism. For example a component that
was learned to be good for a certain task should no longer be
chosen, if a newer version appears on the market. On the other
hand a certain amount of conservatism is often desired since
uncontrolled innovation is as a rule also detrimental, i.e. the newer
component mentioned above is not obviously better.

This article presents Relevant Knowledge First (RKF) as a
method and heuristic respectively. It tries to find a good
compromise between conservatism and innovation based on
statistical values and aging of knowledge.

1 INTRODUCTION

Technical markets including computers, multimedia or digital
cameras change very quickly. Other technical domains use devices
from these fast changing domains, such as cars, trains and
airplanes. If one tries to put up a configuration system in these
domains he or she will be confronted with the problem of fast
changing facts in the knowledge bases. As a rule it is difficult to
identify knowledge that is no longer necessary, so it is normally
impossible to delete such knowledge. As a consequence the
knowledge bases become larger and larger, thus slowing down the
configuration processes.

Looking at the field of cognitive psychology we can get an idea
of how human experts handle large amounts of quickly changing
knowledge: We seem to be able to concentrate on actual tasks, we
can learn from doing something successfully and repeatedly, and
above all we are able to forget things that are no longer relevant —
without deleting them.

In his book [1] Anderson calls the “concentration” the
“activation of a memory trace”. It indicates how accessible
information is for a current problem, i.e. how fast and with what
probability the information can be accessed. Every time we use a
memory trace its accessibility increases a little. If a piece of
information is needed frequently, its action potential increases
what we called “/earning” above. The relationship between the
quantity of exercise and the access efficiency (e.g. measured as
reaction time) results in a power function which is known in
cognitive psychology terms as the power law of learning. The
learning of information counteracts forgetting: If information is not

I DaimlerChrysler AG, Research and Technology, HPC T721, D-70546
Stuttgart, Germany, email: ingo.kreuz@daimlerchrysler.com

used over a long period of time, its action potential becomes less.
Experiments show that forgetting can also be described as a power
function, which amongst other things could be explained by the
decaying processes of the neural connections.

The concentration on a given task, the learning and forgetting
have lead us to a method for assessing the relevance of
information: RKF (Relevant Knowledge First) is a heuristic or
method for the processing of knowledge bases in the field of
configuration. It identifies the relevance of information for a given
problem thereby simulating some kind of learning

e to speed up and to improve the solution process
e and the solution’s quality

and forgetting
e to keep the search space small

e and to give “newer” knowledge the chance to prove its
worth, avoiding conservatism.

Note: We do not want to simulate the human model described by
Anderson. It simply served as a good starting point for the
development of RKF. What we want is a measurement for the
relevance of information in knowledge bases for a given task.
Though the investigations of cognitive psychology gave us
valuable ideas, we will leave this field now and introduce our
measurement for relevance.

2 PRINCIPLE OF RKF

We recognized that it is useful to assess knowledge during a
knowledge-based search process in order to be able to focus on an
actual solution process. With this even large knowledge bases can
be scanned efficiently. For this assessment there are two deciding
factors which correspond to the antagonism between conservatism
and innovation: On one hand the knowledge is very probably
useful again if it has already been useful for similar tasks. On the
other hand new information should be preferred, in order to obtain
innovative solutions and avoid conservatism. For the assessment
we use “relevance” which is calculated by age and usefulness of
knowledge.

With RKF (Relevant Knowledge First) the search for solutions
is supported by relevant knowledge being processed preferentially.
When knowledge is selected during a solution process, e.g. in order
to bring an object into the solution set or to check its consistency,
the relevance for all knowledge in question is calculated and one of

the most relevant objects is used. For subsequent search processes
the relevance is increased for successfully used information.

In order to avoid premature convergence on “bad” results, the
most relevant knowledge is not always used. Instead of this only
“one of the most relevant” pieces used. This can be achieved with
the help of a random generator, whereby the probability for one
choice should be proportional to the relevance of the knowledge.

The relevance of a piece of information i is calculated as
functions of its age a;,. (forget) and its usefulness u;,. (train) for a
given task class tc, whereby usefulness compensates for age. The
constant ¢ is used as a domain dependent weighting factor between
usefulness and age for the relevance. The second constant m serves
to synchronize the measurements used for usefulness and time.

relevance(a; ., u;,) = c - forget(m -a;,) + (I-c) - train(u;,.) (1)

The power functions mentioned in the introduction show desirable
characteristics for knowledge bases in technical domains. They
were therefore a starting point for the “train” and “forget”
functions used in our field, which are introduced in sections 4.1
and 4.2.

For each task class the usefulness of information is separately
stored so that the relevance for each task class is calculated
independently. This method more or less corresponds to the
“activation level of memory traces in certain tasks” functions” or in
other words a “concentration on a current task”. The independent
consideration of different tasks prevents conflicting tasks making
training of the knowledge base for good solutions impossible. For
finding task classes there are two indicators:

The task classes at first result from the combinations of various
global optimization objectives, because conflicting objectives
would make a knowledge base training for RKF impossible.
Therefore if for example the optimization objectives “price” and
“performance” are decisive in one domain, the task class can be
automatically generated as a result of the combinations of price and
performance together with the objectives “high”, “low” and “don’t
care”, e.g. “low price / high performance”, “don’t care the price /
high performance” etc.

As a second indicator task classes can be used, which emerge
directly from the respective domain. These are for example target
groups of customers for configuration systems. The task classes
that has been found automatically can therefore be further refined.

As soon as a solution is found, all information which was useful
for finding the solution, i.e. all used information, is upvalued. To
do this, the solution is assessed and for all used information in the
knowledge base its usefulness is increased in relation to this
assessment. In this way, information which has lead to good results
becomes useful more quickly. The way in which “usefulness”
should precisely be defined, depends on the domain. In section 3,
we briefly introduce two of our suggested usefulness measurements
which can be applied in technical domains.

Information which was seldom or barely useful, becomes
irrelevant bit by bit on the basis of its aging. The measurement
employed for age also depends on the domain. Section 3 gives
some suggestions for the calculation of age.

In order to find good solutions, RKF is used in an optimization
loop: As soon as a solution is found it is assessed, the usefulness of
the information concerned is increased and the solution process
restarts. The random generator that helps in selecting one of the

most relevant pieces of information, provides the solutions being
different. Due to the repeated increase of usefulness that is based
on the assessment the optimization loop converges to a global
optimum. The loop can be broken as soon as a “good enough”
solution has been found or after a given time limit.

Figure 1 shows the knowledge based search algorithm using
RKF:

Inputs:
task class,

ar———> demands on the solution
g

g knowledgebased search

g RKEF: relevant information is

E preferred

z

=]

solution found?

assess solution

increase usefulness for all
information used

Figure 1. Knowledge based solution process using RKF

3 MEASUREMENTS AND DEFINITIONS FOR
THE DETERMINATION OF RELEVANCE

With RKF the relevance of knowledge is calculated as a function
of age (time) and usefulness. The measurements for time and
usefulness presented in this section serve as a basis for our RKF
investigations. In isolated cases they can be further adapted to the
area of applicability by which RKF is to be employed

It should be pointed out that relevance of knowledge is only
comparable if the same measurements for usefulness and time have
been used. Even though several measurements could be applied at
the same time. For example a different usefulness measurement can
be applied to control knowledge rather than to factual knowledge,
in case the distinction between the types of knowledge is made in
the knowledge base and the relevance of knowledge of these types
is therefore never compared with the other.

Firstly a measurement was sought for the age of information i,
which permits comparisons such as “older” and “younger”. A
relative measurement is therefore sufficient. The age a; of a piece of
information is calculated, as usual, from the difference between the
point in time when the information was saved t,; and the current
time t:

a;=t—1y; 2

Both of the following time measurements have been used in our
experiments:

e RTC (Real Time Clock): The “real” time of a computer
system serves as the current time for the knowledge base.

e NOR (Number of Runs): The number of knowledge-based
search processes held up to this point in the knowledge base
serves as “actual time”.

Both measurements have different characteristics. For example
using RTC knowledge grows old, even if the knowledge base is not
used. If this behavior is not suitable for a domain NOR should be
used. An advantage of RTC however is that the semantics of
“outdated knowledge” is clear i.e. a system’s user can, by means of
real time, simply decide on the basis of his or her own time
feelings.

For the usefulness of information in a knowledge base different
definitions can be suitable according to the domain. We have used
the following definitions for usefulness measurements:.

e IPS (Information was Part of Solution): For each piece of
information it is counted how often it was used to help
finding solutions. To take the quality of the solutions into
consideration the steps are weighted corresponding to the
solution’s assessment.

e NAS (Number of Accesses during Search): This
measurement for usefulness also adds up the assessments
for the solutions for each piece of information. However in
addition to this, the number of times the information in the
respective solution process has been accessed is also taken
into account.

IPS and NAS both result in a very similar usefulness measurement.
The difference is that

e with IPS you are prevented from making a piece of
information useful more quickly as a consequence of
multiple sub solutions existing in a solution.

e and with NAS precisely this “becoming useful more
quickly” will be emphasized.

4 A FUNCTION FOR CALCULATING
RELEVANCE

The relevance of information is calculated as a function of its age
and usefulness, whereby the age counteracts the usefulness.

In this section the effects on relevance of the “becoming useful”
and “aging” processes are separately considered and corresponding
functions are stated. This leads us on to a formula for the
calculation of relevance which combines both aspects.

4.1 Function for the aging of knowledge

We will now introduce the function forget(a; ;) which we propose
for technical domains. As a starting point we considered the power
law of forgetting (see Introduction). The reason for this is that in
technical domains similar characteristics are desirable for the

development of relevance dependent on the aging of knowledge as
in the human brain:

e New knowledge has maximum relevance and is much more
relevant than old knowledge.

e Knowledge loses its relevance faster in the beginning. For
example after 10 years one week either way will no longer
have a great effect on the relevance of technical knowledge.

e The relevance only approaches zero whereas knowledge is
never really irrelevant: the access just lasts longer. Real
forgetting, i.e. the irreversible erasure of information is not
desirable at first.

To make matters simpler the following assumptions were made
compared with the function of the power law of forgetting.

e Reduction in the range of values to [0, 1]: The value for
relevance should begin at 100% and approach 0%.

e A reciprocal function shifted to the left by 1 describes the
desired effects just as well, such as an exponential function,
is however more efficient for computers to calculate.

The first assumption is sensible because many parameters of the
Cognitive Psychology are not available in the moment of storing
the knowledge. For example in [15] it is described how the start
relevance depends on the estimation of the importance of the
information. We must assume however that all information in a
knowledge base is from the same importance because a computer
cannot make ‘“emotional” assessments. The aforementioned
“desired” characteristics remain, though.

The following definition describes the forget-function which we
applied:

Definition 1:

The process of gradual forgetting information i in a
knowledge base in technical domains can be described by
the following function:

1
Sorget(a;y): rel; g = a1 3)

With

Qi € [0,09f age of the information i in the task “4)
class tc

the part of relevance that is based on)

age for the task class tc

rel;a.€ 710,17

Note: As time can be different for different task classes (e.g. when
using NOR, number of runs, as the measurement for time) age can
be dependent on the task classes. In the above definition this is
indicated by the index tc.

4.2 Function for “knowledge training”

The Exponential Learning Function shows characteristics which
seem to be adequate in technical domains:

e [f information is used often, it seems to be important. The
access time should be reduced, that’s to say the relevance
should be increased.

e The first accesses make information relevant more quickly
than later accesses. If for example the same component is
used for 10000 configuration processes, ten further accesses
no longer have particular importance. Experts have thus
learned this component is useful and will try it first.

e Relevance approaches any or the maximum relevance.

We reduce the range of values again to [0, 1] and use the reciprocal
function shifted left by one as before in the forget function.

The following definition describes the train function we have
used:

Definition 2:

The effect of the “training” of an information i in a
knowledge base in technical domains can be described by
the following function:

. 1
train(u;,): rel; .. =1 - T 6)
With
Ui € [0,09f Usefulness of information i for the @)
task class tc
rel; . € [0,1] part of relevance that is based on ®)

usefulness for the task class tc

4.3 Relevance of knowledge

In equation (1) the relevance function for an information i results
from the addition of the forget and the train function. With
equations (3) and (6), the following definition results

Definition 3:

The relevance of information in a knowledge base is
described by the following function:

relevance(a;t,, u;,,) = ¢

. m Qe+ 1
+ (1-¢) .(1 ﬁ) [0, 1])]
With
Qi € [0, oof Age of information i for a given task (10)
class tc
Ui € [0, oof Usefulness of information i for a given (11)
task class tc
ce 0, 1] Constant for adjusting the weighting of (12)
usefulness and age
m Constant for adjusting the (13)

measurement of usefulness and the
measurement of time used

The values can be interpreted as follows:

Table 1. interpretation of the relevance values.

0% toc | “normal” values for relevance (the range of values of the

relevance function is almost always in this range).

c Start value of relevance for new knowledge and threshold
value for old but often useful knowledge.

cto 100% | Above-average relevance, which can only be achieved for a
short period of time, if new knowledge is frequently useful

right at the beginning.

As already mentioned, the constants ¢ and m serve to weight the
forget and train functions relative to each other. This is necessary
for the following:

e The time and relevance measurements used must be
adjusted to each other

e Depending on the domain age and usefulness can be
varyingly important for the solution process

The constant ¢ often can be set to 50% (c= 0.5) to get the same
weighting for forget and train.
The following figure shows the relevance function from

i ith =0. =" .
equation (9) with constants ¢=0.5 and m: contour line ¢ = 0.5

Relevance ri,

10 usefulness
Uige

Relevance function with ¢=0.5 and m=1

Figure 2.

As the values for usefulness and age increase to the same extent the
relevance stays at ¢=50% (see Contour line ¢=0.5 in the figure). If
the usefulness grows faster, relevance of over ¢ and up to 100%
(“behind” and “left” of the contour line c) can be achieved.
Correspondingly the relevance slowly approaches 0% when
usefulness grows slower in relation to age.

5 EXAMPLE OF APPLICATION

Before starting a configuration with RKF the objective
specifications have to be defined. This happens by selecting a root
(possibly also the root of a sub-tree) in the compositional hierarchy
and a set of requirements which should be met by the
configuration: e.g. functionality, components, parameters or

properties which a configuration should definitely have (e.g. colour
“red”).

Besides the aforementioned requirements, optimization criteria are
typically also part of the objective specification. For example it
would be desirable to configure the cheapest, most lightweight or
fastest system possible. With RKF the optimization criteria are
implicated by the selected task class which is also a component of
the objective specification.

Starting from the selected root node of the objective
specification it is attempted to recursively define all sub-
components from the compositional hierarchy (and in other ways
connected components). To this each component is specialized by
means of the taxonomic hierarchy until a suitable and constructable
part (leaf concept that can be instantiated) has been identified. For
every component its parameters also have to be defined. RKF
supports a depth first search in the taxonomic hierarchy whereby
such leaf concepts are preferred which have a high relevance with
respect to the selected task class. The determination of the range of
values in the compositional hierarchy i.e. how often a component
should be used as a sub-component can be supported by the
relevance of specific values with RKF.

After some or even all configuration steps i.e. after every
selection and setting of parameters of a (sub-) component, the
consistency of the (sub) system must be guaranteed. If a conflict

LaserPrinter

n.2] 1.1 [1.1]

has occurred, it must be resolved e.g. by rejecting a selected
component or a set parameter (backtracking). The actual
configuration methods differ mostly in how they select components
and resolve conflicts (sequence of selecting components,
calculation algorithms and heuristics).

The provisional result is a parts list with a structure
corresponding to the compositional hierarchy which describes all
components together with their parameters, that belong to the
configuration (solution). This solution is assessed.

Now the learning phase follows: The usefulness of all included
specializations in the taxonomic hierarchy 1is increased
corresponding to the solution’s assessment. Equally the usefulness
of specific values for the parameters of the components and the
compositional relations are increased.

In the case that the configuration found is still not good enough
relating to the above assessment, the configuration can be repeated
in an optimization loop.

Our first configuration attempt with RKF has been carried out in
a relatively simple domain: A PC needs to be configured using
RKF from its individual components such as the drives,
mainboard, memory etc. To this a depth first search and
chronological backtracking has been implemented which is
controlled by relevance. Figure 3 shows the compositional
hierarchy of this domain.

BigTower MidiTower
300W 200W
$130,00 $45,00
-1 [1..10] [1..6]

| Screen | | Chassis | |Keyboard| | Mouse |

Drive | Drive

Mainboard

[~]
A consists of

one to 10

[1..10] components of

0.2\ (.4 concept B
: [0.2 [1.1 [1..2] [0..1] [0..1] [0..1] | B

SCSI- Graphic- Network- Sound-
| Memory | | Controller | | Processor I | Controller | | Controller | | Controller | | Modem |

Figure 3: compositional hierarchy of the domain in our example

As a task specification one of these concepts are to be chosen. As a
rule this is the concept “PC”. Examples of task classes are “Home-
PC”, CAD-PC” and “Server-PC”.

Figure 4 shows part of the taxonomy of the example domain.
The above concepts are ancestor nodes of those concepts

connected with lines below. For better clarity the alternatives of
leaf concepts have been represented as a list one below the other
(without further lines).

PC-
Component

Memory

SCSI-Drive

EIDE-Drive
EIDE-
Harddisk

ISDRAM1OO | SDRAM133 | I Floppy-Disk

SCSI-CD-
ROM

EIDE-CD-
ROM

Atapi- | | SCSI- || SCsl- ” SCSl- |

DVD Harddisk CD-ROM DVD
I I I I
» r SD32-100 SD64-133 Mitsumi DD IDE13 NEC-CD NEC-DVD SCSI9 TEAC-SCD |[Pioneer-svD
B2 32MB 64MB 35" 13,6GB 9ms IDE 40x IDE 8/40x 9GB 8,5ms SCsI32x || scsl 10/40x
o $44,00 $75,00 $15,00 $175,00 $44,00 $94,50 $250,00 $67,50 $135,00
(O]
O SD64-100 SD128-133 TEAC DD IDE20 Mitsumi-CD | [Pioneer-DVD SCSI18 NEC-SCD
c 64MB 128MB 35" 20GB 9ms IDE 48x IDE 10/40x 18GB 6ms SCSI 40x
o $72,50 $142,00 $16,50 $195,00 $47,50 $125,00 $675 $85,00
O\ oz SD256-133 IDE25 Creative-CD Hitachi SCSI36 Toshiba-SCD
1 128MB 256MB 25GB 8,5ms IDE 52x IDE 8/40x 36GB 7,5ms SCSI 40x
Y— $136,50 $385,00 $230,00 $53,00 $117,50 $872,00 $85,00
©
@ | | sp2s6-100 IDE37 Toshiba-CD Plextor-SCD
| L 256MB 37GB 9ms IDE 48x SCSI 40x
$325,00 $345,00 $55,00 $89,00

Figure 4. part of the taxonomy of the PC-domain. The thickness of the lines indicate the relevance for the task class “Home-PC”

The thickness of the lines indicate the relevance for the task class
“Home PC” i.c. this form of PC most often contains a SD64-100
memory module, a Mitsumi DD-Disc drive, an IDE13- hard drive

EIDE- EIDE- EIDE-
Harddisk Harddisk Harddisk

and a NEC-CD drive. The figure also shows how RKF supports the BREE GIE SET3 DET3
depth first search in this hierarchy: Paths of high relevance develop B i st RS o
because whenever a daughter concept was useful, the respective "DE20 TDE0 DE20 DEZ0
father concept was also useful. The concept "PC-Component” has A e e A
very minor relevance because it is not found in the compositional DEZS DE25 DEZS DE25
hierarchy. Instead of this the search always begins with a more oo E> Beooe” E> oo E:> oo
specific concept (in the “drive” and “memory” examples). In other DE37 DE37 DE3 DE37
task classes of the same domain, the relevance can be completely A A s A A s
different. For example the relevance of the SCSI hard discs for the — — —
“Server PC” task class is much higher than that of the EIDE hard 2265 8ms 2265 8ms 2265 8ms 2265 8ms
disks. W% $175,00 $175,00 $175,00
The flexibility of RKF turns up as soon as a new component 2765 oms 2768 oms 2765 oms 2765 oms
$315,00 $315,00 $315,00 $315,00

appears. Because of its low age it has a high relevance at the
beginning despite its small usefulness. In the following example
two new hard disk models (IDE22 and IDE27) are added to the
taxonomy of the knowledge base.

Figure 5. alteration of relevance over time for the task class “Home PC”
after adding two new models of hard disks

The thickness of the lines in Figure 5 again represents the
relevance of the individual concepts. The two new hard disks have
a high relevance at the start because of their low age. Over the time
period tl to t3, the hard disk IDE 22 proves its worth for the
“Home PC” task class and bit by bit replaces the hard disk IDE13
which until now was the most relevant, because of its aging
without new usefulness. The second new hard disk does not prove
its worth and loses its relevance quickly because of aging.
Incidentally the relevance of the father concept “EIDE hard
disk” does not change if new concepts are added. That means that
for the “Home PC” task class no “relevance trail” will develop for
the SCSI hard disks, only due to the fact that a new disk has been
added there. RKF reacts conservatively here: It is very unlikely that

RKF would find the new SCSI-hard disk without other heuristics
(e.g. user-interaction). On the other hand RKF is flexible enough to
adapt to market trends: If it suddenly became “modern” to have
SCSI drives within the task class “Home PC”, the relevance of
these concepts would increase, because of the new demand and
finally because of good overall rating. The relevance of the EIDE
drives would become less because of aging.

6 SUMMARY AND OUTLOOK

The development of Relevant Knowledge First (RKF) was
influenced by the effects of cognitive psychology. First of all age
and usefulness were defined for use in RKF, and a function has
been specified, which calculates the relevance of information from
both these values. The specific characteristic of this method is that
knowledge can not only be learnt, but also be “forgotten” without
deleting information. This is always an advantage, if the
information in a knowledge base is subjected to change.
Knowledge bases in technical domains are usually dynamic due to
innovations. As an example, the configuration in a PC-domain was
presented using RKF. In this example first positive results of this
method could ascertained.

Despite the positive findings we have already made using RKF
the following questions need to be discussed:

One significant problem is the initialization of the usefulness for
the different task classes: Can the initialization be performed
automatically? I would say it depends on the way the assessment of
the solutions works: If an assessment could be found, that can be
calculated without any user interaction this could be achieved. In
this case we seem to find a machine that can tell us the future.
Because no such oracle has been found yet it might help to have a
look at past configuration results. For example PCs sold before the
configuration system for PCs was installed.

On the other hand this reminds us of neural networks during
their training phase. One could say that the learning part of RKF
has some similarity, whereas RKF additionally takes aging
particularly into account.

Another issue to discuss, is the definition of the relevance
function given in this article. Of course this is only one possibility
and yet we have many other ideas which differ slightly. For
example for some domains it seems sensible to stress when
information was successfully used recently.

I’'m looking forward to the discussion on these issues during the
workshop.

REFERENCES

(1]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

John R. Anderson: Kognitive Psychologie. Deutsche Ubersetzung
von Joachim Grabowski und Ralf Graf. 2. Auflage. Spektrum
Akademischer Verlag Gmbh Heidelberg, Berlin, Oxford, 1996,
ISBN 3-86025-354-9 Pb. ISBN 3-8274-0085-6 brosch., chapter 6
und 7

Roman Cunis, Andreas Giinter, Helmut Strecker: Das Plakon-
Buch. Ein Expertensystemkern fiir ~ Planungs- und
Konfigurierungsaufgaben in technischen Domdnen, Springer-
Verlag, Berlin Heidelberg, 1991, ISBN 0-387-53683-3

Marco Dorigo, Vittorio Maniezzo and Alberto Colorini: The Ant
System: Optimization by a colony of cooperating agents, IEEE
Transactions on Systems, Man and Cybernetics-Part B, Vol. 26,
No.1, 1996, pp. 1-13

Andreas Giinter (ed.): Wissensbasiertes Konfigurieren. Ergebnisse
aus dem Projekt PROKON. Infix-Verlag, Sankt Augustin, 1995,
ISBN 3-929037-96-3

Andreas Giinter, Christian ~ Kithn: Knowledge-Based
Configuration — Survey and Future Directions — in Knowledge
based systems: survey and future directions; proceedings / XPS-
99, Wiirzburg, Springer Verlag Berlin, Heidelberg 1999, ISBN 3-
540-65658-8, pp. 47-66

Andreas Giinter, Ingo Kreuz, Christian Kiihn: Kommerzielle
Software-Werkzeuge fiir die Konfigurierung von technischen
Systemen in KI — Kiinstliche Intelligenz Heft 3/1999, arenDTaP
Desktop Publishing Agentur, Verlags- und Vertriebs GmbH,
Bremen, 1999, ISSN 0933-1875, pp. 61-65

Albert Haag: Sales Configuration in Business Processes in [EEE
Intelligent Systems Jul/Aug 98, 1998, pp. 78-85

Heinrich, Jingst: The Resource-Based Paradigm: Configuring
Technical Systems from Modular Components in AAAI-96 Fall
Sympos. Series: Configuration. MIT, Cambridge, MA, November
9-11, 1996, pp. 19-27

Ingo Kruez, Thomas Forchert, Dieter Roller: /CON. Intelligent
Configuring System in Dieter Roller (ed.) Proceedings of the 31th
ISATA, Volume “Automotive Electronics and New Products”,
Disseldorf ~ Trade Fair, Croydon, England 1998,
ISBN 0 9532576 5 7, pp. 219-226

Ingo Kreuz, Ulrike Bremer: Exact Configuration Onboard.
Onboard Documentation of Electrical and Electronical Systems
consisting of ECUs, Data Buses and Software, ERA conference
1999, Coventry, UK, 1999, ISBN 0-700806-95-4 pp. 5.2.1-5.2.8
Ingo Kreuz, Dieter Roller: Knowledge Growing Old in
Reconfiguration Context, in Boi Faltings, Eugen C. Freuder,
Gerhard Friedrich, Alexander Felfernig Configuration, Papers
from the AAAI Workshop, Technical Report WS-99-05, Orlando,
1999, ISBN 1-57735-089-8, pp. 54-59

J. McDermott: R1: A Rule-based Configurer of Computer Systems
in Artificial Intelligence 19(1), 1982, pp. 39-88

Elaine Rich, Kevin Knight: Artificial Intellligence, Second
Edition. McGraw-Hill Book Co, Singapore, 1991, ISBN 0-07-
100894-2.

David Waltz: The Importance of Importance in Almagazine,
Volume 20, No. 3, Fall 1999, American Association for Artificial
Intelligence (AAAI), Menlo Park, CA, USA, 1999, ISSN 0738-
4602, pp. 18-35

