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Abstract

Most machine learning, data mining and statistical methods rely on the assumption that the analyzed data
are independent and identically distributed (i.i.d.). More specifically, the individual examples included
in the training data are assumed to be drawn independently from each other from the same probability
distribution. However, cases where this assumption is violated can be easily found: For example, species
are distributed non-randomly across a wide range of spatial scales. The i.i.d. assumption is often violated
because of the phenomenon of autocorrelation.

The cross-correlation of an attribute with itself is typically referred to as autocorrelation: This is
the most general definition found in the literature. Specifically, in statistics, temporal autocorrelation is
defined as the cross-correlation between the attribute of a process at different points in time. In time-
series analysis, temporal autocorrelation is defined as the correlation among time-stamped values due
to their relative proximity in time. In spatial analysis, spatial autocorrelation has been defined as the
correlation among data values, which is strictly due to the relative location proximity of the objects
that the data refer to. It is justified by Tobler’s first law of geography according to which “everything
is related to everything else, but near things are more related than distant things”. In network studies,
autocorrelation is defined by the homophily principle as the tendency of nodes with similar values to be
linked with each other.

In this dissertation, we first give a clear and general definition of the autocorrelation phenomenon,
which includes spatial and network autocorrelation for continuous and discrete responses. We then
present a broad overview of the existing autocorrelation measures for the different types of autocorrela-
tion and data analysis methods that consider them. Focusing on spatial and network autocorrelation, we
propose three algorithms that handle non-stationary autocorrelation within the framework of predictive
clustering, which deals with the tasks of classification, regression and structured output prediction. These
algorithms and their empirical evaluation are the major contributions of this thesis.

We first propose a data mining method called SCLUS that explicitly considers spatial autocorrelation
when learning predictive clustering models. The method is based on the concept of predictive clustering
trees (PCTs), according to which hierarchies of clusters of similar data are identified and a predictive
model is associated to each cluster. In particular, our approach is able to learn predictive models for both
a continuous response (regression task) and a discrete response (classification task). It properly deals with
autocorrelation in data and provides a multi-level insight into the spatial autocorrelation phenomenon.
The predictive models adapt to the local properties of the data, providing at the same time spatially
smoothed predictions. We evaluate our approach on several real world problems of spatial regression
and spatial classification.

The problem of “network inference” is known to be a challenging task. In this dissertation, we
propose a data mining method called NCLUS that explicitly considers autocorrelation when building
predictive models from network data. The algorithm is based on the concept of PCTs that can be used
for clustering, prediction and multi-target prediction, including multi-target regression and multi-target
classification. We evaluate our approach on several real world problems of network regression, coming
from the areas of social and spatial networks. Empirical results show that our algorithm performs better



than PCTs learned by completely disregarding network information, CLUS* which is tailored for spatial
data, but does not take autocorrelation into account, and a variety of other existing approaches.

We also propose a data mining method called NHMC for (Network) Hierarchical Multi-label Classi-
fication. This has been motivated by the recent development of several machine learning algorithms for
gene function prediction that work under the assumption that instances may belong to multiple classes
and that classes are organized into a hierarchy. Besides relationships among classes, it is also possible
to identify relationships among examples. Although such relationships have been identified and exten-
sively studied in the literature, in particular as defined by protein-to-protein interaction (PPI) networks,
they have not received much attention in hierarchical and multi-class gene function prediction. Their
use introduces the autocorrelation phenomenon and violates the i.i.d. assumption adopted by most ma-
chine learning algorithms. Besides improving the predictive capabilities of learned models, NHMC is
helpful in obtaining predictions consistent with the network structure and consistently combining two
information sources (hierarchical collections of functional class definitions and PPI networks). We com-
pare different PPI networks (DIP, VM and MIPS for yeast data) and their influence on the predictive
capability of the models. Empirical evidence shows that explicitly taking network autocorrelation into
account can increase the predictive capability of the models, especially when the PPI networks are dense.
NHMC outperforms CLUS-HMC (that disregards the network) for GO annotations, since these are more
coherent with the PPI networks.



Povzetek

Večina metod za podatkovno rudarjenje, strojno učenje in statistično analizo podatkov temelji na pred-
postavki, da so podatki neodvisni in enako porazdeljeni (ang. independent and identically distributed –
i.i.d.). To pomeni, da morajo biti učni primeri med seboj neodvisni ter imeti enako verjetnostno po-
razdelitev. Vendar so primeri, ko podatki niso i.i.d., v praksi zelo pogosti. Tako so na primer živalske
vrste porazdeljene po prostoru nenaključno. Predpostavka i.i.d. je pogosto kršena zaradi avtokorelacije.

Najbolj splošna definicija avtokorelacije je, da je to prečna korelacija atributa samega s seboj. V
statistiki je časovna avtokorelacija definirana kot prečna korelacija med atributom procesa ob različnem
času. Pri analizi časovnih vrst je časovna avtokorelacija definirana kot korelacija med časovno odvisnimi
vrednostmi zaradi njihove relativne časovne bližine. V prostorski analizi je prostorska avtokorelacija
definirana kot korelacija med podatkovnimi vrednostmi, ki je nastala samo zaradi relativne bližine ob-
jektov, na katero se nanašajo podatki. Definicija temelji na prvem Toblerjevem zakonu o geografiji, po
katerem “je vse povezano z vsem, vendar so bližje stvari bolj povezane kot oddaljene stvari.” Pri analizi
omrežij je avtokorelacija definirana s pomočjo načela homofilnosti, ki pravi, da vozlišča s podobnimi
vrednostmi težijo k medsebojni povezanosti.

V disertaciji najprej podamo jasno in splošno definicijo avtokorelacije, ki vključuje prostorsko in
omrežno avtokorelacijo za zvezne in diskretne spremenljivke. Nato predstavimo obširen pregled obsto-
ječih mer za avtokorelacijo skupaj z metodami za analizo podatkov, ki jih uporabljajo. Osredotočimo se
na prostorsko in omrežno avtokorelacijo in predlagamo tri algoritme, ki upoštevajo spremenljivo avtoko-
relacijo v okviru napovednega razvrščanja. Na ta način lahko obravnavamo klasifikacijske in regresijske
naloge ter napovedovanje strukturiranih spremenljivk. Ti trije algoritmi in njihovo empirično vrednotenje
so glavni prispevek disertacije.

Najprej predlagamo metodo podatkovnega rudarjenja SCLUS, ki izrecno upošteva prostorsko av-
tokorelacijo pri učenju modelov za napovedno razvrščanje. Metoda temelji na gradnji odločitvenih
dreves za napovedno razvrščanje (DNR), pri kateri podatke razvrstimo v hierarhično strukturo s
skupinami med seboj podobnih podatkov ter vsaki skupini predružimo napovedni model. Naša metoda
omogoča učenje napovednih modelov za zvezne in diskretne ciljne spremenljivke (klasifikacija in re-
gresija). Metoda pravilno upošteva avtokorelacijo v podatkih in omogoča večnivojski vpogled v pojav
prostorske avtokorelacije. Napovedni modeli se prilagajajo lokalnim lastnostim podatkov in hkrati zago-
tavljajo gladko spreminjanje napovedi v prostoru. Naš pristop ovrednotimo na več različnih realnih
problemih prostorske regresije in klasifikacije.

Problem “omrežnega sklepanja” je znan kot zahtevna naloga. V disertaciji predlagamo algoritem
podatkovnega rudarjenja z imenom NCLUS, ki izrecno upošteva avtokorelacijo pri gradnji napovednih
modelov na podatkih o omrežjih. Algoritem temelji na konceptu dreves za napovedno razvrščanje, ki jih
je mogoče uporabiti za razvrščanje, regresijo in klasifikacijo preprostih ali strukturiranih spremenljivk.
Naš pristop ovrednotimo na več različnih realnih problemih s področja socialnih in prostorskih omrežij.
Empirični rezultati kažejo, da naš algoritem deluje bolje kot navadna drevesa za napovedno razvrščanje,
zgrajena brez upoštevanja informacij o omrežjih, bolje kot metoda CLUS*, ki je prilagojena za analizo
prostorskih podatkov, a ne upošteva avtokorelacije, in bolje od drugih obstoječih pristopov.



Predlagamo tudi metodo podatkovnega rudarjenja NHMC za hierarhično večznačkovno klasifikacijo.
Motivacija za ta pristop je bil nedavni razvoj različnih algoritmov strojnega učenja za napovedovanje
funkcij genov, ki delujejo pod predpostavko, da lahko primeri sodijo v več razredov, ti razredi pa so
organizirani v hierarhijo. Poleg odvisnosti med razredi, je mogoče določiti tudi odvisnosti med primeri.
Čeprav so te povezave identificirane in obširno raziskane v literaturi, še posebej v primeru omrežij in-
terakcij med proteini (IMP), pa še vedno niso dovolj upoštevane v okviru hierarhične večznačkovne
klasifikacije funkcij genov. Njihova uporaba uvaja avtokorelacijo in krši predpostavko neodvisnosti
med primeri, na kateri temelji večina algoritmov strojnega učenja. Poleg izboljšane napovedne točnosti
naučenih modelov, nam NHMC omogoča napovedi, ki so skladne s strukturo omrežja in konsistentno up-
oštevajo dva različna vira informacij (hierarhične zbirke funkcijskih razredov in omrežij IMP). Primerjali
smo tri različna omrežja IMP (DIP, VM in MIPS pri kvasovkah) in njihovo napovedno točnost. Empirični
rezultati kažejo, da upoštevanje omrežne avtokorelacije izboljša napovedno točnost modelov, še posebej
v primeru, ko so omrežja IMP gosta. Metoda NHMC dosega boljše rezultate kot metoda CLUS-HMC
(ki ne upošteva omrežja) za oznake GO (Gene Ontology), ker so te bolj usklajene z omrežji IMP.
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1

1 Introduction

In this introductory chapter, we first place the dissertation within the broader context of its research area.
We then motivate the research performed within the scope of the dissertation. The major contributions
of the thesis to science are described next. We conclude this chapter by giving an outline of the structure
of the remainder of the thesis.

1.1 Outline

The research presented in this dissertation is placed in the area of artificial intelligence (Russell and
Norvig, 2003), and more specifically in the area of machine learning. Machine learning is concerned
with the design and the development of algorithms that allow computers to evolve behaviors based on
empirical data, i.e., it studies computer programs that automatically improve with experience (Mitchell,
1997). A major focus of machine learning research is to extract information from data automatically by
computational and statistical methods and make intelligent decisions based on the data. However, the
difficulty lies in the fact that the set of all possible behaviors, given all possible inputs, is too large to be
covered by the set of observed examples.

In general, there are two types of learning: inductive and deductive. Inductive machine learning
(Bratko, 2000) is a very significant field of research in machine learning, where new knowledge is ex-
tracted out of data that describes experience and is given in the form of learning examples (instances). In
contrast, deductive learning (Langley, 1996) explains a given set of rules by using specific information
from the data.

Depending on the feedback the learner gets during the learning process, learning can be classified as
supervised or unsupervised. Supervised learning is a machine learning technique for learning a function
from a set of data. Supervised inductive machine learning, also called predictive modeling, assumes
that each learning example includes some target property, and the goal is to learn a model that accu-
rately predicts this property. On the other hand, unsupervised inductive machine learning, also called
descriptive modeling, assumes no such target property to be predicted. Examples of machine learning
methods for predictive modeling include decision trees, decision rules and support vector machines. In
contrast, examples of machine learning methods for descriptive modeling include clustering, association
rule modeling and principal-component analysis (Bishop, 2007).

In general, predictive and descriptive modeling are considered as different machine learning tasks and
are usually treated separately. However, predictive modeling can be seen as a special case of clustering
(Blockeel, 1998). In this case, the goal of predictive modeling is to identify clusters that are compact
in the target space (i.e., group the instances with similar values of the target variable). The goal of
descriptive modeling, on the other hand, is to identify clusters compact in the descriptive space (i.e.,
group the instances with similar values of the descriptive variables).

Predictive modeling methods are used for predicting an output (i.e., target property or target attribute)
for an example. Typically, the output can be either a discrete variable (classification) or a continuous
variable (regression). However, there are many real-life problems, such as text categorization, gene
function prediction, image annotation, etc., where the input and/or the output are structured. Beside the
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typical classification and regression task, we also consider the latter, namely, predictive modeling tasks
with structured outputs.

Predictive clustering (Blockeel, 1998) combines elements from both prediction and clustering. As
in clustering, clusters of examples that are similar to each other are identified, but a predictive model
is associated to each cluster. New instances are assigned to clusters based on cluster descriptions. The
associated predictive models provide predictions for the target property. The benefit of using predictive
clustering methods, as in conceptual clustering (Michalski and Stepp, 2003), is that besides the clusters
themselves, they also provide symbolic descriptions of the constructed clusters. However, in contrast to
conceptual clustering, predictive clustering is a form of supervised learning.

Predictive clustering trees (PCTs) are tree structured models that generalize decision trees. Key
properties of PCTs are that i) they can be used to predict many or all attributes of an example at once
(multi-target), ii) they can be applied to a wide range of prediction tasks (classification and regression)
and iii) they can work with examples represented by means of a complex representation (Džeroski et al,
2007), which is achieved by plugging in a suitable distance metric for the task at hand. PCTs were
first implemented in the context of First-Order logical decision trees, in the system TILDE (Blockeel,
1998), where relational descriptions of the examples are used. The most known implementation of
PCTs, however, is the one that uses attribute-value descriptions of the examples and is implemented in
the predictive clustering framework of the CLUS system (Blockeel and Struyf, 2002). The CLUS system
is available for download at ❤tt♣✿✴✴s♦✉r❝❡❢♦r❣❡✳♥❡t✴♣r♦❥❡❝ts✴❝❧✉s✴.

Here, we extend the predictive clustering framework to work in the context of autocorrelated data.
For such data the independence assumption which typically underlies machine learning methods and
multivariate statistics, is no longer valid. Namely, the autocorrelation phenomenon directly violates the
assumption that the data instances are drawn independent from each other from an identical distribution
(i.i.d.). At the same time, it offers the unique opportunity to improve the performance of predictive
models which would take it into account.

Autocorrelation is very common in nature and has been investigated in different fields, from statistics
and time-series analysis, to signal-processing and music recordings. Here we acknowledge the existence
of four different types of autocorrelation: spatial, temporal, spatio-temporal and network (relational)
autocorrelation, describing the existing autocorrelation measures and the data analysis methods that con-
sider them. However, in the development of the proposed algorithms, we focus on spatial autocorrelation
and network autocorrelation. In addition, we also deal with the complex case of predicting structured
targets (outputs), where network autocorrelation is considered.

In the PCT framework (Blockeel, 1998), a tree is viewed as a hierarchy of clusters: the top-node
contains all the data, which is recursively partitioned into smaller clusters while moving down the tree.
This structure allows us to estimate and exploit the effect of autocorrelation in different ways at different
nodes of the tree. In this way, we are able to deal with non-stationarity autocorrelation, i.e., autocorrela-
tion which may change its effects over space/networks structure.

PCTs are learned by extending the heuristics functions used in tree induction to include the spa-
tial/network autocorrelation. In this way, we obtain predictive models that are able to deal with au-
tocorrelated data. More specifically, beside maximizing the variance reduction which minimizes the
intra-cluster distance in the class labels associated to examples, we also maximize cluster homogeneity
in terms of autocorrelation at the same time doing the evaluation of candidate splits for adding a new
node to the tree. This results in improved predictive performance of the obtained models and in smother
predictions.

A diverse set of methods that deal with this kind of data, in several fields of research, already exists
in the literature. However, most of them either deal with specific case studies or assume a specific
experimental setting. In the next section, we describe the existing methods and motivate our work.

http://sourceforge.net/projects/clus/


Introduction 3

1.2 Motivation

The assumption that data examples are independent from each other and are drawn from the same prob-
ability distribution, i.e., that the examples are independent and identically distributed (i.i.d.), is common
to most of the statistical and machine learning methods. This assumption is important in the classical
form of the central limit theorem, which states that the probability distribution of the sum (or average)
of i.i.d. variables with finite variance approaches a normal distribution. While this assumption tends to
simplify the underlying mathematics of many statistical and machine learning methods, it may not be
realistic in practical applications of these methods.

In many real-world problems, data are characterized by a form of autocorrelation, where the value of
a variable for a given example depends on the values of the same variable in related examples. This is the
case for the spatial proximity relation encounter in spatial data, where data measured at nearby locations
often (but not always) influence each other. For example, species richness at a given site is likely to be
similar to that of a site nearby, but very much different from sites far away. This is due to the fact that the
environment is more similar within a shorter distance and the above phenomenon is referred to as spatial
autocorrelation (Tobler, 1970).

The case of the temporal proximity relation encounter in time-series data is similar: data measured at
a given time point are not completely independent of the past values. This phenomenon is referred to as
temporal autocorrelation (Epperson, 2000). For example, weather conditions are highly autocorrelated
within one year due to seasonality. A weaker correlation exists between weather variables in consecutive
years.

A similar phenomenon also occurs in network data, where the values of a variable at a certain node
often (but not always) depend on the values of the variables at the nodes connected to the given node:
This phenomenon is referred to as network homophily (Neville et al, 2004). Recently, networks have
become ubiquitous in several social, economical and scientific fields ranging from the Internet to social
sciences, biology, epidemiology, geography, finance, and many others. Researchers in these fields have
demonstrated that systems of different nature can be represented as networks (Newman and Watts, 2006).
For instance, the Web can be considered as a network of web-pages, connected with each other by edges
representing various explicit relations, such as hyperlinks. Social networks can be seen as groups of
members that can be connected by friendship relations or can follow other members because they are
interested in similar topics of interests. Gene networks can provide insight about genes and their possible
relations of co-regulation based on the similarities of their expression levels. Finally, in epidemiology,
networks can represent the spread of diseases and infections.

Moreover, in many real-life problems of predictive modeling, not only the data are not independent
and identically distributed (i.i.d.), but the output (i.e., the target property) is structured, meaning that
there can be dependencies between classes (e.g., classes are organized into a tree-shaped hierarchy or a
directed acyclic graph). These types of problems occur in domains such as the life sciences (predicting
gene function), ecology (analysis of remotely sensed data, habitat modeling), multimedia (annotation
and retrieval of images and videos), and the semantic web (categorization and analysis of text and web
content). The amount of data in these areas is increasing rapidly.

A variety of methods, specialized in predicting a given type of structured output (e.g., a hierarchy
of classes (Silla and Freitas, 2011)), have been proposed (Bakır et al, 2007). However, many of them
are computationally demanding and not suited for dealing with large datasets and especially with large
outputs spaces. The predictive clustering framework offers a unifying approach for dealing with differ-
ent types of structured outputs and the algorithms developed in this framework construct the predictive
models very efficiently. Moreover, PCTs can be easily interpreted by a domain expert, thus supporting
the process of knowledge extraction.

Since the presence of autocorrelation introduces a violation of the i.i.d. assumption, the work on this
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analysis of such data needs to take this into account.
Such work either removes the autocorrelation dependencies during pre-processing and then use tra-

ditional algorithms (e.g., (Hardisty and Klippel, 2010; Huang et al, 2004)) or modifies the classical
machine learning, data mining and statistical methods in order to consider the autocorrelation (e.g., (Bel
et al, 2009; Rinzivillo and Turini, 2004, 2007)). There are also approaches which use a relational setting
(e.g., (Ceci and Appice, 2006; Malerba et al, 2005)), where the autocorrelation is usually incorporated
through the data structure or defined implicitly through relationships among the data and other data
properties.

However, one limitation of most of the approaches that take autocorrelation into account is that they
assume that autocorrelation dependencies are constant (i.e., do not change) throughout the space/network
(Angin and Neville, 2008). This means that possible significant variability in autocorrelation dependen-
cies in different points of the space/network cannot be represented and modeled. Such variability could
result from a different underlying latent structure of the space/network that varies among its parts in
terms of properties of nodes or associations between them. For example, different research communities
may have different levels of cohesiveness and thus cite papers on other topics with varying degrees. As
pointed out by Angin and Neville (2008), when autocorrelation varies significantly throughout a network,
it may be more accurate to model the dependencies locally rather than globally.

In the dissertation, we extend the predictive clustering framework in the context of PCTs that are
able to deal with data (spatial and network) that do not follow the i.i.d. assumption. The distinctive char-
acteristic of the proposed approach is that it explicitly considers the non-stationary (spatial and network)
autocorrelation when building the predictive models. Such a method not only extends the applicability of
the predictive clustering approach, but also exploits the autocorrelation phenomenon and uses it to make
better predictions and better models.

In traditional PCTs (Blockeel, 1998), the tree construction is performed by maximizing variance
reduction. This heuristic guarantees, in principle, accurate models since it reduces the error on the
training set. However, it neglects the possible presence of autocorrelation in the training data. To address
this issue, we propose to simultaneously maximize autocorrelation for spatial/network domains. In this
way, we exploit the spatial/network structure of the data in the PCT induction phase and obtain predictive
models that naturally deal with the phenomenon of autocorrelation.

The consideration of autocorrelation in clustering has already been investigated in the literature,
both for spatial clustering (Glotsos et al, 2004) and network clustering (Jahani and Bagherpour, 2011).
Motivated by the demonstrated benefits of considering autocorrelation, we exploit some characteristics
of autocorrelated data to improve the quality of PCTs. The consideration of autocorrelation in clustering
offers several advantages, since it allows us to:

• determine the strength of the spatial/network arrangement on the variables in the model;

• evaluate stationarity and heterogeneity of the autocorrelation phenomenon across space;

• identify the possible role of the spatial/network arrangement/distance decay on the predictions
associated with each of the nodes of the tree;

• focus on the spatial/network “neighborhood” to better understand the effects that it can have on
other neighborhoods and vice versa.

These advantages of considering spatial autocorrelation in clustering, identified by (Arthur, 2008),
fit well into the case of PCTs. Moreover, as recognized by (Griffith, 2003), autocorrelation implicitly
defines a zoning of a (spatial) phenomenon: Taking this into account reduces the effect of autocorrelation
on prediction errors. Therefore, we propose to perform clustering by maximizing both variance reduction
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and cluster homogeneity (in terms of autocorrelation) at the same time, during the phase of adding a new
node to the predictive clustering tree.

The network (spatial and relational) setting that we address in this work is based on the use of both
the descriptive information (attributes) and the network structure during training, whereas we only use
the descriptive information in the testing phase and disregard the network structure. More specifically,
in the training phase, we assume that all examples are labeled and that the given network is complete.
In the testing phase, all testing examples are unlabeled and the network is not given. A key property of
our approach is that the existence of the network is not obligatory in the testing phase, where we only
need the descriptive information. This can be very beneficial when predictions need to be made for those
examples for which connections to others examples are not known or need to be confirmed. The more
common setting where a network with some nodes labeled and some nodes unlabeled is given, can be
easily mapped to our setting. We can use the nodes with labels and the projection of the network on these
nodes for training and only the unlabeled nodes without network information in the testing phase.

This network setting is very different from the existing approaches to network classification and
regression where the descriptive information is typically in a tight connection to the network structure.
The connections (edges in the network) between the data in the training/testing set are predefined for
a particular instance and are used to generate the descriptive information associated to the nodes of
the network (see, for example, (Steinhaeuser et al, 2011)). Therefore, in order to predict the value of
the response variable(s), besides the descriptive information, one needs the connections (edges in the
network) to related/similar entities. This is very different from what is typically done in network analysis
as well. Indeed, the general focus there is on exploring the structure of a network by calculating its
properties (e.g. the degrees of the nodes, the connectedness within the network, scalability, robustness,
etc.). The network properties are then fitted into an already existing mathematical (theoretical) network
(graph) model (Steinhaeuser et al, 2011).

From the predictive perspective, according to the tests in the tree, it is possible to associate an ob-
servation (a test node of a network) to a cluster. The predictive model associated to the cluster can then
be used to predict its response value (or response values, in the case of multi-target tasks). From the
descriptive perspective, the tree models obtained by the proposed algorithm allow us to obtain a hier-
archical view of the network, where clusters can be employed to design a federation of hierarchically
arranged networks.

A hierarchial view of the network can be useful, for instance, in wireless sensor networks, where a
hierarchical structure is one of the possible ways to reduce the communication cost between the nodes
(Li et al, 2007). Moreover, it is possible to browse the generated clusters at different levels of the hi-
erarchy, where each cluster can naturally consider different effects of the autocorrelation phenomenon
on different portions of the network: at higher levels of the tree, clusters will be able to consider auto-
correlation phenomenons that are spread all over the network, while at lower levels of the tree, clusters
will reasonably consider local effects of autocorrelation. This gives us a way to consider non-stationary
autocorrelation.

1.3 Contributions

The research presented in this dissertation extends the PCT framework towards learning from autocorre-
lated data. We address important aspects of the problem of learning predictive models in the case when
the examples in the data are not i.i.d, such as the definition of autocorrelation measures for a variety of
learning tasks that we consider, the definition of autocorrelation-based heuristics, the development of al-
gorithms that use such heuristics for learning predictive models, as well as their experimental evaluation.

In our broad overview, we consider four different types of autocorrelation: spatial, temporal, spatio-
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temporal and network (relational) autocorrelation, we survey the existing autocorrelation measures and
methods that consider them. However, in the development of the proposed algorithms, we focus only on
spatial and network autocorrelation.

The corresponding findings of our research are published in several conference and journal publica-
tions in the areas of machine learning and data mining, ecological modeling, ecological informatics and
bioinformatics. The complete list of related publications is given in Appendix A. In the following, we
summarize the main contributions of the work.

• The major contributions of this dissertation are three extensions of the predictive clustering ap-
proach for handling non-stationary (spatial and network) autocorrelated data for different predic-
tive modeling tasks. These include:

– SCLUS (Spatial Predictive Clustering System) (Stojanova et al, 2011) (chapter 6), that ex-
plicitly considers spatial autocorrelation in regression (and classification),

– NCLUS (Network Predictive Clustering System) (Stojanova et al, 2011, 2012) (chapter 7),
that explicitly considers network autocorrelation in regression (and classification), and

– NHMC (Network Hierarchical Multi-label Classification) (Stojanova et al, 2012) (chapter 8),
that explicitly considers network autocorrelation in hierarchical multi-label classification.

• The algorithms are heuristic: we define new heuristic functions that take into account both the
variance of the target variables and its spatial/network autocorrelation. Different combinations of
these two components enable us to investigate their influence in the heuristic function and on the
final predictions.

• We perform extensive empirical evaluation of the newly developed methods on single target clas-
sification and regression problems, as well as multi-target classification and regression problems.

– We compare the performance of the proposed predictive models for classification and regres-
sion tasks, when predicting single and multiple targets simultaneously, to current state-of-the-
art methods (chapters 6, 7, 8). Our approaches compare very well to mainstream methods
that do not consider autocorrelation, as well as to well-known methods that consider autocor-
relation. Furthermore, our approach can more successfully remove the autocorrelation of the
errors of the obtained models. Finally, the obtained predictions are more coherent in space
(or in the network context).

– We also apply the proposed predictive models to real-word problems, such as the predic-
tion of outcrossing rates from genetically modified crops to conventional crops in ecology
(Stojanova et al, 2012) (chapter 6), prediction of the number of views of online lectures (Sto-
janova et al, 2011, 2012) (chapter 7) and protein function prediction in functional genomics
(Stojanova et al, 2012) (chapter 8).

1.4 Organization of the dissertation

This introductory chapter presents the general perspective and context of the dissertation. It also specifies
the motivation for performing the research and lists the main original scientific contributions. The rest
of the dissertation is organized as follows.

In Chapter 2, first we give a broad overview of the field of predictive modeling and present the most
important predictive modeling tasks. Next, we explain the relational aspects that we consider along
with the relations themselves stressing their origin and use within our experimental settings. Finally, we
define the different forms of autocorrelation that we consider and discuss them along two dimension:
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the first one considering the type of targets in predictive modeling and the second one focusing on the
type of relations considered in the predictive model: spatial, temporal, spatio-temporal and network
autocorrelation.

In Chapter 3, we present the existing measures of autocorrelation. In particular, we divide the mea-
sures according to the different forms of autocorrelation that we consider: spatial, temporal, spatio-
temporal and network autocorrelation, as well as accordingly to the predictive (classification and re-
gression) task that they are defined for. Finally, we introduce new measures of autocorrelation for clas-
sification and regression that we have defined by adapting the existing ones, in order to deal with the
autocorrelation phenomenon in the experimental settings that we use.

In Chapter 4, we present an overview of relevant related work and their main characteristics focussing
on predictive modeling methods listed in the literature that consider different forms of autocorrelation.
The way that these works take autocorrelation into account is particularly emphasized. The relevant
methods are organized according to the different forms of autocorrelation that they consider, as well as
accordingly to the predictive (classification and regression) task that they concern.

In Chapter 5, we give an overview of the predictive clustering trees framework focussing on the
different predictive modeling tasks that it can handle, from standard classification and regression tasks
to multi-target classification and regression, as well as hierarchial multi-label classification, as a special
case of predictive modeling with structured outputs. The extensions that we propose in the following
chapters are situated in this framework and inherit its characteristics.

Chapter 6 describes the proposed approach for building predictive models from spatially autocor-
related data, which is one of the main contributions of this dissertation. In particular, we focus on the
single and multi-target classification and regression tasks. First, we present the experimental questions
that we address, the real-life spatial data, the evaluation measures and the parameter instantiations for
the learning methods. Next, we stress the importance of the selection of the bandwidth parameter and
analyze the time complexity of the proposed approach. Finally, we present and discuss the results for
each considered task separately, in terms of their accuracy, as well as in terms of the properties of the
predictive models by analyzing the model sizes, the autocorrelation of the errors of the predictive models
and their learning times.

Chapter 7 describes the proposed approach for learning predictive models from network autocorre-
lated data, which is another main contribution of this dissertation. Regression inference in network data
is a challenging task and the proposed algorithm deals both with single and multi-target regression tasks.
First, we present the experimental questions that we address, the real-life network data, the evaluation
measures and the parameter instantiations for the learning methods. Next, we present and discuss the
obtained results.

Chapter 8 describes the proposed approach for learning predictive models from network autocorre-
lated data, with the complex case of the Hierarchial Multi-Label Classification (HMC) task. Focusing on
functional genomics data, we learn to predict the (hierarchically organized) protein functional classes,
considering the autocorrelation that comes from the protein-to-protein interaction (PPI) networks. We
evaluate the performance of the proposed algorithm and compare its predictive performance to already
existing methods, using different yeast data and different yeast PPI networks. The development of this
approach is the final main contribution of this dissertation.

Finally, chapter 9 presents the conclusions drawn from the presented research, including the devel-
opment of the different algorithms and their experimental evaluation. It first presents a summary of the
dissertation and its original contributions, and then outlines the possible directions for further work.
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2 Definition of the Problem

The work presented in this dissertation concerns with the problem of learning predictive clustering trees
that are able to deal with the global and local effects of the autocorrelation phenomenon. In this chapter,
we first define the most important predictive modeling tasks that we consider. Next, we explain the
relational aspects taken into account within the defined predictive modeling tasks. We focus on the
different types of relations that we consider and describe their origin. Moreover, we explain their use
and importance within our experimental setting. Finally, we introduce the concept of autocorrelation.
In particular, we define the different forms of autocorrelation that we consider and discuss them along
two orthogonal dimensions: the first one considering the type of targets in predictive modeling and the
second one focusing on the type of relations considered in the predictive model.

2.1 Learning Predictive Models from Examples

Predictive analysis is the area of data mining concerned with forecasting the output (i.e., target attribute)
for an example. Predictive modeling is a process used in predictive analysis to create a mathematical
model of future behavior. Typically, the output can be either a discrete variable (classification) or a
continuous variable (regression). However, there are many real-life domains, such as text categorization,
gene networks, image annotation, etc., where the input and/or the output can be structured.

A predictive model consists of a number of predictors (i.e., descriptive attributes), which are inde-
pendent variables that are likely to influence future behavior or results. In marketing, for example, a
customer’s gender, age, and purchase history might predict the likelihood of a future sale.

In predictive modeling, data is collected for the relevant descriptive attributes, a mathematical model
is formulated, (for some type of models attributes are generated) and the model is validated (or revised)
as the additional data becomes available. The model may employ a simple linear equation or a complex
neural network, or a decision tree.

In the model building (training) process a predictive algorithm is constructed based on the values of
the descriptive attributes for each example in the training data, i.e., training set. The model can then be
applied to a different (testing) data, i.e., test set in which the target values are unknown. The test set is
usually independent of the training set, but that follows the same probability distribution.

Predictive modeling usually underlays on the assumption that data (sequences or any other collection
of random variables) is independent and identically distributed (i.i.d.) (Clauset, 2001). It implies that an
element in the sequence is independent of the random variables that came before it. By doing so, it tends
to simplify the underlying mathematics of many statistical methods. This assumption is different from
a Markov Sequence (Papoulis, 1984) where the probability distribution for the n-th random variable is a
function of the n−1 random variable (for a First Order Markov Sequence).

The assumption is important in the classical form of the central limit theorem (Rice, 2001), which
states that the probability distribution of the sum (or average) of i.i.d. variables with finite variance ap-
proaches a normal distribution. However, in practical applications of statistical modeling this assumption
may or may not be realistic.

Motivated by the violations of the i.i.d. assumption in many real-world cases, we consider the pre-
dictive modeling task without this assumption. The task of predictive modeling that we consider can be
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formalized as follows.
Given:

• A descriptive space X that consists of tuples of values of primitive data types (boolean, discrete or
continuous) spanned by m independent (or predictor) variables X j, i.e., X ={X1,X2, . . .Xm},

• A target space Y which is a tuple of several variables (discrete or continuous) or a structured object
(e.g., a class hierarchy), spanned by T dependent (or target), i.e., Y = {Y1,Y2, . . . ,YT}, variables
Yj,

• A context space D of dimensional variables (e.g., spatial coordinates) that typically consists of
tuples D ={D1,D2, . . .Dr} on which a distance d(·, ·) is defined,

• A set E of training examples, (xi,yi) with xi ∈ X and yi ∈ Y,

• a quality criterion q defined on a predictive model and a set of examples, which rewards models
with high predictive accuracy and low complexity.

Find: a predictive model (i.e., a function) f : X → Y , such that f maximizes q.
This formulation differs from the classical formulation of the predictive modeling by the context

space D, that is the result of the violation of the i.i.d. assumption. The context space D serves as
a background knowledge and introduces information, related to the target space, in form of relations
between the training examples. D is not directly included in the mapping X → Y , enabling the use of
propositional data mining setup (one table representation of the data). Moreover, they can be cases when
this context space is not defined with dimensional variables, but only using a distance d(·, ·) over the
context space. This is discussed in more details in the next section.

Also, note that the function f will be represented with decision trees, i.e., predictive clustering trees
(PCTs). Furthermore, beside the typical classification and regression task, we are also concerned with
the predictive modeling tasks where the outputs are structured.

2.1.1 Classification

Classification task is the task of learning a function that maps (classifies) a dependent variable into one
of several predefined classes (Bratko, 2000). This means that the goal is to learn a model that accurately
predicts an independent discrete variable. Examples include detecting spam email messages based upon
the messages header and content, categorizing cells as malignant or benign based upon the results of
MRI scans, etc.

A classification task begins with a training set E with descriptive (boolean, discrete or continuous)
attributes X and discrete target variable Y . In the training process, a classification algorithm classifies the
examples to previously given classes based on the values of the descriptive attributes for each example
in the training set, i.e., maps the examples according to a function f : X → Y . The model than can be
applied to different test sets, in which the target values are unknown.

Table 2.1 shows an example of dataset with several continuous descriptive attributes, two dimensional
attributes and a discrete target. The descriptive attributes describe the environmental conditions of the
study area, the dimensional attributes are the spatial coordinates, while the target is binary (0,1) with 1
representing presence of contamination at sample points and 0 representing absence of contamination at
sample point.

A classification model can serve as an explanatory tool to distinguish among examples of different
classes or to predict the class label of unknown data. For example, it would be useful for biologists to
have a model that summarizes the most important characteristics of the data and explains what features
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Table 2.1: An example of dataset with one target, multiple continuous attributes and one discrete at-

tribute. The target is the contamination (outcrossing) at sample points that comes from the surrounding
genetically modified fields, the dimensional attributes are the spatial coordinates, while the descriptive
attributes describe the environmental conditions of the study area.

Target Dimensional variables Attributes
Contamination X Y NbGM NonGMarea GMarea AvgDist AvgVisA AvgWEdge MaxVisA MaxWEdge

0 502100 4655645 2 1.131 14032.315 86.901 3.518 726.013 89.123 18147.61
1 501532 4655630 2 0.337 31086.363 39.029 5.731 1041.469 156.045 28895.724
1 501567 4655640 2 0.4 26220.011 57.713 5.538 1011.021 156.045 29051.768
0 501555 4655680 2 0.637 16458.855 74.621 5.538 1014.568 156.045 29207.813

define the different species. Moreover, it would be useful for them to have a model that can forecast the
type of new species based on already known features.

A learning algorithm is employed to identify a model that best fits the relationship between the
attribute set and the class label of the input data. The model generated by a learning algorithm should both
fit the input data well and correctly predict the class labels of the data it has never seen before. Therefore,
a key objective of the learning algorithm is to build models with good generalization capabilities, i.e.,
models that accurately predict the class labels of previously unknown data.

The most common learning algorithms used in the classification task include decision tree classifiers,
rule-based classifiers, neural networks, support vector machines and naive Bayes classifiers.

Classification modeling has many applications in text classification, finance, biomedical and envi-
ronmental modeling.

2.1.2 Regression

Regression task is the task of learning a function which maps a dependent variable to a real-valued
prediction variable (independent continuous variable) (Witten and Frank, 2005). This is different from
the task of classification and can be treated as a special case of classification when the target variable is
numeric. Examples include predicting the value of a house based on location, number of rooms, lot size,
and other factors; predicting the ages of customers as a function of various demographic characteristics
and shopping patterns; predicting the mortgage rates etc. Moreover, profit, sales, mortgage rates, house
values, square footage, temperature, or distance could all be predicted using regression techniques.

A regression task begins with a training set E with descriptive (boolean, discrete or continuous)
attributes X and continuous target variable Y . In the model building (training) process, a regression
algorithm estimates the value of the target as a function of the predictors for each case in the training
data, i.e., f : X → Y . These relationships between predictors and target are summarized in a model,
which can then be applied to different test sets in which the target values are unknown.

Figure 2.2 shows an example of dataset with several continuous descriptive attributes, two dimen-
sional attributes and a continuous target. The descriptive attributes describe the environmental conditions
of the study area, the dimensional attributes are the spatial coordinates, while the target represents the
measurements of pollen dispersal (crossover) rates.

Regression models are tested by computing various statistics that measure the difference between the
predicted values and the expected values.

Regression modeling has many applications in trend analysis, business planning, marketing, financial
forecasting, time series prediction, biomedical and drug response modeling, and environmental model-
ing.
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Table 2.2: An example of dataset with multiple continuous attributes and one target. The descriptive
attributes describe the environmental conditions of the study area, the dimensional attributes present the
spatial coordinates, while the target is pollen dispersal coming from fertile male populations of GM crops
(Stojanova et al, 2012).

Dimensional variables Attributes Target
X Y Angle CenterDistance MinDistance VisualAngle MF
3 3 -0.75 57.78 50.34 0.24 0.00
3 6 -2.55 55.31 48.27 0.25 0.00
3 9 0.75 57.78 12.20 0.70 0.17
3 12 0.99 57.78 14.76 0.63 0.44
6 3 0.54 57.21 14.34 0.64 0.00
6 6 2.33 21.08 50.79 0.72 0.31
6 9 2.11 17.49 10.77 0.76 0.55
6 12 1.99 16.15 10.55 0.78 0.00

2.1.3 Multi-Target Classification and Regression

The task of Multi-Target learning refers to the case when learning two or more, discrete or continuous,
target variables at the same time (Struyf and Džeroski, 2006). In the case where there are two or more
discrete target variables, the task is called Multi-Target Classification, whereas in the case where there
are two or more continuous target variables, the task is called Multi-Target Regression. In contrast to
classification and regression where the output is a single scalar value, in this case the output is a vector
containing two or more classes depending on the number of target variables.

Examples of Multi-Target learning include predicting two target variables, such as predicting the
male and female population in an environmental modeling; predicting the genetically modified and non-
genetically modified crops in ecological modeling; categorizing the malignant and benign cells based
upon the results of MRI scans, etc. An example of Multi-Target learning of more than two target variables
is predicting canopy cover and forest stand properties (vegetation height, percentage of vegetation cover,
percentage of vegetation, vertical vegetation profiles at 99, 95, 75, 50, 25, 10, 5 percentiles of vegetation
height, vertical vegetation profiles at maximum height) from satellite images in forestry. There are 11
target variables in this example.

A Multi-Target classification (regression) learning task begins with a training set E with descriptive
(boolean, discrete/continuous attributes X and discrete (continuous) target variables Y . In the model
building (training) process, a function of the predictors for each case in the training data, i.e., a function
f : X → Y is mapped. These relationships between predictors and targets are summarized in a model,
which can then be applied to a different test sets in which the target values are unknown.

Table 2.3 shows an example of dataset with several continuous descriptive attributes and two con-
tinuous targets. The descriptive attributes describe the environmental conditions of the study area, the
dimensional attributes are the spatial coordinates, while the targets are measurements of pollen dispersal
(crossover) rates from two lines of plants (fertile and sterile male populations of GM crops) (Stojanova
et al, 2012).

The advantages of such learning (over learning a separate model for each target variable) are that: i)

a multi-target model is learned instead of two or more separate models for each target variable, ii) such a
multi-target model explicates dependencies between the different target variables, iii) the learning of such
a model saves time and resources iv) the size of such a multi-target model is smaller than the total size
of the individual models for all target variables, and v) smaller models are usually more comprehensive
and easier to use in practice.

Multi-target models however do not always lead to more accurate predictions. For a given target
variable, the variable’s single-target model may be more accurate than the multi-target model.
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Table 2.3: An example of dataset with multiple continuous attributes and two targets. The descriptive
attributes describe the environmental conditions of the study area, the dimensional attributes are the
spatial coordinates, while the targets are measurements of pollen dispersal (crossover) rates from two
lines of plants (fertile and sterile male populations of GM crops) (Stojanova et al, 2012).

Dimensional variables Attributes Targets
X Y Angle CenterDistance MinDistance VisualAngle MF MS
3 3 -0.75 57.78 50.34 0.24 0.00 0.00
3 6 -2.55 55.31 48.27 0.25 0.00 0.00
3 9 0.75 57.78 12.20 0.70 0.17 0.63
3 12 0.99 57.78 14.76 0.63 0.44 2.56
6 3 0.54 57.21 14.34 0.64 0.00 0.46
6 6 2.33 21.08 50.79 0.72 0.31 0.33
6 9 2.11 17.49 10.77 0.76 0.55 4.64
6 12 1.99 16.15 10.55 0.78 0.00 0.27

2.1.4 Hierarchial Multi-Label Classification

In many real-life problems of predictive modeling, the input/output are not discrete or continuous vari-
ables and therefore cannot be handled by the classical classification and regression tasks. In such cases,
we deal with complex variables and treat them as objects. Often, the output is structured, i.e., there can
exist dependencies between classes or some internal relations between the classes (e.g., classes are orga-
nized into a tree-shaped hierarchy or a directed acyclic graph). These types of problems are motivated by
an increasing number of new applications including semantic annotation of images and video(news clips,
movies clips), functional genomics (gene and protein function), music categorization into emotions, text
classification (news articles, web pages, patents, emails, bookmarks, ...), directed marketing and others.

The task of Hierarchial Multi-Label Classification (HMC) (Silla and Freitas, 2011) is concerned with
learning models for predicting structured outputs such that there can exist dependencies between classes
or some internal relations between the classes (e.g., classes are organized into a tree-shaped hierarchy or
a directed acyclic graph). It takes as input a tuple of attribute values and produces as output a structured
object (hierarchy of classes).

We formally define the task of hierarchical multi-label classification as follows:
Given:

• A description space X that consists of tuples of values of primitive data types (boolean, discrete or
continuous), i.e., ∀Xi ∈ X ,Xi = (xi1 ,xi2 , ...,xiDes

), where Des is the size of the tuple (or number of
descriptive variables),

• a target space S, defined with a class hierarchy (C,≤h), where C is a set of classes and ≤h is a partial
order (structured as a rooted tree) representing the superclass relationship (∀ c1,c2 ∈ C : c1 ≤h c2

if and only if c1 is a superclass of c2),

• A context space D of dimensional variables (e.g., spatial coordinates) that typically consists of
tuples D ={D1,D2, . . .Dr} on which a distance d(·, ·) is defined,

• a set E, where each example is a pair of a tuple and a set from the descriptive and target space
respectively, and each set satisfies the hierarchy constraint, i.e., E = {(Xi,Si)‖Xi ∈ X ,Si ⊆ C,c ∈
Si ⇒∀c′ ≤h c : c′ ∈ Si,1 ≤ i ≤ N} and N is the number of examples of E (N = ‖E‖), and

• a quality criterion q, which rewards models with high predictive accuracy and low complexity.

Find: a function f : D × X 7−→ 2C (where 2C is the power set of C) such that f maximizes q and
c ∈ f (x)⇒∀c′ ≤h c : c′ ∈ f (x), i.e., predictions made by the model satisfy the hierarchy constraint.

The context space D serves as a background knowledge and is a result of the violation of the i.i.d.
assumption, also for this specific task.
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Figure 2.1: An example of dataset for hierarchical multi-label classification of functional genomics data.

The descriptive attributes present different aspects of the genes in the yeast genome, while the targets are
protein functional classes organized hierarchically. (Stojanova et al, 2012).

Figure 2.1 gives an example of hierarchical multi-label classification. In particular, it presents an
example dataset for hierarchical multi-label classification of functional genomics data. On the left part of
the figure the targets, i.e., protein functional classes are presented in form of a tree (hierarchy structure).
The hierarchy has three levels of classes. On the right part of the figure these same targets are presented
as a binary vector. We can see that the targets that are given in bold in the hierarchy on the left are the
ones that have values of one in the binary vector representation on the right, i.e., the one that actually
appear in the given example. On the right part of the figure we also present the descriptive (discrete and
continuous) attributes that describe different aspects of the genes in the yeast genome (Stojanova et al,
2012).

In contrast to classification and regression, where the output is a single scalar value, in this case the
output is a data structure, such as a tuple or a Directed Acyclic Graph (DAG). This is also in contrast to
the multi-target classification where each example is associated with a single label from a finite set of
disjoint labels, as well as to multi-label classification where the labels are not assumed to be mutually
exclusive: multiple labels may be associated with a single example, i.e., each example can be a member
of more than one class.

These types of problems occur in domains such as life sciences (gene function prediction, drug
discovery), ecology (analysis of remotely sensed data, habitat modeling), multimedia (annotation and
retrieval of images and videos) and the semantic web (categorization and analysis of text and web).
Having in mind the needs of the application domains and the increasing quantities of structured data,
the task of “mining complex knowledge from complex data” was listed as one of the most challenging
problems in data mining (Yang and Wu, 2006).

2.2 Relations Between Examples

When learning predictive models the i.i.d. assumption is violated in many real-world cases. Therefore, as
we mentioned in the previous section, we consider the predictive modeling tasks without this assumption.
Having defined a context space D that serves as a background knowledge and introduces additional
information, related to the target space, and especially the distance d(·, ·) on which it is defined, we can
say that data is linked through some kind of relations. Moreover, they can be cases when this context
space is not explicitly defined using dimensional variables, but only using a distance d(·, ·) over the
context space.

The relations that we consider are relations between the examples. They can be inherited from the
data itself or artificially defined by the user, in order to substitute the missing natural ones or to enable
some learning tasks to be accordingly addressed. We argue the use of these relations and emphasize the
advantages of the used experimental settings which serve as a basis of our work.
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In the following Section, first we focus on the different types of relations that we consider. Then, we
describe their origin. Finally, we explain their use within our experimental settings.

2.2.1 Types of Relations

Common machine learning algorithms assume that the data is stored in a single table where each example
is represented by a fixed number of descriptive attributes. These are called attribute-value or proposi-
tional techniques (as the patterns found can be expressed in propositional logic). Propositional machine
learning techniques (such as the classification or regression decision trees discussed in the previous sec-
tion) are popular mainly because they are efficient, easy to use and are widely accessible. However, in
practice, the single table assumption turns out to be a limiting factor for many machine learning tasks
that involve data that comes from different data sources.

Traditional classification techniques would ignore the possible relations among examples, since the
main assumption on which rely most of the data mining, machine learning and statistical methods is the
data independence assumption. According to this, the examples included in the learning process must
be independent from each other and identically distributed (i.i.d.). However, examples of non i.i.d. data
can be found everywhere: nature is not independent; species are distributed non-randomly across a wide
range of spatial scales, etc. The consideration of such relations among example is related to phenomenon
of autocorrelation.

The autocorrelation phenomenon is a direct violation of the assumption that data are independently
and identically distributed (i.i.d.). At the same time, it offers a unique opportunity to improve the per-
formance of predictive models on non i.i.d. data, as inferences about one entity can be used to improve
inferences about related entities. We discuss this phenomenon in more details in the next Section 2.3.

The work presented in this dissertation differs from the propositional machine learning methods un-
derlying the i.i.d. assumption. It introduces and considers autocorrelation that comes from the existence
of relations among examples i.e., examples are related between each other. As mentioned in Section 2.1,
this upgrades the setup of classical predictive modeling tasks it considers by introducing a context space
D that embraces these relations.

Such relations have already been considered in collective classification (Sen et al, 2008). It exploits
dependencies between examples by considering not only the correlations between the labels of the ex-
amples and the observed attributes of such examples or the examples in the neighborhood of a particular
object, but also the correlations between labels of interconnected (or in a more general case we can say
that there exists a reciprocal relation between the examples) examples labels of the examples in the neigh-
borhood. In general, one of the major advantages of collective inference lies in its powerful ability to
learn various kinds of dependency structures (e.g., different degrees of correlation (Jensen et al, 2004)).

Alternatively, even greater (and usually more reliable) improvement in classification accuracy can
occur when the target values (class labels) of the linked examples (e.g., pages) are used instead to derive
relevant relational features (Jensen et al, 2004).

Examples of collective classification can be found in the webpage classification problem where web-
pages are interconnected with hyperlinks and the task is to assign each webpage with a label that best
indicates its topic, and it is common to assume that the labels on interconnected webpages are correlated.
Such interconnections occur naturally in data from a variety of applications such as bibliographic data,
email networks and social networks.

The relations (dependencies) between examples are the most interesting and challenging problems in
Multi-Relational Data Mining (MRDM) (Domingos, 2003). For example, molecules are not independent
in the cell; rather, they participate in a complex chains of reactions whose outcomes we are interested in.
Likewise, Webpages are best classified by taking into account the topics of pages in their graph neigh-
borhood, and customers’ buying decisions are often best predicted by taking into account the influence
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of their friends and acquaintances.
In contrast, although most of the Inductive Logic Programming (ILP) research has focused on prob-

lems where individual examples have relational structure, examples are still independent from each other
(Domingos, 2003). The data consists of a collection of facts in first-order logic. Each fact represents a
part, and individuals can be reconstructed by piecing together these facts. For instance, an example might
be a molecule, with the bonds between atoms as the relational structure, and the task being to predict
whether the molecule is a carcinogen.

Inspired by all of these, we position the research presented in this dissertation in between the ap-
proaches mentioned above. In particular, we use traditional single table representation of the data, and
at the same time we consider the relations as in collective classification. We deal with the correlations
between labels of interconnected examples, labels of the examples in the neighborhood, known as auto-
correlation (Cressie, 1993). However, we do not use these interconnections for generation of features,
but we consider them as a background knowledge related to the target variables. By doing so, we ensure
that our models are general and do not depend on a specific application; moreover they are reusable and
can be applied for similar tasks within the same application domain.

2.2.2 The Origin of Relations

Next, we give a more detailed view of the foundations of our research by describing the nature and
importance of the considered relations. We distinguish between relationships between examples that
are inherited from the data itself (explicit relations) and relationships that can be defined artificially in
order to substitute the missing natural ones or to enable some learning tasks to be accordingly addressed
(implicit relations) and discuss them separately.

Explicit Relations

The nature of the relations (dependencies) between examples that may be considered in a learning task
is versatile. Relationships are usually inherited by the problem concerned in the learning task, i.e.,
they are explicitly given with the problem. In this case they have a natural interpretation related to the
modeling problem. Examples of such relations can be found in biological data, where the relations can
mean a connection/relation between different organisms; the relations among co-authors and papers in
bibliographic data; the popular “friend” relations in social networks, etc.

In practice, these relations may be discussed together and viewed in the form of a network, where the
entities are represented by nodes which may be connected with (related to) each other by edges. Each
entity is called a node of the network. A number (which is usually taken to be positive) called “weight”
is associated with each edge. In a general formulation, a network can be represented as a (weighted and
directed) graph, i.e., a set of nodes and a ternary relation which represents both the edges between nodes
and the weight associated to each edge.

For instance, the Web can be considered as a network of web-pages, which may be connected with
each other by edges representing various explicit relations such as hyperlinks. Social networks can be
seen as groups of members that can be connected by friendship relations or can follow other members
because they are interested in similar topics of interests. Metabolic networks can provide an insight
about genes and their possible relations of co-regulation based on similarities in their expressions level.
Finally, in epidemiology networks can represent the spread of diseases and infections.

The weights represent the strength of the relation between the nodes of the network. For example,
in hypermedia data, it could be the number of hyperlinks from one page to another; in epidemiology it
can be the speed of spread of a disease or infection over a particular geographical region in some time
interval or, on Twitter, the fact that a user follows another user (Kwak et al, 2010) (keeping in mind that
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a user is not obligated to reciprocate followers by following them). In the latter case the relationship is
binary (“is following” or not) and expresses a lower amount of information then the former quantitative
one which expresses an existence of a relation and gives information about the strength of the relation.
These examples, indeed, are related to the case of modeling asymmetric relationships.

In the case of modeling symmetric relationships, the weights can represent the frequency with which
a pair of lectures been viewed together or the distance between cities in the same country. The weights
can also be given by a binary value indicating whether two proteins interact each other within a biological
network, or on Facebook, the “friend” relationship, where everyone who you have claimed as a friend has
also claimed you as a friend. This is a two-way reciprocal relationship and it is twice (in both directions)
encountered in the further analysis.

Implicit Relations

When the relations (dependencies) between examples come along with the problem concerned in the
learning task, we deal with them as they are defined. However, sometimes it is the case that the rela-
tionships are not immediately available from the data. In such cases, we need to define them within the
context of the learning task that we deal with. These relations are then called implicit relations.

There is more than one unique way to define implicit relations. We have the ability to choose the
type of the relations that we plan to use and determine their strength, according to our needs and interest.
For that purpose, the weights representing the strength of the relations are often computed based on
symmetric and nonnegative similarity measures between examples.

Different similarity measures have been defined in almost every scientific field, however one can
generally distinguish among distance-based, feature-based and probabilistic similarity measures. The
main difference between them is that the perception used in the first two measures is deterministic,
whereas for the latter one, it varies over time (probabilistic). We will focus on distance-based similarity
(dissimilarity) measures, as a quantitative degree of how far apart two examples are.

Most common distance measures for continuous data are Euclidean distance, Manhattan distance,
Chebychev distance, block distance and Minkowski distance, whereas for discrete data are chi-square or
phi-square distance (Bishop, 2007). Most popular distance measures for binary data include Euclidean
distance, squared Euclidean distance, size difference, pattern difference, variance or shape.

The notion of distance for discrete data is not as straightforward as for continuous data. The key
characteristic of discrete data is that the different values that a discrete variable takes are not inherently
ordered (Boriah et al, 2008). Thus, it is not possible to directly compare two different discrete values.
The simplest way to find similarity between two categorical attributes is to assign a similarity of 1 if the
values are identical and a similarity of 0 if the values are not identical.

Overall, the concept of Euclidean distance has prevailed in different fields and has been used as
a universal distance measure for all types of data or patterns (Bishop, 2007). The Euclidean distance
between examples p and q is defined as the length of the line segment connecting them (pq). In Cartesian
coordinates, if p = (p1, p2, ..., pn) and q = (q1,q2, ...,qn) are two points in Euclidean n-space, then the
distance from p to q, or from q to p is defined as:

d(p,q) = d(q, p) =
√

(p1 −q1)2 +(p2 −q2)2 + ...+(pn −qn)2 (2.1)

Moreover, when it is necessary to balance out the contributions of each element, a more suitable choice
is the weighted Euclidean distance, defined as:

d(p,q) = d(q, p) =

√√√√
N

∑
j

w j(p j −q j)2 (2.2)
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where w j = 1/s2
j is the inverse of the j-th variance. We think of w j as a weight attached to the j-th

variable: in other words, we compute the usual squared differences between the variables on their original
scales, as in the Euclidean distance, but then multiply these squared differences by their corresponding
weights.

In addition, Manhattan distance can be used as an alternative to the Euclidean distance (Deza, 2009).
Manhattan distance is the distance between two points measured along axes at right angles. It is calcu-
lated by summing the (absolute) differences between point coordinates. In a plane with p at (x1,y1) and
q at (x2,y2), it is:

dm(p,q) = dm(q, p) =| x1 − x2 |+ | y1 − y2 | (2.3)

This is easily generalized to higher dimensions. Manhattan distance is often used in integrated circuits,
where wires only run parallel to the X or Y axis.

Aside from this, new distance measures (e.g., (Džeroski et al, 2007)) have been recently exploited for
a variety of applications encountered in many different fields such as anthropology, biology, chemistry,
computer science, ecology, information theory, geology, mathematics, physics, psychology, statistics,
etc. In addition, there have been considerable efforts within different fields in finding the appropriate
measures among such a plethora of choices because it is of fundamental importance for the analyzed
problem.

We consider the examples as nodes in a network. The similarity measures between nodes can be
based on the similarity of the node labels or on the distance between examples in the case of spatial,
temporal and spatio-temporal data. The network G is represented by an adjacency matrix W which is
sometimes also called the connection matrix. The matrix has entries wi j > 0 if there is an edge connecting
i to j, and wi j = 0 otherwise. We impose wii = 0 and we define the degree of a node ui as Deg(ui)=∑

j

wi j.

When dealing with network data, the relations are already inherited from the data and we use them
as such within the learning task. Often these relations are symmetric and binary indicating that a connec-
tion/relation between two nodes exists. Otherwise in the case of spatial, temporal and spatio-temporal
data we use a contingency matrix.

A special type of the adjacency matrix W is the spatial connectivity (contiguity) matrix, typically
specifying the connections between locations that are physically adjacent. Specifically, it contains
weights based on the spatial proximity of the location of an example i to the examples’ locations around
i. The basic idea is that the examples close to a specific object have more influence in the estimation of
its target value than examples farther away.

The simplest choice to solve this problem is to use a Binary similarity measure:

wi j =

{
1 if dl j < b

0 otherwise
(2.4)

where b is referred to as the bandwidth and di j is the Euclidean/Manhattan spatial distance between
examples oi and o j. However, it does not reflect the actual geographical processes very well because it
suffers from the problem of discontinuity.

A popular choice to solve this problem is to use the Gaussian-like similarity measure, defined as:

wi j =

{
e
−

d2
l j

b2 if dl j < b

0 otherwise
(2.5)

where b is referred to as the bandwidth and di j is the Euclidean/Manhattan spatial distance between
examples oi and o j. If oi and o j are at the same location, wi j = 1. The weighting of other data will
decrease according to a Gaussian-like curve, as the distance between oi and o j increases. If oi and o j are
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farther away from each other than the bandwidth b, then they are not considered in the analysis. We refer
to this weighting function as “Gaussian”.

As an alternative, it is possible to use a discrete weighting function (see Equation 2.6) and a bi-square
density function (see Equation 2.7), defined as:

wi j =

{
1− dl j

b
if dl j < b

0 otherwise
(2.6)

wi j =

{
(1− d2

l j

b2 )
2 if dl j < b

0 otherwise
(2.7)

which we refer to as “Euclidean” and “Modified”, respectively.
Since we already discussed the distances (e.g., Equation 2.1 and Equation 2.3) and the weights (e.g.,

Equation 2.5, Equation 2.6 and Equation 2.7), we need to focus on the selection of the optimal bandwidth.
This problem is tackled in Section 6.2.3 and Section 7.2.3, for the spatial and network data, accordingly.

We would like to note here that there is no clear-cut agreement on the choice of a proper weighting
function (or weighting matrix). According to Dubin (1998), there is little agreement regarding the best
form for the connectivity matrix and the above described forms which are commonly used. In fact, all
of these forms depend on the scale of the data in some way. Moreover, the specification also involves
the bandwidth b parameter, which is typically chosen apriori while the weights are generally treated
as exogenous. In contrast, Anselin and Bera (1998) argue that the spatial weight matrix should be
constructed by a spatial interaction theory, such as the concept of accessibility, instead of simple physical
feature of spatial units.

2.2.3 The Use of Relations

In the following subsection, we argue the experimental settings and discuss them along the setting on
which existing related approaches are based. We compare these settings and stress their differences.

i) Autocorrelation over the target space

Many machine learning algorithms and statistical methods that deal with the autocorrelation phe-
nomenon take into account the autocorrelation of the input space (descriptive attributes) (see for
example (Appice et al, 2009; Malerba et al, 2005)). This is very intuitive, especially in spatial regression
studies, where it is common to resample the study area until the input variables no longer exhibit
statistically significant spatial autocorrelation.

In order to explicitly take autocorrelation into account, we need to define the spatial/network dimen-
sion of the data. For this purpose, in addition to the descriptive space and the target space, it is necessary
to add information on the spatial/network structure of the data in order to be able to capture the spa-
tial/network arrangement of the examples (e.g., the coordinates of the spatial examples involved in the
analysis or the pairwise distances between them).

A naïve solution would consider both the descriptive and autocorrelation attributes together as input
of a learning process. This has already been done in a number of studies (e.g., (Appice et al, 2009)) in
different domains. However, this solution would lead to models that would be difficult to apply in the
same domain, but in different spatial/network contexts.

Following (Ester et al, 1997), we do not consider spatial/network information in together with de-
scriptive one in the learned models. This limitation of the search space allows us to have more general
models, at the price of possible loss in predictive power of the induced models.
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In contrast to these studies, we are interested in accounting for autocorrelation related to the target

(output) space, when predicting one or more (discrete and continuous, as well as structured) target

variables, at the same time.

ii) Autocorrelation as a background knowledge

Autocorrelation can be considered with the learning process in many different ways. Various
approaches, such as collective classification and typical network analysis (already mentioned in
Section 2.2.1), consider different types of relations to exploit the phenomenon of autocorrelation within
the learning process: from the synthesis of in-network features to the propagation of a response across
the network.

In most of the collective classification studies (Gallagher et al, 2008), the connections/relations
(edges in the network) between the data in the training/testing set are predefined for a particular in-
stance and are used to generate the descriptive information associated to the nodes of the network. In this
way, in-network features are created. However, such features can be a limiting factor in the predictive
modeling process that can lead the models to lose their generality and possible general applicability.

In typical network studies, the general focus is on exploring the structure of a network by calculating
its properties (e.g. the degrees of the nodes, the connectedness within the network, scalability, robustness,
etc.). The network properties are then fitted into an already existing mathematical network model or a
theoretical graph model (Steinhaeuser et al, 2011). Also in this case the created in-network features are
in a tight, inseparable relation to the data which is a limitation toward the generality of the models.

Another limitation of most of the models is that they only consider the cases where training and
testing data (nodes) belong to the same network. This means that the prediction phase requires complete
knowledge of the network arrangement (e.g., connections to other nodes of the network) of any unlabeled
node to be predicted.

In contrast to these studies, in this dissertation, the connections are not in a tight inseparable relation

to the data. In fact they relate to the target space and not to the descriptive attributes. Moreover, different

types of relations (explicit and implicit) can be used with the same data, as a tool to access the quality of

the relational data.

The network setting that we address in this work is based on the use of both the descriptive in-
formation (attributes) and the network structure during training whereas, on the use of the descriptive
information in the testing phase where we disregard the network structure.

More specifically, in the training phase we assume that all examples are labeled and that the given
network is complete. In the testing phase all testing examples are unlabeled and the network is not given.
Because of this setting, a key property of the proposed solution is that the existence of the network
is not obligatory in the testing phase, where we only need the descriptive information. This can be
very beneficial especially in cases where the prediction needs to be made for those examples for which
connections to other examples are not known or need to be confirmed.

The setting where a network with some nodes labeled and some nodes unlabeled (Appice et al, 2009)
is given, can be mapped to our setting. In fact, we can always use the nodes with labels and the projection
of the network on these nodes for training and only the unlabeled nodes without network information in
the testing phase.

The existence of the relations is not obligatory for in the testing set. This leads to the creation of

general models.

iii) Non-stationary autocorrelation

A limitation of most of the models that represent and reason for autocorrelation is that the meth-
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ods assume that autocorrelation dependencies are stationary (i.e., do not change) throughout the
considered context space (time, space or network) (Angin and Neville, 2008). This means that possible
significant variabilities in autocorrelation dependencies throughout the space/network cannot be repre-
sented and modeled. However, the variabilities could be caused by a different underlying latent structure
of the network (or generally in any dimension) that varies among its portions in terms of properties of
nodes or associations between them. For example, different research communities may have different
levels of cohesiveness and thus cite papers on other topics with varying degrees. As pointed out by
Angin and Neville (2008), when autocorrelation varies significantly throughout a network, it may be
more accurate to model the dependencies locally rather than globally.

To overcome this issue, in this work, we develop an approach for modeling non-stationary autocor-

relation data, where the autocorrelation is related to the target (output) space.

Since we consider the PCT framework, the tree models obtained by the proposed algorithm allow us
to obtain a hierarchical view of the network, where clusters can be employed to design a federation of
hierarchically arranged networks. This can turn to be useful, for instance, in wireless sensor networks,
where a hierarchical structure is one of the possible ways to reduce the communication cost between the
nodes (Li et al, 2007).

Moreover, it is possible to browse the generated clusters at different levels of the hierarchy, where
each cluster can naturally consider different effects of the autocorrelation phenomenon on different por-
tions of the network: at higher levels of the tree, clusters will be able to consider autocorrelation phe-
nomenons that are spread all over the network, while at lower levels of the tree, clusters will reasonably
consider local effects of autocorrelation.

This gives us the way to consider non-stationary autocorrelation.

2.3 Autocorrelation

The autocorrelation phenomenon takes the central place of discussion in this dissertation. To stress its
importance and the role it plays in the predictive modeling process, it is discussed along two orthogonal
dimension: the first one considers the type of targets in predictive modeling, whereas the second one
focuses on the type of relations considered in the predictive model. First, we discuss the autocorrela-
tion phenomenon in terms of the types of the targets in predictive modeling. Next, we present different
types of the autocorrelation phenomenon and describe their specific properties. In particular, we focus
on temporal autocorrelation, spatial autocorrelation, spatio-temporal autocorrelation and network auto-
correlation.

2.3.1 Type of Targets in Predictive Modeling

In machine learning and data mining, different predictive modeling tasks are recognized according to
the type of the response target variables considered in predictive modeling process (an overview of these
tasks is presented in Section 2.2.2). Moreover, the type of the targets in the predictive models determines
the relations that can exist among the instances included in the predictive modeling process. As already
discussed in Section 2.2.2, the distance measures that express the relations are related to the data, i.e.,
type of the targets in the predictive models.

Besides the classical Euclidean distance, we use a weighted Euclidean distance that reflects the simi-
larity within a hierarchy of classes. In a HMC context, the similarity of class labels at higher levels of the
hierarchy is more important than the similarity of class labels at lower levels. This weighted Euclidean
distance used in this case is given with Equation 8.1 in Section 8.2.

In particular, the classical Euclidean distance is used for the definition of almost all measures of
autocorrelation and a weighted Euclidean distance is used for the definition of the measures of autocor-
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relation in a hierarchial multi-label classification (HMC). The measures of autocorrelation are defined in
Chapter 3.

The choice of the distance measure is an important factor that influences the definition of the mea-
sures of autocorrelation, not only in the HMC context, but in all predictive modeling tasks. Euclidean
distance is not always the best choice of a suitable distance measure, especially when the targets are
structured like time-series data where the Euclidean distance is highly sensible to small distortions in
the time axis. However, there exists no autocorrelation measure that does not depend on the Euclidean
or Manhattan distance. This opens a possibility of future generalizations of the autocorrelation measure
that will make them independent of the distance measure and will make them applicable for different
types of targets.

2.3.2 Type of Relations

Autocorrelation occurs in many fields, such as statistics (e.g., correlation between the values of variables
that are based on associated aspects), spatial and time-series analysis (e.g., terrain elevations, soil types,
and surface air temperatures measures at close locations) and networks (e.g., current financial transac-
tions are related to previous similar transaction), sociology (e.g., social relations affect social influence),
web mining (e.g., hyperlinked web pages typically share the same topic) and bioinformatics (e.g., pro-
teins located in the same place in a cell are more likely to share the same function than randomly selected
proteins). In these fields, different definitions of autocorrelation are in use depending on the field of study
which is being considered and not all of them are equivalent.

The cross-correlation of an attribute with itself (Cressie, 1993) is typically referred to as autocorre-
lation and this is the most general definition found in the literature. Specifically, in statistics, autocorre-
lation is generically defined as the cross-correlation between the attribute of a process at different points
in time (Epperson, 2000). In time-series analysis, temporal autocorrelation is defined as the correlation
among timestamped values due to their relative proximity in time (Epperson, 2000).

In spatial analysis, spatial autocorrelation has been defined as the correlation among data values,
which is strictly due to the relative location proximity of the examples that the data refer to. It is justified
by the Tobler’s (Legendre, 1993) first law of geography according to which “everything is related to ev-
erything else, but near things are more related than distant things”. In network studies the autocorrelation
is defined by the homophily’s principle as the tendency of nodes with similar values to be linked with
each other (McPherson et al, 2001).

In general, the complexity of the different definitions of autocorrelation depends on the number of
dimensions that they consider. For example, temporal autocorrelation is the simplest form of autocor-
relation over one dimension, i.e., time. This is also often used in statistics, signal processing and time
series analysis. Spatial and network autocorrelation are more complex forms of autocorrelation, since
they consider two, three or more dimensions, i.e., are multi-dimensional functions.

Historically, the concept of autocorrelation was first established in stochastic processes, as the cor-
relation between paired values of a random or stochastic process x(n), indexed with n = 0,±1,±2, ...,
taken at usually constant intervals that indicates the degree of periodicity of the function. A stochastic
process Mitsa (2010) is a collection of random variables defined on a given probability space, indexed by
the time variable t, where t varies over an index set T . Moran (1950) was the first to define this concept
for one and two dimensional processes.

The simplest case is that of a stationary stochastic process in one (time) dimension. It is a stochastic
process whose joint probability distribution does not change when shifted in (time) dimension. Conse-
quently, parameters such as the mean

µ(n) = E[x(n)] (2.8)
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and the variance

σx(n)
2 = E[(x(n)−µ(n))2] (2.9)

also do not change over this dimension. A stationary stochastic process is fully described by the joint
probability density function of (the usually normally distributed) observations. In this context, one can
always estimate the autocovariance function that indicates how fast a signal can change in (time) dimen-
sion.

The autocovariance function of xn is the covariance between two observations xn and xn+k of a such
process, defined as:

r(k) = cov(xn,xn+k) = E[(xn −µ)(xn+k −µ)] (2.10)

It measures the covariance between pairs of variables at a distance or time lag k, for all different values
of k, and can be normalized to give the autocorrelation function ρ(k):

ρ(k) =
r(k)

σ2
x

=
E[(xn −µ)(xn+k −µ)]

σ2
x

(2.11)

The value for the autocorrelation function at lag 0 is 1. This property also follows from the definition of
stationarity where the correlation should be only a function of the time lag between two observations; the
lags −k and k are equal in that respect. Thus, the autocorrelation function is symmetrical (ρ(−k) = ρ(k))
about the origin where it attains its maximum value of one (‖ρ(k)‖ ≤ 1).

Equation 2.11 gives the autocorrelation function ρ(k) for continuous processes (Moran, 1950). How-
ever, Moran (1950) defined it also for discrete processes by discretizing the continuous process, i.e., by
considering the values of x(n) only at discrete values of k(= 0,±1,±2, ...). Such a process would have
an autocorrelation function ρ(k):

ρ(k) =
r(‖k‖)

σ2
x

,k(= 0,±1,±2, ...) (2.12)

The autocorrelation function ρ(k) is very similar to the normalized covariance between two random
variables X and Y (cov(X ,Y ) = E[(X −µx)(Y −µy)]), i.e., the correlation coefficient which is defined as
the ratio of the covariance of the variables X and Y and the product of their standard deviations:

CCx,y =
cov(X ,Y )

σX σY

=
E[(X −µx)(Y −µy)]

E[(X −µx)]E[(Y −µy)]
(2.13)

where E is the expected value operator and µx is the mean of the variable X .
When the autocorrelation function ρ(k) is normalized by subtracting the mean and dividing by the

variance, it is referred to as the autocorrelation coefficient, given as:

AC(k) =
cov(Xn,Xn+k)

σ2
X

=
E[(Xn −µX)(Xn+k −µX)]

E[(Xn −µX)]
(2.14)

In the case of stationary stochastic processes in two dimensions, we take two parameters t and u to
correspond to these dimensions and obtain two dimensions:

ρ(p,q) = cor{x(t,u),x(t + p,u+q)}= E[x(p2 +q2)1/2] (2.15)

Generalizing the Moran’s definition of autocorrelation (Moran, 1950) of a random variable xn to
match n dimensions, we deal with a n-dimensional vector and the autocorrelation function is expressed



24 Definition of the Problem

as the covariance between the values xd = (x1,d , ...,xn,d) and xd′ = (x1,d′ , ...,xn,d′), where τ = d′−d is the
total shift (distance or difference) between the two vectors xd and xd′ along each of the n dimensions:

ρ(τ) =
E[(Xd −µX)(Xd′ −µX)]

E[(Xd −µX)]
(2.16)

If the process is stationary, the denominator can be seen as the standard deviation of x, which is
assumed to be constant at all times. For processes that are not stationary, the above presented autocorre-
lation functions will also depend on n. This means that for a one dimensional continuous non-stationary
process, the autocorrelation function at lag τ is defined as:

ρ(τ) =
∫ +∞

−∞
x(n)x∗(n− τ)dn (2.17)

For one dimensional discrete non-stationary processes, the autocorrelation function at lag τ is defined
as:

ρ(τ) = ∑
n

xnxn−τ (2.18)

Multi-dimensional autocorrelation functions are defined similarly. For three dimensional discrete
non-stationary process, the autocorrelation function is defined as:

ρ(τ,k, l) = ∑
n,q,r

xn,q,rxn−τ,q−k,r−l (2.19)

The most relevant properties of the autocorrelation (Moran, 1950) include:

• A fundamental property of the autocorrelation is symmetry.

• The autocorrelation of a periodic function is itself periodic, with the same period.

• The autocorrelation of the sum of two completely uncorrelated functions (the cross-correlation is
zero for all ) is the sum of the autocorrelations functions.

• Since autocorrelation is a specific type of cross-correlation, it maintains all the properties of cross-
correlation, such as sampling.

In the remainder of this Section, we proceed with the presentation of the different types of auto-
correlation (temporal, spatial, spatio-temporal and network autocorrelation) and the description of their
specific properties.

Temporal Autocorrelation

Before we introduce this special type of autocorrelation, let us define some basis concepts. A time lag is
the time period between two observations. For example, in discrete time we have a lag of 1 between Yt

and Yt−1, and a lag of 2 between Yt and Yt−2. Observations can also be lagged forward, for example we
have a lag of 1 between Yt and Yt+1.

A sequence of data points, measured at successive time instants spaced at uniform time intervals, is
known as a time series. Time series appear naturally in a variety of different domains, from engineering
to scientific research, finance and medicine. Time series data have a natural temporal ordering. Examples
of time series are the daily closing value of the Dow Jones index or the annual flow volume of the Nile
River at Aswan.

Quite often, successive observations of time series are correlated. This is mostly a positive corre-
lation, in the sense that large values follow large values and small values follow small values. This



Definition of the Problem 25

Figure 2.2: Temporal autocorrelation. An example of the effect of the temporal autocorrelation. Figure
taken from (Sharov, 1997).

phenomenon is known as temporal autocorrelation. It is defined as the correlation among data values,
which is strictly due to their relative time proximity (Mitsa, 2010).

As already mentioned in Section 2.3.2, the stationary temporal autocorrelation can be expressed as
the covariance between two observations xn and xn+k at time lag k, and defined as:

Temporal_AC(k) =
cov(xn,xn+k)

σ2
x

=
E[(xn −µx)(xn+k −µx)]

E[(xn −µx)]
(2.20)

If the process is stationary, the denominator can be seen as the standard deviation of x, which is assumed
to be constant at all time points.

An example of temporal autocorrelated variable is presented in Figure 2.2. The figure presents the
periodicity in food weight supply in a fifteen-year period of time and is taken from (Sharov, 1997). The
values of the weight supply follow some trend in the data and these values are more similar on shorter
time interval than on longer intervals.

Temporal autocorrelation is very common in ecological and environmental, as well as financial stud-
ies. For example, the likelihood of tomorrow being rainy is greater if today is rainy than if today is dry.
Moreover, weather conditions are highly autocorrelated within one year due to seasonality. A weaker
correlation exists between weather variables in consecutive years. Similar example is the annual food
supply for a supermarket or the daily financial markets exchange value of the most important financial
indexes.

Temporal autocorrelation refers to the correlation of a time series with its own past and future values
and it is also sometimes called “lagged correlation” or “serial correlation”. In a time series, positive
autocorrelation might show up as unusually long runs, or stretches, of several consecutive observations
above or below the mean, whereas negative autocorrelation might show up as an unusually low incidence
of such runs.

Positive temporal autocorrelation might be considered a specific form of “persistence”, a tendency
for a system to remain in the same state from one observation to the next. For example, the likelihood of
tomorrow being rainy is greater if today is rainy than if today is dry. In contrast, negative autocorrelation
is characterized by a tendency for positive trends to follow negative ones, and vice versa.

Temporal autocorrelation complicates the application of statistical tests by reducing the number of
independent observations. It can also complicate the identification of significant covariance or correlation
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between time series (e.g., precipitation with a tree-ring series).
Frequent causes of temporal autocorrelation (Fortin and Dale, 2005) are misidentifications of the

following types:

• Omitted variables

• Structural breaks in time-series when we see an unexpected shift

• Lags (yesterday impacts today)

• Over or under differencing the data when transforming parts of a time-series into stationary time-
series

Temporal autocorrelation is the simplest form of autocorrelation over one dimension and one di-
rection. However, one complication arises when observations in time are not uniformly spaced. This
happens mainly when data were not collected at uniform intervals through time, or a data generating
process does not produce values that are equally spaced through time. In this case, usually one assumes
that observations in time are piece-wise (or locally) stationary.

Spatial Autocorrelation

Spatial autocorrelation is a very general statistical property of ecological variables observed across geo-
graphic space. Spatial autocorrelation is defined as a property of random variables taking values, at pairs
of locations a certain distance apart, that are more similar (positive autocorrelation) or less similar (neg-
ative autocorrelation) than expected for pairs of observations at randomly selected locations (Legendre,
1993).

As already mentioned in Section 2.3.2, spatial autocorrelation is actually correlation among values
of a variable strictly due to their relative location proximity. As a location can be defined with two/three
spatial coordinates, spatial autocorrelation can occur in two/three dimensions.

For a continuous variable X , measured at locations at a distance (∆a, ∆b), the spatial autocorrelation
can be expressed as:

Spatial_AC(∆a,∆b) =
E[(Xa,b −µx)(Xa+∆a,b+∆b

−µx)]

E[(Xa,b −µx)]
(2.21)

where d =
√
(∆a)2 +(∆b)2 is the Euclidean distance between the values of the variable X at the two

locations, E is the expected value operator and µx is the mean of the variable X .
Positive spatial autocorrelation means that geographically nearby values of a variable tend to be

similar: high values tend to be located near high values, medium values near medium values, and low
values near low values. Consequently, positive spatial autocorrelation has all similar values appearing
together. In contrast to positive spatial autocorrelation, negative spatial autocorrelation has not so similar
values appearing in close association. Finally, Zero spatial autocorrelation means geographically random
phenomena and chaotic distribution of geographical data. Informally, spatial positive (negative) autocor-
relation occurs when the values of a given property are highly uniform (different) among similar spatial
examples in the neighborhood.

In geography, spatial autocorrelation is justified by Tobler’s (Tobler, 1970) first law of geography,
according to which “everything is related to everything else, but near things are more related than distant
things”. This means that by picturing the spatial variation of some observed variables in a map, we may
observe regions where the distribution of values is smoothly continuous with some boundaries possibly
marked by sharp discontinuities.
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Figure 2.3: Spatial autocorrelation. An example of the effect of the spatial autocorrelation on an ob-
served variable in a map. Positive autocorrelation, negative autocorrelation and a random pattern. The
different colors indicate different values of the observed variable.

An example of the effect of the spatial autocorrelation on an observed variable in a map is presented in
Figure 2.3. The Figure shows three different cases in terms of the spatial autocorrelation phenomenon:
positive autocorrelation, negative autocorrelation and a random pattern. The different colors indicate
different values of the observed variable. In the case of positive spatial autocorrelation, nearby values of
the variable presented in the map have the same color, i.e., geographically nearby values of a variable
tend to be similar, whereas in the case of negative spatial autocorrelation, nearby values of the variable
presented in the map have not so similar colors, i.e., geographically nearby values of a variable tend to
be not so similar. Finally, in the case of zero spatial autocorrelation, the distribution of different colors
on the map is random, i.e., the Figure 2.3 shows a geographically random phenomena.

Demographic and socio-economic characteristics like population density and house price are good
examples of variables exhibiting positive spatial autocorrelation. Neighborhoods tend to be clusters of
households with similar preferences. Families tend to organize themselves in a way that concentrates
similar household attributes on a map-creating positive spatial autocorrelation amongst many variables-
with government policies and activities, such as city planning and zoning, reinforcing such patterns.
Frequently, we observe positive spatial autocorrelation at smaller distances, and negative spatial autocor-
relation at greater distances.

Commonly, we tend to model positive spatially autocorrelated data because of the way this phenom-
ena are geographically organized. However, the phenomenon of spatial autocorrelation occurs not only
in geographical data, but also in data which are not geo-referenced, although a spatial dimension still
exists. For instance, in bioinformatics, proteins located in the same part of a cell are more likely to share
the same function than randomly selected proteins. Another example are sentences in text: sentences that
are in close proximity are generally more semantically related than distant ones. Moreover, in general,
nature is autocorrelated. For example, species are distributed non-randomly across a wide range of spa-
tial scales. In this case, the occurrences of species in multiple cells or plots generate the autocorrelation
in geographical data and this is not related to data quality problems.

Therefore, there are two primary reasons of autocorrelation (Dubin, 1998):

• it indexes the nature and degree to which conventional statistical inferences are compromised when
non-zero a spatial autocorrelation is overlooked.

• the measurement of spatial autocorrelation describes the overall pattern across a geographical land-
scape, supporting spatial prediction and allowing detection of striking deviations.

The causes of spatial autocorrelation depend on the specific domain we are dealing with. For in-
stance, in ecological and environmental modeling, where data are typically geo-referenced, four factors
are particularly common (Legendre, 1993; Legendre et al, 2002):

• Biological processes of speciation, extinction, dispersal or species interactions are typically
distance-related;
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• Non-linear relationships may exist between species and environments, but these relationships may
be incorrectly modeled as linear;

• Classical statistical modeling may fail in the identification of the relationships between different
kinds of data without taking into account their spatial arrangement (Besag, 1974);

• The spatial resolution of data should be taken into account: Coarser grains lead to spatial smooth-
ing of data.

Spatial autocorrelation has many interpretations. We present some of them (Dubin, 1998):

• As a nuisance parameter, inserted in a model specification because its presence is necessary for a
good description but it is not the topic of interest.

• As a self-correlation, arising from the geographical context within which attribute values occur.

• As a map pattern, viewed in terms of trends, gradients or mosaics across a map.

• As a diagnostic tool for proper sampling design, model misspecification, nonconstant variance or
outliers.

• As a redundant (duplicate) information in geographical data, connected to the missing values esti-
mation, as well as to notation of effective sample size and degrees of freedom.

• As a missing variables indicator/surrogate, popular in spatial econometrics (Anselin, 1988).

• As an outcome of areal unit demarcation in statistical analysis.

Consequently, when analyzing spatial data, it is important to check for autocorrelation. If there is no
evidence of spatial autocorrelation, then proceeding with a standard approach is acceptable. However, if
there is evidence of spatial autocorrelation, then one of the underlying assumptions of your analysis may
be violated and your results may not be valid.

Spatial autocorrelation is more complicated than temporal autocorrelation as it can occur in any
direction. Moreover, the phenomenon of existing spatial and temporal autocorrelation at the same time
has even higher complexity.

Spatio-Temporal Autocorrelation

In nature, it is a common case that data is not only affected by the phenomenon of spatial autocorrelation,
but also by the phenomenon of temporal autocorrelation at the same time. In that case, we consider
spatio-temporal autocorrelation, as a special case of autocorrelation.

Spatio-temporal autocorrelation is a property of a random variable taking values, at pairs location
a certain distance apart in space and time, that a more similar or less similar than expected for pairs
of observations at random selected locations and times. It is the actual correlation among values of a
variable strictly due to their relative location proximity and time proximity.

For a continuous variable X , measured at locations at a distance (∆a, ∆b), the spatio-temporal auto-
correlation can be expressed as:

SpatioTemporal_AC(∆a,∆b,τ) =
E[(Xa,b,k −µx)(Xa+∆a,b+∆b,k+τ −µx)]

E[(Xa,b,k −µx)]
(2.22)

where d =
√

(∆a)2 +(∆b)2 is the spatial distance between the values of the variable X at the two loca-
tions, τ is the temporal lag, E is the expected value operator and µx is the mean of the variable X .
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The simplest case of spatio-temporal autocorrelation is the short-range positive spatio-temporal au-
tocorrelation where samples are more similar when they are closer together in space or in time. Animals
close in space are more likely to suffer mortality close in time due to some disease that is spreading.
More complexity can be found in cases involving cyclic behavior, such as diurnal migration and verti-
cal migration of zooplankton, where autocorrelation will be positive at short space and time lags, then
negative over short space and longer time lags and then positive again over even longer time lags. For
example, the weather conditions in one year time period within a geographical region that consists of
many subregions are the same time highly (temporally) autocorrelated due to the seasonality and highly
(spatially) autocorrelated due to their spatial vicinity.

For example, the slowly evolving and moving low pressure systems in the atmosphere might impart
persistence to daily rainfall. Or the slow drainage of groundwater reserves might impart correlation
to successive annual flows of a river. Or stored photosynthates might impart correlation to successive
annual values of tree-ring indices.

In ecology, the concept of spatio-temporal pattern usually describes that certain vegetation types
tended to occur close together in space and time. One factor that contributes to this phenomenon is the
clonal nature of some plants. Clonal growth forms are often described based on the spatial pattern of the
ramets, which is related to patterns of establishment in space and time.

Ecologists are interested in a variety of spatio-temporal association patterns involving sequences of
events abstracted from the measurement values of ecological variables at various spatial locations. The
most common types of patterns (Fortin and Dale, 2005) are:

• Intra-zone non-sequential patterns - relationships among events in the same region or zone, ignor-
ing the temporal aspects of the data.

• Inter-zone non-sequential pattern - relationships among events happening in different regions or
zones, ignoring temporal aspects of the data.

• Intra-zone sequential pattern - temporal relationships among events occurring within the same
region or zone.

• Inter-zone sequential pattern - temporal relationships among events occurring at different spatial
locations.

An example of the effect of the spatio-temporal autocorrelation on an observed variable at two differ-
ent times is presented in Figure 2.4. The Figure represents the US county votes cast in the 1980 and 1984
presidential elections (Pace and Barry, 1997). The values of the votes cast change thought the United
States counties. The different colors indicate different values of the observed variable. The values are
more similar on shorter spatial distances than on longer distances. Moreover, the values are more or less
similar at the same locations, in the left and right image, representing the map of the same variable in
two consequent election years 1980 and 1984.

Spatio-Temporal autocorrelation has higher complexity than spatial and temporal autocorrelation, as
it can occur in both spatial and temporal dimensions and it can have any direction (therefore, its specific
definition can be obtained from the general autocorrelation definition, given with the Equation 2.16,
for that particular multi-dimensional case). Because of this and also because of its application specific
treatment, it has been generally addressed as a special case of spatial or temporal autocorrelation and
dealt within the spatial or temporal context exclusively.

Network Autocorrelation

Networks have become ubiquitous in several social, economical and scientific fields, ranging from the
Internet to social sciences, biology, epidemiology, geography, finance, and many others. Indeed, re-
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Figure 2.4: Spatio-temporal autocorrelation. An example of the effect of the spatio-temporal autocor-
relation on an observed variable in a map. The different colors indicate different values of the observed
variable. The different maps represent the observed variable in 1980 and 1984.

searchers in these fields have proven that systems of different nature can be represented as networks
(Newman and Watts, 2006). For instance, the Web can be considered as a network of web-pages, which
may be connected with each other by edges representing various explicit relations, such as hyperlinks.
Social networks can be seen as groups of members that can be connected by friendship relations or can
follow other members because they are interested in similar topics of interests. Metabolic networks can
provide insight about genes and their possible relations of co-regulation based on similarities in their
expressions level. Finally, in epidemiology, networks can represent the spread of diseases and infections.

Regardless of where we encounter them, networks consist of entities (nodes), which may be con-
nected to each other by edges. The nodes in a networks are generally of the same type and the edges
between nodes express various explicit relations. Information on the nodes is provided as a set of prop-
erties (attributes) whose values are associated to each node in the network. The edges reflect the relation
or dependence between the properties of the nodes.

Network (relational) autocorrelation is defined as the property that a value observed at a node de-
pends on the values observed at neighboring nodes in the network (Doreian, 1990). It can be seen as a
special case of spatial (multi-dimensional and multi-directional) autocorrelation, but with different mea-
sures of relationship applied. In social analysis, it is recognized by the homophily’s principle, that is the
tendency of nodes with similar values to be linked to each other (McPherson et al, 2001).

Figure 2.5 shows an example of a data network where different colors represent different node labels.
We can observe that there is a higher tendency of nodes having the same color to be connected to each
other, than the tendency of nodes having different colors to be connected to each other.

Formally, a network is a set of entities connected by edges. Each entity is called a node of the
network. A number (which is usually taken to be positive) called weight is associated with each edge.
In a general formulation, a network can be represented as a (weighted and directed) graph, i.e., a set of
nodes and a ternary relation which represents both the edges between nodes and the weights associated to
those edges. The network is represented by an adjacency matrix W, whose entries are positive (wi j > 0)
if there is an edge connecting i to j, and equal to 0 (wi j = 0), otherwise. In practice, when the original
data come in the form of a network, the weight wi j represents the strength of the connection from one
node to another.

Generalizing the Moran’s definition of spatial autocorrelation (Moran, 1950) of a random variable xn

to match n dimensions, we deal with a n-dimensional vector and the autocorrelation function is expressed
as the covariance between the values xd = (x1,d , ...,xn,d) and xd′ = (x1,d′ , ...,xn,d′), where τ = d′−d is the
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Figure 2.5: Network autocorrelation. Different nodes are given in different colors depending on the
nodes’ labels.

total shift between the two vectors xd and xd′ along the network:

Network_AC(τ) =
E[(Xd −µX)(Xd′ −µX)]

E[(Xd −µX)]
(2.23)

In social networks, homophily is defined as the tendency of individuals to associate and bond with
similar others (friendship). Actually, homophily shows that people’s social networks are homogeneous
with regard to many sociodemographic, behavioral, and intra-personal characteristics. Homophily effects
among friends have demonstrated their importance in marketing (Chuhay, 2010). Moreover, homophily
is the hidden assumption of recommender systems, although it veers away from how people are socially
connected to how they are measurably similar to each another.

In the context of Twitter, as special type of a social network, homophily implies that a twitterer

follows a friend because he/she is interested in some topics the friend is publishing and the friend follows
back the twitterer if he/she shares similar topics of interest. This is due to the fact that “a contact between
similar people occurs at a higher rate than among dissimilar people” (Weng et al, 2010). Recently,
(Kwak et al, 2010) investigated homophily in two contexts: geographic location and popularity. They
considered the time zone of a user as an approximate indicator for the location of the user and the number
of followers as a measure for user’s popularity. Among reciprocated users they observed some level of
homophily.

Frequent causes of network (relational) autocorrelation (Gujarati, 2002) are misidentifications of the
following types:

• Omitted variables

• Fitting an inappropriate functional form, which can cause rise of autocorrelation in the errors of
the model

• Cobweb phenomenon (it takes time to adjust to a change in policy)

• Manipulation of data (creating subsets over time resulting in a systematic pattern)

• Data transformations
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2.4 Summary

In this chapter we defined the problem that we consider, i.e., learning when examples are related among
each other.

First, in Section 2.1 we defined the predictive modeling tasks that we deal with. In contrast to clas-
sical predictive modeling tasks that underlie on the i.i.d assumption, we take into account data where
examples are related among each other. Beside the typical single and multi-target classification and re-
gression task, we are also concerned with the predictive modeling tasks where the outputs are structured.

In addition, in Section 2.2 we explained the relational aspects taken into account within the defined
predictive modeling tasks. In Section 2.2.1 we focused on the different types (explicit and implicit) of
relations that we consider. Moreover, in Section 2.2.2 we described their origin, in Section 2.2.3 we
explained their use and importance within our experimental setting. Furthermore, we compared our
experimental setting to other existing ones.

Finally, in Section 2.3 we introduced the concept of autocorrelation. In particular, we presented the
definitions of autocorrelation, from the most simple one regarding the autocorrelation of a continuous
/discrete variable over one dimension to the case of two and more dimensions. Moreover, we provided
a generic multi-dimensional definition of autocorrelation that can be used to define different forms of
autocorrelation in deferent areas. Furthermore, we defined the different forms of autocorrelation that we
consider and discussed them along two orthogonal dimension.

In Section 2.3.1 we presented the forms of autocorrelation according to the type (discrete, continuous
and structured) of targets in predictive modeling, whereas in Section 2.3.2 we focused on the forms of
autocorrelation according to the type (temporal, spatial, spatio-temporal and network autocorrelation) of
relations that have been considered in the predictive model.
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3 Existing Autocorrelation Measures

In this chapter, we give an overview of the measures of autocorrelation. We consider the existing mea-
sures of autocorrelation, however we also define some new ones.

The measures of autocorrelation are divided according to the different forms of autocorrelation that
we consider: temporal, spatial, spatio-temporal and network autocorrelation. The overview of the mea-
sures starts from the measures of temporal autocorrelation, as the simplest form of autocorrelation. Then,
we present the measures of spatial and spatio-temporal autocorrelation. Next, we present the measures
of network (relational) autocorrelation

Orthogonally, we distinguish between measures of autocorrelation for the classification and regres-
sion task. In addition, we define new measures of autocorrelation for the HMC tasks.

3.1 Measures of Temporal Autocorrelation

Computing the autocorrelation for a time series can be used to test whether the time series is random (the
autocorrelation between successive observations is very small) or to find the most important lags (usually
the highest autocorrelation is noted for the first lag). We present the most common measures of temporal
autocorrelation, defined in Section 2.3 as the simplest form of autocorrelation. We also present some
statistical tests for the presence of temporal autocorrelation in the residuals of the predictive models. In
addition, we distinguish between measures of autocorrelation for the classification and regression task.

3.1.1 Measures for Regression

For the regression task, a measure of temporal autocorrelation and several statistical tests (including
the Durbin-Watson statistic, the Q-Statistic and the Breusch-Godfrey LM test) for its presence in the
residuals of the predictive models are used.

Moran’s I

According to Moran (1950), temporal autocorrelation for time lag m is defined as:

ACm =
∑

N−m
i wi j(Yi −Y )(Yi+m −Y )

∑
N
i (Yi −Y )2

(3.1)

where Y1, Y2,..., YN is a time series of observations, wi j is a weight describing the temporal relationship
of the observations i and j (already discussed in Section 2.2.2), Y is the mean of the observations, and m

is the lag considered.
The values of the Moran’s I measure (ACm) for temporal autocorrelation are in the interval [-1,1],

where -1 means high negative temporal autocorrelation, 0 means no temporal autocorrelation (random
distribution of the data) and 1 means high positive temporal autocorrelation. The autocorrelation in this
case is perceived over one dimension. It can also be seen as a simplified version of the formula of the
Global Moran’s I (see Equation 3.4) used in spatial statistics.
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The Durbin-Watson statistic

The autocorrelation between the points in a time-series of observations occurs when the residual error
terms of the same variable at different times are correlated. The Durbin-Watson statistic (Durbin and
Watson, 1950) is used to detect the presence of autocorrelation in the residuals (prediction errors) from
a regression analysis of time-series data and is defined as:

DWY =
∑

T
t=2(et − et−1)

2

∑
T
t=1(et)2

(3.2)

where et = Ŷt −Yt is the residual associated with the observation Yt at time t and T is the number of
temporal units considered. The values of DW typically lie in the interval [0,4]. The value of DW is close
to 2 if the errors are uncorrelated, less than 2 if the errors are positively correlated, and larger than 2 if
the errors are negatively correlated.

This autocorrelation of the residuals may not be a very good estimation of the autocorrelation of the
true errors, especially if there are few observations and the independent variables have certain patterns.
Positive autocorrelation of the errors generally tends to overestimate the error variance, so confidence
intervals are too narrow and true null hypotheses are rejected with a higher probability than the stated
significance level. On the other hand, negative autocorrelation of the errors generally tends to make the
estimate of the error variance too large, so confidence intervals are too wide and the power of significance
tests is reduced.

There are several main limitations of the DW statistics as a test of detecting the presence of temporal
autocorrelation. First, the distribution of the DW statistics under the null hypothesis depends on the data.
The usual approach to handling this problems is to place bounds on the critical region, creating a region
where results are inconclusive. Second, if there are lagged dependent variables on the right-hand side of
the regression, the DW test is no longer valid. Third, one may only test the null hypothesis of no temporal
autocorrelation against the alternative hypothesis of first-order (at time lag one) temporal autocorrelation.
Overall, the major limitation of this test is that there are zones of indecision in which it is not possible to
decide whether (first order) temporal correlation exists.

The Q-Statistic and Breusch-Godfrey LM test overcome the limitations of the DW statistic and are
preferred in most applications. They are described in the following subsections.

The Q-Statistic

The Ljung-Box Q-Statistic (Box et al, 1994) is also a statistical test for temporal autocorrelation in
the errors of a regression model. The Ljung-Box Q-Statistic assesses the null hypothesis that a series
of residuals exhibits no autocorrelation for a fixed number of lags L, against the alternative that some
autocorrelation coefficient ρ(k), k = 1, ...,L, is nonzero. The test statistic is

Q−Statistic = T (T +2)
L

∑
k=1

(
ρ(k)2

T − k
) (3.3)

where T is the sample size, L is the number of autocorrelation lags, and ρ(k) is the sample autocorrelation
at lag k. Under the null hypothesis, the asymptotic distribution of Q-Statistic is chi-square with L degrees
of freedom.

The range of input lags affects the power of the test. If L is too small, the test will not detect high-
order autocorrelation; if it is too large, the test will lose power when a significant correlation at one lag
is washed out by insignificant correlations at other lags. The default value of L = min[20,T − 1] for
the input lags is suggested by Box et al (1994). The degrees of freedom are reduced by the number of
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estimated coefficients excluding constants, when the vector of residuals is obtained by fitting a model to
the data.

Besides the use of the Q-Statistic as a statistical test for temporal autocorrelation in the errors in a
regression model, it can also be used to identify conditional heteroscedasticity (ARCH effects) by testing
squared residuals.

The BG/LM test

The Breusch-Godfrey (BG) or Lagrange Multiplier (LM) Test (Godfrey, 1978) is a statistical test for
temporal autocorrelation of the errors of a regression model. The test is useful because it accounts
for i) lagged dependent variables, ii) higher order autoregressive processes, as well as single or higher
order moving average processes. The basic idea is to make use of the residuals from the model being
considered in a regression analysis. A test statistic is derived from these. The null hypothesis is that there
is no temporal autocorrelation of any order up to order p.

The BG/LM test actually tests the presence of temporal autocorrelation that has not been included in
a proposed regression model structure. If such autocorrelation is present, this would mean that incorrect
conclusions would be drawn from other tests or that sub-optimal estimates of model parameters are
obtained if it is not taken into account. This type of structure is common in econometric models.

The test is more general than the Durbin-Watson statistic (Durbin and Watson, 1950), which is only
valid for non-stochastic regressors and for testing the possibility of a first-order autoregressive model
for the regression errors. The test has none of these restrictions, and is statistically more powerful than
DW statistic (Godfrey, 1978). However, a drawback of the BG test is that the number of lags cannot be
determined apriori.

3.1.2 Measures for Classification

According to Moran (1950), temporal autocorrelation for time lag m can also be defined for a discrete
variable Y . In this case, a discretization is needed. One possible way is to transform the discrete variable
Y into q 0/1 binary variables Y1,Y2, . . . ,Yq and calculate the temporal autocorrelation for time lag m as
an average of q binary variables.

3.2 Measures of Spatial Autocorrelation

Several spatial autocorrelation statistics are the most commonly encountered measures of autocorrelation
in the literature. In general, one can distinguish between global and local measures of spatial autocor-
relation. Global measures of spatial autocorrelation estimate the overall degree of spatial association
across the whole data set (spatial region or area), whereas the local ones estimate the local degree of
spatial association in the data. We describe the most relevant spatial autocorrelation measures for both
continuous and discrete variables.

3.2.1 Measures for Regression

Most measures for spatial autocorrelation are defined for a continuous variable. We give an overview
of the existing spatial autocorrelation measures for continuous variables, i.e., for the regression task,
including both global and local measures of spatial autocorrelation.
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Global Moran’s I

In spatial data analysis, one of the oldest measures of spatial autocorrelation is Global Moran’s I (Moran,
1950). This autocorrelation measure is the most common measure of spatial autocorrelation and is still
a de facto standard for determining spatial autocorrelation. It is usually applied to continuous variables
that have a spatial dimension (usually defined by spatial coordinates of points or objects or distances
between them) associated to them.

The Global Moran’s I (Moran, 1950) is defined as:

IY =
N ∑i ∑ j wi j(Yi −Y )(Yj −Y )

∑i ∑ j wi j ∑i(Yi −Y )2
(3.4)

where N is the number of spatial examples indexed by i and j; Yi and Yj are the values of the variable
Y for the examples oi and o j, respectively; Y is the variable of interest; Y is the overall mean of Y ; and
wi j, i, j = 1, . . . ,N are the values of a N ×N matrix of spatial weights, i.e., W = ∑i, j wi j. The matrix
of spatial weights W can be defined with Equation 2.4, Equation 2.6, Equation 2.5 or Equation 2.7 as
already discussed in Section 2.2.2.

Global Moran’s I can also be seen as a measure of the overall clustering of the data and presented as:

IY =
N ∑i ∑ j wi jZiZ j

S0 ∑i Z2
i

(3.5)

where Zi = Yi −Y is the deviation of the variable Y with respect to the mean and S0 = ∑i ∑ j wi j is the
sum of spatial weights wi j.

Moran (1950) derived this measure from the Pearson’s correlation coefficient, as a measure of cor-
relation between two random variables by replacing Y ’s with X’s in Equation 2.13. This is done by
computing the numerator term only when areal units i and j are nearby, i.e., spatial weight wi j = 1 for
neighbors, and 0 otherwise, and by averaging the numerator cross-product terms over the total number
of pairs denoted as being nearby. Therefore, Moran’s I can be seen as a spatially weighted version of the
Pearson’s correlation coefficient.

Dubin (1998) showed that the expected values of Moran’s I can be determined mathematically by
using the eigenvalues of the spatial matrix W , that is:

E(IY ) =
−1

N −1
(3.6)

where IY (C) ≥ −1/(n− 1) indicates positive autocorrelation, while IY (C) ≤ −1/(n− 1) indicates neg-
ative autocorrelation. The values of IY (C) generally range from -1 to +1 and high positive (negative)
values of IY (C) indicate strong positive (negative) autocorrelation.

Global Moran’s I compares the value of the variable at any location with the value at all other loca-
tions (Legendre, 1993). However, in most cases, we are interested in comparing the values of a variable
within a certain neighborhood. Therefore, the calculation of the Global Moran’s I requires a spatial
weights matrix W that reflects the spatial relationship between observations and can be used to define a
neighborhood.

Global Geary’s C

Another common measure or spatial autocorrelation between response values at different points, also
very much exploited in spatial data analysis is Global Geary’s C (Legendre, 1993). It uses paired com-
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parisons (i.e., pairwise squared differences) and may be defined as:

CY =
(N −1)∑i ∑ j wi j(Yi −Yj)

2

2W ∑i(Yi −Y )2
(3.7)

where N is the number of spatial examples indexed by i and j; Yi and Yj are the values of the variable
Y for the examples oi and o j, respectively; Y is the variable of interest; Y is the overall mean of Y ; and
wi j, i, j = 1, . . . ,N are the values of the N ×N matrix of spatial weights, i.e., W = ∑i, j wi j. The matrix
of spatial weights W can be defined with Equation 2.4, Equation 2.6, Equation 2.5 or Equation 2.7, as
already discussed in Section 2.2.2.

The interpretation of the Global Geary’s C is very different from the one of Global Moran’s I. Global
Geary’s C generally varies on a scale from 0 to 2 where 0 indicates perfect positive autocorrelation
(clustered pattern in the data distribution), 1 indicates no autocorrelation (random distribution of the
data) and 2 indicates perfect negative autocorrelation (dispersed pattern in the data distribution). The
expected value of Global Geary’s C is 1.

One can easily convert the values of the Global Geary’s C to the scale of the Global Moran’s I

values (by using I = 1−C/2). However, this can only be used as an approximation since their values
are not equivalent. It is possible that extreme values of Moran’s I and Geary’s C fall outside the ranges
mentioned above (de Jong et al, 1984).

Similar to the calculation of the Global Moran’s I, the calculation of Global Geary’s C requires a
spatial weight matrix. Moreover, for the calculation of Global Geary’s C the spatial weight matrix plays
a bigger role, since this measure is more sensitive to differences in small neighborhoods, whereas the
Global Moran’s I measure gives a more global indicator of the presence of spatial autocorrelation in the
data.

While both measures reflect the spatial dependence of values, they do not provide identical infor-
mation: C emphasizes the differences in values between pairs of observations, while I emphasizes the
covariance between the pairs. This means that Moran’s I is smoother, whereas Geary’s C is more sensi-
tive to differences in small neighborhoods.

In addition, Moran’s I is preferred in most cases since Getis and Ord (1992) have shown that Moran’s
I is statistically and consistently more powerful than Geary’s C. The algebraic relationship between the
two measures is given below:

CY =
(N −1)

N

N ∑i(∑ j wi j)(Yi −Y )2

W ∑i(Yi −Y )2
− IY (3.8)

This equation reveals that Geary’s C incorporates location information, in addition to the information
included in Moran’s I. This additional information is the ratio of squared deviations times their number
of neighbors, divided by the sample variance. If outliers are present, then this numerator can become
excessively large. If an areal unit has a large number of neighbors, then this numerator can be markedly
influenced by the corresponding deviation.

Getis and Ord’s G

Getis and Ord’s G (Getis and Ord, 1992) is another measure of spatial autocorrelation commonly used
in spatial data analysis, defined only for positive variables Y .

Formally, Getis and Ord’s G is defined as:

GY =
∑i ∑ j wi j(YiYj)

∑iYiYj

,∀ j 6= i (3.9)
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where N is the number of spatial examples indexed by i and j; Yi and Yj are the values of the variable Y

for the examples oi and o j, respectively; Y is the variable of interest and wi j, i, j = 1, . . . ,N and wi j, i, j =
1, . . . ,N are the values of a N ×N matrix of binary and symmetric spatial weights, i.e., W = ∑i, j wi j.

The matrix of spatial weights W can be given with Equation 2.4, Equation 2.6, Equation 2.5 or
Equation 2.7 and has already discussed in Section 2.2.2.

Its values are in the interval [−∞, +∞]. The higher (lower) the value, the stronger the intensity of the
autocorrelation. A positive (negative) Getis and Ord’s G indicates a positive (negative) autocorrelation.
When Getis and Ord’s G is near zero, it indicates that no apparent autocorrelation is present within the
considered data.

In contrast to the previously defined distanced-based spatial autocorrelation measures, Global
Moran’s I and Global Geary’s C, Getis and Ord’s G is a spatial clustering measure. This means that
it is not dependent from the distance between the examples oi and o j, but considers all “neighbors” of
the object oi, i.e., all object that are located at a certain spatial distance d. More precisely, Getis and
Ord’s G measures the association degree between the values of Y around location i and the association
in the value of Y around location j.

Mantel’s Γ statistic

Mantel’s test (Mantel, 1967) is a versatile statistical test that has many uses. The rationale of this test is
to permute the independent entities in order to obtain a distribution of the target statistic under H0. This
distribution is then used to test the parameter of interest. Although it has been called “test”, the novelty
introduced by Mantel was actually the permutation procedure. This procedure has been developed to
analyze the relationship between regression relationship matrices and can be employed with regression
coefficients, correlation coefficient or any other statistic.

The corresponding statistics is also used as an autocorrelation measure in spatial data analysis. The
basic Mantel’s Γ statistic is simply the sum of the products of the corresponding elements of the matrices
X and Y :

ΓY = ∑
i j

Xi jYi j (3.10)

where ∑i j is the double sum over all i and j where i 6= j. Because Γ can take any value depending on the
exact nature of X and Y , one usually uses a normalized Mantel coefficient, calculated as the correlation
between the pairwise elements of X and Y . Like any product-moment coefficient, it ranges from -1 to 1,
where 1 means high positive autocorrelation and -1 high negative autocorrelation.

Primarily, it examines the relationship between two square matrices (often distance matrices) X and
Y . The values within each matrix (Xi j or Yi j) represent a relationship between examples i and j. The
relationship represented by a matrix could be a geographic distance, a data distance, an angle, a binary
matrix, or almost any other conceivable data. Often one matrix is a binary matrix representing a hypoth-
esis of relationships among the points or some other relationship (e.g., Xi j may equal 1 if examples i

and j are from the same country and 0 if they are not). By definition, the diagonals of both matrices are
always filled with zeros.

One advantage of Mantel’s test is that, because it proceeds from a distance (dissimilarity) matrix, it
can be applied to variables of different logical type (categorical, rank, or interval-scale data).

Local Moran’s I

In addition to the Global Moran’s I, a localized version of this measure called Local Moran’s I has
been developed (Anselin, 1988). The Local Moran’s I is used to measure autocorrelation at a certain
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location in space and results with a unique value for each location. Differently from the Global Moran’s
I, which measures the covariance between pairs of observations, the Local Moran’s I measures the joint
covariance of neighboring localities.

Formally, the Local Moran’s I statistic for each observation i is defined as:

IYi
=

N(Yi −Y )∑ j wi j(Yj −Y )2

∑ j(Yj −Y )2
(3.11)

where Yi is the value of the variable at the i-th location, N is the number of observation, wi j is a
weight indicating something about the spatial relationship of the observations i and j (already discussed
in Section 2.2.2) and Y is the mean of Y .

The values of the Local Moran’s I are in the interval [−∞, +∞]. The higher (lower) the value, the
stronger the intensity of the autocorrelation. A positive (negative) Local Moran’s I indicates a positive
(negative) autocorrelation.

The Local Moran’s I can be seen as the local equivalent of Moran’s I, i.e., the sum of all local indices
is proportional to the (global) value of Moran’s statistic. From the previous equations, one can easily
obtain the relationship between the Global Moran’s I (see Equation 3.4) and the Local Moran’s I (see
Equation 3.11), that is:

IY =
∑i IYi

N
(3.12)

The importance of Local Moran’s I is motivated by the possible occurrence of different patterns or
processes in different parts of the region and this may not follow the global patterns or processes that can
be detected by the use of the global measures of autocorrelation such as Global Moran’s I.

Local Geary’s C

Another popular measure of local spatial autocorrelation is the local Geary’s C, defined as a localized
version of the Global Geary’s C. As Local Moran’s I, Local Geary’s C is a local equivalent of Geary’s C.

Formally, the Local Geary’s C statistic for each observation i is defined as:

CYi
=

(N −1)∑ j wi j(Yi −Yj)
2

2W ∑ j(Yj −Y )2
(3.13)

where Yi is the value of the variable at the i-th location, N is the number of observation, wi j is a
weight indicating something about the spatial relationship of the observations i (already discussed in
Section 2.2.2), W = ∑i, j wi j is the spatial matrix and j and Y is the mean of Y .

Unlikely to Local Moran’s Ii, Local Geary’s Ci statistic is the weighted sum of the squared differences
between location i and locations j. Analogous to Local Moran’s Ii, its values are in the interval [−∞,
+∞]. The high positive (negative) value indicates strong positive (negative) autocorrelation.

Differently from the Global Geary’s C which measures the difference in values between the pairs of
observations, the Local Geary’s C measures the joint differences of neighboring localities. The relation-
ship between the Global Geary’s C (see Equation 3.7) and the Local Geary’s C (see Equation 3.13) is
similar to the relationship between Global Moran’s I and the Local Moran’s I given with Equation 3.12)
mentioned before. Moreover, this property of the Local Moran and Local Geary statistic to be associated
with the global measure (Moran’s I and Geary’s C, respectively), can be used to estimate the contribution
of individual measures to the corresponding global measures.

The importance of Local Geary’s C is related to the identification of so-called “hot-spots” regions
where the considered phenomenon is extremely pronounced across localities, as well to the detection of
spatial outliers.
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Local Getis and Ord’s G

Another measure of local spatial autocorrelation is the Local Getis and Ord’s G (Getis and Ord, 1992),
defined as the proportion of all values of the response variable accounted for by the neighbors of the
observation i.

Formally, the Local Getis and Ord’s C statistic for each observation i is defined as:

Gi(d) =
∑ j wi jYj

∑ j Yj

(3.14)

where Yi is the value of the variable at the i-th location, N is the number of observation, wi j is a weight
indicating something about the spatial relationship of the observations i, W = ∑i, j wi j is the spatial ma-
trix and j and Y is the mean of Y . The matrix of spatial weights W can be given with Equation 2.4,
Equation 2.6, Equation 2.5 or Equation 2.7 and has already been discussed in Section 2.2.2.

The values of the Local Getis and Ord’s G range in the interval [−∞, +∞]. G will be high (low)
where high (low) values group together. The relationship between the Global Getis and Ord’s G (see
Equation 3.9) and the Local Getis and Ord’s G (see Equation 3.14) reflects that of the Global Moran’s I

and Local Moran’s I.

Bivariate Moran’s I

Despite the fact that the research related to measures of spatial autocorrelation focuses mainly on the
measures of spatial autocorrelation of one variable, in the literature, some measures of the spatial auto-
correlation of two and more variables have been proposed.

The cross-correlation between two continuous variables y1 and y2 can be estimated by Bivariate
Moran’s I (Zhu et al, 2007) and defined as:

Iy1y2 =
N ∑i[(∑ j wi j(y1i − y1))(∑ j wi j(y2 j − y2))]

∑i(∑ j wi j)2
√

∑i(y1i − y1)2
√

∑i(y2i − y2)2
(3.15)

where N is the number of observations, wi j is a weight indicating something about the spatial relationship
of the observations i and j (already discussed in Section 2.2.2) and y1 and y2 are the means of the variables
y1 and y2, accordingly.

A localized version of the Bivariate Moran’s I can be easily derived and it can be used as a local
indicator of the spatial relationship between two variables at a certain location, which may not always
refer to the same global patterns of relationship.

Bivariate Association Measure

Besides the spatial autocorrelation of a single variable, in the literature, there exists also a measure of the
cross-correlation between two distinct variables which is different from the former one.

The bivariate association measure (L) (Lee, 2001) presents an integration of spatial association mea-
sure Global Moran’s I and Pearson’s correlation coefficient r and is intended to capture spatial associ-
ation among observations in terms of their point-to-point relationships across two spatial patterns, i.e.,
capture the spatial co-pattering by collectively gauging point-to-point association between two variables
and the topological relationship among spatial entities. The bivariate association measure between two
continuous variables y1 and y2 is defined as:

Ly1y2 =
N ∑i ∑ j wi j(y1 j − y1)(y2 j − y2)

W
√

∑i(y1i − y1)2 ∑i(y2i − y2)2
(3.16)
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where N is the number of observations, wi j is a weight indicating something about the spatial relationship
of the observations i and j (already discussed in Section 2.2.2) and y1 and y2 are the means of the variables
y1 and y2, accordingly.

This measure provides a complementary measure to Pearson’s correlation coefficient, as it efficiently
captures how much bivariate association are spatially clustered. In other words, this measure can be used
to parameterize the bivariate spatial dependence. Moreover, one can easily derive a local spatial bivariate
association measure that will indicate the relative contribution of an individual area into the global L, as
well as capture the observation’s association with its neighbors in terms of the point-to-point association
between two variables. Furthermore, L can be used as a measure of spatial segregation or dissimilarity)
or to specialize other multivariate statistical procedures, such as principal component analysis.

3.2.2 Measures for Classification

For the classification task, there exist a few measures of spatial autocorrelation. In dissertation, besides
the existing measures of spatial autocorrelation in the literature, we redefine/adapt the spatial measures
of autocorrelation used for the regression task.

Joint Count Statistics

Join count statistics (Cliff and Ord, 1981) is the simplest measure of spatial autocorrelation. It can only
be used for a binary variable (1 or 0). It turns out to be useful when the spatial data comes represented
as two or more dimensional spatial examples like polygons, areas and regions, but not when the spatial
data is represented as one dimensional point data.

The two values of the variable are referred to as “black” (B) and “white” (W ). A join links two
neighboring areas. So the possible types of joins are black-black (BB), black-white (BW ), and white-
white (WW ). Join counts are counts of the numbers of BB, BW , and WW joins in the study area and these
numbers are compared to the expected numbers of BB, BW and WW joins under the null hypothesis of
no spatial autocorrelation. Therefore, the calculation of the Joint Count Statistic requires a contiguity
matrix for spatial examples.

The observed number of BB, BW and WW joins are defined as:

BB =
∑i ∑ j wi jxix j

2
(3.17)

BW =
∑i ∑ j wi j(xi − x j)

2

2
(3.18)

WW =
∑i ∑ j wi j(1− xi)(1− x j)

2
(3.19)

where N is the number of observations, xi is the binary variable, 1 for black and O for white, wi j is the
spatial weight, 1 if two areas are contiguous, 0 otherwise.

The join count statistics relates the number of observed connections between the zones of property
“presence” and those of property “absence” with the theoretical number of connections of a random
distribution. The definition of the theoretical number of connections of a random distribution is related
to two factors: the spatial arrangement of features of the study area and the choice of the null hypothesis.
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Global Moran’s I

A very common global measures of spatial autocorrelation is the Global Moran’s I. However, it has been
defined for a continuous variable. Therefore, within the scope of this dissertation, we redefine and use it
also for a discrete variable, i.e., for the classification task.

The redefinition of the Global Moran’s I for a discrete valuable Y requires a transformation of the
formula of the Global Moran’s I for a continuous variable (Equation 3.4). In particular, we transform
the discrete variable Y into q 0/1 binary variables Y1,Y2, . . . ,Yq. Then we compute IY as the average of I

computed for each Yk (k = 1,2, . . . ,q), that is:

IY =
1
q

q

∑
k=1

N ∑i ∑ j wi j(Yi −Y )(Yj −Y )

∑i ∑ j wi j ∑i(Yi −Y )2
(3.20)

where N is the number of observations, wi j, i, j = 1, . . . ,N are the values of a N ×N matrix of spatial
weights, i.e., W = ∑i, j wi j and Y is the mean of each Yk (k = 1,2, . . . ,q).

The matrix of spatial weights W can be given with Equation 2.4, Equation 2.6, Equation 2.5 or
Equation 2.7 and has already been discussed in Section 2.2.2.

Its values generally range from -1 (indicating perfect dispersion) to +1 (perfect correlation). A zero
value indicates a random spatial pattern. For more details on this measure, see its definition for the
regression task in Section 3.2.1.

Global Geary’s C

Another common global measures of spatial autocorrelation is the Global Geary’s C. Identically as the
Global Moran’s I, it has also been defined for a continuous variable (Equation 3.7). Thus, in order to use
it within the classification task, first we need to redefine it for the case of a discrete variable.

Again, the redefinition of the Global Geary’s C for a discrete valuable Y requires a transformation of
the formula of the Global Geary’s C for a continuous variable. First, we transform the discrete variable
Y into q 0/1 binary variables Y1,Y2, . . . ,Yq. Then we compute CY as the average of C computed for each
Yk (k = 1,2, . . . ,q), that is:

CY =
1
q

q

∑
k=1

(N −1)∑i ∑ j wi j(Yi −Yj)
2

2∑i ∑ j wi j ∑i(Yi −Y )2
(3.21)

where N is the number of observations, wi j, i, j = 1, . . . ,N are the values of a N ×N matrix of spatial
weights, i.e., W = ∑i, j wi j and Y is the mean of each Yk (k = 1,2, . . . ,q).

The matrix of spatial weights W can be given with Equation 2.4, Equation 2.6, Equation 2.5 or
Equation 2.7 and has already been discussed in Section 2.2.2.

Generally, global Geary’s C varies on a scale from 0 to 2 where 0 indicates perfect positive autocor-
relation (clustered pattern in the data distribution), 1 indicates no autocorrelation (random distribution of
the data) and 2 indicates perfect negative autocorrelation (dispersed pattern in the data distribution).

For more details on this measure, see its definition for the regression task in Section 3.2.1.

Local Moran’s I

Besides the global measures of spatial autocorrelation that estimate the overall degree of spatial associa-
tion across the whole data set (spatial region or area), local measures exist of spatial autocorrelation that
estimate the local degree of spatial association in the data. The Local Moran’s I, as a local version of
the Global Moran’s I, is a common local measure of spatial autocorrelation that is often used in spatial
analysis.
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As for the Global Moran’s I, the calculation of the Local Moran’s I for a discrete valuable Y requires
a transformation of the formula of the Local Moran’s I for a continuous variable. Therefore, we redefine
and use it also for a discrete variable, i.e., for the classification task.

In particular, we transform the discrete variable Y into q 0/1 binary variables Y1,Y2, . . . ,Yq. Then we
compute IYi

as the average of I computed for each Yj ( j = 1,2, . . . ,q), that is:

IYi
=

1
q

q

∑
i=1

N(Yi −Y )∑ j wi j(Yj −Y )2

∑ j(Yj −Y )2
(3.22)

where N is the number of observations, wi j is a weight indicating something about the spatial relationship
of the observations i and j and Y is the mean of each Yi (i = 1,2, . . . ,q).

The matrix of spatial weights W can be given with Equation 2.4, Equation 2.6, Equation 2.5 or
Equation 2.7 and has already been discussed in Section 2.2.2.

The values of the Local Moran’s I are in the interval [−∞, +∞]. The high positive (negative) value
indicates strong positive (negative) autocorrelation.

For more details on this measure, see its definition for the regression task in Section 3.2.1.

Local Geary’s C

Another well known local measures of spatial autocorrelation is the Local Geary’s C. The same as its
global version, it can account the autocorrelation of a continuous variable. Therefore, we redefine and
use it also for a discrete variable, i.e., for the classification task.

Equivalently to the Global Geary’s C for the classification task, its calculation for a discrete valuable
Y requires a transformation of the formula of the Local Geary’s C for a continuous variable. For this
purpose, first we transform the discrete variable Y into q 0/1 binary variables Y1,Y2, . . . ,Yq. Then we
compute CYi

as the average of C computed for each Yj ( j = 1,2, . . . ,q), that is:

CYi
=

1
q

q

∑
j=1

(N −1)(Yi −Y )∑ j wi j(Yi −Yj)
2

∑ j(Yj −Y )2
(3.23)

where N is the number of observations, wi j is a weight indicating something about the spatial relationship
of the observations i and j and Y is the mean of each Yi (i = 1,2, . . . ,q).

The matrix of spatial weights W can be given with Equation 2.4, Equation 2.6, Equation 2.5 or
Equation 2.7 and has already been discussed in Section 2.2.2.

Correspondingly, the values of the Local Geary’s C are in the interval [−∞, +∞]. The high positive
(negative) value indicates strong positive (negative) autocorrelation.

For more details on this measure, see its definition for the regression task in Section 3.2.1.

Bivariate Moran’s I

A lot of the measures of spatial autocorrelation focus mainly on the measures of spatial autocorrelation
of one variable. However, in the literature, there have been proposed some measures of the spatial
autocorrelation of two and more variables. One common measure of the spatial cross-correlation of two
continuous variables is the Bivariate Moran’s I (Zhu et al, 2007).

As already explained in the previous subsections, we need to redefine the Bivariate Moran’s I (Zhu
et al, 2007) tests for the case of two discrete variables y1 and y2. One way to achieve this is to transform
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each of the discrete variables Y into q 0/1 binary variables Y1,Y2, . . . ,Yq. Then we compute CY as the
average of C computed for each Yk (k = 1,2, . . . ,q), that is:

Iy1y2 =
1
q

q

∑
k=1

N ∑i[(∑ j wi j(y1i − y1))(∑ j wi j(y2 j − y2))]

∑i(∑ j wi j)2
√

∑i(y1i − y1)2
√

∑i(y2i − y2)2
(3.24)

where N is the number of observations, wi j is a weight indicating something about the spatial relationship
of the observations i and j (already been discussed in Section 2.2.2) and y1 and y2 are the means of the
variables y1 and y2, accordingly. The values of the Bivariate Moran’s I are in the interval [-1,1], where -1
means high negative autocorrelation, 0 means no autocorrelation (random distribution of the data) and 1
means high positive autocorrelation.

For more details on this measure, see its definition for the regression task in Section 3.2.1.

Bivariate Association Measure

Another measure of spatial autocorrelation of two variables is the bivariate association measure (L) (Lee,
2001), defined for continuous valuables.

In order to use this measure to account for cross-correlation between two discrete variables y1 and
y2 spatial autocorrelation measure that tests for spatial . In particular, we transform each of the discrete
variables Y into q 0/1 binary variables Y1,Y2, . . . ,Yq. Then we compute CY as the average of C computed
for each Yk (k = 1,2, . . . ,q), that is:

Ly1y2 =
1
q

q

∑
k=1

N ∑i ∑ j wi j(y1 j − y1)(y2 j − y2)

W
√

∑i(y1i − y1)2 ∑i(y2i − y2)2
(3.25)

where N is the number of observations, wi j is a weight indicating something about the spatial relationship
of the observations i and j (already been discussed in Section 2.2.2) and y1 and y2 are the means of the
variables y1 and y2, accordingly.

The values of L range in the interval [-1,1], where -1 means high negative autocorrelation, 0 means
no autocorrelation and 1 means high positive autocorrelation. For more details on this measure, see its
definition for the regression task in Section 3.2.1.

Spatial Diversity Coefficient

Spatial diversity coefficient is defined by Li and Claramunt (2006) as a measure of spatial diversity, i.e.,
as the dispersion of the entropy measure over some neighborhoods. The coefficient is integrated into a
ID3 decision tree, where Entropy and Gain are redefined.

The coefficient is adapted to either discrete or continuous spaces and not limited to a bounded
boundary as distances rather than neighborhoods are considered. It is expressed as ratio of the of the
“intra-distance” and “extra-distance”. This means that it increases when either the average distance
(intra-distance dint

i ) between the entities belonging to a given category decreases, or the average distance
(extra-distance dext

i ) between the entities of a given category and the entities of all the other categories
increases and vice versa. These average distances are defined as follows:

dint
i =

1
|Ci | (|Ci | −1) ∑

j
∑
k

dist( j,k)i f |Ci |> 1;anddint
i = λ ,otherwise (3.26)

dext
i =

1
|Ci ||C−Ci | ∑j

∑
k

dist( j,k)i f |Ci 6=C;anddext
i = β ,otherwise (3.27)
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where C is the set of spatial entities of a given dataset; Ci denotes the subset of C whose entities
belong to the i-th category of the classification; dint

i is the average distance between the entities of Ci;
dext

i is the average distance between the entities of Ci and the entities of the other categories; dist( j,k)
gives the distance between the entities j and k; l is a constant taken relatively small, and b a constant
taken relatively high; these constants avoid the noise ± effect of null values in the calculation of the
average distances.

These average distances are integrated in such a form that exhibits an increase of spatial entropy when
the intra-distance dint

i increases and extra-distance dext
i decreases, and conversely. (Li and Claramunt,

2006) show that the values of the spatial diversity coefficient are given by the interval [0, 2].
The spatial entropy Entropys() is then defined as follows:

Entropys(A) =−∑
i

dint
i

dext
i

Pilog2(Pi) (3.28)

where dint
i is the average distance between the entities of Ci, dext

i is the average distance between the
entities of Ci and Pi is the proportion of entities labeled with value i over the total number of entities.

The notion of spatial entropy provides a means for an integration of the spatial dimension within
the ID3 classification algorithm. The strategy retained is to replace the conventional measure of entropy
Entropy() with the measure of spatial entropy Entropys(). Moreover, Entropys() is determined by not
only the richness and the evenness of the distribution as the classical entropy Entropy() is, but also by
the ways the spatial entities are distributed in space. This means that changes in the spatial distribution
of the dataset might increase or decrease the spatial entropy even if the category constitution remains
identical. Furthermore, the spatial entropy surpasses the conventional entropy in the evaluation of the
diversity a given spatial system exhibits.

The information gain at each level of the decision tree is replaced with the following expression
Gains():

Gains(GA,SA) = Entropys(GA)− ∑
v∈values(SA)

| GAv |
| GA | Entropys(GAv) (3.29)

where Entropys(GA) is the spatial entropy of the target attribute GA, GAv is a subset of entities of GA

where the corresponding value of SA is v for each entity and | GAv | and | GA | are the cardinalities of
GAv and GA, respectively.

The main principle of the ID3 decision tree built using these new measures is still valid. At each
level of such a spatial form of a decision tree, the supporting attribute that gives the maximum spatial
information gain Gains is selected as a node. This guarantees that the spatial entities of a same category
are preferably aggregated. By contrast, the application of a conventional decision tree learner may lead
to situations in which entities of different categories might not be spatially distinguished as clearly as
those of a spatial decision tree.

Spatial Information Gain

Rinzivillo and Turini (2007) also redefined the classical information gain used in a standard decision tree
induction procedure.

For a given reference object they described its neighborhood by considering the attribute of the object
itself and the spatial examples related by the chosen relations. The resulting spatial transactions may be
either considered like “traditional” transactions, by considering only the qualitative spatial relations, or
by their spatial extension which can be exploited during the data mining process. The Spatial information
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gain that they define is given by:

Gain =−∑
l

mes(S | ci)

mes(S)
log2

mes(S | ci)

mes(S)
−∑

j

mes(S | v j)

mes(S)
H(S | v j) (3.30)

where mes(t) is the aggregated spatial measure of the spatial transaction t, S is a set of spatial trans-
actions whose class label attribute has l distinct classes (i.e., c1, c2, . . . , cl) and S | ci is the set of
transactions labeled by ci; V is an attribute that has q distinct values (i.e., v1, v2, . . . , vq).

This measure is then used to compute the entropy for a spatial measurement of each example and
to use the information gain based on such spatial entropy measure for the induction of spatial decision
trees. In particular, the spatial entropy is computed for each weighted sum of the spatially related (e.g.,
overlapping) examples.

In summary, measures of spatial autocorrelation can only provide a snapshot of autocorrelation,
i.e., they do not consider the temporal dimension in addition to the spatial dimension. Consequently,
they do not capture dynamic autocorrelation properties. For this purpose, measures for spatio-temporal
autocorrelation, as a special case of autocorrelation, are required. We give an overview of the most
relevant measures of spatio-temporal autocorrelation.

3.3 Measures of Spatio-Temporal Autocorrelation

A number of measures have been defined for the case of spatio-temporal autocorrelation. Most of them
are extensions of the spatial or temporal autocorrelation function and have limited use since they have
been defined within some specific framework for spatio-temporal modeling.

3.3.1 Measures for Regression

For the regression task, several measure of spatio-temporal autocorrelation that can be used to examine
the presence of spatio-temporal autocorrelation have been defined. These include: Space-Time Index,
Space-time variograms and Space-Time Autocorrelation Function, as the most common ones.

Space-Time Index

The Space-Time Index (STI) is one of several related measures that have been proposed for assessing
spatio-temporal autocorrelation ((Cliff and Ord, 1981; Griffith, 1981)). The formulation provided by
Griffith combines the Moran’s I with the Durbin-Watson statistic (Durbin and Watson, 1950), to yield a
first-order ST I:

ST IY = (nT −n)
∑

T
t=2 ∑

n
j=1 ∑

n
i=1 wi jt−1(Yi j −Y )(Yjt−1 −Y )

∑
T
t=2 ∑

n
j=1 ∑

n
i=1 wi jt−1 ∑

T
t=2 ∑

n
i=1(Yit −Y )2

(3.31)

where T is the number of temporal units, n is the number of spatial units; wi jt is a weight indicating
the spatio-temporal relationship of the observations i and j at time t; Yit and Yjt are the values of the
variable of interest Y of the observations i and j at time t; Y is the mean of Y .

The values of the ST I usually vary in the range [-1, 1], where -1 means high negative spatio-temporal
autocorrelation, 0 means no autocorrelation (random distribution of the data) and 1 means high positive
spatio-temporal autocorrelation. The expected value of ST I is similar to expected value of the Global
Moran’s I. A major problem with this index is the possibility of spatio-temporal “anisotropy” introduced
by the fact that the units of measurement in space may not be comparable (equivalent) to the units used
to measure time.
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Space-Time Variograms

Space-time (semi) variograms have also been proposed (Griffith and Heuvelink, 2009), as a measure for
assessing spatio-temporal autocorrelation. They present the semi-variance function γ(h) of a spatial lag
h over a time lag t. Assuming time lag of t = 0, the semi-variance function for a continuous variable is
defined as:

γ(h) =
1

2n(h)

n

∑
i=1

[Z(Xi)−Z(Xi +h)]2 (3.32)

where Z is the value of the variable x at the sampling location i and n(h) is the number of pairs of
sampling locations located at distance h from one another.

The equation for the semi-variance function (See Equation 3.32)) is quite comparable to the one of
spatial Global Geary’s C ( see Equation 3.7)), except that it lacks the division by the standard deviation in
the denominator, which standardizes the spatial autocorrelation value. Hence, the semi-variance function
is in the same units as the data and is not bounded as are global spatial statistics and other statistics. At
short distance lags, the values of semi-variance are also small (close to zero) indicating that the spatial
structure is at its strongest intensity. As the distance lags increase, the semi-variance values rise to level
off at a plateau called the sill.

When a variogram is computed from sampled data, it is called an experimental variogram (also
called a sample or observed variogram); when it is modeled to fit the experimental variogram, it is called
a theoretical variogram or a variogram model.

Three key parameters are estimated from an experimental variogram to fit a theoretical variogram,
these are: the nugget effect c0, the spatial range a and the sill c1. The nugget is the intercept at the
origin that is greater than zero. Theoretically, at h = 0, the semi-variance is also equal to 0. However,
based on the shape of the experimental variogram, it can be unrealistic sometimes to force the theoretical
variogram to go through 0. The nugget parameter is therefore used to account for the observed variability
at short distances due to local random effects or measurement errors (e.g. accuracy of measurements,
inappropriate sampling unit size, etc.). The spatial range indicates the distance up to which the spatial
structure varies. In other words, the range indicates the maximal distance at which the variable is spatially
autocorrelated.

Space-Time Autocorrelation Function

Another measure of global spatio-temporal autocorrelation is the space-time autocorrelation function
(ST-ACF) (Pfeifer and Deutsch, 1980). It is actually the N2 cross-covariances between all possible pairs
of locations lagged in both time and space. Given the weighted l-th order spatial neighbors of any spatial
location at time t and the weighted k-th order spatial neighbors of the same spatial location at time lags
s (time t + s) in the future, the ST-ACF can be defined as:

ST −ACF =

E

(
[W lz(t)]

′
[W kz(t+s)]
N

)

(E
(
[W lz(t)]

′
[W lz(t)]

N

)
E
(
[W kz(t)]

′
[W kz(t)]

N

)
)0.5

(3.33)

where E is the expected value operator, N is the number of spatial locations, W l and W k are the N ×N

spatial weight matrices at spatial orders l, and z(t) is the N ×1 vector of observations z at time t, z(t + s)
is the N ×1 vector of observations z at time t + s and the symbol ′ denotes matrix transposition.
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Cross-Correlation Function

Besides the measures of spatio-temporal autocorrelation of one time series, a cross-correlation function
(CCF) that measures the spatio-temporal autocorrelation of two time series has been proposed by Box
et al (1994). CCF actually measures the local spatio-temporal autocorrelation between two locations. It
treats two time series as a bivariate stochastic processes and measures the cross-covariance coefficients
between each series at specified lags. Therefore, it is a measure of the similarity between two time series.
Given two time series X and Y , the CCF at lag k is given as:

CCFxy(k) =
E[(xt −µx)(Yt+k −µy)]

σxσy

,k = 0,±1,±2,±... (3.34)

where µx and µy are the means and σx and σy are the standard deviations of the two time series X and
Y , respectively and k is the time lag. The values of the CCF usually vary in the range [-1, 1], where -1
means high negative spatio-temporal autocorrelation, 0 means no autocorrelation (random distribution
of the data) and 1 means high positive spatio-temporal autocorrelation.

The CCF can be treated as a lagged specification of Pearson’s correlation coefficient that measures
cross-correlations in both directions, as denoted by subscript k; therefore, the temporal lag at which the
CCF peaks can be used to determine a transfer function between two series. A simple way to interpret
the CCF is by taking its squared value CCFxy(k)

2 to give the coefficient of determination used in network
data analysis.

3.3.2 Measures for Classification

For the classification task, similarly as for the spatial autocorrelation, the join count statistic can be
used in the case of binary target variable. Therefore, an extended version of it, called Spatio-temporal
join count statistic can be defined by considering values of the target variable between pairs of spatial
examples observed at different times.

The two values of the variable are referred to as “black” (B) and “white” (W ). A ‘join’ links two
neighboring areas. So the possible types of joins are black-black (BB), black-white (BW ), and white-
white (WW ). Join “length” is the pair of factors (space, time) that describes the distance between exam-
ples in space and in time, respectively. A spatio-temporal pattern is detected by comparing the number of
joins of each ‘length’ in a particular lattice with the expected number from randomness. The simple null
hypothesis is that the observed number can be accounted for by random occurrence. If more joins of a
particular class occur than expected, this indicates a tendency for examples to be separated by a distance
in space and in time.

3.4 Measures of Network Autocorrelation

Various ways of measuring the relational dependency on a network (or graph in more general context)
exist. We present the most important measures of network autocorrelation, distinguishing between mea-
sures used for the classification and the regression task. Most of them have been developed and used for
the task of classification, mainly in the field of collective inference, whereas less attention has been given
to the task of regression and the development of measures of network autocorrelation for regression.

3.4.1 Measures for Regression

In the literature, very little attention has been given to the task of network regression and the development
of measures of network autocorrelation for regression task. In the following, we give an overview of the
existing measures.
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Connectivity Index

A simple connectivity (topology) index which is limited to the consideration of the structure of a network
(or graph) can be used as a measure of network autocorrelation for the regression task.

We exploit the extension of the classical Randic Connectivity Index (CI) to the case of weighted
networks (Randic, 1998). Formally, the Connectivity Index CI is defined by Equation 3.35 as:

CIY (G) = ∑
u,v∈V (G)

1√
d(u)d(v)

(3.35)

where d(u) and d(v) represent the degrees of nodes u and v respectively.
This index gives the connectedness (or branching) of a cluster C and can be used to compare the

connectivity among clusters. It is typically used in chemistry, since it can be well correlated with a
variety of physico-chemical properties of alkanes, such as boiling points, surface area and solubility in
water. CI ranges in the interval [−∞, +∞]. High values of CI indicate high correlation, while low values
of CI indicate low correlation (Randic, 1998).

Relational Autocorrelation

Relational Autocorrelation (RA) can also be used to assess the association between values of a contin-
uous variable Y over connected nodes. One possibility is to use a variant of the Pearson’s correlation
coefficient that measures the correlation of a continuous variable Y with itself:

RAY =
∑i j s.t. (ui,u j)∈PR

(Yi −Y )(Yj −Y )

∑i j s.t. (ui,u j)∈PR
(Yi −Y )2

(3.36)

The values of RA generally range from -1 to +1 and high positive (negative) values of RA indicate strong
positive (negative) network autocorrelation. RA is very similar to the Global Moran’ I used as a measure
of spatial autocorrelation for the regression task.

Measures adapted from Spatial Data Analysis

In addition to the already mentioned measures of network autocorrelation for the regression task, the
measures of spatial autocorrelation Global Moran’s I (Equation 3.4) and Global Geary’s C (Equa-
tion 3.7) can be also considered as measures of network autocorrelation.

This consideration requires that we adapt and redefine these measures in the network setting that we
consider. We achieve this by applying the appropriate weighting function, while the equations used for
calculating these measures stay the same. In the case of network autocorrelation, the weights more often
have a natural representation. For more details on the weights see Section 2.3.2. Moreover, in Chapter 7
we show how we use these measures in real-world network domains for the regression task.

3.4.2 Measures for Classification

A lot of measures of network autocorrelation have been developed and used for the task of classification,
mainly in the field of collective inference. These include Label Consistency, Randic Connectivity Index,
Neville’s Relational Autocorrelation, Newman’s assortative mixing and Park and Barabasi’s Dyadicity
and Heterophilicity, as well as measures adapted from other scientific fields like measures of spatial
autocorrelation used in spatial statistics. Here we present these measures ordered by their complexity:
from the most simple to the most complex ones.
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Label Consistency

Label Consistency (also called Local Consistency) (Gallagher et al, 2008) is the simplest measures of
network autocorrelation that can be used for the task of classification. Actually, it is the percentage of
links connecting nodes with the same class label. For a uniform class distribution, the actual probability
of a link connecting two nodes i and j of the same label is defined as:

label_consistency = P(ui = u j | (i, j) ∈ E) = dh+
1−dh

|C | (3.37)

where C is the set of possible class labels, E is the set of edges and ui ∈ U where U is the set of
labeled nodes. dh is the degree of homophily, defined by Sen et al (2008).

Since it is represented as a percentage of links connecting nodes with the same class label, it ranges
in the interval [0,100] %, where high values mean high network autocorrelation and low values mean
low network autocorrelation.

Relational Autocorrelation

Relational Autocorrelation (RA) is a measure of the network autocorrelation which is adapted in collec-
tive classification to estimate the strength of statistical dependencies of a variable Y in a linked network
(Angin and Neville, 2008). Any traditional measure of association, such as the χ2 statistic or information
gain, can be used to assess the association between interconnected values of Y .

One possibility is to use a variant of the Pearson’s correlation coefficient that measures the correlation
of a discrete variable Y with itself. In particular, it is possible to transform the discrete variable Y into
q 0/1 binary variables Y1,Y2, . . . ,Yq and then compute RAY as the average of RA computed for each Yj

( j = 1,2, . . . ,q), that is:

RAY ==
1
q

q

∑
j=1

∑i j s.t. (ui,u j)∈PR
(Yi −Y )(Yj −Y )

∑i j s.t. (ui,u j)∈PR
(Yi −Y )2

(3.38)

RA is very similar to the Global Moran I from spatial statistics. Therefore, as in the Global Moran I,
high values of RA indicate positive autocorrelation, while low values indicate negative autocorrelation.
More specifically, the values of RA generally range from -1 to +1 and high positive (negative) values of
RA indicate strong positive (negative) network autocorrelation.

Assortative Coefficient

Another measure of the network autocorrelation is assortative mixing (Newman, 2002). It is defined as
the bias in favor of connections between network nodes with similar class label. Of particular interest
is the phenomenon of assortative mixing by degree, meaning the tendency of nodes with high degree to
connect to others with high degree, and similarly for low degree. Because degree is itself a topological
property of networks, this type of assortative mixing gives rise to more complex structural effects than
other types 1.

The assortative mixing can be expressed by the assortative coefficient, given as:

r =
∑ jk jk(e jk −q jqk)

σ2
q

(3.39)

1see http://en.wikipedia.org/wiki/Assortativity for details
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where the term e jk refers to the joint probability distribution of the remaining degrees of the two
vertices j and k. This quantity is symmetric on an undirected graph and follows the sum rules ∑ jk e jk = 1
and ∑ j e jk = qk.

The term qk represents the distribution of the remaining degree. This captures the number of edges
leaving the node, other than the one that connects the pair. The distribution of this term is derived from
the degree distribution pk as

qk =
(k+1)pk+1

∑ j jp j

(3.40)

The assortative coefficient r is actually the Pearson correlation coefficient of degree between pairs of
linked nodes. Hence, positive values of r indicate a correlation between nodes of similar degree, while
negative values indicate relationships between nodes of different degree. In general, r lies between -1
and 1. When r = 1, the network is said to have perfect assortative mixing patterns, while at r = −1 the
network is completely disassortative.

Dyadicity and Heterophilicity

Another way to measure the relational dependency on a graph is the Dyadicity and Heterophilicity,
proposed by Park and Barabasi (2007). The Dyadicity D is defined as the connectedness between nodes
with the same class label compared to what is expected for a random configuration, whereas the Het-

erophilicity H is defined as the connectedness between nodes with different class labels compared to
what is expected for a random configuration.

Consider the case where each node is characterized by a binary class label. Let n1(n0) be the number
of nodes with class label 1(0) so that the total number of nodes N satisfies N = n1 + n0. This allows
three kinds of links in the network: (1−1), (1−0), and (0−0). We label the number of each link type
m11, m10, m00, respectively, satisfying M = m11+m10+m00, where M is the total number of links in the
network. If the class is distributed randomly among the N nodes, i.e., if any node has an equal chance of
possessing it, the expected values of m11 and m10 are

m11 =
n1(n1 −1)p

2
(3.41)

and
m10 = n1(N −n1)p (3.42)

where p = 2M
N(N−1) is the connectance, representing the average probability that two nodes are connected.

Statistically significant deviations of m11 and m10 from their expected values imply that class is
not distributed randomly. It is possible to quantify the magnitude of such effects via dyadicity D and
heterophilicity H defined as D = m11

m11
and H = m10

m10
. The class is dyadic if D > 1 (antidyadic if D < 1)

and heterophilic if H > 1 (heterophobic if H < 1).
High values of D parameter indicates a network where nodes with a given function 1 are connected

more strongly among themselves than expected by random distribution of functionalities. D > 1 shows
a dyadic behavior. In contrast, D < 1 indicates an anti-dyadic coupling.

Equivalently, we can consider the case when nodes with a given property 1 have a low density
of links connecting nodes with function 0 than expected by random chance. In such a case, H > 1
shows a heterophilic behavior and H < 1 indicates a heterophobic configuration. Phase diagrams of
possible values m11 and m10 (D,H) can be plotted showing the possible configurations for a given set of
functionalities and network structures.

Generally, if D > 1 and H > 1, the nodes with the same class label have a clear clustering tendency
within the network. However, the values for the pair (D,H) cannot be arbitrary and are constrained by
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networked structure. Moreover, some values can admit distinct network configurations, i.e., degeneracy
factor. More details on this measure can be found in (Park and Barabasi, 2007).

Measures adapted from Spatial Data Analysis

In addition to the already mentioned measures of network autocorrelation, the measures of spatial auto-
correlation Global Moran’s I (Equation 3.4) and Global Geary’s C (Equation 3.7) can be also consid-
ered as measures of network autocorrelation. However, their consideration requires that we adapt and
redefine these measures in the network setting that we consider.

In order to adapt these Measures for Classification, we redefine them similarly as the respective
measures of spatial autocorrelation for the classification task (see Section 3.2.2 and Section 3.2.2). Let
Y be a discrete variable which admits q distinct values in its domain. To compute the Moran’s index for
Y we resort to a one-versus-all solution. In particular, we transform the discrete variable Y into q 0/1
binary variables Y1,Y2, . . . ,Yq.

We compute the Global Moran’s I as the average of Moran’s I values, computed for each Yj ( j =
1,2, . . . ,q), that is:

IY =
1
q

q

∑
j=1

IY j
(3.43)

Similarly, the Global Geary’s C for a discrete variable Y is:

CY =
1
q

q

∑
j=1

CYj
(3.44)

Analogously, the values of the Global Moran’s I in the interval [-1,1], where -1 means high negative
autocorrelation, 0 means no autocorrelation (random distribution of the data) and 1 means high positive
autocorrelation. The values of the Global Geary’s C are in the interval [0,2], where 0 means high positive
autocorrelation, 1 means no autocorrelation and 2 means high negative autocorrelation.

What changes while redefining these measures, in comparison to the measured of spatial autocorre-
lation for the classification task, is the definition and the meaning of the weighting function. In the case
of network autocorrelation, the weights more often have a natural representation. For more details on the
weights see Section 2.3.2. Moreover, in Chapter 7 we show how we use these measures in real-world
network domains.
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4 Predictive Modeling Methods that use Autocorrelation

The work presented in this chapter concerns the predictive modeling methods listed in the literature
that consider autocorrelation. We organize the text into four separate parts, each related to the different
form of autocorrelation that it considers. Namely, we distinguish among methods that consider temporal
autocorrelation, spatial autocorrelation, spatio-temporal autocorrelation and network autocorrelation.

Each of these parts is then divided according to the predictive task that it concerns. In particular, we
distinguish between methods that can be used for the classification and regression task.

4.1 Predictive Methods that use Temporal Autocorrelation

In the following section, we give an overview of the methods used in temporal data mining, as well in
temporal analysis and modeling. Focusing on the classification and regression tasks, we give an overview
of the existing studies that consider and incorporate temporal autocorrelation and report the main specific
characteristics of their experimental setting.

4.1.1 Classification Methods

Time series analysis has quite a long history. Techniques for statistical modeling and spectral analysis
of real or complex-valued time series have been in use for more than 60 years. Weather forecasting,
financial or stock market prediction and automatic process control have been some of the oldest and
most studied applications of such time series analysis (Box et al, 1994). Temporal data mining, however,
is of a more recent origin with somewhat different constraints and objectives. Although classification
is one of the most typical tasks in supervised learning and the most explored data mining subfield, it
has not deserved much attention in temporal data mining and generally in the actual uses of temporal
information.

Temporal autocorrelation is difficult to diagnose and correct when the response data are discrete
(classification task), in that information about the error properties contained in the data is limited and the
models are usually nonlinear. One approach to handle temporal autocorrelation is to use effects models,
i.e., models using a lagged value of the response variable as a regressor.

For example, Varina and Vidoni (2006) developed effects models for predicting categorical time se-
ries data, as an alternative to Markov chain models. They solved the problem of parameter estimation
through a simple pseudo-likelihood, i.e., pairwise likelihood and successfully applied this inferential
methodology to the class of Autoregressive Ordered Probit (AOP) models. Similarly, Cui (2009) devel-
oped effects methods for stationary time series of integer counts with binomial, Poisson, geometric or
any other discrete marginal distribution.

Hyndman (1999) considers three possible nonparametric additive effects models for binary time
series prediction which allow for autocorrelation: a generalization of an AutoRegressive with eXogenous
terms (ARX) model to allow explanatory variables, two generalizations of a regression model with AR
errors which allows nonparametric additive covariates. The generalization of an ARX model provides
easy marginal interpretation of the effect of covariates and inference can be obtained using the techniques
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developed for generalized additive models (GAMs). The potential usefulness was then illustrated on
simple real data applications.

4.1.2 Regression Methods

Most of the work done in temporal data mining focuses on the regression task, where special models for
time-series data have been developed and used in the last 60 years. Here, we present the most relevant
ones, stressing the autocorrelation aspect.

Very similar to the SAR models described in Section 4.2.2, autoregressive models (AR) has been
well used to measure temporal autocorrelation. The AR model is a linear regression of current values of
a series against one or more prior values of the series. The AR observation at time t can be decomposed
and becomes a linear combination of all previous input variables.

In particular, Bullmore et al (1996) proposed an autoregressive model of order 1 (AR(1)) to model
temporal autocorrelation in linear modeling of functional magnetic resonance imaging (FMRI) time se-
ries data. The autocorrelation and the noise are estimated from the residuals after fitting the model and
are used to create a filter that is applied to the data before re-fitting the model. Such autoregressive model
is defined as:

Ŷt = (1−
p

∑
i=1

φi)µ +φ1Yt−1 +φ2Yt−2 + ...+φpYt−p + εt (4.1)

where φ1 through φp are the coefficients of the time series Yt , µ denotes the overall mean and εt is a
purely random stationary process with mean µε and variance σ2

ε .
An advantage of such models is that they produce the most efficient estimation of the model parame-

ters under the normality assumption. Moreover, an enormous advantage that the given AR relations, i.e.,
relations between autocorrelation function, model parameters and reflection coefficients (negative of the
partial correlation (difference between the autocorrelation coefficient at a certain lag and its extrapola-
tion from lower order correlations)) are also useful, when they are applied to estimated parameters and to
estimated autocorrelation functions. However, a disadvantage is that they can produce biased parameter
estimates if the autocorrelation is not estimated accurately (i.e., do not necessarily produce “minimum”
bias estimators).

Likewise, AutoRegressive Moving Average (ARMA) and AutoRegressive Integrated Moving Aver-
age (ARIMA) models (Box et al, 1994) have been used to deal with autocorrelation in different types of
time series data. Generally, the ARMA/ARIMA model for a time series is defined as:

Ŷt =
M

∑
i=1

aiYt−i +
N

∑
i=1

biEt−i + εt (4.2)

where the first summation is the autoregressive part (AR), the second summation is the moving average
part (MA), whereas the last part is an error term that is assumed to be a random variable sampled from a
normal distribution.

The autoregressive part consists of weighted past observations and the moving average part consists
of weighted past estimation errors. In other words, it is the difference between the actual value and the
forecasted value in the previous observation.

The ARMA autocovariance function is a convolution of the separate autocovariances of the AR and
the MA parts. The ARMA autocorrelation function is the ration of the autocovariance function and the
autocovariance r(0) at lag 0.

The difficult question that arises in this case is how many lags to include in the regression equation.
Autocorrelation could be a guide as to how many lags to include i.e, high magnitude of autocorrelation
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indicates a lag that should be included in the regression equation. Thus, the autocorrelation function at
higher lags is completely determined by the AR part.

ARIMA models require lengthy time series and the impulse-response function specification aligns
time lags of a response variable with those of a covariance. In this case, the response variable is an
attribute variable at some location (i.e., a location specific time series), and the covariances are the same
attribute variable at other, frequently nearby, locations. This specification helps uncover lead and lag
locations for some time series process and is especially informative for spatial diffusion processes.

These standard ARMA family of linear models are designed for stationary time series, although
they can also be applied to non-stationary ones, after the latter are transformed to stationary time series
or some suitable variant of the process (e.g. differences between successive terms) is assumed to be
stationary. Another popular work-around for non-stationarity is to assume that the time series is piece-
wise (or locally) stationary. The series is then broken down into smaller “frames” within each of which,
the stationarity condition can be assumed to hold and then separate models are learnt for each frame.

4.2 Predictive Methods that use Spatial Autocorrelation

In the following section, we give an overview of the methods used in spatial data mining, as well in
spatial statistics and modeling. Since our main focus are decision trees for classification and regression
tasks, we give an overview of the existing data mining studies for classification and regression task that
consider the effect of spatial autocorrelation.

4.2.1 Classification Methods

One of the first works that recognized the importance of considering spatial autocorrelation in spatial
data mining, focusing on the classification task, is presented by Huang et al (2004). The authors propose
and empirically validate methods based on logistic regression and Bayesian classification that explicitly
take the spatial dimension into account. In particular, the algorithm that they propose includes a novel
multi-resolution filter, which exploits the spatial auto-correlation property of spatial data to effectively
reduce the search space. This means that, when the locations of the features tend to be spatially clustered,
which is often true for spatial data due to spatial-autocorrelation, the computation cost of the algorithm
can be significantly reduced.

In addition, a new interest measure for spatial co-location patterns is proposed. This measure is
closely related to the cross-correlation function, which is often used as a statistical measure of inde-
pendence of moving patterns, i.e., in this case it is a measure of the interactions among pairs of spatial
features. Furthermore, it possesses an order-preserving property which can be exploited for computa-
tional efficiency.

However, this method considers only Boolean features and the choice of neighbor relation which
impacts the performance of the proposed algorithms is not evaluated. Moreover, the method is not tested
on real world datasets, especially ones that exhibit strong spatial autocorrelation.

Zhao and Li (2011) have proposed a spatial entropy-based decision tree that differs from a conven-
tional tree in the way that it considers the phenomenon of spatial autocorrelation in the classification
process adapted to geographical data. A spatially-tailored formulation of the traditional entropy measure
(i.e., “spatial entropy” (Li and Claramunt, 2006)) is used in the tree induction. The measure evaluates the
dispersion of the entropy measure over some neighborhoods by looking for a split which minimizes the
intra-distance computed for the examples in the majority class and maximizes the inter-distance between
the examples the majority class and the examples in different classes. This measure is presented in more
details in Section 3.2.2.
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One of the disadvantages of this method lies in the full replacement of the classical with a spatial
entropy measure that is supposed to take into account the influence of space and spatial autocorrelation
which may be problematic in many real applications where the effect of these two autocorrelation is not
symmetric and non-stationary along the studied area. Another disadvantage is there the method has been
tested only on three study areas which does not guarantee general applicability. The method has not
been compared to other existing methods that also take autocorrelation into account nor to state-of-the-
art predictive modeling methods. Moreover, it cannot be extended to meet the regression task, as it is
designed to satisfy only single classification tasks.

A different formulation of spatially-aware entropy is provided by Rinzivillo and Turini (2004, 2007).
For a given reference object they described its neighborhood by considering the attribute of the object
itself and the objects related by the chosen relations. The resulting spatial transactions may be either
considered like “traditional” transactions, by considering only the qualitative spatial relations, or their
spatial extension can be exploited during the data mining process. They then propose to compute the
entropy for a spatial measurement of each example and to use the information gain based on such spatial
entropy measure for the induction of spatial decision trees. In particular, the spatial entropy is computed
for each weighted sum of the spatially related (e.g., overlapping) examples. For more details, this mea-
sure is presented in Section 3.2.2. At the end, the method is implemented on top of a GIS tool and tested
by analyzing real world data.

The limitations of this method lie in the facts that it is designed in a tight connection to a GIS tool
which requires that data is represented in form of GIS layer or represented within a GIS database and
that is designed to deal with single classification tasks.

Bel et al (2009) adapted the Breiman’s classification trees (Breiman et al, 1984) to the case of spa-
tially dependent samples, focusing on environmental and ecological applications. They modified the
algorithm to take into account the irregularity of sampling by weighting the data according to their spa-
tial pattern.

Two approaches were considered: The first one takes into account the irregularity of the sampling
by weighting the data according to their spatial pattern using two existing methods based on Voronoi
tessellation and regular grid, and one original method based on kriging. The second one uses spatial esti-
mates of the quantities involved in the construction of the discriminant rule at each step of the algorithm.
These methods were tested on simulations and on a classical dataset to highlight their advantages and
drawbacks.

However, the methods presented by Bel et al (2009) is specially designed to satisfy single classifica-
tion tasks. In addition, the presented empirical evaluation does not include statistical significance tests to
support the main conclusion of the study that are based on three experimental studies.

Finally, the problem of dealing with autocorrelation in mining spatial data has been also addressed in
multi-relational data mining. For example, Ceci and Appice (2006) propose a spatial associative classifier
that learns, in the same learning phase, both spatially defined association rules and a classification model
(on the basis of the extracted rules).

In particular, they consider two alternative solutions for associative classification: a propositional
and a structural method. In the former, the classifier obtains a propositional representation of training
data even in spatial domains which are inherently non-propositional, thus allowing the application of
traditional data mining algorithms. In the latter, the Bayesian framework is extended following a multi-
relational data mining approach in order to cope with spatial classification tasks.

Both methods were evaluated and compared on two real-world spatial datasets. The obtained results
show that the use of different levels of granularity permitted to find the best tradeoff between bias and
variance in spatial classification. Moreover, spatial data mining applications benefit by preserving in-
formation about how data were originally structured in the spatial domain. This justifies the improved
accuracy of the structural approach with respect to the propositional one. On the contrary, the proposi-
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tional approach outperforms the structural one in terms of efficiency due to the reduction of the search
space.

In addition, Malerba et al (2005) present a multi-relational clustering algorithm (CORSO) that ex-
presses the spatial structure of data by resorting to the First Order Logic representation formalism and
uses learning in the Normal ILP setting in order to take into account the autocorrelation in the data. In
this case, the autocorrelation is implicit in spatial relations, such as overlap, to_right, to_left, between
spatial objects to be clustered. In the clustering phase, the similarity of multi-relational descriptions is
used in order to identify spatial objects that are in the neighborhood.

However, CORSO can handle only binary relations. The number of obtained clusters is not optimal
and there can exist many similar cluster that need to be merged a-posteriori due to their similar properties.
Concerning the cluster construction, the detection of initial set of candidate objects to become cluster can
sometimes become restrictive. Furthermore, in some case CORSO cannot detect natural clusters in cases
when not all the neighbors of a particular object belong to the cluster.

Furthermore, the problem of dealing with autocorrelation in mining spatial data has been also ad-
dressed in the multi-relational transduction setting. A relational approach to spatial classification in a
transductive setting has been proposed by Ceci et al (2010). Transduction is also motivated by the con-
tiguity of the concept of positive autocorrelation, which typically affect spatial phenomena, with the
smoothness assumption which characterize the transductive setting.

In particular, a relational upgrade of the Naive Bayes classifier is proposed as discriminative model,
an iterative algorithm is designed for the transductive classification of unlabeled data, and a distance
measure between relational descriptions of spatial objects is defined in order to determine the k-nearest
neighbors of each example in the dataset. In principle, a strong spatial autocorrelation is expected to
counterbalance the lack of labelled data, when a relational classifier which takes spatial autocorrelation
into account is learned in a transductive setting.

However, the obtained models can handle only stationary autocorrelation and cannot be applied in
the same domain in different context.

4.2.2 Regression Methods

Most theoretical research in Statistics and Econometrics exploits the so called “spatial autoregressive”
(SAR) model in order to measure autocorrelation in a “lattice”. More formally, the spatial autoregressive
model is defined as:

êi = ρ
N

∑
j=1

wi j e j + εi i = 1, . . . ,N (4.3)

where N is the number of examples in a training set, e j = Yj −Y is the prediction residual (where
prediction is based on the average), wi j is the weight of the spatial proximity between the pair of examples
i and j, ρ is a parameter that expresses the spatial dependence in the lattice and the error εi follows a
normal distribution.

As recognized by Li et al (2007), in order to informally assess the strength of the spatial dependence,
exploratory data analysis should be based on estimating ρ in the autoregressive model (see Equation 4.3).
This means that the parameter ρ plays a crucial role in representing the autocorrelation in the data.

One common solution to estimate ρ is to use a modified least squares estimator, which is the solution
to the following quadratic equation in ρ:

eT (I−ρW)T W(I−ρW)e = 0 (4.4)

where W is the matrix representation of wi j, I is the identity matrix and e is the vector of ei values.
Although this estimator is consistent (Li et al, 2007), its computation is not straightforward, since it
would require the computation of the Maximum Likelihood Estimator of ρ .
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In a theoretical study, LeSage and Pace (2001) use the Maximum Likelihood Estimator to take into
account autocorrelation in data. They stress that the presence of spatial dependence requires an appro-
priate treatment of spatial correlation effects. However, the computation of the Maximum Likelihood
Estimator is impractical when large datasets need to be processed (Li et al, 2007).

Therefore, instead of computing an estimate of ρ , the Pearson’s correlation coefficient and its vari-
ants, as well as entropy based measures, are commonly used in spatial data mining applications (LeSage
and Pace, 2001). Especially because in the presence of spatial dependence, appropriate treatment of
spatial autocorrelation effects is critical if these hidden relations are to be found.

Another way to quantify spatial autocorrelation in a regression model is to introduce an autoregres-
sive parameter in the model specification of a CAR (Conditional AutoRegressive) model (Li et al, 2007).
In contrast to SAR model that take into account the global spatial autocorrelation, CAR model is more
appropriate for situations with first order dependency or relatively local spatial autocorrelation.

The CAR model assumes a limited spatial dependency, i.e., the state of a particular area is influ-
enced by its neighbors and not neighbors of neighbors. This is due to the different way it specifies the
variance-covariance matrixes in comparison to SAR. Thus, CAR provides a simpler way to model locally
autocorrelated geo-referenced areal data.

Moreover, the CAR model specifies spatial autocorrelation as being in the error term, with a weaker
degree and smaller spatial field that the SAR model, and with the attribute error at location i being a
function of the sum of nearby error values. The parameters of a SAR model can also be estimated using
maximum likelihood techniques.

Another standard way to take into account spatial autocorrelation in spatial statistics is Geograph-
ically Weighted Regression (GWR) (Fotheringham et al, 2002). GWR assumes a local form of the
regression surface depending on the site (u,v). The linear regression model is extended by weighting
each training observation in accordance with its proximity to point (u,v), so that the weighting of an
example is no longer constant in the calibration but varies with (u,v). The local model for a response
attribute y at site (u,v) takes the following form:

y(u,v) = α0(u,v)+∑
k

αk(u,v)xk(u,v)+ ε(u,v) (4.5)

where α0(u,v) is the initial realization of the continuous function αk(u,v), αk(u,v) is a realization of the
continuous function αk(u,v) at point (u,v), xk(u,v) is the values of the target variable at point (u,v), while
ε(u,v) denotes random noise. Each coefficient αk is locally estimated at location (u,v) from measurements
close to (u,v).

α(u,v) = (XT W(u,v)X)−1XT W(u,v)y (4.6)

where W(u,v) is a diagonal weight matrix which states the influence of each observation for the estimation
of α(u,v), defined by functions such as Gaussian or bi-square and W(u,v) introduces the spatial lag
depending on the position (u,v) in the regression model.

In this way GWR takes advantage of positive autocorrelation between neighboring examples in space
and provides valuable information on the nature of the processes being investigated. Especially, this can
be beneficiating if the explored autocorrelation is linear. GWR is a well-used spatial statistical methods
that is implemented within a lot of standard GIS software.

However, GWR is very resource expensive and time consuming in comparison with the traditional
regression methods. The models are dependent of the location and cannot be generalized or applied to
another experimental setup or study area. Therefore, the GWR method is more suited for interpolation
purposes, for spatial mapping within a GIS environment and similar geographical applications. Another
disadvantage of this technique is that the models it builds are linear and cannot capture nonlinearity
which is very common property of spatial data.
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Kriging (Bogorny et al, 2006) is another spatial regression technique which explicitly takes advan-
tage of autocorrelation. It applies an optimal linear interpolation method to estimate unknown response
values y(u,v) at each site (u,v). y(u,v) is decomposed into three terms: a structural component, which
represents a mean or constant trend, a random but spatially correlated component, and a random noise
component, which expresses measurement errors or variation inherent to the attribute of interest.

In its simplest form, a kriging estimate of the field at an unobserved location is an optimized linear
combination of the data at the observed locations. The coefficients of the kriging estimate and the associ-
ated error measure both depend on the spatial configuration of the data, the unobserved location relative
to the data locations, and spatial correlation or the degree to which one location can be predicted from a
second location as a function of spatial separation.

Similarly to GWR, kriging is also an resource expensive and time consuming technique which is quite
difficult to apply. It is mostly suited for interpolation purposes. Its models are dependent of the location
and cannot be generalized or applied to another experimental setup or study area. However, in contrast
to GWR and other methods that we have already mentioned, kriging associates a probability with its
predictions. In the case of two or more target variables, Ordinary Cokriging, Universal Cokriging, Simple
Cokriging, Indicator Cokriging, Probability Cokriging, and Disjunctive Cokriging can be considered as
multivariate extensions of the different types of kriging.

Finally, the problem of dealing with autocorrelation in mining spatial data has been also addressed in
multi-relational data mining. Malerba et al (2005) present a relational regression method (Mrs-SMOTI)
that captures both global and local spatial effects the predictive attributes, while building a regression
model tightly integrated with a spatial database. The method deals with spatial autocorrelation on the
input side (explanatory variables). It considers the geometrical representation and relative positioning of
the spatial objects to decide the split condition for the tree induction (e.g., towns crossed by any river and
towns not crossed by any river). For the splitting decision a classical heuristic based on error reduction
is used.

The advantages of the proposed method lie in its tight connection to a spatial database and its ability
to captures both global and local spatial effects the autocorrelation phenomenon. This gives Mrs-SMOTI
the opportunity to mine both spatial relationships and spatial attributes which are implicit in spatial data.
Indeed, this implicit information is often responsible for the spatial variation over data and it is extremely
useful in regression modeling.

Moreover, the search strategy is modified in order to mine models that capture the implicit relational
structure of spatial data. This means that spatial relationships (intra-layer and inter-layer) make possible
to consider explanatory attributes that influence the response attribute but do not necessarily come from
a single layer. In particular, intra-layer relationships make available spatially lagged response attributes
in addition to spatially lagged explanatory attributes.

However, the obtained models are very specific and depend on the geographical coordinates of the
considered objects. Therefore, the models cannot be applied for different tasks in the same domain.

However, when resorting to multi-relational data mining, it is possible that the presence of auto-
correlation in spatial phenomena can bias feature selection (Jensen and Neville, 2002). In particular,
the distribution of scores for features formed from related objects with concentrated linkage (i.e., high
concentration of objects linked to a common neighbor) has a surprisingly large variance when the class
attribute has high autocorrelation. This large variance causes feature selection algorithms to be biased in
favor of these features, even when they are not related to the class attribute, that is, they are randomly
generated. In this case, conventional hypothesis tests, such as the χ2-test for independence, which eval-
uate statistically significant differences between proportions for two or more groups in a dataset, fail to
discard uninformative features.
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4.3 Predictive Methods that use Spatio-Temporal Autocorrelation

In the following section, we give an overview of the methods used in spatio-temporal data mining, noting
that at the moment, research accommodating both spatial and temporal data mining is sparse. Focusing
on the classification and regression tasks, we give an overview of the existing studies that consider and
incorporate spatio-temporal autocorrelation and describe their main characteristics.

4.3.1 Classification Methods

To the best of our knowledge, there exist no previous works on classification that consider spatio-
temporal autocorrelation. However, we present two directions of research work on regression that that
consider spatio-temporal autocorrelation of a binary target variable. The first direction tries to embed a
temporal awareness in spatial methods, while the second direction accommodates the space dimension
into temporal data mining methods. Here, we give a short overview on several related works that use
spatio-temporal autocorrelation, following these directions.

One of the works that tries to embed the temporal awareness in a spatial method is presented by
Zhu et al (2005), where a temporal component is added to an autologistic regression model for spatial-
temporal binary data. An autologistic regression model consists of a logistic regression of a response
variable on explanatory variables and an auto-regression on responses at neighboring locations on a
lattice.

The obtained spatial-temporal autologistic regression model is a Markov random field with pairwise
spatial dependence. It is a popular tool for modeling spatial binary responses since is able to capture
the relationship between a binary response and potential explanatory variables, while adjusting for both
spatial dependence and temporal dependence simultaneously by a space-time Markov random field. The
model parameters are estimated by maximum pseudo-likelihood.

Finally, the predictions of future responses on the lattice are obtained by using a Gibbs sampler.
This method is then applied to study the outbreaks of southern pine beetle in North Carolina, where the
explanatory variables are time-invariant, including the weather information.

Similarly, Zhu et al (2008) tried to embed the temporal awareness in a spatial method, where a tem-
poral component is added to an autologistic regression model for spatial-temporal binary data, extending
their previous study (Zhu et al, 2005).

For a given time point t, the response variable Yt is assumed to follow a Markov random field, under
a preselected spatial neighborhood structure. That is,

p(Yi,t‖Yj,t : j 6= i,Yt ′ : t ′ = t −1, t −2, ..., t −S) = p(Yi,t‖Yj,t : j ∈ Ni,Y
′

t : t ′ = t −1, t −2, ..., t −S) (4.7)

where Ni consists of the indexes of the neighbors of the i-th site.
The binary data was measured on a spatial lattice and repeatedly over discrete time points. A Monte

Carlo was used to obtain maximum likelihood estimates of the model parameters and predictive distri-
butions at future time points. Path sampling was used in order to estimate the unknown normalizing
constant and approximate an information criterion for model assessment.

This methodology was then applied to study the outbreaks of southern pine beetle in western Canada.
The performed data analysis supports their initial hypothesis that there is a significant relationship be-
tween beetle outbreaks and abiotic factors such as summer and winter temperatures and elevation. A
plausible explanation for the strong spatial and temporal dependence is the dispersal of the beetle popu-
lations across space and over time, as during beetle outbreaks, beetle populations are capable of dispersal
at the scale of hundreds of kilometers.
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4.3.2 Regression Methods

Most of the work done in spatio-temporal data mining focuses on the regression task. Here, we present
the most relevant ones, stressing the autocorrelation aspect. We note that all current models assume that
the spatio-temporal autocorrelation in data can be adequately described by globally fixed parameters,
i.e., the extent to which observations are autocorrelated with each other is fixed in space and/or time.

For example, in Spatio-Temporal AutoRegressive Integrated Moving Average (STARIMA) models,
space-time processes are stationarized through transformation and differencing and autocorrelation is
accounted for in the autoregressive (AR) and moving average (MA) terms. The AR and/or MA orders
are fixed globally both spatially and temporally, and a single parameter is estimated for each. STARIMA
can be seen as an extension of the ARIMA model for time-series (See Section 4.1.2).

Moreover, the space-time autocorrelation function, defined in Section 3.3.1, has been used in
STARIMA to calibrate the order of moving average, which define the range of spatial neighborhoods
that contribute to the current location at a specific time lag (Pfeifer and Deutsch, 1980) .

Although STARIMA has been employed in a number of spatio-temporal studies, for example in
traffic flow forecasting (Kamarianakis and Prastacos, 2005; Wang et al, 2010), the two assumptions of
stationarity and fixed spatio-temporal neighborhoods are in fact very difficult to be satisfied for very
common real-world data and applications. For example, this is the case of dynamic network data (Cheng
et al, 2011).

Embedding of a temporal awareness in spatial methods and accommodation of space into temporal
data mining methods are very frequent when dealing with the regression task. For example, Griffith and
Heuvelink (2009) used a spatial Vector AutoRegressive (VAR) model which includes spatial as well as
temporal lags among a vector of stationary state variables in order to capture joint spatial and temporal
dynamics, assuming that spatial data consists of a small spatial series with a lengthy time series. The
spatial data can have the full spatial covariance matrix estimated by exploiting the time dimension and
using it to establish asymptotes. An estimated spatial VAR model can be then used to calculate impulse
responses between variables over time and across space.

Similarly, a mixed spatio-temporal model containing both fixed and random effect terms is presented
by Baltagi (2005), where the random term is spatially structured in order to account for both temporal and
spatial autocorrelation. The spatially structured component accounts for spatial autocorrelation, whereas
the sum of the spatially structured and unstructured components accounts for temporal autocorrelation.

The random effects can be estimated by treating each locational time series as a set of repeated
measures, allowing them to be separated from residuals. Practical situations often constitute quasi-spatial
datasets because attributes for the same set of objects within an areal unit are not being measured through
time. Rather, attributes for areal unit aggregates of changing collections of objects are being measured.
However, some drawbacks care related to data collection issues, i.e., sampling design.

By incorporating temporal effects into the geographically weighted regression (GWR) model, an
extended GWR model is introduced by Huang et al (2010). Geographically and Temporally Weighted
Regression (GTWR) has been developed to deal with both spatial and temporal non-stationarity simul-
taneously in real estate market data. Unlike the standard GWR model, GTWR integrates both temporal
and spatial information in the weighting matrices to capture spatial and temporal heterogeneity. GTWR
shows statistically significant improvement from GWR in terms of goodness-of-fit and other statistical
measures, for the sample data used in the study.

As an alternative to GWR, Hardisty and Klippel (2010) employed eigenvector spatial filtering to
construct geographically varying regression coefficients. The filtering is a flexible and powerful tool for
dealing with correlated data, thus allowing model building to proceed as if the observations are indepen-
dent. It can be then used within a visualization tool that allows spatio-temporal statistics to be used in
an interactive manner and therefore be incorporated in visual analytic. The filtering allows interactions
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with the spatio-temporal structure uncovered by the statistics that contains a novel coordination strategy.
Its capabilities were then demonstrated on a study of H1N1 flu pandemic that resulted with the finding
that there was a critical spatio-temporal “inflection point” at which the pandemic changed its character
in the United States.

Spatio-temporal kriging (De Iaco et al, 2002) is another regression technique which explicitly takes
advantage of autocorrelation. It is fundamentally the same as conventional spatial kriging except in the
management of covariance modeling, i.e., it applies an optimal linear interpolation method to estimate
unknown response values y(u,v) at each site (u,v). By instinct, one may seek to treat time as if it is an
extra dimension in spatial kriging and then lump the lag distances along the spatial and temporal axes
into a single Euclidean space-time metric.

However, this has been shown to be theoretically and practically problematic. The key reason is
because the time axis is by nature different (i.e., it is not geometric) and not necessarily orthogonal to
the other three principal axes. Environmental processes occurring in time almost always have some
dependence on processes occurring in space, which accounts for some of the non-orthogonality between
the time and spatial axes.

In practice, when dealing with real-world data, space-time variograms (Griffith and Heuvelink, 2009)
are fitted by introducing simplifying statistical assumptions. Basically, two main groups of approaches
exist: (a) separable (purely spatial and purely temporal models) and (b) non-separable (space-time) ap-
proach (Huang et al, 2007; Ma, 2005). Similar as STARIMA, the purpose of using these models is to
quantify the spatial and temporal dependence reflected in a data set. The resulting model might then be
used for spatial interpolation and/or temporal prediction.

Different measure of spatio-temporal autocorrelation have been incorporated in several spatio-
temporal data mining studies. For example, a spatial-temporal autocorrelation measure has been adapted
by Zhang et al (2003) to efficiently process similarity based range queries and joins and take autocorre-
lation into account when retrieving spatial time series.

Yue and Yeh (2008) empirically demonstrated that the cross-correlation function CCF (Box et al,
1994) can be used to determine the spatio-temporal relationship between a road link and its neighbors.
This is, however, dependent on sufficient spatial and temporal resolution in the data. In such traffic
networks, a peak at lag zero, for example, indicates that the current resolution does not capture the
direction of influence of one location on another, but the locations behave very similarly at the same
time. This usually happens when the network is highly congested in the “morning” peak.

Moreover, Cheng et al (2011) provide an exploratory spatio-temporal autocorrelation analysis that
examines the spatio-temporal autocorrelation structure of road networks in order to determine likely
requirements for building a suitable spatio-temporal forecasting model. They use two indices: the ST-
ACF (Pfeifer and Deutsch, 1980) that measures global spatio-temporal autocorrelation and the cross-
correlation function CCF (Box et al, 1994) that measures local spatio-temporal autocorrelation between
two locations. These indices are extensions of the temporal autocorrelation function (see Equation 3.1)
and were selected as they are easily interpretable and have a practical application in established spatio-
temporal modeling frameworks.

When resorting to the relational data mining, McGovern et al (2008) introduced a learning approach
in spatially and temporally varying relational data. The approach is based on the decision trees that can
vary in both space and time called Spatio-Temporal Relational Probability Trees (SRPTs). Details on
how this algorithm deals with autocorrelation are not provided.

The SRPT learning algorithm directly addresses the difficulties inherent in both the conceptualization
of the data and in learning the model and deals with the exponential increase in search complexity through
sampling. It focuses its distinctions on the temporal nature of the data rather than on the spatial nature of
the data. The spatial distinctions arise from the spatial relationships defined in the data.

SRPT learning algorithm can identify the critical relations and temporal variations of the attributes
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on each relation, but it cannot currently identify spatial or spatiotemporal variations, such as the increase
in positive tilting as a function of altitude (and possibly time). The method is validated using a simulated
data set and empirically tested on two real-world data sets.

4.4 Predictive Methods that use Network Autocorrelation

In the recent years, numerous algorithms have been designed for modeling a partially labeled network and
providing estimates of unknown labels associated with nodes. In the following Section, we give a short
overview of the existing methods that consider networks autocorrelation, focusing on the classification
and the regression task.

4.4.1 Classification Methods

In the literature, significant attention has been given to the task of classification in network domains and
the development of classification methods that consider network autocorrelation.

In general, network learning assumes that data for inference are already in the form of a network
and exploit the structure of the network to allow the collective inference. Collective inference targets
learning algorithms where various interrelated values are inferred simultaneously such that estimates
of neighboring labels influence one another (Gallagher et al, 2008; Macskassy and Provost, 2007; Sen
et al, 2008). Since exact inference is known to be an NP-hard problem and there is no guarantee that
data network satisfy the conditions that make exact inference tractable for collective learning, most of the
research in collective learning has been devoted to the development of approximate inference algorithms.

Collective inference algorithms can exploit network (relational) autocorrelation. For example, Mac-
skassy and Provost (2007) show that models that consider only autocorrelation in class labels can perform
very well when only a small fraction of the class labels are known.

Popular approximate inference algorithms include iterative inference, Gibbs sampling, loopy belief
propagation and mean-field relaxation labeling. An outline of strengths and weakness of these algorithms
is reported in Sen et al (2008). In general, one of the major advantages of collective learning lies in its
powerful ability to learn various kinds of dependency structures (e.g., different degrees of correlation)
(Jensen et al, 2004). However, as pointed out in Neville and Jensen (2007), when the labeled data is very
sparse, the performance of collective classification might be largely degraded due to the lack of sufficient
neighbors. This is overcome by incorporating informative “ghost edges” into the networks to deal with
sparsity issues (Macskassy, 2007; Neville and Jensen, 2007).

Interestingly, learning problems similar to the tasks addressed in network learning have been recently
addressed outside the areas of network learning and graph mining. In particular, in the area of semi-
supervised learning and transductive learning (Vapnik, 1998) a corpus of data without links is given to
the algorithms. The basic idea is to connect data into a weighted network by adding edges (in various
ways) based on the similarity between entities and to estimate a function on the graph which guarantees
the consistency with the label information and the smoothness over the whole graph (Zhu et al, 2003).
The constraint on smoothness implicitly assumes positive autocorrelation in the graph, that is nearby
nodes tend to share the same class labels (i.e., homophily).

Rahmani et al (2010) use a transductive learning approach in order to classify the function of proteins
in protein-protein interaction (PPI) networks by using only data related to the structure of the networks.
The classification task aims at predicting the particular function associated with a node (protein) on four
yeast benchmark datasets: DIP-Core, VonMering, Krogan and MIPS.

They introduced a node description formalism that has not been used previously for protein function
prediction and which takes global information into account. The use of global information for such
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methods is unexplored, since existing inductive learning methods for predicting protein functions in PPI
networks use local information.

A potential disadvantage of this method is that in large graphs, one gets very high-dimensional de-
scriptions, and not all learners handle learning from high-dimensional spaces well. It is possible, how-
ever, to reduce the dimensionality of the vector by only retaining the shortest-path distance to a few
“important” nodes. The introduced formalism is used in order reduce the number of features needed for
the description.

In fact, Popescul and Ungar (2003) and Hasan et al (2006) have demonstrated that using aggregated
relational features in an iterative way can be quite effective not only for the collective classification, but
also for the link prediction task. They integrated statistical modeling and feature selection into a search
over the space of database queries generating feature candidates involving complex iteration between
object in a given relational database. The features selected in this way provide useful insights into the
nature of the analyzed problem.

The construction of aggregated features has been also investigated in Grčar and Lavrač (2011), where
the authors present an efficient classification algorithm for categorizing video lectures in heterogeneous
document information networks. They first transform documents into bag-of-words vectors, then de-
compose the corresponding heterogeneous network into separate graphs and compute structural-context
feature vectors. Finally, they construct a common feature vector space to be used in the mining phase.

A limitation of such methods that use aggregated relational features is that the created features are in
a tight connection to the data. Moreover, the obtained models only consider the cases where training and
testing data (nodes) belong to the same network. This means that the prediction phase requires complete
knowledge of the network arrangement (e.g., connections to other nodes of the network) of any unlabeled
node to be predicted.

In the context of social networks, Weng et al (2010) proposed TwitterRank, an algorithm for finding
topic-sensitive influential twitterers, which is based on the assumptions that the presence of homophily
implies that there are twitterers who are selective in choosing friends to follow.

Here, homophily means that a twitterer follows a friend because he/she is interested in some topics
the friend is publishing and the friend follows back the twitterer if he/she shares similar topics of interest.
Therefore, identifying the influential twitterers based on “following” relationship is meaningless since it
does not carry string indication of influence. On the other hand, the presence of homophily indicates that
the “following” relationship between twitterers ai related to their topic similarity.

Next, Kwak et al (2010) investigated homophily in two contexts: geographic location and popularity
(the number of r-friends’ followers). They considered the time zone of a user as an approximate indicator
for the location of the user and the number of followers as a measure for user’s popularity.

Twitter diverges from well-known traits of social networks: its distribution of followers is not power-
law, the degree of separation is shorter than expected, and most links are not reciprocated. However,
among reciprocated users there is some level of homophily.

4.4.2 Regression Methods

In the literature, less attention has been given to the task of regression and the development of methods
that consider network autocorrelation. In the following subsection, we present relevant network regres-
sion methods.

Appice et al (2009) address the task of the network regression with a transductive approach that
follows the main idea of iterative inference described in Sen et al (2008). Their regression inference
procedure is based on a co-training approach according to which separate model trees are learned from
the attributes of a node and the attributes aggregated in the neighborhood of the nodes. During an iterative
learning process, each of these trees is used to label the unlabeled nodes for the other.
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The learning is based on the intuition that when a high network autocorrelation affects the dependent
variable, the semi-supervised smoothness assumption is likely to hold and the transductive setting can
return better results than the inductive setting. On one hand, this intuition is clearer in spatial domains,
where closeness of points corresponds to a spatial distance measure and network autocorrelation is a
manifestation of the (positive) spatial autocorrelation. On the other hand, transduction is most useful
when the standard i.i.d. assumption is violated.

The learning process is robust to sparse labeling and low label consistency and improves traditional
model tree induction across a range of geographical data networks. As with other transductive learning
approach, no final model is produced. This idea of using aggregated relational features to enhance the
node-wise similarity measurement is popular in network mining and it is not restricted to the transductive
setting.

Steinhaeuser et al (2011) follows an approach close to the idea of predictive clustering. In fact,
they combine a descriptive data mining task (clustering) with a predictive data mining task (regression)
and argue that using networks as a data representation provides a unified framework for identifying and
characterizing patterns in climate data. In their case, the network is built a-posteriori on the basis of the
values of the Pearson’s correlation coefficients between pair of nodes on time series collected for the
same variable.

Clustering then boils down to a community detection problem that allows the proposed approach to
group interconnected nodes so that the pairwise walking distance between two nodes in the cluster is
minimized. Finally, the prediction is obtained by means of a linear regression model built on the cluster
to which the nodes to be predicted belong (spatially).

The innovative aspects of our NCLUS method (see chapter 7 for details) with respect to this work
are manifold. First, clustering is addressed as a hierarchical task. Second, the correlation is measured
on nodes which are interconnected in an existing network, while Steinhaeuser et al (2011) measure the
correlation to define virtual edges between examples. Finally, in our idea, clusters are not constrained
from the structure of the training network.
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5 Learning Predictive Clustering Trees (PCTs)

Our work is based on the concept of learning predictive clustering trees. In this Chapter, we give an
overview of the predictive clustering trees framework, focusing on the different predictive task that it
can handle, from standard classification and regression tasks to multi-target classification and regression,
as well as hierarchial multi-label classification, as a special case of predictive modeling with structured
outputs.

5.1 The Algorithm for Building Predictive Clustering Trees (PCTs)

In this section, we discuss the concept of predictive clustering and give a shot overview of the Predictive
Clustering Trees (PCTs) framework.

In literature, clustering and predictive modeling are treated as two separate techniques. The connec-
tion between them is usually made by machine learning methods that partition the instances into subsets,
such as decision trees and decision rules. These methods can be considered both as predictive and as
clustering methods (Langley, 1996).

The concept of predictive clustering was first introduced by (Blockeel and Struyf, 2002). Predictive
clustering combine elements from both prediction and clustering. As in clustering, clusters of data that
are similar to each other are identified, but in addition a predictive model is associated to each cluster.
New instances are assigned to clusters based on the cluster descriptions. The predictive model provides a
prediction for the target variable of new examples that are recognized to belong to the cluster. Predictive
clustering is similar to conceptual clustering (Michalski and Stepp, 2003) since, besides the clusters
themselves, it also provides symbolic descriptions (in the form of conjunctions of conditions) of the
constructed clusters. However, in contrast to conceptual clustering, predictive clustering is a form of
supervised learning.

The PCTs framework sees a decision tree as a hierarchy of clusters: the top-node corresponds to one
cluster containing all data, which is recursively partitioned into smaller clusters while moving down the
tree. The PCT framework is implemented in the CLUS system (Blockeel and Struyf, 2002) 1.

PCTs can be induced with a standard “top-down induction of decision trees” (TDIDT) algorithm
(Breiman et al, 1984): It takes as input a set of training instances (E) and outputs a tree (Algorithm 1).

The algorithm searches for the best acceptable test that can be put in a node. If such a test can be
found, then the algorithm creates a new internal node and calls itself recursively to construct a subtree
for each subset (cluster) in the partition induced by the test on the training instances. To select the best
test, the algorithm scores the tests by the heuristic, i.e., the reduction in variance (defined below) they
induce on the instances. Maximizing variance reduction maximizes cluster homogeneity and improves
predictive performance. If no acceptable test can be found, that is, if no test significantly reduces variance
(as measured by a statistical F-test), then the algorithm creates a leaf and labels it with a representative
case, or prototype, of the given instances.

The main loop (Algorithm 1, lines 6-10) searches for the best attribute-value test v∗ that can be
associated to a node t. It associates the best test v∗ with the internal node t and calls itself recursively to

1The CLUS system is available for download at ❤tt♣✿✴✴s♦✉r❝❡❢♦r❣❡✳♥❡t✴♣r♦❥❡❝ts✴❝❧✉s✴.

http://sourceforge.net/projects/clus/
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Algorithm 1 Top-down induction of CLUS.

1: procedure PCT(E) returns tree
2: if stop(E) then
3: return leaf(Prototype(E))
4: else
5: (v∗,h∗,P∗) = (null,0, /0)
6: for each Boolean test v do
7: P = partition induced by v on E

8: h = (E,P)
9: if (h > h∗) then

10: (v∗,h∗,P∗) = (v,h,P)
11: end if
12: end for
13: for each Ek ∈P∗ do
14: treek = PCT(Ek)
15: end for
16: return node(v∗,

⋃
k{treek})

17: end if

construct a subtree for each subset (cluster) in the partition P∗ induced by v∗ on the training example set.

5.2 PCTs for Single and Multiple Targets

In this section, we discuss the predictive clustering trees algorithm that deals with the standard classifi-
cation and regression tasks, as well as more complex tasks of multi-target classification and regression.
The PCTs that are able to predict single discrete/continuous target are called single target decision trees
(STDTs), whereas the ones that are able to predict multiple (tuple of discrete/continuous variables) tar-
get simultaneously are called multiple targets decision trees (MTDTs). We consider both STDTs and
MTDTs and we refer to as PTCs.

The task of mining predictive clustering trees (PCTs), for single and multiple targets, can be formal-
ized as follows:
Given:

• A descriptive space X that consists of tuples of values of primitive data types (boolean, discrete or
continuous), i.e., X ={X1,X2, . . .Xm} spanned by m independent (or predictor) variables X j,

• A target space Y = {Y1,Y2, . . . ,Yq} spanned by q dependent (or target) variables Yj,

• A set T of training examples, (xi,yi) with xi ∈ X and yi ∈ Y

Find: a tree structure τ which represents:

• A set of hierarchically organized clusters on T such that for each u ∈ T , the clusters Ci0 ,Ci1 , . . . ,Cir

exist for which u ∈ Cir and the containment relation Ci0 ⊇ Ci1 ⊇ . . . ⊇ Cir is satisfied. Clusters
Ci0 ,Ci1 , . . . ,Cir are associated to the nodes ti0 , ti1 , . . . , tir , respectively, where each ti j

∈ τ is a direct
child of ti j−1 ∈ τ ( j = 1, . . . ,r) and ti0 is the root.



Learning Predictive Clustering Trees (PCTs) 69

• A predictive piecewise function f : X → Y, defined according to the hierarchically organized clus-
ters. In particular,

∀u ∈ X, f (u) = ∑
ti∈leaves(τ)

D(u, ti) fti(u) (5.1)

where D(u, ti) =

{
1 if u ∈Ci

0 otherwise
and fti(u) is a (multi-objective) prediction function associated to the leaf ti.
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Figure 5.1: An illustration of predictive clustering. Illustration of predictive clustering: (a) clustering in
the target space, (b) clustering in the descriptive space, and (c) clustering in both the target and descriptive
spaces. Note that the target and descriptive spaces are presented here as one-dimensional axes for easier
interpretation, but can be actually of higher dimensionality. Figure taken from (Blockeel, 1998).

Clusters are identified according to both the descriptive space and the target space X × Y (Fig-
ure 5.1(c)). This is different from what is commonly done in predictive modeling (Figure 5.1(a)) and
classical clustering (Figure 5.1(b)), where only one of the spaces is generally considered.

We can now proceed to describe the top-down induction algorithm for building PCTs for single
and multiple discrete and continuous targets. It is a recursive algorithm which takes as input the set of
example and the function η : V 7→ X×Y and partitions the set of nodes V until a stopping criterion is
satisfied.

The construction of PCTs is not very different from that of standard decision tree (see, for example,
the C4.5 algorithm proposed by (Quinlan, 1993)): at each internal node t, a test has to be selected accord-
ing to a given evaluation function. The main difference is that PCTs select the best test by maximizing
the (inter-cluster) variance reduction, defined as:

∆Y (C,P) = VarY(C)− ∑
Ck∈P

|Ck |
|C | VarY(Ck) (5.2)

where C represents the cluster associated to t and P defines the partition {C1,C2} of C. The partition
is defined according to a Boolean test on a predictor variable in X. By maximizing the variance reduction,
the cluster homogeneity is maximized, improving at the same time the predictive performance. VarY (C)
is the variance computed on the Y variable (class) in the cluster C.

If the variance Var(·) and the predictive function f (·) are considered as parameters, instantiated for
the specific learning task at hand, it is possible to easily adapt PCTs to different domains and different
tasks. The PCT framework allows different definitions of appropriate variance functions for different
types of data and can thus handle complex structured data as targets.
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Figure 5.2: An example of a multi-target regression tree. The image presents a multi-target regression
tree where the splits are binary and the predictions of the two targets are given in brackets in each node
of the tree (Stojanova, 2009).

To construct a single classification tree, the variance function Var(·) returns the Gini index of the
target variable of the examples in the partition E (i.e., Var(E) = 1−∑y∈Y p(y,E)2, where p(y,E) is the
probability that an instance in E belongs to the class y), whereas the predictive function of a nominal
target variable is the probability distribution across its possible values.

To construct a single regression tree, the variance function Var(·) returns the variance of the response
values of the examples in a cluster E (i.e., Var(E) = Var(Y )), whereas the predictive function is the
average of the response values in a cluster.

The instantiation of the variance and prototype functions for the multiple targets regression trees
is done as follows. In the case of multiple targets classification trees, the variance function is com-
puted as the sum of the Gini indexes of the target variables, i.e., Var(E) = ∑

T
i=1 Gini(E,Yi). Fur-

thermore, one can also use the sum of the entropies of class variables as variance function, i.e.,
Var(E) = ∑

T
i=1 Entropy(E,Yi) (this definition has also been used in the context of multi–label predic-

tion (Clare, 2003)). The prototype function returns a vector of probabilities that an instance belongs to
a given class value for each target variable. Using this probability, the majority class for each target
attribute can be calculated.

In the case of multiple targets regression trees, the variance is calculated as the sum of the variances
of the target variables, i.e., Var(E) = ∑

T
i=1Var(Yi). The variances of the targets are normalized, so each

target contributes equally to the overall variance. The prototype function (calculated at each leaf) returns
as a prediction a vector of the mean values of the target variables. The prediction is calculated using the
training instances that belong to the given leaf.

In addition to these instantiations of the variance function for classical classification and regression
problems, the CLUS system also implements other variance functions, such as reduced error, information
gain, gain ratio and m-estimate.

Finally, the algorithm evaluates all possible tests to be put in a node. If no acceptable test can be
found, that is, if no test significantly reduces variance (as measured by a statistical F-test), then the
algorithm creates a leaf and labels it with a representative case, or prototype, of the given instances.

Figure 5.2 gives an example of multi target regression tree. The splits are binary and the predictions
of the two targets are given in brackets in each node of the tree. In particular, it presents an example
dataset for outcrossing rate prediction. The descriptive variables describe different environmental and
ecological properties of the study area, while the targets are transgenic male-fertile (MF) and the non-
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transgenic male-sterile (MS) line of oilseed rape measurements across the study area. More details on
the dataset are given in (Demšar et al, 2005).

5.3 PCTs for Hierarchical Multi-Label Classification

Hierarchical classification differs from the traditional classification in that the classes are organized in a
hierarchy. This means that there can exist possible connections/relations between the classes. This task
is then called hierarchical multi-label classification (HMC) (Silla and Freitas, 2011; Vens et al, 2008).

Hierarchical multi-label classification (HMC) extends the traditional classification in several direc-
tions. First, the classes are organized in a hierarchy. The similarity of class labels at higher levels of
the hierarchy is more important than the similarity of class labels at lower levels. Second, a hierarchy

constraint implying that an example that belongs to a given class automatically belongs to all its super-
classes. This means that as a class is predicted, all of its parent classes are predicted as well. Third, an
example can belong simultaneously to multiple classes that can follow multiple paths from the root class.

The predictive clustering framework offers a unifying approach for dealing with different types of
structured outputs and the algorithms developed in this framework construct the predictive models very
efficiently. Thus, it can handle the HMC tasks very efficiently. Moreover, PCTs can be easily interpreted
by a domain expert, thus supporting the process of knowledge extraction.

We formally define the task of hierarchical multi-label classification as follows:
Given:

• A description space X that consists of tuples of values of primitive data types (Boolean, discrete
or continuous), i.e., ∀Xi ∈ X ,Xi = (xi1 ,xi2 , ...,xiD), where D is the size of the tuple (or number of
descriptive variables),

• a target space S, defined with a class hierarchy (C,≤h), where C is a set of classes and ≤h is a partial
order (structured as a rooted tree) representing the superclass relationship (∀ c1,c2 ∈ C : c1 ≤h c2

if and only if c1 is a superclass of c2),

• a set E, where each example is a pair of a tuple and a set from the descriptive and target space
respectively, and each set satisfies the hierarchy constraint, i.e., E = {(Xi,Si) | Xi ∈ X ,Si ⊆C,c ∈
Si ⇒∀ c′ ≤h c : c′ ∈ Si,1 ≤ i ≤ N} and N is the number of examples of E (N =| E |), and

• a quality criterion q, which rewards models with high predictive accuracy and low complexity.

Find: a function f : D × X 7−→ 2C (where 2C is the power set of C) such that f maximizes q and
c ∈ f (x)⇒∀c′ ≤h c : c′ ∈ f (x), i.e., predictions made by the model satisfy the hierarchy constraint.

Silla and Freitas (2011) describe the algorithms for hierarchical classification as 4-tuple 〈∆,Σ,Ω,Θ〉.
In this 4-tuple, ∆ indicates whether the algorithm makes prediction for a single or multiple paths in the
hierarchy, Σ is the depth of the predicted classes, Ω is the taxonomy structure of the classes that the
algorithm can handle and Θ is the type of the algorithm (local or global). Using this categorization, the
algorithm we present next can be described as follows:

• ∆ = multiple path prediction: the algorithm can assign multiple paths or predicted classes to each
instance.

• Σ = non-mandatory leaf-node prediction: an instance can be labeled with a label at any level of
the taxonomy.

• Ω = tree or directed acyclic graph: the algorithm can handle both tree-shaped or DAG hierarchies
of classes.
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• Θ = global classifier: the algorithm constructs a single model valid for all classes.

To apply PCTs to the task of Hierarchical Multi-label Classification (HMC), the variance and proto-
type are defined as follows (Vens et al, 2008).

First, the set of labels of each example is represented as a vector with binary components; the i’th
component of the vector is 1 if the example belongs to class ci and 0 otherwise. It is easily checked that
the arithmetic mean of a set of such vectors contains as i’th component the proportion of examples of the
set belonging to class ci.

The variance of a set of examples E is defined as the average squared distance between each exam-
ple’s class vector (Sk) and the set’s mean class vector (S), i.e.,

Var(E) =
∑k d(Sk,S)

2

| E | .

In the HMC context, the similarity at higher levels of the hierarchy is more important than the simi-
larity at lower levels. To that aim, the distance measure used in the above formula is a weighted Euclidean
distance:

d(S1,S2) =
√

∑
i

w(ci) · (S1,i −S2,i)
2,

where Sk,i is the i’th component of the class vector Sk of an instance Xk, and the class weights w(c)
decrease with the depth of the class in the hierarchy. More precisely, w(c) = w0 ·avgj {w(p j(c))}, where
p j(c) denotes the j’th parent of class c and 0 < w0 < 1).

For example, consider the toy class hierarchy shown in Figure 5.3(a,b), and two data examples:
(X1,S1) and (X2,S2) that belong to the classes S1 = {c1,c2,c2.2} (boldface in Figure 5.3(b)) and S2 =
{c2}, respectively. Using a vector representation with consecutive components representing membership
of class c1, c2, c2.1, c2.2 and c3, in that order (pre-order traversal of the tree), the distance is calculated as
follows:

d(S1,S2) = d([1,1,0,1,0], [0,1,0,0,0]) =
√

w0 +w2
0.

(a)

c2c1 c3

c2.1 c2.2

(b)

c2(2)c1(1) c3 (5)

c2.1 (3) c2.2 (4)

(1)(2)(3)(4)(5)

Lk = [1, 1, 0, 1, 0]

(c)

c2c1

c6

c3

c4 c5

Figure 5.3: A simple of tree and DAG hierarchy. Toy examples of hierarchies structured as tree and DAG.
(a) Class label names contain information about the position in the hierarchy, e.g., c2.1 is a subclass of
c2. (b) The set of classes {c1,c2,c2.2}, indicated in bold in the hierarchy, and represented as a vector. (c)
A class hierarchy structured as a DAG. The class c6 has two parents: c1 and c4. Figure taken from (Vens
et al, 2008).

Note that this definition of w(c) allows the classes to be structured in a directed acyclic graph (DAG).
Figure 5.3(c) depicts an example of DAG structured hierarchy. In general, a DAG hierarchy can have
two interpretations: if an example belongs to a given class c, then it also belongs to all super-classes of
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c, or it belongs to at least one superclass of c. Here, we focus on the first case: the multiple inheritance
interpretation.

The variance function used for tree-shaped hierarchies uses the weighted Euclidean distance between
the class vectors, where the weight of a class depends on its depth in the hierarchy. When the hierarchy
is a DAG, then the depth of a class is not unique: classes do not have single path from the top-node (for
example see class c6 in Fig. 5.3(c)). To resolve this issue, (Vens et al, 2008) suggest four aggregation
schemes of the possible paths from the top-node to a given class: average, maximum, minimum and

sum. The aggregation schemes use the observation that w(c) = w
depth(c)
0 can be rewritten as the recursive

relation w(c) = w0 ·w(par(c)), with par(c) as the parent class of c, and the weights of the top-level
classes equal to w0. After an extensive experimental evaluation, (Vens et al, 2008) recommend to use the
average as aggregation function (w(c) = w0 · avgj{w(par j(c))}).

A classification tree stores in a leaf the majority class, which will be the tree’s prediction for all
examples that will arrive in the leaf. In the case of HMC, an example may have multiple classes, thus the
notion of ‘majority class’ does not apply in a straightforward manner. Instead, the mean S̄ of the class
vectors of the examples in the leaf is stored as prediction. Note that the value for the i-th component of
S̄ can be interpreted as the probability that an example arriving at the given leaf belongs to class ci.

A. METABOLISM
A.1 amino acid metabolism
A.2 nitrogen, sulfur, selenium met.
A.1.3 assimilation of ammonia
A.1.3.1 metabolism of glutamine
A.1.3.1.1 biosynthesis of glutamine
A.1.3.1.2 degradation of glutamine
...
B. ENERGY
B.1 glycolysis and gluconeogenesis
C. CELL CYCLE and DNA PROCESSING
D. TRANSCRIPTION
D.1 RNA synthesis
D.2 RNA processing
D.3 transcriptional control

Figure 5.4: A part of the FUN hierarchy. A part of the FUN hierarchy Mewes et al (1999).

The prediction for an example that arrives in the leaf can be obtained by applying a user defined
threshold τ on the probability; if the i-th component of S̄ is above τ then the examples belong to the class
ci. When a PCT is making a prediction it preserves the hierarchy constraint (the predictions comply to
the parent child relationships from the hierarchy) by choosing the value for the threshold τ as follows:
τi ≤ τ j whenever ci ≤h c j.

The threshold is selected depending on the context. The user may set the threshold such that the re-
sulting classifier has high precision at the cost of lower recall or vice versa, to maximize F-score, to max-
imize the interpretability or plausibility of the resulting model etc. Instead of committing to a particular
rule for choosing the threshold, in this work, we use a threshold-independent measure (precision-recall
curves) to evaluate the performance of the models.

Finally, the algorithm evaluates all possible tests to be put in a node. If no acceptable test can be
found, that is, if no test significantly reduces variance (as measured by a statistical F-test), then the
algorithm creates a leaf and labels it with a representative case, or prototype, of the given instances. The
resulting algorithm is called CLUS-HMC.

Figure 8.2(a) gives an example of FunCat annotations of the hierarchy of yeast (Saccharomyces

Cerevisiae) protein classes according to the FunCat hierarchy (Mewes et al, 1999).
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6 Learning PCTs for Spatially Autocorrelated Data

In this chapter, we propose an extension of the predictive clustering framework that deals with spatial
autocorrelated data. The system that we propose is called SCLUS, for Spatial Predictive Clustering
System. It explicitly considers spatial autocorrelation when learning predictive clustering models.

First, we motivate the research approach presented in this chapter. Then we describe the proposed
algorithm in details and investigate different spatial autocorrelation measures and their use in the case of
spatial autocorrelated data. Next, we stress the importance of the selection of the bandwidth parameter
analyze its time complexity.

Finally, we compare and discuss the predictive performance of the SCLUS algorithm for single and
multi-target classification and regression tasks. The empirical evaluation is performed on a set of real-life
spatial datasets. We discuss the evaluation results in terms of their accuracy, as well as in terms of the
properties of the predictive models by analyzing the model sizes, the autocorrelation of the errors of the
predictive models and their learning times.

6.1 Motivation

In traditional PCTs, the clustering phase is performed by maximizing variance reduction. This heuristic
guarantees, in principle, accurate models since it reduces the error on the training set. However, it
neglects the possible presence of spatial autocorrelation in the training data. To address this issue, we
propose a different clustering phase which uses distances appropriately defined for the spatial domains in
order to exploit the spatial structure of the data in the PCT induction phase and obtain predictive models
that naturally deal with the phenomenon of spatial autocorrelation.

Although there is no theoretical proof that the consideration of autocorrelation may increase the ac-
curacy of the learned models, our intuition is that it should still improve predictions that are consistently
clustered across the space. This is due to the fact that clusters try to preserve the spatial arrangement
of the data. In spite of the fact that the learned models are not obtained by purely minimizing the error
on the training set, it is possible that considering autocorrelation in the training data makes the learned
predictive model able to contain better knowledge of the underlying data distribution. This knowledge
may yield better performance in the testing set than that obtained by a predictive model induced by
maximizing only the variance reduction on the training data.

We build spatially-aware PCTs that use the spatial information as background knowledge and can be
used to obtain spatially coherent predictions. The main assumption is that if there is a high autocorrela-
tion between the examples in the dataset, not only the examples have similar target values but also they
are in the same spatial neighborhood.

The contributions of this chapter are in:

• The development of an approach that uses these spatial autocorrelation measures in the induc-
tion of PCTs for the classification and regression tasks, by taking into account variations in the
global/local data distribution across the spatial structure;

• An extensive evaluation of the effectiveness of the proposed approach on classification and regres-
sion problems in real-life spatial data;



76 Learning PCTs for Spatially Autocorrelated Data

• New empirical evidence is provided on the importance of considering spatial autocorrelation in
predictive tasks and in particular on the ability of the proposed method to capture autocorrelation
within the learned PCTs by analyzing the autocorrelation of the errors on an extensive set of
different data.

• The scope of the performance evaluation is broadened to include clustering evaluation in terms of
spatial dispersion of extracted clusters.

The algorithm proposed in this chapter extends the predictive clustering framework implemented in
the CLUS system (Blockeel et al, 1998). It allows CLUS to handle spatial data in the setting outlined in
Section 2.3.1.

6.2 Learning PCTs by taking Spatial Autocorrelation into Account

In this section, we provide a detailed description of the implemented algorithm for learning PCTs by
taking spatial autocorrelation into account. Besides the algorithm itself, we also explore the properties
of the spatial autocorrelation in SCLUS, emphasize the importance of this phenomenon. In addition, we
stress the importance of the selection of the bandwidth parameter, as an important part of the SCLUS
algorithm. At last, we give an analysis of the time complexity of the proposed algorithm.

6.2.1 The Algorithm

We can now proceed to describe the top-down induction algorithm for building Spatial PCTs (Algo-
rithm 2). It is a recursive algorithm which takes as input a set of spatial training examples E, the context
space D (that can be expressed by the spatial coordinates or the standard Euclidian distance between two
examples in space) and the function η : V 7→ X×Y and partitions the descriptive space until a stopping
criterion is satisfied (Algorithm 2, line 2). Since the implementation of this algorithm is based on the
implementation of the CLUS algorithm, we will call this algorithm SCLUS (for Spatial CLUS).

Algorithm 2 Top-down induction of SCLUS.

1: procedure SpatialPCT(E) returns tree
2: if stop(E) then
3: return leaf(Prototype(E))
4: else
5: (v∗,h∗,P∗) = (null,0, /0)
6: for each Boolean test v do
7: P = partition induced by v on E

8: h = α · ∆̂Y (E,P)+(1−α) ·SY (E,P)
9: if (h > h∗) then

10: (v∗,h∗,P∗) = (v,h,P)
11: end if
12: end for
13: for each Ek ∈P∗ do
14: treek = SpatialPCT(Ek)
15: end for
16: return node(v∗,

⋃
k{treek})

17: end if
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The main loop (Algorithm 2, lines 6-10) searches for the best attribute-value test v∗ that can be
associated to a node t. It associates the best test v∗ with the internal node t and calls itself recursively to
construct a subtree for each subset (cluster) in the partition P∗ induced by v∗ on the training example set.

As discussed above concerning i), splits are derived only from the space X of the predictor vari-
ables. Possible tests are of the form X ≤ β for continuous variables, and X ∈ {xi1 ,xi2 , . . . ,xio} (where
{xi1 ,xi2 , . . . ,xio} is a subset of the domain DX of X) for discrete variables. For continuous variables,
possible values of β are found by sorting the distinct values of X in the training set associated with t,
then considering a threshold between each pair of adjacent values. Therefore, if the cases in t have d

distinct values for X , at most d − 1 thresholds are considered. When selecting a subset of values for a
discrete variable, we rely on a non-optimal greedy strategy (Mehta et al, 1996). It starts with an empty
set Le f tt =⊘ and a full set Rightt = DX , where DX is the domain of X . It moves one element from Rightt
to Le f tt , such that the move results in an increased heuristic h. It is noteworthy that this greedy strategy
to explore the space of candidate splits on a discrete variable does not require the definition of an apriori
ordering on the possible values of DX as used in traditional decision tree induction (Breiman et al, 1984).

The algorithm evaluates the best split according to the formula (6.1) reported in Algorithm 2, line 8.

h = α · ∆̂Y (E,P)+(1−α) ·SY (E,P) (6.1)

This formula is a linear combination of the scaled variance reduction ∆̂Y (E,P) (see Equation 7.3) and
autocorrelation measure SY (E,P) (see Equation 6.2). Both, variance and autocorrelation are computed
for the Y variable (the class). In the case of multiple target variables, the average values of both, variance
reduction ∆Y (E,P) and autocorrelation SY (E,P) are taken over the set of target variables, where each
target variable contributes equally to the overall h value.

The influence of these two parts of the linear combination when building the PCTs is determined
by a user-defined coefficient α that falls in the interval [0, 1]. When α = 0, SCLUS uses only spatial
autocorrelation, when α = 0.5 it weights equally variance reduction and spatial autocorrelation, while
when α = 1 it works as the original CLUS algorithm. If autocorrelation is present, examples with high
spatial autocorrelation (close to each other in space) will fall in the same cluster and will have similar
values of the response variable. In this way, we are able to keep together spatially close examples without
forcing spatial splits (which can result in losing generality of the induced models).

In spatial analysis, several spatial autocorrelation statistics have been defined. The most common
ones: Global Moran’s I and Global Geary’s C (Legendre, 1993). They are used in the case of continuous
target variable.

In the context of this dissertation, we redefined these measures also for the case of discrete target
variable in order to be able to use them for classification tasks. The measures of spatial autocorrelation
are presented in Section 3.2. In the context of our algorithm we use Global Moran’s I and Global Geary’s
C given by the Equation 3.4, Equation 3.7 and Equation 3.20, Equation 3.21, for the classification and
for the regression task, respectively.

While both statistics reflect the spatial dependence of values, they do not provide identical infor-
mation: C emphasizes the differences in values between pairs of observations, while I emphasizes the
covariance between the pairs. This means that Moran’s I is smoother, whereas Geary’s C is more sensi-
tive to differences in small neighborhoods.

The weights wi j used in equations (Equation 3.20, Equation 3.21, Equation 3.4 and Equation 3.7)
are defined as a function of the spatial distance measure. The basic idea is that the examples close to a
specific example have more influence in the estimation of its response value than examples farther away.

Whatever weighting schema is employed, the choice of the bandwidth b plays a crucial role. This
means that the main problem is how to select the optimal bandwidth b. This problem is described and
tackled in Section 6.2.3.



78 Learning PCTs for Spatially Autocorrelated Data

Namely, SY (E,P) can be defined in terms of either the Moran’s I or the Geary’s C. However,
since IY and CY range in different intervals (even though are consistently monotonic), it is necessary
to appropriately scale them. Since variance reduction is non-negative, we decided to scale both in the
interval [0, 1], where 1 means high positive autocorrelation and 0 means high negative autocorrelation.

For Moran’s I, SY (E,P) is:

SY (E,P) =
1
|E| · ∑

Ek∈P
|Ek| · ÎY (Ek) (6.2)

where ÎY (Ek) is the scaled Moran’s I computed on Ek, i.e.,

ÎY (Ek) =
IY (Ek)+1

2
(6.3)

This scales Moran’s I from the interval [-1, 1] to [0, 1].
For Geary’s C , SY (E,P) is:

SY (E,P) =
1
|E| · ∑

Ek∈P
|Ek| ·ĈY (Ek) (6.4)

where ĈY (Ek) is the scaled Geary’s C computed on Ek, i.e.,

ĈY (Ek) =
2−CY (Ek)

2
(6.5)

This scales Geary’s C from the interval [0, 2] to [0, 1].
The choice of the scaling interval does not affect the heuristic computation, therefore other scaling

intervals are possible as well, provided that, in all cases, the same scaling is performed and the mono-
tonicity of the scaled measure is maintained.

Moreover, in order to guarantee a fair combination of the variance reduction and the autocorrelation
statistic SY (P ,E), we also need to scale the variance reduction to the interval [0, 1]. For that purpose,
we use a common scaling function:

∆̂Y (E,P) =
∆Y (E,P)−∆min

∆max−∆min
(6.6)

where ∆max and ∆min are the maximum and the minimum values of ∆Y (E,P) over the possible
splits.

The search stops when the number of examples falling in a leaf is smaller than
√

N, which is con-
sidered as a good locality threshold that does not permit to lose too much in accuracy also for rule based
classifiers (Gora and Wojna, 2002). A further stopping criterion is based on the exact Fisher test (F-test)
that is performed to check whether a given split/test in an internal node of the tree results in a reduction in
h that is statistically significant at a given significance level. In order to estimate the optimal significance
level among the values in the set {1,0.125,0.1,0.05,0.01,0.005,0.001}, we optimize the MSE obtained
with an internal 3-fold cross validation. When one of the stopping criterion is satisfied, the algorithm
creates a leaf and labels it with a predictive function (in the regression case, the average; and in the clas-
sification case, the mode of the class values) defined for the examples falling in that leaf (see lines 2-3 of
Algorithm 2).

In SCLUS, the pruning is the pessimistic error pruning strategy which is also implemented in several
regression/model tree learners (including M5’ and CLUS). This means that a subtree is added only if the
error committed at the leaf is greater than the errors commented by the subtree multiplied by a scaling
factor (Wang and Witten, 1997). The results that we present in this chapter are those of the pruned tree
models learned by SCLUS.
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6.2.2 Exploiting the Properties of Autocorrelation in SCLUS

The consideration of spatial autocorrelation in clustering has been already investigated in the literature
(Glotsos et al, 2004; Jahani and Bagherpour, 2011). Motivated by the demonstrated benefits of consider-
ing autocorrelation, in this chapter, we exploit some characteristics of autocorrelated data to improve the
quality of PCTs.

The use of spatial autocorrelation in predictive clustering offers several advantages since it allows to:

• determine the strength of the spatial effects on the variables in the model;

• consider tests on assumptions of stationarity and heterogeneity in the spatial data;

• identify the possible role of the spatial interaction/distance decay on the predictions associated to
each of the nodes of the tree;

• focus on the “spatial neighborhood” to better understand the effects that it can have on other
neighborhoods and vice versa.

Moreover, as recognized by (Griffith, 2003), autocorrelation implicitly defines a zoning of a (spatial)
phenomenon: Taking this into account reduces the effect of autocorrelation on prediction errors. There-
fore, we propose to perform clustering by maximizing both variance reduction and cluster homogeneity
(in terms of autocorrelation), at the same time when considering the different attempts for adding a new
node to the predictive clustering.

In PCTs induced by considering spatial autocorrelation, different effects of autocorrelation can be
identified and considered at each node of the tree. This non-stationary view of autocorrelation is global
at the root node and local at the leaves. At the same time, the tree structure allows us to deal with the
so-called “ecological fallacy” problem (Robinson, 1950), according to which individual sub-regions do
not have the same data distribution as the entire region.

With regard to the statistical properties of the measures of spatial autocorrelation, most of the theo-
retical research in Statistics and Econometrics exploits the so called “autoregressive model” in order to
measure spatial autocorrelation in lattices (Griffith, 2003). More formally, the autoregressive model is
defined as:

êi = ρ ∑
j

wi j e j + εi (6.7)

where e j = Yj −Y is the prediction error (where prediction is based on the average), ρ is a parameter
that expresses the spatial dependence, wi j are the elements of the neighborhood matrix W and the error
εi follows a Gaussian (normal) distribution (Engle, 1982).

In this case, the informal notion of spatial dependence is often implicitly based on an autoregressive
framework, where the goal is to assess the predictive ability of the neighboring values of the data. As
recognized by (Li et al, 2007), in order to informally assess the strength of the spatial dependence,
exploratory data analysis should be based on estimating ρ in the autoregressive model (see Equation 6.7).
This means that the parameter ρ plays a crucial role in representing autocorrelation in the data.

One common solution for estimating ρ is to use a modified least squares estimator, which is the
solution to the following quadratic equation in ρ:

eT (I−ρW)T W(I−ρW)e = 0 (6.8)

where W is the matrix representation of wi j, I is the identity matrix and e is the vector of ei values.
Although this estimator is consistent (Li et al, 2007), its computation is not straightforward. Particu-

larly, it would require the computation of the Maximum Likelihood Estimator of ρ which is impractical
when large datasets need to be processed (Li et al, 2007). Therefore, instead of computing an estimate
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of ρ , Moran’s I is commonly used in spatial data mining applications. Indeed, as proved by (Jin, 2010),
under the assumption that wi j =w ji (W is symmetric), Moran’s I is monotonic in ρ . The same applies for
Geary’s C. Unfortunately, this result is not valid when wi j 6= w ji (some counterexamples can be found).
Moreover, (Li et al, 2007) empirically proved that Moran’s I is a good (not unbiased) estimator of ρ in
the case when ρ approaches zero.

This means that Moran’s I and Geary’s C are a good indicators of the spatial dependence under some
conditions. This analysis also confirms that a model that is able to take autocorrelation into account
should lead to small values of ρ , that is, according to Equation 6.7, it should lead to a reduction of the
effect of an error in the neighborhood.

6.2.3 Choosing the Bandwidth

The choice of the bandwidth (denoted by b in Equation 2.5) is perhaps the most critical decision to be
taken in the modeling process. This parameter controls the degree of smoothing. A small bandwidth
results in a very rapid distance decay, whereas a larger value results in a smoother weighting scheme. At
the same time, this parameter influences the calculation of autocorrelation.

The bandwidth may be defined manually or by using some adaptive method on the whole training
space, such as cross validation and the corrected Akaike Information Criterion (AIC) used in GWR
(Fotheringham et al, 2002). A wrapper solution would significantly increase (by a logarithmic factor,
in the worst case) the complexity of the algorithm. In this study, for the selection of the bandwidth,
we minimize the leave-one-out cross validated Root Mean Square Error (RMSE). Moreover, in this
automatic determination of the bandwidth, the selection is not performed directly on the bandwidth b,
but on b%, that is, the bandwidth expressed as a percentage of the maximum distance between two
examples. This means that the algorithm implicitly considers different bandwidth values b at different
nodes of the tree depending on the maximum distance between connected examples falling in that node
of the tree. The bandwidth b% ranges in the interval [0,100%].

Minimization is performed by means of the Golden section search (Brent, 1973) that recursively
partitions the b% domain. Golden section search is similar to binary search, improving it by splitting
the range in two intervals with a length ratio of γ instead of 1 (equal parts). Golden ratio has the value

γ = 1+
√

5
2 .

The share maintains a pair of minimum and maximum bandwidth values, b%
1 and b%

2 (at the first
iteration, they are initialized as the minimum and maximum bandwidth in the interval [0,100%]). At
each step, the algorithm identifies a point b%

3 between them, according to the golden ratio and computes
the cross-validated error for that point (errorb%

3
). The values of the function at these points are f (b%

1 ),

f (b%
3 ), and f (b%

2 ) and, collectively, these are known as a “triplet”. The algorithm than identifies the only
parabola with a vertical axis that intersects the points {(b%

1 ,errorb%
1
), (b%

3 , errorb%
3
), (b%

2 ,errorb%
2
)}. On

the basis of the position of the minimum of this parabola, the system decides whether to consider (b%
1 ,

b%
3 ) or (b%

3 , b%
2 ) as the next pair of (minimum and maximum) b% values.

The search stops when there is no cross-validated error reduction. In the regression case, error is the
RMSE computed by fitting a weighted linear model for the example left out. In the case of classification,
similarly to the regression case, the error is the RMSE on the example left out, but it is computed as the
average of RMSEs obtained by fitting a weighted linear model for each binary target variable obtained
after the binarization of the discrete response variable. Weights are defined according to Equation 2.5.

6.2.4 Time Complexity

The computational complexity of the algorithm depends on the computational complexity of adding a
splitting node t to the tree, which in fact depends on the complexity of selecting a splitting test for t. A
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splitting test can be either continuous or discrete. In the former case, a threshold β has to be selected
for a continuous variable. Let N be the number of examples in the training set E; Then the number of
distinct thresholds can be N-1 at worst. They can be determined after sorting the set of distinct values.
If m is the number of predictor variables, the determination of all possible thresholds has a complexity
O(m∗N ∗ logN) when an optimal algorithm is used for sorting.

For each variable, the system has to compute the evaluation measure h for all possible thresholds.
This computation has, in principle, time-complexity O((N −1)∗ (N +N2)); where N −1 is the number
of thresholds, O(N) is the complexity of the computation of the variance reduction ∆Y (E,P) and O(N2)
is the complexity of the computation of autocorrelation SY (E,P). However, for each threshold, it is not
necessary to recompute values from scratch since partial sums in both variance reduction computation 1

and in autocorrelation computation can be used. In particular, partial sums can be incrementally updated
depending on the examples that are iteratively moved from the right to the left branch. This optimization
makes the complexity of the evaluation of the splits for each variable O(N2). This means that the worst
case complexity of creating a splitting node on a continuous attribute, in the case of a continuous target
variable is O(m∗(N logN+N2)) and in the case of a discrete target variable is O(m∗(N logN+q∗N2)),
where q is the number of classes.

Similarly, for a discrete splitting test (for each variable), the worst case complexity, in the case of a
continuous target variable, is O((d −1)∗ (N +N2)), where d is the maximum number of distinct values
of a discrete descriptive variable (d ≤ N) and in the case of a discrete target variable is O((d −1)∗ (N +
q∗N2)). This complexity takes the same optimization proposed for continuous splits into account.

Therefore, finding the best splitting node (either continuous or discrete), in the case of continuous
target variable, has a complexity of O(m∗ (N logN +N2))+O(m∗ (d −1)∗ (N +N2)), that is O(m∗N ∗
(logN +d ∗N)). Analogously, finding the best splitting node (either continuous or discrete), in the case
of discrete target variable, has a complexity of O(m∗N ∗ (logN +q∗d ∗N)).

The cost of passing all instances and calculating the needed statistics for all descriptive attributes
over a single target variable is O(d ∗N). Once the best test is selected, splitting the instances into the
respective nodes costs O(N). To sum up, the computational complexity of creating a node in the tree
is O(m ∗N ∗ (logN + q ∗ d ∗N)) +O(d ∗N) +O(N). Furthermore, if we take into consideration that
m = O(d), then the computational complexity of the process of creating a node in the tree is O(d ∗N ∗
(logN +q∗d ∗N))+O(d ∗N)+O(N).

We assume, as in (Witten and Frank, 2005), that the tree is balanced and bushy. This means that the
number of nodes is in the order of logN, i.e., O(logN). Having this in mind, the total computational
cost of tree construction is O(d ∗N ∗ (log2N + q ∗ d ∗N))+O(d ∗N ∗ logN)+O(N ∗ logN). The upper
bound of this cost is determined by the first term of the overall computational complexity, i.e., O(d ∗N ∗
(log2N +q∗d ∗N)).

In the task of predicting multiple targets, a tree is constructed for each target separately, thus the
computational complexity is T times higher than the computational complexity of a tree for a single
target attribute, i.e., O(d ∗N ∗ (log2N + q ∗ d ∗N)) +O(d ∗N ∗ logN) +O(N ∗ logN), where N is the
number of examples and q is the maximum number of distinct values of discrete variables d.

6.3 Empirical Evaluation

In this section, we present an empirical evaluation of the system SCLUS that implements the method
SpatialPCTs presented in Section 6.2. After we provide a description of the used datasets and exper-
imental settings, we proceed to presenting empirical results. The results target single and multi-target
classification and regression tasks.

1both in terms of variance and Gini index
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First, we investigate the predictive performance of the system along the dimensions of the weighting
functions and autocorrelation measures used in the evaluation of splits, as well as the sensitivity of
SCLUS to the choice of the bandwidth b and to the setting of α . Second, we evaluate the system
for automatic determination of the bandwidth, presented in Section 6.2.3. Third, we compare SCLUS
performance to the baseline CLUS and competitive (spatial) regression and classification methods on
real-world datasets.

At the end, we present a more detailed analysis of the properties of the obtained predictive models.
Specifically, we evaluate properties of the obtained clusters in the case when spatial autocorrelation is
considered in the clustering phase. Empirical results show that our algorithm performs better than PCTs
learned by completely disregarding spatial information and PCTs that are tailored for spatial data, but do
not take into autocorrelation into account.

6.3.1 Datasets

In this experimental evaluation, we use real-world data that includes a spatial component. We consider
nine datasets for the regression task and four datasets for the classification task. The regression datasets
are FF, NWE, SIGMEA_MS and SIGMEA_MF, Foixa, GASD, River, Kenya and Malawi. The classifi-
cation datasets are Foixa_01, Foixa_045, Prim and Kras.

The Forest Fires (FF) (Cortez and Morais, 2007) dataset is publicly available for research pur-
poses from the UCI Machine Learning Repository 1. It contains 517 forest fire observations from the
Montesinho park in Portugal. The data, collected from January 2000 to December 2003, includes the
coordinates of the forest fire sites, the burned area of the forest given in ha (response variable), the Fine
Fuel Moisture Code (FFMC), the Duff Moisture Code (DMC), the Drought Code (DC), the Initial Spread
Index (ISI), the temperature in degrees Celsius, the relative humidity, the wind speed in km/h and the
outside rain in mm within the Montesinho park map.

The NWE (North-West England)2 dataset contains census data concerning North West England. The
data include the percentage of mortality (target variable) and measures of deprivation level in the ward,
including index scores such as the Jarman Underprivileged Area Score, Townsend score, Carstairs score
and the Department of the Environment Index. The spatial coordinates of the ward centroid are given as
well. The spatial unit of analysis is a ward, i.e., a sub-area of a region.

The SIGMEA_MS and SIGMEA_MF (MS and MF) (Demšar et al, 2005) datasets are derived from
one multi-target regression dataset containing measurements of pollen dispersal (crossover) rates from
two lines of plants (target variables), that is, the transgenic male-fertile (MF) and the non-transgenic
male-sterile (MS) line of oilseed rape. The predictor variables are the cardinal direction and distance of
the sampling point from the center of the donor field, the visual angle between the sampling plot and the
donor field, and the shortest distance between the plot and the nearest edge of the donor field, as well as
the coordinates of the sampling point.

The Foixa dataset (Debeljak et al, 2012) contains measurements of the rates of outcrossing (target
variable) at sampling points located within a conventional field that comes from the surrounding ge-
netically modified (GM) fields within a 400 ha maize-oriented production area in the Foixa region in
Spain. The independent variables include the number and size of the surrounding GM fields, the ratio
of the size of the surrounding GM fields and the size of conventional field, the average distance between
conventional and GM fields, as well as the coordinates of the sampling points.

The GASD dataset (USA Geographical Analysis Spatial Dataset) (Pace and Barry, 1997) contains
observations on US county votes cast in the 1980 presidential election. Specifically, it contains the total
number of votes cast per county (target variable), the population above 18 years of age in each county,

1❤tt♣✿✴✴❛r❝❤✐✈❡✳✐❝s✳✉❝✐✳❡❞✉✴♠❧✴
2http://www.ais.fraunhofer.de/KD/SPIN/project.html

http://archive.ics.uci.edu/ml/
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the number of owner-occupied housing units, the aggregate income and the coordinates of the centroid
of the county.

The River (Macchia et al, 2011; Ohashi et al, 2010) dataset contains water information of the Por-
tuguese rivers Douro and Paiva in 2009. This dataset includes measurements of the pH level, conduc-
tivity, turbidity and common bacteria like Escheria Coli and Coliformi Bacteria taken at control points
along the rivers. In addition, the navigation distance between the control points is also available. The
goal is to predict river pollution and the pH level is considered as the target variable, since it is recognized
to be a good indicator of river pollution.

The Kenya and Malawi datasets contain observations of the Headcount poverty index (target vari-
able) and other data found in the poverty mapping reports for the countries Kenya and Malawi 1. Specifi-
cally, they contain the total number and density of poor people, the average number of years of schooling
of adults, the number of active community groups, the accessibility of resources like water, roads and
electricity, the average resource consumption, and the coordinates of the spatial unit (administrative
level).

The Foixa_01 and Foixa_045 (Debeljak et al, 2012) classification datasets are derived from the Foixa
dataset through a discretization proposed by a domain-expert. Discretization is performed on the target
variable (outcrossing rate) and is based on the thresholds 0.1 % and 0.45 %. These thresholds correspond
to the farmers’ internal standard that keeps them on the safe side of maize production (0.45 %) and the
requirements of the starch industry for the purity of maize at the entrance to the production process (0.1
%). In particular, in Foixa_01 dataset, the class low refers to fields with outcrossing rate in the interval
[0, 0.1 %], whereas the class high refers to fields with outcrossing rate in the interval [0.1 %, 100 %].
Similarly, in Foixa_045 dataset, the class low refers to fields with outcrossing rate in the interval [0, 0.45
%], whereas the class high refers to fields with outcrossing rate in the interval [0.45 %, 100 %].

The Kras and Prim (Stojanova et al, 2012) classification datasets contain data on fire outbreaks
(target variable) in the Kras and Primorska region in Slovenia. The data consists of GIS data (spatial co-
ordinates, altitude, forest coverage, percentage of agricultural areas, percentage of urban areas, distance
from roads, highways, railways, cities, etc.), multi-temporal MODIS data (average temperature and aver-
age net primary production), weather forecast data from ALADIN (temperature, humidity, solar energy,
evaporation, speed and direction of the wind, transpiration, etc.). For the Kras dataset, we additionally
have vegetation height and vegetation structure data obtained from LIDAR and LANDSAT images to
which a predictive models learned from LIDAR data and LANDSAT images was applied. Together with
the Foixa_01 and Foixa_045 datasets described above, we consider four classification datasets.

A description of the datasets in terms of general properties is provided in Table 6.1, where we also
report the automatically chosen bandwidth as described in Section 6.2.3. Spatial autocorrelation of the
MF dataset is illustrated in Figure 6.4 (a).

6.3.2 Experimental Setup

The experiments were performed on an Intel Xeon CPU @2.00GHz server running the Linux Operating
System. For each dataset, we evaluate the effectiveness of SCLUS in terms of accuracy, model com-
plexity, learning time as well as quality of extracted clusters. All of these performance measures are
estimated by using 10-fold cross validation (always on the same folds). In particular, the accuracy is
measured in terms of the Root Mean Squared Error (RMSE) for regression tasks and Precision and Re-
call for classification tasks, while the model complexity is measured in terms of the number of leaves in
the learned trees. The computation time is measured in seconds. The quality of the clusters is measured
in terms of their spatial dispersion. More formally, let C = {C1, . . . ,Cs} be the set of clusters associated

1❤tt♣✿✴✴s❡❞❛❝✳❝✐❡s✐♥✳❝♦❧✉♠❜✐❛✳❡❞✉✴♣♦✈♠❛♣✴❞s❴✐♥❢♦✳❥s♣

http://sedac.ciesin.columbia.edu/povmap/ds_info.jsp
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Table 6.1: Descriptions of the spatial datasets used in the empirical evaluation. For each dataset, we give
the Task (classification or regression), N – number of examples, #Attr. – number of descriptive attributes
and b – automatically chosen bandwidth values, given in (%).

Dataset Task N #Attr. auto.chosen b%

FF Regression 517 12 100%
NWE Regression 970 4 7.7 %
MS Regression 817 4 4.8 %
MF Regression 817 4 9.1 %
Foixa Regression 420 7 64.6 %
GASD Regression 3106 4 2.5 %
River Regression 32 8 100 %
Kenya Regression 121 9 63.8 %
Malawi Regression 3004 10 8.1 %
Kras Classification 1439 158 100 %
Prim Classification 2024 104 100 %
Foixa_01 Classification 420 7 100 %
Foixa_045 Classification 420 7 100 %

with the leaves of a PCT, similar to what is suggested in (Sampson and Guttorp, 1992), we compute the
spatial dispersion as the average intra-cluster distance, that is:

SD = avg Ck∈C

(
∑

oi,o j∈Ck

euclideanDist(oi,o j)

(N2
k )

)
(6.9)

where Nk is the number of examples in Ck and euclideanDist(oi,o j) is the spatial distance between
the objects oi and o j. According to our assumptions, the smaller the value of SD, the better the clustering.

We first evaluate the performance of SCLUS using different bandwidth values (b=1 %, 5 %, 10 %,
20 %) and weighting functions (Euclidean (Euc.), Modified Euclidean (Mod.) and Gaussian (Gauss.))
in order to understand their impact on the accuracy of the models. Then, SCLUS is run with auto-
matic bandwidth determination, with the two different spatial autocorrelation measures, Global Moran’s
I (SCLUS_Moran) and Global Geary’s C (SCLUS_Geary), and with α ∈ {0,0.5}. These different con-
figurations of SCLUS are considered as a part of its definition and depend on the nature of the modeling
problems considered. SCLUS is compared with the original CLUS (Blockeel et al, 1998) algorithm. We
also compare SCLUS to a modification of CLUS, where the response variable set is extended with the
spatial coordinates as additional response variables. This is done only for the computation of the split
evaluation measure. In this way, we are able to implicitly take autocorrelation into account. Henceforth,
we refer to this configuration of CLUS as CLUS*. For the regression task, SCLUS is compared to other
competitive regression algorithms, i.e., M5’ Regression Trees (RT) and Support Vector Regression (SVR)
(implemented in the WEKA software suite (Witten and Frank, 2005)) and Geographically Weighted Re-
gression (GWR) (Fotheringham et al, 2002). Only GWR, SCLUS and CLUS* take autocorrelation into
account.

6.3.3 Results and Discussion

We present an empirical evaluation of the system SCLUS that implements the method SpatialPCTs pre-
sented in Section 6.2. First, we investigate the performance of the system along the dimensions of the
weighting functions and autocorrelation measures used in the evaluation of splits, as well as the sen-
sitivity of SCLUS to the choice of the bandwidth b and to the setting of α . Second, we evaluate the
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system for automatic determination of the bandwidth, presented in Section 6.2.3. Third, we compare
the performance of SCLUS to the baseline performance of CLUS, as well as to the performance of the
competitive (spatial) regression and classification methods on real world datasets. Finally, we give a
qualitative analysis of the results on several ecological datasets (MS, MF and FOIXA), both in terms of
the structure of the learned models and in terms of the visual differences in their predictions.

Regression Tasks

In the following subsection, we compare and discuss the predictive performance of the SCLUS algorithm
for single and multi-target regression tasks.

Table 6.2 shows the effect of the bandwidth and of the weighting function as used within the autocor-
relation part of the splitting criterion. The bandwidth (b=1 %, 5 %, 10 %, 20 %) is given as a percentage
of the maximum spatial distance between any two examples in space. Specifically, in Table 6.2, we report
the RMSE results of the SCLUS_Moran models learned with different weighting functions (Euclidean
(Euc.), Modified Euclidean (Mod.) and Gaussian (Gauss.)), evaluation measures (SCLUS_Moran and
SCLUS_Geary), as estimated by 10-fold CV. For comparison, we consider only spatial autocorrelation
and ignore the variance reduction in the splitting criterion (α = 0).
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While the selection of the bandwidth very much influences the results, there is no larger difference
in performance when using different weighting functions (see Equation 2.5, Equation 2.6 and Equa-
tion 2.7). Experiments show that manual (non-automatic) tuning of the bandwidth is difficult since there
is no unique bandwidth value which shows the best predictive capabilities for each dataset/weighting
schema. On the other hand, the mechanism we propose for the automatic choice of bandwidth seems to
be effective since it generally leads to higher accuracy.

In Table 6.3, we report the RMSE results, as estimated by 10-fold CV, for SCLUS (with Global
Moran’s I and Global Geary’s C as measures of spatial autocorrelation, with an automatically chosen
bandwidth and with α ∈ {0,0.5}). We also report the results for CLUS*, GWR, SVR and M5’ Re-
gression Trees. The implementation of CLUS* supports only datasets that contain coordinates and not
relative distances between the examples in the dataset which is the case with the River dataset. Note
that SCLUS does not have such implementation problems, whereas CLUS does not use the spatial in-
formation at all. M5’ Regression Trees and SVR do not consider spatial autocorrelation while GWR
incorporates it and accounts for non-stationarity.

The results show that the difference in the performance of SCLUS with Global Moran’s I and Global
Geary’s C as measures of spatial autocorrelation is not great. This is not surprising, due to the fact that
both measures evaluate the strength of spatial autocorrelation by emphasizing the covariance (differences
in values) between pairs of observations. On the other hand, the selection of the user-defined parameter α

is a very important step with a strong external influence on the learning process since it is not dependent
on the properties of the data, as in the case of the bandwidth and the measures of spatial autocorrelation.
The simplest solution is to set this parameter to 0 (consider only the spatial statistics) or 1 (consider
only the variance reduction for regression, as in the original CLUS algorithm). Any other solution will
combine the effects, allowing both criteria to influence the split selection.

In addition, the results in Table 6.3 show that, in most cases, these is at least one configuration of
SCLUS that outperforms CLUS in terms of RMSE error (except for the GASD dataset) and that there
is great difference among the results for some of the datasets in favor of SCLUS. Moreover, the two
modifications of CLUS, SCLUS and CLUS*, outperform by a great margin the standard regression
method GWR that incorporates spatial autocorrelation and accounts for non-stationarity. Furthermore,
SCLUS compares very well to standard regression tree-based methods like M5’ Regression Trees, as
well as non tree-based methods as SVR that do not consider autocorrelation.

Next, focusing on the comparison between SCLUS and CLUS*, we have to emphasize the fact that
both SCLUS and CLUS* are modifications of CLUS that are designed to improve (if possible) both
the spatial homogeneity and the accuracy of the CLUS models by modifying/enhancing the heuristic
(variance reduction) used to evaluate each split in the process of tree construction. Whereas SCLUS
accounts for autocorrelation that is often present in the data, CLUS* accounts for the spatial coordinates
(usually presented in pairs (x, y) or (latitude, longitude)) in the case of the data obtained from spatial
datasets by considering them as response variables in addition to the actual ones. This means that CLUS*
aims at generating PCTs that will maximize the inter-cluster variance reduction of both the target and
the coordinates1. Moreover, much higher importance is given to the spatial information in CLUS* than
to the actual response, as they all are normalized at the beginning of the modeling process and equal
importance is given to them: with a single tree target and two coordinates x and y as additional targets.
This solution makes the predictions of the CLUS* models more coherent in space than those of the CLUS
models and (if possible) increases the accuracy of the models.

1This is possible as CLUS is designed to deal with multi-target prediction problems.
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However, CLUS* models cannot deal with non-stationary autocorrelation (i.e., when autocorrelation
varies significantly throughout the space), while SCLUS models deal with non-stationarity appropriately.
In SCLUS, two different geographical regions that have the same distribution of the independent vari-
ables and target values which exhibit autocorrelation, can be covered by one leaf of the tree: In CLUS*,
the data will need to be split into different regions due to the spatial homogeneity. Moreover, CLUS*
cannot handle different definitions of the regression problem that can arise from different definitions of
the space, e.g., using different similarity/proximity measures.

To summarize the results presented in Table 6.3, we count the number of wins/losses of the twelve
configurations of SCLUS when compared to all other methods.

In Table 6.4, we report an overall number representing the number of wins minus the number of
losses, when each of the twelve configurations of SCLUS (see Table 6.3) are compared to CLUS*,
GWR, SVR and M5’ Regression Trees. A positive number means that SCLUS has more wins than
losses than the other method, whereas a negative number means the opposite. The results are in favor of
SCLUS in most cases. The best results are obtained using SCLUS with Global Moran’s I, al pha = 0.5
and Modified /Gaussian weighing function. Section 6.3.3 discusses some further characteristics of the
learned PCTs.

Classification Tasks

In the following subsection, we compare and discuss the predictive performance of the SCLUS algorithm
for the classification tasks.

In Tables 6.5 and 6.6, we report the precision and recall, estimated by 10-fold CV, obtained by ap-
plying SCLUS, CLUS and CLUS* to the spatially defined classification datasets. For this comparison,
we have run SCLUS using the automatically chosen bandwidth and the Euclidean weighting schema. In
terms of precision, Geary’s C seems to lead to more accurate (precise) predictive models than Moran’s
I, whereas no difference is observed when analyzing the recall. When comparing errors obtained by
SCLUS with errors obtained by CLUS and CLUS*, we note that, differently from in the case of re-
gression tasks, there are only few cases where SCLUS outperforms the other systems. However, in the
remaining cases, the precision and recall values of SCLUS are comparable to those of the competitors.
Also for classification, Section 6.3.3 discusses some further characteristics of the learned PCTs.

Properties of the Models

In the following subsection, we present some properties of the models obtained by the SCLUS algorithm,
for single and multi-target classification and regression tasks. Specifically, we present the model sizes,
the autocorrelation of the errors of the predictive models and their learning times.

Table 6.7 shows the average size of the trees (number of leaves) built by SCLUS, CLUS, CLUS* and
M5’ Trees (only on the regression problems). The results suggest several considerations.

First, the average size of the trees learned by SCLUS is independent of the autocorrelation measure
used. Exceptions are the datasets FF and Foixa_045, where trees obtained with Geary’s C are signifi-
cantly greater than their counterparts obtained with Moran’s I.

Second, the average size of trees learned by SCLUS depends of the use of the autocorrelation measure
used in the clustering phase. Trees induced by SCLUS by using only the autocorrelation measure in the
clustering phase (α = 0) are smaller, in over 90% of the cases, than trees computed by CLUS (α = 1) and
CLUS*. Similarly, trees induced by SCLUS using α = 0.5 in the clustering phase are smaller, in 75 %
of the cases than trees computed by CLUS (α = 1) and CLUS*. This means that clustering spatial data
according to autocorrelation guarantees smaller trees. Smaller trees are usually more comprehensible
and simpler to interpret.
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Table 6.4: A summary statistic of the number of wins minus the number of losses. Each of the twelve
configurations of the SCLUS algorithm (see Table 6.3) is compared to all other models (CLUS*, GWR,
SVR and M5’ Regression Trees). The statistics is an aggregate over all datasets for the regression task. A
positive number means that SCLUS has more wins than losses than the other method, whereas a negative
number means the opposite.

SCLUS vs CLUS SCLUS vs CLUS* SCLUS vs GWR SCLUS vs SVR SCLUS vs M5’
Moran α=0.0, Euc. 3 2 7 5 3
Moran, α=0.0, Mod. 0 3 3 4 2
Moran, α=0.0, Gauss. 1 4 5 3 1
Moran, α=0.5, Euc. -2 -2 6 4 4
Moran, α=0.5, Mod. 3 2 4 7 7
Moran, α=0.5, Gauss. 2 3 6 6 6
Geary, α=0.0, Euc. -1 1 3 5 1
Geary, α=0.0, Mod. 0 -1 1 2 2
Geary, α=0.0, Gauss 1 -1 1 3 3
Geary, α=0.5, Euc. 0 1 5 4 4
Geary, α=0.5, Mod. -3 -1 5 3 3
Geary, α=0.5, Gauss. 2 0 4 4 4

Table 6.5: Precision of the models obtained with SCLUS, CLUS and CLUS*. The models are estimated
by 10-fold CV. Best results are given in bold.

Dataset SCLUS_Moran SCLUS_Geary CLUS CLUS*
α=0 α=0.5 α=0 α=0.5 (α = 1)

Kras 0.35 0.35 0.35 0.42 0.41 0.40
Prim 0.78 0.69 0.69 0.76 0.78 0.80
Foixa_01 0.78 0.76 0.75 0.79 0.77 0.80
Foixa_045 0.30 0.35 0.43 0.46 0.45 0.40

Table 6.6: Recall of the models obtained with SCLUS, CLUS and CLUS*. The models are estimated by
10-fold CV. Best results are given in bold.

Dataset SCLUS_Moran SCLUS_Geary CLUS CLUS*
α=0 α=0.5 α=0 α=0.5 (α = 1)

Kras 0.99 0.99 0.99 0.98 1.00 1.00
Prim 0.97 0.97 0.98 0.97 1.00 1.00
Foixa_01 0.98 0.98 0.98 0.98 0.98 0.98
Foixa_045 1.00 1.00 1.00 1.00 0.99 0.99
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Table 6.7: Average size of the trees learned by SCLUS, CLUS, CLUS* and M5’ Trees. The models are
estimated by 10-fold CV, both for the classification and the regression task.

Dataset SCLUS_Moran SCLUS_Geary CLUS CLUS* M5’
α=0.0 α=0.5 α=0.0 α=0.5 (α = 1)

FF 1.0 1.4 1.5 4.8 1.8 1.0 1.0
NWE 1.3 4.4 1.7 5.3 5.6 2.3 4.0
Foixa 1.8 2.3 2.4 2.3 4.7 6.1 3.0
GASD 10 31.2 8.0 28.9 27.7 23.8 49.0
MF 1.0 4.2 1.1 4.2 5.1 19.7 6.0
MS 1.4 6.1 1.1 5.3 6.0 19.2 6.0
River 1.0 1.1 1.0 1.0 1.1 - 1.0
Kenya 2.1 3.7 2.7 2.9 3.4 3.1 5.0
Malawi 12.9 67.8 10.5 69.8 30.1 26.4 70.0
Kras 3.5 3.4 4.4 3.2 6.3 5.0 -
Prim 3 4.0 1.3 3.9 4.2 4.0 -
Foixa_01 6.4 9.2 9.8 9.3 12.6 13.0 -
Foixa_045 12.7 15.7 21.2 22.0 15.0 18.0 -

Table 6.8: Autocorrelation of the prediction errors. Average autocorrelation of the prediction errors
committed on the testing sets, performed by PCTs learned by SCLUS, CLUS, CLUS* and M5’, as well
as SVR and GWR. The models are estimated by 10-fold CV, both for the classification and the regression
task. For each dataset, the best results (the smallest in absolute value) are given in bold.

Dataset SCLUS_Moran SCLUS_Geary CLUS CLUS* GWR SVR M5’
α=0.0 α=0.5 α=0.0 α=0.5 (α = 1)

FF -0.02 -0.02 -0.02 -0.02 1.00 -0.02 -0.02 -0.02 0.98
NWE 0.00 -0.01 0.06 0.07 0.84 -0.01 -0.01 -0.01 -0.01
Foixa -0.02 -0.02 -0.02 0.01 0.96 -0.02 0.01 -0.03 -0.02
GASD 0.19 0.19 0.26 0.15 1.00 0.08 0.39 0.01 0.37
MF -0.01 0.15 0.08 0.20 0.88 0.15 0.19 -0.01 0.14
MS 0.13 0.24 0.24 0.19 0.66 0.13 0.38 -0.01 0.34
River -0.03 -0.03 -0.03 -0.03 -0.03 - -0.03 -0.03 -0.03
Kenya -0.05 -0.06 -0.05 -0.07 0.85 0.94 0.85 -0.08 0.92
Malawi 0.03 -0.20 0.32 -0.16 0.52 0.34 0.82 0.30 0.82

The models built with CLUS* are smaller (in 61 % of the cases) than the ones built with CLUS, but
this is not systematic because CLUS* cannot handle different definitions of the regression problem that
can arise from different definitions of the space which differs in different datasets. The predictions of the
PCTs learned by CLUS* are more coherent in space in comparison with the PCTS learned by CLUS,
but differently from SCLUS, this happens at the price of increasing the size of the tree models. While
SCLUS can consider two different geographical regions that have the same distribution of attribute and
target values including autocorrelation in one leaf of the tree, CLUS* will split these due to the spatial
homogeneity. This is the reason of the increase of the tree size.

A final consideration concerns M5’ that, although it builds model trees (theoretically a model tree is
more accurate than a regression tree in prediction), the fact that it ignores the spatial dimension of the
data leads to the construction of larger trees. In 83 % of the cases SCLUS builds trees that are smaller
than the ones built with M5’.

In Table 6.8 we present the autocorrelation of the errors achieved by SCLUS, CLUS and CLUS*. In
addition, we also present the errors obtained by using the competitive solutions M5’ Regression Trees,
SVR and GWR. Here, autocorrelation is computed by means of the Moran’s I on the errors estimated on
the test set. We analyze the obtained models in terms of this measure in order to show that PCTs learned
by SCLUS can capture the autocorrelation present in the data and generate predictions that exhibit small
(absolute) autocorrelation in the errors.

The analysis of the results reveals that SCLUS handles the autocorrelation better than CLUS. The
autocorrelation of the errors of PCTs learned by SCLUS is much lower than the one obtained by CLUS.
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Table 6.9: The spatial dispersion SCLUS, CLUS and CLUS*. clusterings. The models are estimated
by 10-fold CV, both for the classification and the regression task. For each dataset, the best results (the
smallest in absolute value) are given in bold.

Dataset SCLUS_Moran SCLUS_Geary CLUS CLUS*
α=0.0 α=0.5 α=0.0 α=0.5 (α = 1)

FF 0.00 0.02 0.00 0.00 0.04 0.00
NWE 71.22 962.72 201.54 562.71 222.56 348.20
Foixa 25.69 40.90 69.03 969.34 571.54 450.33
GASD 124146.78 232436.63 76724.80 204045.23 180685.45 88681.55
MF 0.01 0.20 0.21 0.45 0.55 0.66
MS 0.17 0.32 0.22 0.42 0.21 0.59
River 0.00 0.00 0.00 0.00 7.44 -
Kenya 0.02 0.03 1.49 1.48 0.03 0.02
Malawi 1762.93 7156.39 2879.73 10204.51 2812.67 2499.54
Kras 378.22 366.74 542.82 435.31 1438.42 890.46
Prim 594.15 619.56 625.70 618.91 553.88 379.36
Foixa_01 232.12 280.48 329.71 329.71 245.96 200.39
Foixa_045 571.80 743.26 1977.52 1296.96 1355.76 522.83

Table 6.10: Learning times for SCLUS, CLUS, CLUS*, GWR, SVR and M5’ Trees. The time is given in
seconds.

Dataset SCLUS_Moran SCLUS_Geary CLUS CLUS* GWR SVR M5’
α=0.0 α=0.5 α=0.0 α=0.5 (α = 1)

FF 1.50 1.03 2.57 2.19 0.04 0.04 11.33 1.03 1.23
NWE 2.31 1.62 0.85 0.58 0.11 0.11 55.90 1.22 1.94
Foixa 0.69 0.49 1.88 2.01 0.02 0.02 31.25 0.49 0.88
GASD 27.86 20.79 20.25 23.56 0.04 0.04 1808.53 30.45 20.43
MF 2.68 1.39 2.08 2.81 0.04 0.03 24.17 1.00 2.25
MS 3.39 1.41 2.03 1.73 0.04 0.03 27.12 0.59 3.55
River 0.04 0.04 0.04 0.04 0.04 - 1.46 0.09 0.05
Kenya 1.18 1.08 1.19 1.34 0.02 0.02 12.53 0.02 1.20
Malawi 62.92 69.33 66.64 100.73 0.46 0.42 23.45 10.28 7.36
Kras 508.09 700.00 355.97 700.00 0.91 1.09 - - -
Prim 743.89 1154.38 449.87 699.79 1.53 1.48 - - -
Foixa_01 0.61 0.80 0.87 0.91 0.02 0.02 - - -
Foixa_045 0.62 0.77 0.85 1.02 0.02 0.02 - - -

In fact, coherently with the discussion reported in Section 4.2, SCLUS is able to correctly remove the
effect of autocorrelation when making predictions. Thus, it is able to obtain spatially consistent predic-
tions. This analysis also reveals that CLUS* is able to capture autocorrelation better than CLUS, but
less than SCLUS. CLUS* gives lower autocorrelation of the errors than CLUS in 78 % of the cases and
than SCLUS in 30 % of the cases. This is expected, according to the differences between SCLUS and
CLUS*, already been discussed in this section. Moreover, as expected, the autocorrelation of the errors
is lower when α = 0.

Classical data mining methods like M5’, have some level of spatial autocorrelation left in the errors
which means that the errors obtained by using these methods may be underestimated (Davis, 1986) and
the i.i.d. assumption violated. On the other hand, in the case of GWR, the level of spatial autocorrelation
in the residuals of the linear model is much lower that M5’, but higher than the one measured in the
SCLUS models. Only in 17 % of the cases autocorrelation in the errors is lower than the autocorrelation
left in the errors of the SCLUS models. This means that SCLUS can better capture the autocorrelation
in the errors of the models, whereas GWR failures to include or adequately measure autocorrelated
variables, in most cases.

The spatial dispersion of the clusterings produced by SCLUS, CLUS and CLUS* are reported in
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Table 6.9. This measure is computed for the clustering as applied to the testing unseen data1. The
analysis of these results reveals that, overall, SCLUS (in 70 % of the cases) and CLUS* (in 75 % of
the cases) clusterings are more compact than the CLUS clusterings. Moreover, as expected, most of the
PCTs induced by SCLUS with α = 0 are more compact than PCTs induced with α = 0.5, as the former
uses only spatial autocorrelation as a splitting criterion when building the PCT. For α = 0.5 in SCLUS,
the produced clusters are less dispersed (have higher spatial dispersion), than those learned by CLUS*.

Finally, the overall spatial dispersion of the clusters induced by CLUS* and SCLUS with α = 0.0 are
comparable. This is expected, considering how the spatial dispersion is computed. In fact, its definition
relies on the average Euclidean intra-distance for each pair of examples that fall in the same cluster
and CLUS*, by considering coordinates as target variables, tends to add splits to the tree which group
examples with similar (close) coordinates. Note that the models that have better spatial dispersion tend
to have lower autocorrelation of their errors.

Finally, Table 6.10 reports the average learning times for SCLUS, CLUS, CLUS*, GWR, SVR and
M5’ Regression Trees. Overall, the smallest learning times are obtained by using the CLUS algorithm.
The learning times for CLUS* are similar (slightly larger) than the running times of CLUS, as in this
configuration CLUS is run by considering the spatial coordinates as responses and the time complexity
of PCTs induction remains roughly the same. The learning times for SCLUS are longer than the learning
times for CLUS, because the consideration of the autocorrelation introduces additional computations and
increases the complexity of building a PCT. This is in line with the time complexity analysis reported
in Section 6.2.4. The learning times for SVR and M5’ Trees are smaller than those of SCLUS and
longer than those of CLUS. The learning times for GWR are significantly longer than those of all other
algorithms, because GWR creates many different local models.

Comparison of the predictive models

Besides having different predictive performance (accuracy), the obtained models also have different
structure. In this section, we show the differences among the models learned by CLUS and SCLUS
on ecological datasets (such as MF, MS and FOIXA). In Figure 6.1(a), 6.1(b), Figure 6.2(a) and 6.2(b),
we analyze the regression trees learned from the MF and MS datasets by using CLUS/SCLUS (with
Global Moran’s I and automatically estimated bandwidth). These datasets contain measurements of
pollen dispersal (crossover) rates from two lines of plants (oilseed rape): the transgenic male-fertile (MF)
and the non-transgenic male-sterile (MS). The measurements are taken at sampling points concentrically
distributed around a central donor field.

We observe that the pair of trees learned by CLUS from the MF and MS datasets (see Figure 6.1(a)
and Figure 6.2(a)), as well as the pair of trees learned by SCLUS from same datasets (see Figure 6.1(b)
and Figure 6.2(b)), leave the same split nodes at their roots. The MF and MS datasets share the same
predictor variables and there exists a strong dependence between response variables of both datasets.

The trees learned by the same algorithm, which uses the same heuristic function, are thus similar
across the two datasets. CLUS and SCLUS, which use different heuristics, learn differently structured
trees from the same dataset. In both datasets, SCLUS chooses the spatially-aware distance predictor
variable (i.e., the distance of the sampling point from the center of the donor field) at the top level(s) of
the tree, with other predictors at lower levels of the tree (see the case of the MS/MF dataset in Figures
6.2(b)/6.1(b)). In the models obtained by CLUS, the distance to the donor field is used only to specify
the target values at the bottom levels of tree, whereas the visual angle between the sampling plot and the
donor field is chosen at the top level(s) of the tree. The choice of the distance attribute in SCLUS seems
to be the one that better captures a global trend in the data, i.e., the concentric distribution of the pollen

1Zero values in Table 6.9 are due to the rounding down of intra-distances which are less than 10−3 to zero
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Figure 6.1: PCTs for the MF dataset. Two PCTs learned on one of the training folds (a) The ordinary
PCT learned by CLUS (b) The spatially-aware PCT learned by SCLUS.

dispersal (crossover) rates (see Figure 6.4(a)). This makes the spatially-aware PCT more interpretable
and understandable than the corresponding ordinary PCT.

Further on, in Figure 6.3(a) and Figure 6.3(b), we show the regression trees for the FOIXA dataset,
obtained by using CLUS and SCLUS (with Global Moran I and b=20 %), respectively. This dataset
contains measurements of the rates of outcrossing at sampling points located within a conventional field,
due to pollen inflow from the surrounding genetically modified (GM) fields.

Similarly as for the MF and MS datasets, CLUS and SCLUS learn differently structured trees. The
models have different splits at the root node. The tree obtained by CLUS has the size of the surrounding
GM fields (totalgmarea) at the root of the tree, as well as in most of the nodes of the tree, which means that
the predictions in the leaves are based only on the values of one predictor variables and the other variables
are practically of no importance. In contrast, the spatially-aware PCT has the number of surrounding GM
fields (numberGMfields) at the root of the tree and the size of the surrounding GM fields (totalgmarea)
in the other nodes of the tree. In this case, the predictions in the leaves are based on the values of two
predictor variables and according to domain expertise, as in the case of MF/MS dataset, the spatially-
aware PCT is more interpretable and understandable than the corresponding ordinary PCT.

A more detailed analysis of the training examples falling in the leaves of both the ordinary PCT and
the spatially-aware PCT revealed that the leaves of both trees cluster examples with similar response
values (this is due to the variance reduction). However, the training examples falling in the leaves of the
spatially-aware PCTs are also close in space. This guarantees spatially smoothed predictions, where the
predictions that are close to each other in space tend to have similar values.

Visual Differences in the Predictions Made by the Models

In order to visualize the differences between the predictions of the SCLUS models and the models ob-
tained by the other approaches, we use the MS, MF and Foixa datasets. The maps given in Figures 6.4
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Figure 6.2: PCTs for the MS dataset. Two PCTs learned on one of the training folds (a) The ordinary
PCT learned by CLUS (b) The spatially-aware PCT learned by SCLUS.
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(a)

(b)

Figure 6.3: PCTs for the Foixa dataset. Two PCTs learned on one of the training folds (a) The ordinary
PCT learned by CLUS (b) The spatially-aware PCT learned by SCLUS.

and 6.5 represent the predictions for the outcrossing rates for the testing (unseen) examples for the MF
and MS datasets, respectively.

For the MF dataset, the real (measured) target are given in Figure 6.4(a), whereas the predictions
obtained by the models learned with CLUS, SCLUS and GWR are given in Figures 6.4(b), 6.4(c) and
Figure 6.4(d), respectively. The predictions made by CLUS (Figure 6.4(b)) tend to over-generalize the
training data in the attempt of maximizing the variance reduction. This results in forming ideal con-
centric circles (Figure 6.4(a)), which roughly approximate the spatial distribution of the target variable.
However, by simultaneously analyzing Figure 6.1(a) and Figure 6.4(b), it is possible to see that this spa-
tial awareness is simply due to the presence of the attribute center_distance in the tree. On the other
hand, the predictions made by SCLUS (Figure 6.4(c)) are spatially-aware and, at the same time, follow
the spatial distribution of the real target values much more closely. GWR (Figure 6.4(d)) has poor per-
formance and fails to capture the global spatial distribution of the target. This is due to the fact that GWR
accounts only for local properties of data.

For the MS dataset, the predictions obtained of the models learned with CLUS, SCLUS and GWR are
given in Figure 6.5(b), 6.5(c) and Figure 6.5(d), respectively. These figures suggest the same conclusions
we have drawn from the MF dataset. However, the predictions made by CLUS and SCLUS appear more
similar for the MS than for the MF dataset.

Finally, the geographical maps given in Figure 6.6 present the predictions for the outcrossing rates
for the testing (unseen) examples for the Foixa dataset. The real target is given in Figure 6.6(a), whereas
the predictions obtained by models learned with CLUS, SCLUS, and GWR are shown in Figures 6.6(b),
6.6(c) and 6.6(d), respectively. The map of predictions obtained by using the model learned by SCLUS
for the Foixa dataset (Figure 6.6(c)) shows that the predictions are smoother than the ones of the CLUS
model. This means that SCLUS predictions that are close to each other in space tend to have similar
values (very high/low outcrossing rates are very close to each other). When plotted on a map, they form
a nice smooth continuous surface without sharp edges and discontinuities. In contrast, there are sharp
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Figure 6.4: Predictive models for the MF dataset. The pollen dispersal (crossover) rates of the MF
dataset: (a) measured values (b) values predicted by the CLUS model, (c) values predicted by the SCLUS
model and (d) values predicted by the GWR model.
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(a)

(b)
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(d)

Figure 6.5: Predictive models for the MS dataset. The pollen dispersal (crossover) rates of the MS
dataset: (a) measured values (b) values predicted by the CLUS model, (c) values predicted by the SCLUS
model and (d) values predicted by the GWR model.



Learning PCTs for Spatially Autocorrelated Data 99
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Figure 6.6: Predictive models for the Foixa dataset. The outcrossing rate for selected sampling points of
the FOIXA dataset: (a) measured values (b) values predicted by the CLUS model, (c) values predicted
by the SCLUS model and (d) values predicted by the GWR model.
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and discontinuousness in the CLUS predictions, so that the corresponding map looks like a mixture of
“salt and pepper”. In addition, the SCLUS models are more accurate (in terms of the obtained errors,
Table 6.3) and more interpretable than the competitors’ models (Figure 6.3(b) and Figure 6.6(c)). The
map of predictions for the Foixa dataset obtained by using the model learned by GWR (Figure 6.6(d))
also shows sharp edges and discontinuities. This is due to the fact that GWR builds local models at
each point: these are independent of the models built at the neighboring points. While the GWR models
exploit the positive autocorrelation between neighboring points and in this way accommodate stationary
autocorrelation, their predictions are still less accurate than those obtained with the SCLUS models. In
sum, the SCLUS models are more useful than those of the (both spatial and a-spatial) competitors because
both the tree models and the predictions are more realistic, easier to interpret, and more accurate.

6.4 Summary

In this chapter, we proposed an approach that builds Predictive Clustering Trees (PCTs) and explicitly
considers non-stationary spatial autocorrelation. The novelty of our approach is that it approaches clus-
tering by maximizing both variance reduction and cluster homogeneity (in terms of autocorrelation),
when the addition of a new node to the tree is considered. The effects of autocorrelation are identified
and taken into account, separately at each node of the tree. The resulting models adapt to local properties
of the data, providing, at the same time, spatially smoothed predictions. Due to the generality of PCTs,
our approach works for different predictive modeling tasks, including classification and regression, as
well as some clustering tasks.

The approach can consider different weighting schemes (degrees of smoothing) when calculating
spatial autocorrelation as well as different sizes of neighborhoods (bandwidth). A procedure for the
automated determination of the appropriate bandwidth is also explored in our study. A novelty of our ap-
proach is in the use of well-known measures of spatial autocorrelation, such as Moran’s I and Geary’s C.
Previous related work on using autocorrelation in decision trees was based on special purpose measures
of spatial autocorrelation, such as spatial entropy, and were limited to classification.

An extensive experimental evaluation has been performed to empirically prove the effectiveness of
the proposed approach. Nine geo-referenced data sets are used for regression tasks while four geo-
referenced data sets are employed for classification tasks. The experimental results show that the
proposed approach performs better than standard spatial statistics techniques such as geographically
weighted regression, which considers spatial autocorrelation but can capture global regularities only.
SCLUS can identify autocorrelation, when present in data, and thus generate predictions that exhibit
smaller autocorrelation in the errors than other methods: It can also generate clusterings that are more
compact and trees that are smaller in size. Furthermore, the spatial maps of the predictions made by
SCLUS trees are smother and do not require further post-smoothing for successful use in practice.

Several directions for further work remain to be explored. The automated determination of the pa-
rameter α that sets the relative importance of variance reduction and autocorrelation during tree con-
struction deserves immediate attention. In a similar fashion, one might consider selecting an appropriate
spatial autocorrelation measure. Finally, we plan to focus on multi-target problems, explicitly taking into
account autocorrelation on the combination of several target variables.
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7 Learning PCTs for Network Autocorrelated Data

In this chapter, we propose an extension of the predictive clustering framework that works in a network
setting. The system that we propose is called NCLUS for Network Predictive Clustering System. It
explicitly considers network autocorrelation when learning predictive clustering models.

Since regression inference in network data is a challenging task, the proposed algorithm deals with
single and multi-target regression tasks. Its development was motivated by the development of the spa-
tially aware classification and regression PCTs, presented in Chapter 6. Moreover, spatial datasets can be
represented as spatial data networks and dealt with the NCLUS algorithm that we discuss in this section.

First, we motivate the research approach presented in this chapter. Then we describe the proposed
algorithm in details and investigate different autocorrelation measures and their use in the case of network
structured data. Finally, we compare and discuss the predictive performance of the NCLUS algorithm
for single and multi-target regression tasks.

The experiment presented in this chapter are divided in two parts according to the type of the data that
they refer to. The first part are experiments performed on social network data, whereas the second part
are experiments performed on networks that come from spatial data. We discuss the evaluation results
in terms of their accuracy, as well as in terms of the properties of the predictive models by analyzing the
model sizes, the autocorrelation of the errors of the predictive models and their learning times.

7.1 Motivation

In network studies, the violation of the i.i.d assumption has been identified as one of the main reasons
responsible for the poor performance of traditional data mining methods (LeSage and Pace, 2001; Neville
et al, 2004). To remedy the negative effects of the violation of the independence assumption, network
autocorrelation has to be explicitly accommodated in the learned models.

In particular, recent research has explored the use of collective inference techniques to exploit this
phenomenon when learning predictive models. According to (Sen et al, 2008), collective inference
refers to the combined classification of a set of nodes using the attribute value of a node and the labels of
interlinked nodes. This means that, differently from traditional algorithms that make predictions for data
instances individually, without regard to the relationships or statistical dependencies among instances,
collective inference techniques collectively predict the labels of nodes simultaneously using similarities
that appear among groups of interlinked nodes.

We develop an approach for modeling non-stationary network autocorrelation by using PCTs. PCTs
are learned by plugging distances, which exploit the network structure, in the PCTs induction and ob-
taining predictive models that will be able to deal with autocorrelated data. This is done by maximizing
the variance reduction and maximizing cluster homogeneity (in terms of autocorrelation), at the same
time when evaluating the candidates for adding a new node to the tree, thus improving the predictive
performance of the obtained models.

The contributions of this chapter are in:

• The investigation of the different autocorrelation measures introduced in the literature and their
use in the case of network structured data;
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• The development of an approach that uses these autocorrelation measures in the induction of PCTs
by taking into account variations in the global/local data distribution across the network;

• An extensive evaluation of the effectiveness of the proposed approach on regression problems
(single- or multi-target) in real network data and network data derived from spatial data.

• New empirical evidence is provided on the importance of considering network autocorrelation in
predictive tasks and in particular on the ability of the proposed method to capture autocorrelation
within the learned PCTs by analyzing the autocorrelation of the errors on an extensive set of
different data.

The algorithm proposed in this chapter extends the predictive clustering framework implemented in
the CLUS system (Blockeel et al, 1998). It allows CLUS to handle network data in the setting outlined
in Section 2.3.1. The software and data are available for download at: ❤tt♣✿✴✴❤tt♣✿✴✴❦t✳✐❥s✳s✐✴

❞❛♥✐❡❧❛❴st♦❥❛♥♦✈❛✴❉▼❑❉♣❛♣❡r✴.

7.2 Learning PCTs by taking Network Autocorrelation into Account

In this section, we provide a detailed description of the implemented algorithm for learning PCTs by
taking network autocorrelation into account. Besides the algorithm itself, we also explore the properties
of the network autocorrelation in NCLUS, emphasize the importance of this phenomenon. In addition,
we stress the importance of the selection of the bandwidth parameter, as an important part of the HCLUS
algorithm. At last, we give an analysis of the time complexity of the proposed algorithm.

7.2.1 The Algorithm

Before we proceed to describe the top-down induction algorithm for building PCTs from network data,
we define the network. Formally, the network is defined as an undirected edge-weighted graph G=(V,E),
where V is the set of labeled nodes, while E ⊆ {〈u,v,w〉 | u,v ∈ V,w ∈ R

+} is the set of edges (i.e.,
the context space D), such that each edge u ↔ v is assigned a nonnegative real number w, called the
weight of the edge. It can be represented by a symmetric adjacency matrix W, whose entries are positive
(wi j > 0) if there is an edge connecting i to j in G, and zero (wi j = 0) otherwise. Here, edge weights
express the strength of the interactions between proteins. Although the proposed method works with any
non-negative weight values, we anticipate that in our experiments only binary (0/1) weights could be
used, due to limitations of available data on protein interactions. The edges represent the context space
D which in this case in defined only using the distance function d(,̇)̇.

The Algorithm 3 is a recursive algorithm which takes as input the network G=(V,E) and the function
η : V 7→ X×Y and partitions the set of nodes V until a stopping criterion is satisfied (Algorithm 3 line
2). Since the implementation of this algorithm is based on the implementation of the CLUS algorithm,
we will call this algorithm NCLUS (for Network CLUS).

The main loop (Algorithm 3, lines 7-14) searches for the best attribute-value test c∗ that can be
associated to a node t. The algorithm associates the best test c∗ to the internal node t and calls itself
recursively to construct a subtree for each subnetwork in the partition PV

∗ induced by c∗ on the training
nodes.

Possible tests are of the form X ≤ β for continuous attributes, and X ∈ {xi1 ,xi2 , . . . ,xio} (where
{xi1 ,xi2 , . . . ,xio} is a subset of the domain DomX of X) for discrete attributes. For continuous attributes,
possible values of β are found by sorting the distinct values of X in the training set associated to t, then
considering a threshold between each pair of adjacent values. Therefore, if the cases in t have d distinct
values for X , at most d −1 thresholds are considered.

http://http://kt.ijs.si/daniela_stojanova/DMKDpaper/
http://http://kt.ijs.si/daniela_stojanova/DMKDpaper/
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Algorithm 3 Top-down induction of NCLUS.

1: procedure NCLUS(G = (V,E),η(·)) returns tree
2: if stop(V,η(·)) then
3: return leaf(Prototype(V,η(·)))
4: else
5: (c∗,h∗,P∗,PV

∗) = (null,0, /0, /0)
6: C = {η(v) | v ∈V}
7: for each possible Boolean test c according to values of X on C do
8: P = {C1,C2} partition induced by c on C

9: PV = {V1,V2} = partition induced by P on V ;

10: h =
α

q
∑

Y∈Y

∆Y (C,P)+
(1−α)

q
∑

Y∈Y

AY (G,η(·),P)

11: if (h > h∗) then
12: (c∗,h∗,P∗,PV

∗) = (c,h,P ,PV)
13: end if
14: end for
15: {V1,V2}=PV

∗

16: tree1 = NCLUS((V1,E),η(·))
17: tree2 = NCLUS((V2,E),η(·))
18: return node(c∗, tree1, tree2)
19: end if

For discrete attributes, possible subsets of values are selected by relying on a non-optimal greedy
strategy (Mehta et al, 1996). Starting with an empty set Le f tt =⊘ and a full set Rightt = DomX , where
DomX is the domain of X , this iterative procedure moves one element from Rightt to Le f tt , such that
the move results in an increased reduction of variance for the target variable Y . This differs from the
classical solution by (Breiman et al, 1984), where some ordering on the possible values of DomX is
defined apriori, according to the data distribution. However, the classical solution cannot deal with multi-

target prediction tasks as PCTs can. If the examples in t have d distinct (discrete) values,
d−1

∑
i=2

i =
d2 −3d

2
splits are considered.

The algorithm evaluates the best split according to the formula (7.1) reported in Algorithm 3, line 10.

h =
α

q
∑

Y∈Y

∆Y (C,P)+
(1−α)

q
∑

Y∈Y

AY (G,η(·),P) (7.1)

This formula is a linear combination of the variance reduction ∆Y (C,P) and the autocorrelation
measure AY (G,η(·),P).

In spatial analysis, several spatial autocorrelation statistics have been defined. The most common
ones: Global Moran’s I and Global Geary’s C (Legendre, 1993). They are used in the case of continuous
target variable. In the context of our algorithm we use Global Moran’s I given by the Equation 3.4,
RA given by the Equation 3.36 and CI given by the Equation 3.35 as network autocorrelation measures
presented in Section 3.4. Note that we redefined the measures of spatial autocorrelation, Global Moran’s
I and Global Geary’s C, presented in Section 3.2.

Both, variance and autocorrelation are computed for the Y variable (the class) over the cluster C. In
the case of multiple target variables, the average values of both, variance reduction ∆Y (C,P) and autocor-
relation AY (G,η(·),P) are taken over the set of target variables, where each target variable contributes
equally to the overall h value.
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The influence of these two parts of the linear combination when building the PCTs is determined by a
user-defined coefficient α that falls in the interval [0, 1]. When α = 0, NCLUS uses only autocorrelation,
when α = 0.5 it weights equally variance reduction and autocorrelation, and when α = 1 it ignores
autocorrelation and works such as the original CLUS algorithm.

However, since they all range in different intervals (but are consistently monotonic), it is necessary to
appropriately scale them. Since variance reduction is non-negative, we decided to scale them both to the
interval [0, 1], where 1 means high positive autocorrelation and 0 means high negative autocorrelation.
The choice of the scaling interval does not affect the heuristic computation, therefore other scaling inter-
vals are possible as well, provided that, in all cases, the same scaling is performed and the monotonicity
of the scaled measure is maintained.

For example, for Moran’s I,AY (G,η(·),P) is defined as:

AY (G,η(·),P) = ∑
Ck∈P

|Ck |
|C | ÎY (Ck) (7.2)

where ÎY (Dk) is the scaled Moran’s I computed on Dk.
Moreover, in order to guarantee a fair combination of the variance reduction and the autocorrelation

statistic AY (G,η(·),P), we also need to scale the variance reduction to the interval [0, 1]. For that
purpose, we use a common scaling function:

∆̂Y (C,P) =
∆Y (C,P)−∆min

∆max−∆min
(7.3)

where ∆max and ∆min are the maximum and the minimum values of ∆Y (C,P) for a particular split.
The search stops when one of the two defined stopping criteria is satisfied. The first criterion

stops the search when the number of examples in a leaf is smaller than
√

N, which is considered a
good locality threshold that does not lose too much in accuracy (also for rule based classifiers) (Gora
and Wojna, 2002). The second criterion uses the exact Fisher test (F-test) to check whether a given
split/test in an internal node of the tree results in a reduction in ∆Y (C,P) that is statistically signif-
icant at a given significance level. To choose the optimal significance level among the values in the
set {1,0.125,0.1,0.05,0.01,0.005,0.001}, we optimize the MSE obtained with an internal 3-fold cross
validation.

When the first stopping criterion is not satisfied, we evaluate the second criterion1. In the case one of
the two stopping criteria is satisfied, the algorithm creates a leaf and labels it with a predictive function
(in this case the average of the response variable(s)) defined over the examples falling in that leaf. When
predicting multiple response variables, the predictive function returns the vector of the averages of the
responses values.

In NCLUS, a pruning strategy to prevent trees from over-fitting data is implemented. This strategy
is the pessimistic error pruning strategy, which is also implemented in several regression/model tree
learners (including M5’ and CLUS). According to this strategy, a subtree is kept only if the error at the
leaf is greater than the error of the subtree multiplied by a scaling factor, which takes into account the
statistical support and the complexity of the model (Wang and Witten, 1997). The results that we present
here are those of the pruned tree models learned by NCLUS.

7.2.2 Exploiting the Properties of Autocorrelation in NCLUS

The consideration of autocorrelation in clustering has been the subject of some recent work in spatial
clustering (Glotsos et al, 2004) and network clustering (Jahani and Bagherpour, 2011). Motivated by the

1In this way, the F-test is performed on large enough number of examples to make reasonable the assumption of normal
distribution.
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demonstrated benefits of autocorrelation, we exploit some properties of autocorrelation to improve the
quality of the PCTs.

The use of autocorrelation in predictive clustering offers several advantages since it allows to:

• determine the strength of the network effects on the variables in the model;

• consider tests on assumptions of stationarity and heterogeneity in the network;

• identify the possible role of the network interaction/distance decay on the predictions associated
to each of the nodes of the tree;

• focus on the “node neighborhood” to better understand the effects that it can have on other neigh-
borhoods and vice versa.

These properties, identified by (Arthur, 2008), hold for spatial clustering. However, they also hold
for the case of PCTs. Moreover, as recognized by (Griffith, 2003), autocorrelation implicitly defines a
zoning of a (spatial) phenomenon and reduces the effect of autocorrelation in the prediction errors.

Variance reduction leads to more accurate models since it reduces the error on the training set. How-
ever, it does not have all the properties implicitly introduced by autocorrelation. This is due to the fact
that variance reduction does not take the distribution of connections among the nodes in the network into
account.

With regard to the statistical properties of the measures of autocorrelation, most of the theoretical
research in Statistics and Econometrics exploits the so called “autoregressive model” in order to measure
autocorrelation in networks (or lattices, as they are sometimes called) (Griffith, 2003). More formally,
the autoregressive model is defined as:

êi = ρ ∑
j

wi j e j + εi (7.4)

where e j =Yj −Y is the prediction error (where prediction is based on the average), ρ is a parameter that
expresses the network dependence, wi j are the elements of the neighborhood matrix W and the error εi

follows a Gaussian (normal) distribution (Engle, 1982).
In this case, the informal notion of network dependence is often implicitly based on an autoregressive

framework, where the goal is to assess the predictive ability of the neighboring values of the data. As
recognized by (Li et al, 2007), in order to informally assess the strength of the network dependence,
exploratory data analysis should be based on estimating ρ in the autoregressive model (see Equation 7.4).
This means that the parameter ρ plays a crucial role in representing autocorrelation in the data.

One common solution for estimating ρ is to use a modified least squares estimator, which is the
solution to the following quadratic equation in ρ:

eT (I−ρW)T W(I−ρW)e = 0 (7.5)

where W is the matrix representation of wi j, I is the identity matrix and e is the vector of ei values.
Although this estimator is consistent (Li et al, 2007), its computation is not straightforward. Particu-

larly, it would require the computation of the Maximum Likelihood Estimator of ρ which is impractical
when large datasets need to be processed (Li et al, 2007). Therefore, instead of computing an estimate
of ρ , Moran’s I is commonly used in spatial data mining applications. Indeed, as proved by (Jin, 2010),
under the assumption that wi j = w ji (W is symmetric), Moran’s I is monotonic in ρ . Unfortunately, this
result is not valid when wi j 6= w ji (some counterexamples can be found). Moreover, (Li et al, 2007)
empirically proved that Moran’s I is a good (not unbiased) estimator of ρ in the case when ρ approaches
zero. This means that Moran’s I is a good indicator of the network dependence under some conditions.
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The same conclusions can be drawn for the Relational Autocorrelation (RA) that is similar to the
Moran’s I, but considers the weights in a binary form. On the contrary, the Connectivity Index (CI)
cannot be considered as a good estimator of ρ and, for this reason, we expect different results by varying
the autocorrelation measure used in the predictive model. This analysis also confirms that a model that
is able to take autocorrelation into account should lead to small values of ρ , that is, according to (see
Equation 7.4), it should lead to a reduction of the effect of an error in the neighborhood.

7.2.3 Choosing the Bandwidth

The choice of the bandwidth (denoted by b in Equation 2.5) is perhaps the most critical decision to be
taken in the modeling process. This parameter controls the degree of smoothing, with larger bandwidths
causing stronger smoothing. An oversmoothed model will predict similar values of the target variable all
across the network, while an undersmoothed model will predict values with so much local variation that
it would be difficult to determine whether there are any patterns at all. At the same time, this parameter
influences the calculation of autocorrelation.

The bandwidth may be defined manually or by using some adaptive method on the whole training
network, such as cross validation and the corrected Akaike Information Criterion (AIC) used in GWR
(Fotheringham et al, 2002). A wrapper solution would significantly increase (by a logarithmic factor, in
the worst case) the NCLUS complexity. In this study, for the selection of the bandwidth, we minimize
the leave-one-out cross validated - Root Mean Square Error (RMSE). Moreover, in this automatic deter-
mination of the bandwidth, the selection is not performed directly on the bandwidth b, but on b%, that is,
the bandwidth expressed as a percentage of the maximum dissimilarity between two connected nodes.
This means that the algorithm implicitly considers different bandwidth values b at different nodes of the
tree depending on the maximum dissimilarity between connected examples falling in that node of the
tree. The bandwidth b% ranges in the interval [0,100%].

Minimization is performed by means of the Golden section search (Brent, 1973) that recursively
partitions the b% domain. Golden section search is similar to binary search, improving it by splitting
the range in two intervals with a length ratio of γ instead of 1 (equal parts). Golden ratio has the value

γ = 1+
√

5
2 .

The share maintains a pair of minimum and maximum bandwidth values, b%
1 and b%

2 (at the first
iteration, they are initialized as the minimum and maximum bandwidth in the interval [0,100%]). At
each step, the algorithm identifies a point b%

3 between them, according to the golden ratio and computes
the cross-validated error for that point (errorb%

3
). (b%

1 < b%
3 < b%

2 ). The values of the function at these

points are f (b%
1 ), f (b%

3 ), and f (b%
2 ) and, collectively, these are known as a “triplet”. The algorithm than

identifies the only parabola with a vertical axis that intersects the points {(b%
1 ,errorb%

1
), (b%

3 , errorb%
3
),

(b%
2 ,errorb%

2
)}. On the basis of the position of the minimum of this parabola, the system decides whether

to consider (b%
1 , b%

3 ) or (b%
3 , b%

2 ) as the next pair of (minimum and maximum) b% values.
The search stops when there is no reduction of cross-validated RMSE. In the algorithm, the RMSE

is computed by fitting a weighted linear model for the example left out. Having decided to consider only
the Euclidean weighting function (see Equation 2.6), we optimize b% only for this case.

7.2.4 Time Complexity

The computational complexity of the algorithm depends on the computational complexity of adding a
splitting node t to the tree, which in fact depends on the complexity of selecting a splitting test for t. A
splitting test can be either continuous or discrete. In the former case, a threshold β has to be selected
for a continuous variable. Let N be the number of examples in the training set; Then the number of
distinct thresholds can be N-1 at worst. They can be determined after sorting the set of distinct values.



Learning PCTs for Network Autocorrelated Data 107

If m is the number of descriptive variables, the determination of all possible thresholds has a complexity
O(m∗N ∗ logN), assuming an optimal algorithm is used for sorting.

For each variable, the system has to compute the evaluation measure h for all the possible thresholds.
This computation has, in principle, time-complexity O((N−1)∗(N+N ∗k)), where N−1 is the number
of thresholds, k is the average number of edges for each node in the network, O(N) is the complexity of
the computation of the variance reduction ∆̂Y (C,P) and O(N ∗ k) is the complexity of the computation
of autocorrelation AY (G,η(·),P).

However, it is not necessary to recompute autocorrelation values from scratch for each threshold,
since partial sums in both variance reduction computation and in autocorrelation computation can be
used. In particular, partial sums can be incrementally updated depending on the examples that are itera-
tively moved from the right to the left branch. This optimization makes the complexity of the evaluation
of the splits for each variable O(N ∗ k). This means that the worst case complexity of creating a splitting
node on a continuous attribute is O(m∗ (N logN +N ∗ k)).

Similarly, for a discrete splitting test (for each variable), the worst case complexity is O((d−1)∗(N+
N∗k)), where d is the maximum number of distinct values of a discrete variable (d ≤N). This complexity
takes the same optimization as proposed for continuous splits into account. Therefore, finding the best
splitting node (either continuous or discrete) has a complexity of O(m∗(N logN+N ∗k))+O(m∗d ∗(N+
N ∗ k)), that is O(m∗N ∗ (logN +d ∗ k)).

The cost of passing all instances and calculating the needed statistics for all descriptive attributes
over a single target variable is O(d ∗N). Once the best test is selected, splitting the instances into the
respective nodes costs O(N). To sum up, the computational complexity of creating a node in the tree is
O(m∗N ∗ (logN +d ∗k))+O(d ∗N)+O(N). Furthermore, if we take into consideration that m = O(d),
then the computational complexity of the process of creating a node in the tree is O(d ∗N ∗ (logN +d ∗
k))+O(d ∗N)+O(N).

We assume, as in (Witten and Frank, 2005), that the tree is balanced and bushy. This means that the
number of nodes is in the order of logN, i.e., O(logN). Having this in mind, the total computational cost
of tree construction is O(d ∗N ∗ (log2N +d ∗ k))+O(d ∗N ∗ logN)+O(N ∗ logN). The upper bound of
this cost is determined by the first term of the overall computational complexity, i.e., O(d ∗N ∗ (log2N +
d ∗k)), where N is the number of examples, m is the descriptive variables and k is the average number of
edges for each example (for each node in the network).

7.3 Empirical Evaluation

In this section, we present an empirical evaluation of the system NCLUS. After we provide a description
of the used datasets and experimental settings, we proceed to presenting empirical results. The results
target single and multi-target regression tasks.

The predictive performance of NCLUS is compared to competitive existing approaches. Empirical
results show that our algorithm performs better than PCTs learned by completely disregarding network
information, PCTs that are tailored for spatial data, but does not take into autocorrelation into account,
and a variety of other existing approaches.

7.3.1 Datasets

In this experimental evaluation, we use four real network datasets obtained from social domains and six
network datasets obtained from spatial data. They are described below.
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Social network data

The VideoL dataset contains the ECML PKDD 2011 Discovery Challenge data (Antulov-Fantulin et al,
2011). The data are related to the content of VideoLectures.net, a free and open access multimedia
repository of video lectures, mainly of research and educational character. The response is the total
number of views of lectures published online, where pairs of lectures are viewed together (not necessarily
consecutively) with at least two distinct cookie-identified browsers. The predictor variables include
several properties of a lecture such as the type, category, author and language of the lecture, as well
as the recorded and published dates of the lecture. Here we use the complete (training) data from the
Challenge for 2009. The network structure has 754 nodes and 14398 edges. The nodes contain the
lectures along with their properties, whereas the dissimilarities are the inverse of frequency (the number
of distinct cookie-identified browsers) with which the respective pair of lectures was viewed together.

The Books dataset contains cross-rating book data from different users (Ziegler et al, 2005). For
each node (book), the ISBN code, author, year of publication and publisher information are given, as
well as the users’ rating. The response is the average rating of all users. The network structure has 500
nodes (books) and 1167 edges. The nodes represent the books (described with their properties), whereas
the weighted edges represent the dissimilarity (scalar distance) of the ratings given by the users to the
respective pair of books.

The Movies datasets contains movie ratings given to movies by users of the online movie recom-
mender service Movielens, collected during the period 1997-1998 1. Specifically, for each movie, it
contains the IMDB movie identifier, genre, country, movie director and filming location, as well as al-
l/top/audience critics’ ratings: average scores, numbers of reviews/fresh scores/rotten scores from the
Rotten Tomatoes film review aggregator. The response variable is the all critics ratings: all other rat-
ings data are not included in the analysis. We are interested in pairs of movies that are ranked together
by a single user, where the selected users had rated at least 20 movies. The network structure has 500
nodes and 202440 edges for the Movies1 dataset (snapshot1) and 500 nodes and 122748 edges for the
Movies2 dataset (snapshot2). The nodes represent the movies (labeled with their properties), whereas
the weighted edges represent the dissimilarity (scalar distance) of the ratings given by the users to the
respective pair of movies.

The Twitter Maternal Health dataset contains the top Twitter users who recently mentioned maternal
mortality. This dataset is obtained by a query performed on August 25, 2010 and it is sorted by between-
ness centrality 2. Specifically, it contains the number of posts (tweets) of a user (response variable),
user’s registration date on Twitter and its time zone, as well as the number of tweets (posted by other
users) that the user marked as “favorites” and the number of “following” and “followed” on Twitter.
The relationships “following” and “followed” simply reflect the number of users that are subscribed to
receive news information from a specific user and the number of users that a specific user is subscribed
to receive news information from. Here, we address only the pairs of users that are in the relationship
“following”. The network structure has 109 nodes and 198 edges. The nodes are the users (along with
their properties), whereas the weighted edges are the “following” relation between the Twitter users.
Note that this relationship is binary (“1” if there is a relation “following” between two Twitter users and
“0” otherwise) and we consider only edges contained in this relation.

The Twitter network differs from other communities networks (e.g., Facebook, MySpace and MSN),
because it is an information and a community network, where a user connects to the latest news informa-
tion about what he/she finds interesting. Note that Twitter relationships are not symmetric (i.e., networks
are of directed nature), thus a path from a user to another user may follow different hops for which the
inverse direction does not exist. For example, while in MSN a link represents a mutual agreement of a

1❤tt♣✿✴✴✇✇✇✳❣r♦✉♣❧❡♥s✳♦r❣✴♥♦❞❡✴✶✷
2❤tt♣✿✴✴❝❛s❝✐✳✉♠❞✳❡❞✉✴◆♦❞❡❳▲❴❚❡❛❝❤✐♥❣✴

http://www.grouplens.org/node/12
http://casci.umd.edu/NodeXL_Teaching/
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relationship, on Twitter a user is not obligated to reciprocate followers by following them.

Spatial network data

In the spatial datasets, the nodes are the spatial units of analysis considered (wards, sampling points,
counties and forest fire sites). They are described by some attributes that will be discussed in detail
below. The spatial units of analysis are at some distance apart in space.

The NWE (North-West England) dataset contains census data collected in the European project
SPIN!. The data concerns North West England, an area that is decomposed into censual sections (wards).
Census data provided by the 1998 Census are available at ward level. We consider the percentage of
mortality (response variable) and measures of deprivation level in the ward according to index scores
such as the Jarman Underprivileged Area Score, Townsend score, Carstairs score and the Department
of the Environment Index, as well as the coordinates of the ward centroids. The nodes in the network
structure are the 970 wards.

The datasets SIGMEA_MS and SIGMEA_MF (MS and MF) (Demšar et al, 2005) are derived from
one multi-target dataset containing measurements of pollen dispersal (crossover) rates from two lines of
plants (response variables), that is, the transgenic male-fertile (MF) and the non-transgenic male-sterile
(MS) line of oilseed rape. The coordinates of each sample point are collected. The predictor variables are
the cardinal direction and distance of the sample point from the center of the donor field, the visual angle
between the sample plot and the donor field, and the shortest distance between the plot and the nearest
edge of the donor field. The nodes in the network structures of both SIGMEA_MS and SIGMEA_MF
are the 817 sampling points.

The FOIXA dataset (Debeljak et al, 2012) contains measurements of the rates of outcrossing at
sample points located within a conventional field that comes from the surrounding genetically modified
(GM) fields within a 400 ha large maize production area in the Foixa region in Spain. The measurements
include the coordinates of the sampling points (units) and several predictor variables, that is, the number
and size of the surrounding GM fields, the ratio of the size of the surrounding GM fields and the size of
conventional fields and the average distance between the conventional and the GM fields. The nodes in
the network structures of FOIXA represent 420 sampling points.

The GASD (USA Geographical Analysis Spatial Dataset) (Pace and Barry, 1997) contains 3106
observations on USA votes cast in 1980 presidential election per county. Besides the number of votes
(response variable), the coordinates of the centroid of each county as well as the number of owner-
occupied housing units, the aggregate income and the population over 18 years of age are reported, for
the respective county. The 3106 counties represent the nodes in the network structure.

The Forest Fires (FF) dataset (Cortez and Morais, 2007) is publicly available for research pur-
poses from the UCI Machine Learning Repository 1. It collects 517 forest fire observations from the
Montesinho park in Portugal. The data, collected from January 2000 to December 2003, includes the
coordinates of the forest fire sites, the burned area of the forest given in ha (response variable), the Fine
Fuel Moisture Code (FFMC), the Duff Moisture Code (DMC), the Drought Code (DC), the Initial Spread
Index (ISI), the temperature in degrees Celsius, the relative humidity, the wind speed in km/h and the
outside rain in mm within the Montesinho park map. The nodes in the network structure represent the
individual forest fires sites.

In the networks obtained from these spatial data, edges are defined for each pair of nodes and dis-
similarities are computed according to the Euclidean distance.

1❤tt♣✿✴✴❛r❝❤✐✈❡✳✐❝s✳✉❝✐✳❡❞✉✴♠❧✴

http://archive.ics.uci.edu/ml/
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7.3.2 Experimental setup

In the following subsection, we present the experimental setup that we use in order to evaluate the results
obtained by using the proposed NCLUS algorithm. First, we describe the evaluation metrics used for the
evaluation. Next, we present the state-of-the-art algorithms that we use for this comparison. A the end,
we explain the statistical comparison performed in order to evaluate the empirically obtained results.

Evaluation metrics

We evaluate the performance of several variants of NCLUS and compare it to the performance of the
original CLUS algorithms, as well as to the performance of several other algorithms. The evaluation is
performed on the two collections of datasets described above.

The evaluation is performed in terms of several metrics, which include accuracy, model complexity,
and learning time. In addition, we also measure autocorrelation of the errors of the learned models on
the testing set, evaluating the ability of the different algorithms to capture the effect of autocorrelation
within the learned models, as well as the correlation of the model predictions with the true target values
on the test set.

All of these performance measures are estimated by using 10-fold cross validation (always on the
same folds). In particular, the accuracy is measured in terms of the Root Mean Squared Error (RMSE),
while the model complexity is measured in terms of the number of leaves in the learned trees. The
computation time is measured in seconds. The experiments were run on an Intel Xeon CPU @2.00GHz
server running the Linux Operating System.

Algorithms compared

NCLUS is run with the automatic bandwidth determination, with the three different autocorrelation mea-
sures, that is, Moran’s I (NCLUS_I), Relational Autocorrelation (NCLUS_RA) and Connectivity Index
(NCLUS_CI), and with α ∈ {0,0.5}. NCLUS, with the above experimental configurations, is compared
to the original CLUS algorithm (Blockeel et al, 1998).

Only for the spatial networks, where the spatial coordinates of each node are available in the data,
NCLUS is also compared to a version of CLUS algorithm, where the spatial coordinates are treated as
additional response variables. This is done only for the computation of the evaluation measures. In this
way, we are able to implicitly take spatial autocorrelation into account. We refer to this configuration of
CLUS as CLUS*.

Moreover, the empirical evaluation includes the well-known tree-based method M5’ Regression
Trees (Quinlan, 1993), as well as non tree-based methods such as Support Vector Regression (SVR)
(Basak et al, 2007) and the k-Nearest Neighbors (k-NN) (Aha and Kibler, 1991), which do not consider
autocorrelation. The WEKA (Witten and Frank, 2005) implementation of these algorithms was used with
their default settings, with the number of examples in a leaf in M5’, as well as the number of neighbors
in k-NN, set to

√
N. Furthermore, we also compare NCLUS to the Iterative Transductive Learning (ITL)

algorithm (Appice et al, 2009) that addresses the network regression problem for spatial data. ITL works
in the transductive learning setting and considers autocorrelation. Finally, as a baseline (Base) we also
use the default method that always predicts the mean (over the training set) of the response variable.

Statistical comparison

In order to compare the predictive capabilities of the learned models, we use the non-parametric
Wilcoxon two-sample paired signed rank test (Orkin and Drogin, 1990). To perform the test,
we assume that the experimental results of the two methods compared are independent pairs
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Table 7.1: Comparison of the errors made on social network data. The RMSEs (estimated by 10-fold
CV) of the models obtained by different learning approaches: NCLUS_I, NCLUS_RA, NCLUS_CI,
CLUS, SVR, k-NN and M5’, as well as the default Base model. For each network dataset, the best
results are highlighted in bold.

Method/Network dataset VideoL MOVIES1 MOVIES2 BOOKS TWITTER
NCLUS_I α = 0.0 686.32 1.08 1.17 2.53 10170.92
NCLUS_I α = 0.5 653.2 1.06 1.02 2.53 10170.92
NCLUS_RA α = 0.0 686.32 1.08 1.17 2.53 10170.92
NCLUS_RA α = 0.5 653.2 1.06 1.02 2.53 10170.92
NCLUS_CI α = 0.0 686.32 1.62 2.11 2.53 10170.92
NCLUS_CI α = 0.5 653.2 1.51 1.31 2.53 10712.23
CLUS 660.69 1.53 2.42 2.83 10641.03
SVR 721.43 1.77 2.52 2.65 13875.73
k-NN 937.68 1.70 2.58 2.65 11007.23
M5’ 574.17 2.09 2.2 2.67 12253.34
Base 722.39 2.10 2.70 2.53 13255.27

{(q1,r1),(q2,r2), . . . ,(qn,rn)} of sample data. We then rank the absolute value of the differences qi − ri.
The Wilcoxon test statistics WT+ and WT− are the sum of the ranks from the positive and negative
differences, respectively. We test the null hypothesis H0: “no difference in distributions” against the
two-sided alternative H1: “there is a difference in distributions”. Intuitively, when WT+ ≫ WT− and
vice versa, H0 is rejected. Whether WT+ should be considered “much greater than” WT− depends on the
considered significance level. The null hypothesis of the statistical test is that the two populations have
the same continuous distribution. Since, in our experiments, qi and ri are average MRSEs, WT+ ≫WT−

implies that the second method (R) is better than the first (Q). In all experiments reported in this empirical
study, the significance level used in the test is set at 0.05.

7.3.3 Results and Discussion

In this subsection, we present the results from the empirical evaluation of the NCLUS algorithm. The
evaluation is performed using the datasets described in Section 7.3.1 and the experimental setup de-
scribed in Section 7.3.2.

The experiment presented in this chapter are divided in two parts according to the type of the data
that they refer to. The first part are experiments performed on social network data, whereas the second
part are experiments performed on networks that come from spatial data.

We discuss the evaluation results in terms of their accuracy, as well as in terms of the properties of
the predictive models, by analyzing the models sizes, the autocorrelation of the errors of the predictive
models and their learning times. Moreover, we compare the results obtained using single and multi-target
predictive models and discuss their properties.

Social network data

We present the results of the predictive models obtained by the NCLUS algorithm when evaluating social
network data. Table 7.1 reports the average errors of the PCTs by NCLUS_I, NCLUS_RA, NCLUS_CI
and CLUS, as well as the errors of the SVR, k-NN and M5’ approaches, on the social network data. The
last row in Table 7.1 gives the errors of the Base model that always predicts the mean. For each network
dataset, the best results are highlighted in bold.

We can observe that the NCLUS error depends on the network autocorrelation measure and on the
relative importance given to the variance reduction and autocorrelation when building the PCT (according
to the α parameter). The use of different autocorrelation measures does not change the obtained results
much. However, the best results, in line with considerations reported in Section 7.2.2, are obtained by
using the Global Moran’s I and the Relational Autocorrelation. In contrast, the α parameter significantly
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Table 7.2: Wilcoxon tests on social network data. The p-values of the Wilcoxon test comparing different
NCLUS variants and CLUS on social network data, at the 0.05 significance level. (+) means that NCLUS
is better than CLUS, (−) means that CLUS is better than NCLUS, (=) means that both algorithms perform
equally well.

Network /Method NCLUS_I NCLUS_RA NCLUS_CI
dataset α = 0 α = 0.5 α = 0 α = 0.5 α = 0 α = 0.5
VideoL (−)0.33 (+)0.28 (−)0.33 (+)0.28 (−)0.33 (+)0.28
MOVIES1 (+)0.01 (+)0.01 (+)0.01 (+)0.01 (−)0.33 (+)0.58
MOVIES2 (+)0.01 (+)0.01 (+)0.01 (+)0.01 (+)0.01 (+)0.01
BOOKS (+)0.01 (+)0.01 (+)0.01 (+)0.01 (+)0.01 (+)0.01
TWITTER (+)0.96 (+)0.96 (+)0.96 (+)0.96 (+)0.96 (−)0.58

affects the errors. The best results are always obtained with α = 0.5 (when α = 0 NCLUS uses only
autocorrelation, when α = 0.5 NCLUS equally weights variance reduction and autocorrelation, and when
α = 1 NCLUS works such as the original CLUS algorithm).

The results of NCLUS_I and NCLUS_RA are very similar and reflect the covariance between pairs
of observations. The only difference between the two measures is in the existence of weights in the
definition of the Global Moran’s I. The weights reflect the strength of the relations between the nodes
in the network and are associated to the edges in the network. Thus, the difference in the two measures
of autocorrelation is in the explicit (Euclidean similarity measure vs. binary) strength of the relation
between the nodes in the network, which usually comes with the definition of the network. On the
other hand, NCLUS_CI performs worse than NCLUS_I and NCLUS_RA. From the results presented
in Table 7.1, we can see that NCLUS compares very well to mainstream methods that do not consider
autocorrelation (SVR, k-NN, M5’, Base), by providing a remarkable reduction of the error for the most
of the network datasets.

Table 7.2 presents the p-values of the Wilcoxon test comparing the errors obtained by NCLUS_I,
NCLUS_RA and NCLUS_CI with the errors of the original CLUS algorithm. The analysis of these re-
sults reveals that NCLUS (and in particular NCLUS_I and NCLUS_RA) gives statistically better results
than CLUS for three out of the five datasets (Movies1, Movies2 and Books). For the other two datasets
NCLUS results are better than those obtained by CLUS, but not significantly. This empirical study con-
firms our hypothesis that the explicit consideration of the non-stationary autocorrelation when building
regression models from network data can increase the accuracy (decrease the error) of the obtained PCTs
when autocorrelation is present in the data. Section 7.3.3 discusses some further characteristics of the
learned PCTs.

Network data obtained from spatial datasets

We present the results of the predictive models obtained by the NCLUS algorithm when evaluating
network data obtained from spatial datasets. Table 7.3 reports the average errors achieved by NCLUS,
CLUS, CLUS*, ITL, SVR, k-NN and M5’ on spatial datasets, as well as the errors of the Base model that
always predicts the mean, on the spatial network datasets. Note that ITL builds model trees that consider
spatial autocorrelation in a transductive network setting 1. The best results are highlighted in bold.

As for the social network datasets, NCLUS errors only slightly depend on the adapted network
autocorrelation measure. Indeed, the observed errors of PCTs learned by NCLUS do not change too
much by varying this measure. However, once again, the best results are obtained with Moran’s I.

1Strictly speaking a comparison to the latter approach is not fair since model trees are recognized to be more accurate than
regression trees. Moreover, ITL, according to the transductive learning settings, exploits both training and testing data during
learning. We primarily use these results as a motivation for our further work and present the ITL improvements over the other
algorithms in italic.
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Table 7.3: Comparison of the errors made by on spatial network data. The RMSEs (estimated by 10-
fold CV) of the models obtained by different learning approaches: NCLUS_I, NCLUS_RA, NCLUS_CI,
CLUS, SVR, k-NN and M5’, as well as the default Base model. For each network dataset, the best results
are highlighted in bold. Results for NWE are multiplied by 103.

Method /Spatial Dataset FF NWE FOIXA GASD MS MF
NCLUS_I α = 0.0 42.82 2.16 2.53 0.18 2.47 5.44
NCLUS_I α = 0.5 56.55 2.48 2.34 0.17 2.29 5.81
NCLUS_RA α = 0.0 42.82 2.45 2.65 0.18 2.47 6.60
NCLUS_RA α = 0.5 53.27 2.46 2.66 0.17 2.35 5.92
NCLUS_CI α = 0.0 42.82 2.47 2.61 0.17 2.49 6.72
NCLUS_CI α = 0.5 52.79 2.45 2.66 0.16 2.35 5.93
CLUS 49.21 2.46 2.65 0.16 2.35 5.64
CLUS* 47.22 2.47 2.52 0.16 2.54 6.68
ITL 58.25 2.54 3.55 0.14 1.92 3.52

SVR 64.58 2.50 2.95 0.14 2.80 8.60
kNN 65.44 2.40 2.73 0.16 2.37 4.56
M5’ 47.22 2.47 2.66 0.16 2.47 5.92
Base 63.66 2.50 2.93 0.20 3.23 8.58

This result is not surprising, as Moran’s I was specifically designed for modeling autocorrelation in
spatial domains. Unlike for social network data, we have no clear evidence of the best accuracy been
achieved with α = 0.5. In general, considering autocorrelation is beneficial, but we cannot decide apriori
how much the consideration of autocorrelation should influence the PCT construction (i.e., the value
of al pha). In general, there is always a configuration of NCLUS that outperforms CLUS. Moreover,
NCLUS outperforms CLUS*, except for the GASD dataset where they are comparable in performance.

Both, NCLUS and CLUS* are designed to improve (if possible) the accuracy of the CLUS PCTs by
modifying/enhancing the heuristic (variance reduction for regression) used to evaluate each split in the
process of tree construction. Whereas NCLUS accounts for autocorrelation that is often present in net-
work data, CLUS* takes the spatial coordinates (usually presented in pairs (x, y) or (latitude, longitude))
from spatial datasets and considers them as response variables in addition to the actual response(s). This
means that CLUS* aims at generating PCTs that will maximize the inter-cluster variance reduction of
both the responses and the coordinates. Moreover, much higher importance is given to the spatial infor-
mation than to the actual response, as they all are normalized at the beginning of the modeling process
and equal importance is given the single target (response) and two coordinates x and y (as additional tar-
gets). This makes the predictions of the models more coherent in space than those of the CLUS models,
mostly increases the accuracy of the models and shows some other characteristics of the models that will
be discussed in Section 7.3.3.

However, in contrast to NCLUS models, CLUS* models cannot deal with non-stationary autocorre-
lation appropriately. In NCLUS, two different geographical regions that have the same distribution of
attribute and target values including autocorrelation, can be covered by one leaf of the tree. In CLUS*,
the data will need to be split into different regions due to the strong preference for spatial homogene-
ity. Moreover, CLUS* cannot handle different definitions of the regression problem that can arise from
different definitions of the network, e.g., using different similarity measures. As for the social network
datasets, NCLUS compares very well to mainstream methods that do not consider autocorrelation (SVR,
k-NN, M5’, Base), by providing a remarkable reduction of the error in most of spatial network datasets.

Table 7.4 presents the results of the Wilcoxon test when comparing NCLUS with the original CLUS
algorithm in terms of the RMSE of the obtained PCTs. The errors obtained with NCLUS are statistically
lower than those obtained with CLUS for the FF (using Global Moran’s I/Relational Autocorrelation and
α = 0) and the FOIXA (using Global Moran’s I) datasets and worse for the GASD dataset (using Global
Moran’s I/Relational Autocorrelation and α = 0). In the other cases, there is no statistical difference, at
the significance level of 0.05.
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Table 7.4: Wilcoxon tests on spatial network data. Statistical comparison of the performance of different
NCLUS variants and CLUS on spatial network data. The p-values of the Wilcoxon test comparing
NCLUS and CLUS, at the 0.05 significance level. (+) means that NCLUS is better than CLUS, (−)
means that CLUS is better than NCLUS, (=) means that both algorithms perform equally well.

Spatial /Method NCLUS_I NCLUS_RA NCLUS_CI
dataset α = 0 α = 0.5 α = 0 α = 0.5 α = 0 α = 0.5
FF (+)0.01 (−)0.56 (+)0.01 (−)0.56 (+)0.01 (−)0.56
NWE (+)0.20 (−)0.96 (+)0.80 (=)1.00 (−)0.88 (+)0.80
FOIXA (+)0.01 (+)0.01 (+)0.88 (+)0.88 (+)0.72 (−)0.80
GASD (−)0.01 (−)0.28 (−)0.01 (−)0.28 (−)0.28 (=)1.00
MF (−)0.88 (+)0.58 (−)0.88 (+)0.96 (−)0.88 (+)0.96
MS (+)0.58 (−)0.88 (−)0.20 (−)0.58 (−)0.22 (−)0.58

Properties of the models

We present some properties of the models obtained by the SCLUS algorithm, for single and multi-target
classification and regression tasks. Specifically, we present the model sizes, the autocorrelation of the
errors of the predictive models and their learning times.

For completeness, we also include Table 7.5 that gives the mean and variance of the target vari-
able calculated on the entire dataset and the correlation of the NCLUS_I, NCLUS_RA, NCLUS_CI,
CLUS, CLUS*, SVR, k-NN and M5’ predictions with the true target values on the test set. In most
cases, NCLUS returns predictions which are more correlated with the true values than other compet-
itive approaches. For the Twitter dataset, NCLUS models result in negative correlation values due to
over-pruning. Note that this is the smallest of all datasets considered.

Table 7.6 shows the average size of the PCTs (number of leaves) learned with NCLUS, CLUS and
CLUS*. In most cases, NCLUS learns smaller trees, whereas CLUS* learns larger trees than CLUS. This
comes as a result of the consideration of the autocorrelation phenomenon in NCLUS models which, in
most cases, makes the learned PCTs not only more accurate, but also smaller and consequently simpler
to be displayed and interpreted. The predictions of the CLUS* PCTs are more coherent in space in
comparison to CLUS PCTS, but differently from NCLUS, this happens at the price of increasing the
size of the trees. While NCLUS can consider two different geographical regions that have the same
distribution of attribute and target values (including autocorrelation) in one leaf of the tree, CLUS* will
split these due to the emphasis on spatial homogeneity. This is the reason for the increase of the tree size.

Moreover, the PCTs learned with NCLUS by considering only the measures of network autocorrela-
tion in the process of tree construction (α = 0) are smaller than the models obtained with NCLUS using
both autocorrelation and variance reduction in the tree construction (α = 0.5). This comes as a result of
the reduction in the number of relations/connections in the network with the introduction of additional
splitting nodes, which then directly affects the calculation of the measures of network autocorrelation.
This kind of situation is most notable in the models obtained using NCLUS_I and NCLUS_RA, where
the network autocorrelation is the only splitting criterion for the tree construction process. On the other
hand, models that use only the CI index as a splitting criterion are less affected by this phenomenon as
CI is only a function of the degree Deg(vi) of a node v.

In Table 7.7, we present autocorrelation of the prediction errors of the PCTs learned with NCLUS,
CLUS, CLUS*, SVR, k-NN and M5’. Autocorrelation is computed by means of the Moran’s I on the
errors committed on the testing set. We analyze the obtained models in terms of this measure in or-
der to show that PCTs learned with NCLUS can capture autocorrelation, when present in the network,
and generate predictions that exhibit small (absolute) autocorrelation in the errors. The analysis of the
results reveals that NCLUS handles autocorrelation better than CLUS. In fact, coherently with the anal-
ysis reported in Section 7.2.2, NCLUS is able to correctly remove the effect of autocorrelation when
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Table 7.5: Main characteristics of the target variable. Mean and variance of the target variable calculated
on the entire dataset and the correlation of the NCLUS_I, NCLUS_RA, NCLUS_CI, CLUS, CLUS*,
SVR, k-NN and M5’ model predictions with the true target values on the test set.

Dataset Mean Variance NCLUS_I NCLUS_RA NCLUS_CI CLUS CLUS* SVR k-NN M5’
α

0.0 0.5 0.0 0.5 0.0 0.5
VideoL 359.20 522∗103 0.34 0.42 0.34 0.42 0.34 0.42 0.35 - 0.29 0.52 0.44
MOVIES1 1993.63 53.23 0.85 0.86 0.85 0.86 0.85 0.85 0.59 - 0.56 0.27 0.52
MOVIES2 1985.12 385.77 0.88 0.91 0.88 0.91 0.87 0.83 0.67 - 0.46 0.53 0.34
BOOKS 5.66 6.40 0.12 0.12 0.12 0.12 0.12 0.12 0.12 - 0.12 0.00 0.12
TWITTER 5987.29 173∗106 -0.32 -0.32 -0.32 -0.32 -0.32 0.28 -0.32 - 0.10 0.27 0.33
FF 12.95 4052.09 0.46 0.44 0.46 0.44 0.46 0.44 0.44 0.45 0.00 0.02 -0.12
NWE 10.00 9.00 0.14 0.08 0.10 0.10 0.09 0.10 0.08 0.06 0.10 0.02 0.11
FOIXA 0.93 8.58 0.34 0.34 0.33 0.33 0.33 0.33 0.26 0.34 0.28 0.37 0.30
GASD 9.76 1.74 0.46 0.57 0.46 0.57 0.57 0.59 0.59 0.59 0.70 0.68 0.58
MF 0.52 10.43 0.73 0.88 0.73 0.88 0.73 0.88 0.73 0.36 0.70 0.83 0.83
MS 0.05 3.24 0.87 0.81 0.83 0.80 0.80 0.81 0.70 0.45 0.77 0.79 0.77

Table 7.6: The average size of the PCTs learned with NCLUS, CLUS, CLUS* and M5’.

Dataset /Method NCLUS_I NCLUS_RA NCLUS_CI CLUS CLUS* M5’
α

0.0 0.5 0.0 0.5 0.0 0.5
VideoL 3.0 6.9 3.0 4.9 3 6.9 6.9 - 11.0
MOVIES1 11.1 13.2 11.1 13.2 12.9 13.5 7.7 - 19.0
MOVIES2 7.9 10.8 7.9 10.8 7.9 11.9 7.5 - 11.0
BOOKS 1.0 1.0 1.0 1.0 1.0 1.0 4.8 - 9.0
TWITTER 1.7 1.7 1.7 1.7 1.0 1.7 2.2 - 4.0
FF 1.0 1.4 1.0 1.8 1.1 1.8 1.8 1.0 1.0
NWE 1.4 3.6 2.0 3.8 1.2 3.9 5.6 2.3 4.0
FOIXA 1.8 2.3 1.0 3.8 2.1 4.0 4.7 6.1 3.0
GASD 8.4 31.3 8.4 30.7 23.1 30.6 27.7 23.8 49.0
MF 1.0 4.4 1.0 4.2 3.4 4.1 5.1 19.7 6.0
MS 1.5 6.0 1.0 5.1 2.9 5.9 6.0 19.2 6.0

making predictions. Thus, it is able to obtain network-consistent predictions. This analysis also reveals
that CLUS* is able to capture autocorrelation better than CLUS, but worse than NCLUS. This is ex-
pected according to the differences between NCLUS and CLUS*, already been discussed in this section.
Moreover, as expected, autocorrelation on the errors is lower when α = 0.

Table 7.8 reports the average learning times for NCLUS, CLUS, CLUS*, ITL, SVR, k-NN and M5’
models. Results for CLUS* and ITL are available only for the spatial datasets. The shortest learning
times are obtained by using the CLUS algorithm. The learning times for CLUS* are similar (slightly
larger) to the times of CLUS, as in this configuration CLUS is run by considering the spatial coordinates
as responses, while the time complexity of the PCT induction remains the same. The learning times for
NCLUS are much longer than the learning times for CLUS because the consideration of autocorrelation
introduces additional computations and increases the complexity of building a PCT. This is coherent
with the time complexity analysis reported in Section 7.2.4. The learning times for ITL are significantly
longer than the times of CLUS, CLUS* and NCLUS because of its iterative co-training implementation.

NCLUS for Multi-Target Regression

In this section, we investigate the capability of NCLUS to adequately combine the effects of autocorre-
lation over several response variables when solving multi-target regression tasks.

The results, presented in Table 7.9, demonstrate that there is no statistically significant difference
between the accuracy of the multi-target PCTs and the accuracy of the corresponding single-target PCT.
This behavior is observed independently on the autocorrelation measure (NCLUS_I, NCLUS_RA and
NCLUS_CI) used to learn the PCTs. In any case, we observe that the size of a single Multi-Target
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Table 7.7: Autocorrelation of the prediction errors on network data. Average autocorrelation of the
prediction errors on the testing sets, made by PCTs learned with NCLUS, CLUS, CLUS*, SVR, k-NN
and M5’. For each dataset, the best results (the smallest in absolute value) are given in bold.

Dataset /Method NCLUS_I NCLUS_RA NCLUS_CI CLUS CLUS* SVR k-NN M5’
α

0.0 0.5 0.0 0.5 0.0 0.5
VideoL 0.30 0.22 0.35 0.22 0.35 0.22 1.00 - 0.22 0.22 0.22
MOVIES1 -0.02 -0.02 -0.02 -0.02 -0.01 -0.02 -0.02 - -0.02 -0.02 -0.02
MOVIES2 -0.01 -0.02 -0.01 0.01 0.01 -0.02 -0.02 - -0.01 -0.01 -0.01
BOOKS 0.04 0.04 0.04 0.04 0.04 0.04 0.04 - 0.04 0.04 0.04
TWITTER -0.50 0.50 -0.50 0.50 -0.50 0.35 0.76 - -0.50 0.50 0.50
FF -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 1.00 -0.02 -0.02 -0.02 0.98
NWE 0.00 -0.01 -0.03 -0.02 -0.03 -0.02 0.84 -0.01 -0.01 -0.02 -0.01
FOIXA -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 0.96 -0.02 -0.03 -0.03 -0.06
GASD 0.19 0.19 0.11 0.19 0.07 0.05 1.00 0.08 0.01 0.03 0.37
MF -0.01 0.15 0.01 0.07 0.08 0.06 0.88 0.15 -0.01 0.01 0.14
MS 0.13 0.24 0.03 0.055 0.01 0.04 0.66 0.13 -0.01 -0.01 0.34

Table 7.8: Learning times of the obtained models. The models are obtained with NCLUS_I, CLUS,
CLUS*, ITL, SVR, k-NN and M5’ and the times are given in seconds.

Dataset /Method NCLUS_I CLUS CLUS* ITL SVR k-NN M5’
α = 0 α = 0.5

VideoL 8.66 7.71 0.04 - - 0.03 0.03 0.07
MOVIES1 130.21 141.17 0.07 - - 0.04 0.04 1.02
MOVIES2 45.79 48.89 0.07 - - 0.04 0.08 0.09
BOOKS 0.07 0.09 0.09 - - 0.02 0.04 0.06
TWITTER 0.23 0.97 0.01 - - 0.05 0.01 0.01
FF 1.50 1.03 0.04 0.04 422.10 1.03 0.45 1.23
NWE 2.31 1.62 0.11 0.11 857.30 1.22 1.02 1.94
FOIXA 0.69 0.49 0.02 0.02 162.90 0.49 0.56 0.88
GASD 27.86 20.79 0.04 0.04 30462.50 30.45 20.54 20.43
MF 2.68 1.39 0.04 0.03 593.60 1.00 2.00 2.25
MS 3.39 1.41 0.04 0.03 528.20 0.59 2.04 3.55

PCT is always significantly lower than the combined (by sum) sizes of the two single-target trees (see
Table 7.10). This means that the multi-target PCTs learned with NCLUS adequately combine the effect
of autocorrelation on several response variables by resulting in a predictive model that is accurate enough
and simpler to be interpreted than several distinct trees. Moreover, the learning time spent to construct a
multi-target PCT is lower than the learning times spent to learn several distinct single-target PCTs (see
Table 7.11).

Table 7.9: Wilcoxon tests of the Single and Multi-Target PCTs. The p-values of the Wilcoxon tests
comparing the average RMSE of the Single and Multi-Target PCTs learned by NCLUS. (−) means that
Single-Target PCTs are more accurate than Multi-Target PCTs; (+) means that Multi-Target PCTs are
more accurate than Single-Target PCTs; (=) means that they perform equally well.

Dataset /Method NCLUS_I NCLUS_RA NCLUS_CI
α = 0 α = 0.5 α = 0 α = 0.5 α = 0 α = 0.5

MF (=)1.00 (−)0.24 (−)0.96 (−)0.88 (+)0.51 (−)0.80
MS (−)0.11 (−)0.51 (−)0.88 (−)0.65 (+)0.39 (−)0.33
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Table 7.10: Average size of the Single and Multi-Target PCTs. The models are learned by NCLUS.

Dataset /Method NCLUS_I NCLUS_RA NCLUS_CI
α = 0 α = 0.5 α = 0 α = 0.5 α = 0 α = 0.5

MS-MF 1.0 6.4 1.5 6.3 4.8 4.8
MF 1.0 4.2 1.0 4.2 3.4 4.1
MS 1.4 6.1 1.0 5.1 2.9 5.9

Table 7.11: Learning times for Single and Multi-Target PCTs. The times are given in seconds and the
models are learned by NCLUS_I.

Dataset /Method NCLUS_I
α = 0 α = 0.5

MS-MF 4.73 2.7
MF 2.68 1.39
MS 3.39 1.41

7.4 Summary

In this chapter, we address the task of network regression. This is an important task as demonstrated
by the presented related work and the use of real-world datasets. While many approaches for network
classification exist, there are very few approaches to the network regression task.

The network setting that we address uses both the descriptive information (node attributes) and the
network structure during training and uses only the descriptive information in the testing phase, where the
network structure around the (new) testing instances may be unknown. This is quite different from exist-
ing approaches to network classification and regression, where the descriptive information used during
both training and testing phase is typically closely related to the network structure and the connections
between the nodes.

In this setting, we develop a data mining method that explicitly considers autocorrelation when build-
ing regression models from network data. The resulting models adapt to local properties of the data,
providing, at the same time, smoothed predictions. The novelty of our approach is that, due to the gener-
ality of PCTs, it can work for different predictive modeling tasks, including regression and Multi-Target
regression, as well as some clustering tasks.

We use well-known measures of (spatial and relational) autocorrelation, since we deal with a range
of different data networks. The heuristic we use in the construction of PCTs is a weighted combina-
tion of variance reduction (related to predictive performance) and autocorrelation of the response vari-
able(s). Our approach can consider different sizes of neighborhoods (bandwidth) and different weighting
schemes (degrees of smoothing) when calculating autocorrelation. We identify suitable combinations of
autocorrelation metrics and weighting schemes and automatically determine the appropriate bandwidth.

We evaluate our approach on an extensive set of real-world problems of network regression, coming
from the areas of spatial and social networks. Empirical results show that the proposed extension of PCTs
(NCLUS) performs better than both the original PCTs, which completely disregard network information,
and PCTs that capture local spatial network regularities (CLUS*), but do not take autocorrelation into
account and compares very well to mainstream methods that do not consider autocorrelation (SVR, k-NN

and M5’).
Our approach performs better along several dimensions. First, it is better in terms of predictive

performance (as measured by RMSE, estimated by cross-validation). Second, autocorrelation of the
errors made by our approach is smaller. Finally, the models produced by our approach are (on average)
smaller.

Several directions for further work remain to be explored. The automated determination of the param-
eter α that sets the relative importance of variance reduction and autocorrelation during tree construction



118 Learning PCTs for Network Autocorrelated Data

deserves immediate attention. In a similar fashion, one might consider selecting an appropriate autocor-
relation measure. Moreover, it would be interesting to define novel autocorrelation measures that take
indirect connections into account when computing autocorrelation. Finally, while our approach com-
pletely ignores the network information in the testing phase, we would like to explore developments in
the direction of using this information if and when available.
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8 Learning PCTs for HMC from Network Data

In this chapter, we propose an extension of the predictive clustering framework for predicting structured
targets, i.e., for the case when the output is a structured object. The extensions that we have proposed
to deal with the typical classification and regression task were described in Chapters 6 and 7, where we
deal with a similar extension for the Hierarchial Multi-Label Classification (HMC) task.

The system that we propose is denoted by NHMC, which stands for Network Hierarchical Multi-
label Classification. It is implemented in the CLUS framework. It learns models for predicting structured
outputs where relations between the classes exist, i.e., the classes are organized into a tree-shaped hier-
archy or a directed acyclic graph (DAG). Besides relationships among classes, the algorithm takes into
account relationships between the examples, described by a network.

First, we motivate the research presented in this chapter, which is a combination of hierarchical
multi-label classification and network inference. Next, we describe the proposed extension in detail, fo-
cusing on the algorithm and its time complexity. Then, we empirically evaluate it on a chosen functional
genomics problem. In particular, we learn to predict the protein functional classes from a proposed
approach on a hierarchy or tree-shaped or DAG of annotations, taking into account protein-to-protein
interaction (PPI) networks. Finally, we compare the predictive performance of the NHMC algorithm to
the performance of already existing methods, on a the task of predicting gene function in yeast, using
different yeast data and different yeast PPI networks.

8.1 Motivation

In the era of high-throughput computational biology, discovering the biological functions of the
genes/proteins within an organism is a central goal. Several studies have applied machine learning to
infer functional properties of proteins, or directly predict one or more functions for unknown proteins
(Clare and King, 2003; Qi and Noble, 2011). Indeed, the prediction of multiple biological functions with
a single model, by using learning methods which exploit multi-label prediction, has made considerable
progress (Barutcuoglu et al, 2006) in recent years.

A step forward is represented by models considering possible structural relationships among func-
tional class definitions (Jiang et al, 2008; Vens et al, 2008). This is motivated by the presence of ontolo-
gies and catalogs such as Gene Ontology (GO) (Ashburner et al, 2000) and MIPS-FUN (FUN henceforth)
(Mewes et al, 1999) which are organized hierarchically (and, possibly, in the form of Directed Acyclic
Graphs (DAGs), where classes may have multiple parents), where general functions include other more
specific functions (see Fig. 5.4). In this context, the hierarchial constraint must be considered: A gene
annotated with a function must be annotated with all the ancestor functions from the hierarchy. In order
to tackle this problem, hierarchical multi-label classifiers, that are able to take the hierarchical organi-
zation of the classes into account, during both the learning and the prediction phase, have been recently
used (Barutcuoglu et al, 2006).

Increasing attention in recent years has been attracted by the topic of considering protein-protein
interaction (PPI) networks in the identification and prediction of protein functions. This stream of re-
search is mainly motivated by the consideration that “when two proteins are found to interact in a high
throughput assay, we also tend to use this as evidence of functional linkage”(Jiang et al, 2008). As a
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confirmation, numerous studies have demonstrated that proteins sharing similar functional annotations
tend to interact more frequently than proteins which do not share them (guilt-by-association principle).
Interactions reflect the relation or dependence between proteins. In their context, gene functions show
some form of autocorrelation.

Protein-protein interactions occur when two or more proteins bind together, often in order to carry
out their biological function. Many of the most important molecular processes in the cell, such as DNA
replication, are carried out by large molecular machines that are built from a large number of protein
components organized by protein-protein interactions. Protein interactions have been studied from the
perspectives of biochemistry, quantum chemistry, molecular dynamics, chemical biology, signal trans-
duction and other metabolic or genetic/epigenetic networks. Indeed, protein-protein interactions are at
the core of the entire interactomics system of any living cell. Interactions between proteins are important
for the majority of biological functions. For example, signals from the exterior of a cell are mediated to
the inside of that cell by protein-protein interactions of the signaling molecules.

The use of such relationships among proteins introduces the autocorrelation phenomenon into the
problem of gene function prediction and violates the assumption that instances are independently and
identically distributed (i.i.d.), adopted by most machine learning algorithms. Recall that while correla-

tion denotes any statistical relationship between different variables (properties) of the same objects (in a
collection of independently selected objects), autocorrelation (Cressie, 1993) denotes the statistical rela-
tionships between the same variable (e.g., protein function) on different but related (dependent) objects
(e.g., interacting proteins). As described in the introductory chapters of this thesis, autocorrelation has
been mainly studied in the context of regression analysis of temporal (Mitsa, 2010) and spatial (LeSage
and Pace, 2001) data.

Although autocorrelation has not yet been studied in the context of Hierarchical Multi-label Clas-
sification (HMC), it is not a new phenomenon in protein studies. For example, it has been used for
predicting protein properties using sequence-derived structural and physicochemical features of protein
sequences (Horne, 1988). In this work, we propose a definition of autocorrelation for the case of HMC
and propose a method that considers such autocorrelation in gene function prediction.

The consideration of PPI network data for HMC has received limited attention so far. One of the
works that faces this problem is presented by Jiang et al (2008), where a probabilistic approach that
classifies a protein on the basis of the conditional probability that a protein belongs to the child func-
tion class is presented, assuming that it belongs to the parent function class. The computation of this
conditional probability takes the PPI network into account in terms of the number of the neighbors of
a node. Although similar to the approach we propose latter in this chapter, this approach has problems
with sparse networks and does not properly exploit the autocorrelation phenomenon. Second, in order
to deal with DAGs, it transforms a DAG into a hierarchy by removing hierarchical relationships present
at lower levels, thus ignoring possibly useful information. Third, this work reports experiments only for
GO annotations.

The work presented in this chapter is intended to be a further step toward the investigation of methods
which originate from the intersection of these two promising research areas, namely hierarchical multi-
label classification and learning in presence of autocorrelation. In particular, we propose an algorithm
for hierarchical multi-label prediction of protein functional classes. The algorithm exploits the non-
stationary autocorrelation phenomenon which comes from protein-protein interaction by means of tree-
based prediction models. In this way, we are able to:

• improve the predictive capabilities of learned models

• obtain predictions consistent with the network structure

• consistently combine two sources of information (hierarchical collections of functional class defi-
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(a) (b)

(c) (d)

Figure 8.1: An example of DIP Yeast network. Different colors correspond to different classes of the FUN
hierarchy. (a) Examples that are not connected are arranged along the ellipse’s border; (b) Examples are
arranged along the ellipse’s border to show the density of the PPI interactions; (c) Examples are arranged
along the ellipse’s border and grouped according to the first level of the FUN hierarchy (not considering
the root); d) Examples are arranged along the ellipse’s border and grouped according to the second level
of FUN. The networks are drawn using the Pajek software by Batagelj and Mrvar (1998).

nitions and PPI networks)

• capture the non-stationary effect of autocorrelation at different levels of the hierarchy

• also work with DAG (directed acyclic graph) structures, where a class may have multiple parents.

We first introduce new measures of autocorrelation for HMC tasks. We then describe the learning of
PCTs for the HMC task in more detail. We focus on the proposed algorithm and its computational
complexity.

8.2 Measures of autocorrelation in a HMC setting

We also consider autocorrelation in the context of hierarchial multi-label classification (HMC) setting.
We first illustrate the notion of network autocorrelation for HMC on the problem of gene function pre-
diction ion the context of PPI networks. In the following subsections, we introduce two new measures of
network autocorrelation within the HMC setting. To the best of our knowledge, this has not been done
before.

8.2.1 Network Autocorrelation for HMC

Network autocorrelation for HMC is a special case of network autocorrelation (Doreian, 1990). It can be
defined as the statistical relationship between observations of a variable that takes values in the form of a
hierarchy (e.g., protein function) on distinct but related (connected) nodes in a network (e.g., interacting
proteins). In HMC, the domain values of the target variable form a hierarchy, such as the GO hierarchy
for protein functions. Therefore, it is possible to define network autocorrelation at various levels of the
hierarchy.

In predictive modeling, network autocorrelation can be a problem, since the i.i.d. assumption is vi-
olated, but also an opportunity, if it is properly considered here. This is particularly true for the task of
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hierarchical multi-label classification considered in this work. Indeed, due to non-stationary autocorrela-
tion, network data can provide useful (and diversified) information for each single class at each level of
the hierarchy. This information may concern gene protein functions at different levels of the hierarchy.

To better explain this concept, we refer to Figure 8.1 which shows the DIP Yeast network. Figure 8.1
(a) represents the network so that the examples that are not connected are randomly arranged along the
ellipse border. To show the density of the PPI interactions, Figure 8.1 (b) represents the same network
so that all examples are arranged along the ellipse border. Figure 8.1 (c) and Figure 8.1 (d) provide us a
different view of Figure 8.1 (b), where examples are grouped according to the first (Figure 8.1 (c)) and
second level (Figure 8.1 (d)) of the FUN hierarchy. Keeping in mind that all these graphs represent the
same number of edges, from the comparison of Figure 8.1 (b) and Figure 8.1 (c) we can see that the
edges “move” from the center of the ellipse towards the border. This is clearly due to autocorrelation,
since the number of interactions between genes of the same class at the same level of the hierarchy is
much larger than the number of interactions between genes of different classes. Moreover, by comparing
Figure 8.1 (c) and Figure 8.1 (d) we notice that the autocorrelation effect is more localized in the second
level of the hierarchy then in the first. Indeed, in Figure 2.5 (d), we observe a reduction of the density of
edges in the center of the ellipse (most of the edges overlap with (are hidden by) the examples arranged
along the ellipse border).

8.2.2 Global Moran’s I

In order to consider network autocorrelation within the HMC setting, we first adapt the Global Moran’s I

measure of spatial autocorrelation (Legendre, 1993) to fit the general structure of network data and satisfy
the hierarchial constraint. The new adapted Moran’s I for HMC is created by replacing the residuals in
the standard Global Moran’s I formula with the distance function d(·, ·) (Vens et al, 2008) which is used
for HMC tasks within the PCTs framework.

The distance function d(·, ·) is a weighted Euclidean distance, where labels at the higher levels of
the hierarchy have larger weights. In the context of HMC, this means that the similarity of class labels
at higher levels of the hierarchy is more important than the similarity of class labels at lower levels.
Moreover, this allows us to take the hierarchy into account and to also deal with classes which are
structured according to a directed acyclic graph (DAG).

The weighted Euclidean distance is given as:

d(L1,L2) =

√√√√ |L|

∑
l=1

ω(cl) · (L1,l −L2,l)
2 (8.1)

where Li,l is the i-th component of the class vector Li. The class weights ω(c) decrease with the
depth of the classes in the hierarchy. More precisely, ω(c) = ω0 · avgj {ω p j(c))}, where p j(c) denotes
the j-th parent of class c and 0 < ω0 < 1). For instance, consider a small hierarchy, given in Figure 8.2
and two data examples: (X1,S1) and (X2,S2) that belong to the classes S1 = {c1,c2,c3} and S2 = {c2,c4},
respectively. The class vectors would be L1 = [1,1,1,0] and L2 = [0,1,0,1]. The class c0 represents the
root node and is ommited.

The new adapted Moran’s I for HMC, I(U), for a given set of examples U , is given as:

I(U) = 1/2+
(|U |) ·∑Li∈U ∑L j∈U wi j ·d(Li,L)d(L j,L)

2 · ∑Li∈U ∑L j∈U wi j · ∑Ll∈U d(Ll,L)2
(8.2)

where Li is the vector representation of the class of the i-th example, (L) is the vector representation of
the set’s mean class and d(·, ·) is the above distance function. In the vector Li, the j-th component is
1 if the example belongs to class c j ( j = 1, . . . ,m) and 0 otherwise. In this definition m is the number
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Figure 8.2: An example of a hierarchy of class labels. Class label names are consecutive and contain
information about the position in the hierarchy.

of classes and each Li has to satisfy the hierarchy constraint. By using I(U), it is possible to consider
different effects of the autocorrelation phenomenon at different levels of the tree model, as well as at
different levels of the hierarchy (according to the weights ω(c j), higher levels of the tree will likely
capture the regularities at higher levels of the hierarchy, i.e., non-stationary autocorrelation).

The weights reflect the relative position of the data points in the context space. In a spatial context,
these weights can be defined from the spatial coordinates of the data points, as discussed in Section 2.2.
In a network context, these weights are given explicitly with the specification of the edges in the network.

Just as the spatial Global Moran’s I, the Moran’s I for HMC, I(U), has values in the interval [0,1],
where 1 (0) means strong positive (negative) autocorrelation and 0.5 means no autocorrelation.

8.2.3 Global Geary’s C

In addition to the adaptation of the Global Moran’s I for the HMC task, we have also adapted the Global
Geary’s C (Legendre, 1993) measure as well. It has also been originally designed as a measure of spatial
autocorrelation. As for the new Global Moran’s I for the HMC task, the new Global Geary’s C for HMC
is created by replacing the residuals in the standard Global Geary’s C formula with the distance function
d(·, ·), used for HMC tasks within the PCTs framework.

Let (xi,yi) ∈U ⊆ X×2C be an example pair in a training set U of N examples. Let K be the number
of classes in C, possibly defining a hierarchy. We represent yi as a binary vector Li of size K, such that
Li,k = 1 if ck ∈ yi, Li,k = 0 otherwise. Obviously, each Li has to satisfy the hierarchical constraint (8.4).
Let d(Li,L j) be a distance measure defined for two binary vectors associated to two example pairs (xi,yi),
(x j,y j). It can be any distance which can take the class-label hierarchy into account. Here we will take
the definition from d(·, ·) given by formula 8.1.

For a given generic set of examples U , the new adapted Global Geary’s C for HMC, labeled as C(U),
is given as:

C(U) = 1−
(|U | −1) ·∑Li∈U ∑L j∈U wi j ·d(Li,L j)

2

4 ·∑Li∈U ∑L j∈U wi j · ∑Ll∈U d(Ll,L)2
(8.3)

where Li is the vector representation of the class of the i-th example, (L) is the vector representation
of the set’s mean class and d(·, ·) is the distance function discussed above. In the vector Li, the j-th
component is 1 if the example belongs to class c j ( j = 1, . . . ,m) and 0 otherwise. In this definition, m is
the number of classes and Li has to satisfy the hierarchy constraint. The constant 4 in the denominator is
included for scaling purposes. Just as the spatial Global Geary’s C, C(U) has values in the interval [0,1],
where 1 (0) means strong positive (negative) autocorrelation and 0.5 means no autocorrelation.
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The Global Geary’s C is a more suitable measure for autocorrelation in a HMC task. It can better
fit the general structure of network data in comparison to the Global Moran’s I. This is because Global
Geary’s C relies on the distance function (relationships) between pairs of examples, whereas Global
Moran’s I is based on the distance function between the class of an example and the set’s mean class.

8.3 Learning PCTs for HMC by Taking Network Autocorrelation into
Account

The task of hierarchical multi-label classification (HMC). We next discuss the network setting that we
consider and use the network autocorrelation measure for HMC tasks defined above. Subsequently, we
describe the CLUS-HMC algorithm for HMC and introduce its extension NHMC (i.e., Network CLUS-
HMC), which takes into account network autocorrelation for HMC.

For the HMC task, the input is a dataset consisting of example pairs (xi,yi)∈X×2C, where X= X1×
X2 . . .×Xm is the space spanned by m attributes or features, while 2C is the power set of C = {c1, . . . ,cK},
the set of all possible class labels. C is hierarchically organized with respect to a partial order � which
represents the superclass relationship. Note that each yi satisfies the hierarchical constraint:

c ∈ yi ⇒∀c′ � c : c′ ∈ yi. (8.4)

The method we propose (NHMC) is based on decision trees and is set in the PCTs framework (Blockeel
et al, 1998). Recall (from Chapter 5 that this framework views a decision tree as a hierarchy of clusters:
the top-node corresponds to one cluster containing all the data, that is recursively partitioned into smaller
clusters when moving down the tree. PCTs combine elements from both prediction and clustering. As in
clustering, clusters of data that are similar to each other are identified, but, in addition, a predictive model
is also associated to each cluster. This predictive model provides a prediction for the target property of
new examples that are recognized to belong to the cluster. The benefit of using PCTs is that, besides the
clusters themselves, they also provide symbolic descriptions of the constructed (hierarchically organized)
clusters.

The original PCTs framework is implemented in the CLUS system (Blockeel et al, 1998)
(http://sourceforge.net/projects/clus/). The induction of PCTs is not very different from that of stan-
dard decision trees. The algorithm takes as input a set of training instances and searches for the best
acceptable test to partition the instances and reduce the variance of the target. If such a test can be found,
then the algorithm creates a new internal node and calls itself recursively to construct a subtree for each
subset (cluster) in the partition induced by the test on the training instances.

8.3.1 The network setting for NHMC

Some uses of network data in learning predictive models include: i) treating the interactions between
pairs of nodes as descriptive attributes (e.g., binary attributes, (Schietgat et al, 2010)); ii) generating new
features as combinations of network data with other descriptive attributes. Both approaches demand that
the data are pre-processed before applying a network oblivious learning method (e.g., CLUS-HMC).
However, the applicability of predictive models built in this way strongly depends on network informa-
tion availability for the test data.

In order to learn general models, which can be used to make predictions for any test set, here we use
interactions as a form of background knowledge to exploit only in the learning phase. More specifically,
in the training phase information on both node properties and network structure is considered, while
in the testing phase the network structure is disregarded. This key feature of the proposed solution is
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especially attractive when prediction concerns new nodes for which interactions with other nodes are not
known or are still to be confirmed.

Following Steinhaeuser et al (2011), we view a training set as a single network of labeled nodes.
Formally, the network is defined as an undirected edge-weighted graph G=(V,E), where V is the set of
labeled nodes, while E ⊆ {〈u,v,w〉 | u,v ∈V,w ∈R

+} is the set of edges (i.e., the context space D), such
that each edge u ↔ v is assigned a nonnegative real number w, called the weight of the edge. It can
be represented by a symmetric adjacency matrix W, whose entries are positive (wi j > 0) if there is an
edge connecting i to j in G, and zero (wi j = 0) otherwise. Here, edge weights express the strength of
the interactions between network nodes and can be any non-negative weight values: in practice, binary
(0/1) weights could also be used, due to the limitations of available data in specific application domains.
The edges represent the context space D which in this case in defined only using the distance function
d(,̇)̇.

Each node of the network is associated with an example pair (xi,yi) ∈ X × 2C, where yi =
{yi1 ,yi2 , ...,yiq},q ≤ K, is subject to the hierarchical constraint. Given a network G = (V,E) and a func-
tion η : V 7−→ (X× 2C) which associates each node with the corresponding example pair, we interpret
the task of hierarchical multi-label classification as the task of building a PCT which represents a multi-
dimensional predictive function f : X 7−→ 2C that satisfies the hierarchical constraint (8.4), maximizes
the network autocorrelation of the observed class values yi, for the examples that fall in the same leaves,
and minimizes the predictive error on the training data η(V ).

8.3.2 Trees for Network HMC

In this section, we introduce the method NHMC (Network CLUS-HMC) which builds autocorrelation-
aware HMC models. We shall start with a brief description of the algorithm CLUS-HMC which is the
basis for the development of NHMC.

CLUS-HMC

The CLUS-HMC (Vens et al, 2008) algorithm builds HMC trees. These are very similar to classification
trees, but each leaf predicts a hierarchy of class labels rather than a single class label. CLUS-HMC builds
the trees in a top-down fashion as in classical tree induction algorithms, with key differences both in the
search heuristics and in making predictions.

Search heuristics. To select the best test in an internal node of the tree, the algorithm hierarchically
scores the tests according to the reduction in variance induced on the set U of examples associated to the
node. Recall that in Chapter 5 the variance in CLUS-HMC is defined as follows:

Var(U) =
1

|U | · ∑
ui∈U

d(Li,L)
2, (8.5)

where d(·, ·) is the distance function on vectors associated to set of class labels for examples in U , as
defined by Equation 8.1.

At each node of the tree, the test that maximizes the variance reduction is selected. This is expected
to result in maximizing cluster homogeneity with respect to the target variable, as well as in improving
the predictive performance of the tree. If no test can be found that significantly reduces variance (as
measured by a statistical F-test), then the algorithm creates a leaf and labels it with a prediction, which
can consist of multiple hierarchically organized labels.

Predictions. A classification tree typically associates a leaf with the “majority class”, i.e., the class
most frequent in the training examples at the leaf, which is later used for prediction purposes when a test
case reaches that leaf. However, in the case of HMC, where an example may have multiple classes, the
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notion of “majority class” cannot be straightforwardly applied. In fact, CLUS-HMC associates the leaf
with the mean L̄ of the class vectors of the examples in the leaf. The value at the k-th component of L̄

is interpreted as the membership score, i.e., the probability of the example belonging to class ck for an
example arriving at the leaf.

The prediction for an example arriving at a leaf can be obtained by applying a user defined threshold
τ on this probability. If the i-th component of L̄ is above τ (> τ), then the leaf predicts the class ci.
To ensure that the predictions fulfill the hierarchical constraint, i.e., whenever a class is predicted its
super-classes are also predicted, it suffices to choose τi ≤ τ j whenever c j is ancestor of ci.

The threshold τ is selected depending on the context. The user may set the threshold such that the
resulting classifier has high precision at the cost of lower recall or vice versa, to maximize the F-score,
to maximize the interpretability or plausibility of the resulting model, etc. It is also possible to use
threshold-independent measures (such as precision-recall curves and the area under the ROC curve) to
evaluate the performance of HMC trees.

Search space. In CLUS-HMC, for each internal node of the tree, the best split is evaluated by
considering all available attributes. Let Xi ∈ {X1, . . . ,Xm} be an attribute and DomXi

its domain: A split
partitions the current sample space D according to test Xi ∈ B, where B ⊆ DomXi

. This means that D is
partitioned into two sets, D1 and D2, on the basis of the value of Xi.

For continuous attributes, possible tests are of the form X ≤ β while, for discrete attributes, they are
in the form X ∈ {ai1 ,ai2 , . . . ,aio} (where {ai1 ,ai2 , . . . ,aio} is a non-empty subset of the domain DomX of
X). In the former case, possible values of β are determined by sorting the distinct values of X in D, then
considering the midpoints between pairs of consecutive values. For b distinct values, b− 1 thresholds
are considered. When selecting a subset of values for a discrete attribute, CLUS-HMC relies on the
non-optimal greedy strategy proposed by Mehta et al (1996).

NHMC

We can now proceed to describe the top-down induction algorithm for building Network HMC trees. The
search space is exactly the same as for CLUS-HMC, while the heuristic used are different. The network
is considered as background knowledge to exploit only in the learning phase. Below, we first outline the
algorithm and then give the details on the new search heuristics which take autocorrelation into account.
A discussion follows on how the new search heuristics can be computed efficiently.

Outline of the algorithm. The top-down induction algorithm for building PCTs for HMC from net-
work data is given below (Algorithm 4). It takes as input the network G = (V,E) and the corresponding
HMC dataset U defined by applying η : V 7→ X× 2C to the vertices of the network. It then recursively
partitions U until a stopping criterion is satisfied (Algorithm 4 line 2). Since the implementation of this
algorithm is based on the implementation of the CLUS-HMC algorithm, we call this algorithm NHMC
(Network CLUS-HMC).

Heuristics. The major difference between NHMC and CLUS-HMC is in the heuristic we use for
the evaluation of each possible split. The variance reduction heuristics employed in CLUS-HMC aims
at finding accurate models, since it considers the homogeneity in the values of the target variables and
reduces the error on the training data. However, it does not consider the dependencies of the target
variables values between related examples and therefore neglects the possible presence of autocorrelation
in the training data. To address this issue, we introduce network autocorrelation as a search heuristic and
combine it with the variance reduction in a new heuristics.

More formally, the NHMC heuristic is a linear combination of the average autocorrelation measure



Learning PCTs for HMC from Network Data 127

Algorithm 4 Top-down induction of NHMC.

1: procedure NHMC(G,U) returns tree
2: if stop(U) then
3: return leaf(Prototype(U))
4: else
5: (t∗,h∗,P∗) = (null,0, /0)
6: for each possible Boolean test t according to the values of X in U do
7: P = {U1,U2} partition induced by t on U

8: h = α ·
( |U1 | ·AY (U1)+ |U2 | ·AY (U2)

|U |

)
+

9: +(1−α) ·
(

Var′(U)− |U1 | ·Var′(U1)+ |U2 | ·Var′(U2)

|U |

)

10: if (h > h∗) then
11: (t∗,h∗,P∗) = (t,h,P)
12: end if
13: end for
14: tree1 = NHMC(G,U1)
15: tree2 = NHMC(G,U2)
16: return node(t∗, tree1, tree2)
17: end if

AY (·) (first term) and the variance reduction Var(·) (second term):

h = α ·
( |U1 | ·AY (U1)+ |U2 | ·AY (U2)

|U |

)
+(1−α) ·

(
Var′(U)− |U1 | ·Var′(U1)+ |U2 | ·Var′(U2)

|U |

)

(8.6)
where Var′(U) is the min-max normalization of Var(U) required to keep the values of the linear combi-
nation in the unit interval [0,1], that is:

Var′(U) =
Var(U)−δmin

δmax −δmin

, (8.7)

with δmax and δmin being the maximum and the minimum values of Var(U) over all tests.
We point out that the heuristic in NHMC combines information on both the network structure, which

affects AY (·), and the hierarchical structure of the class, which is embedded in the computation of the
distance d(·, ·) used in formulae (8.3) and (8.5) to calculate the variance and its reduction.

We also note that the tree structure of the NHMC model makes it possible to consider different effects
of the autocorrelation phenomenon at different levels of the tree model, as well as at different levels of the
hierarchy (non-stationary autocorrelation). In fact, the effect of the class weights ω(c j) in the formula
8.1 is that higher levels of the tree will likely capture the regularities at higher levels of the hierarchy.

However, the efficient computation of distances according to formula (8.1) is not straightforward.
The difficulty comes from the need of computing A(U1) and A(U2) incrementally, i.e., based on statistics
already computed for other partitions. Indeed, the computation of A(U1) and A(U2) from scratch for each
partitioning would increase the time complexity of the algorithm by an order of magnitude and would
make the learning process too inefficient for large datasets.

Efficient computation of the heuristics. In our implementation, different tests are generated by pro-
gressively moving examples from one partition to the other, specifically from U2 to U1). Consequently
Var(·) can be computed according to classical methods for the incremental computation of variance. As
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to equation (8.3), the numerator only requires distances, which can be computed in advance. There-
fore, the problem remains only for the denominator of equation (8.3). To compute it incrementally, we
consider the following algebraic transformations:

∑ui∈U d(Li,LU)
2

= ∑
ui∈U

K

∑
k=1

ω(ck)(Li,k −LU k)
2

=
K

∑
k=1

ω(ck) ∑
ui∈U

(Li,k −LU k)
2

=
K

∑
k=1

ω(ck) ∑
ui∈U ′

(Li,k −LU ′k)
2 +(Lt,k −LU ′k)(Lt,k −LU k)

= ∑
ui∈U ′

d(Li,LU ′)2 +(Lt,k −LU ′k)(Lt,k −LU k)

where U =U ′∪{ut} and LU (LU ′) is the average class vector computed on U (U ′).

Time complexity. In NHMC, the time complexity of selecting a splitting test represents the main
cost of the algorithm. In the case of a continuous split, a threshold β has to be selected for a continuous
variable. If N is the number of examples in the training set, then the number of distinct thresholds
can be N-1 at worst. The determination of candidate thresholds requires an ordering (sorting) of the
examples, with time complexity of O(m ·N · logN), where m is the number of descriptive variables. For
each variable, the system has to compute the heuristic h for all possible thresholds. In general, this
computation has time-complexity O((N −1) · (N +N · s) ·K), where N −1 is the number of thresholds,
s is the average number of edges for each node in the network, K is the number of classes, O(N) is the
complexity of the computation of the variance reduction and O(N ·s) is the complexity of the computation
of autocorrelation. However, according to the analysis reported before, it is not necessary to recompute
the autocorrelation values from scratch for each threshold. This optimization makes the complexity of
the evaluation of the splits for each variable O(N · s ·K). This means that the worst case complexity of
creating a splitting node on a continuous attribute is O(m · (N · logN +N · s) ·K).

In the case of a split by a discrete variable, the worst case complexity (for each variable and in case
of optimization) is O((d − 1) · (N +N · s) ·K), where d is the maximum number of distinct values of a
discrete variable (d ≤ N).

Overall, the identification of the best splitting test (either for a continuous or a discrete variable) has
a complexity of O(m · (N · logN +N · s) ·K)+O(m ·d · (N +N · s) ·K), that is O(m ·N · (logN +d · s) ·K).
This complexity is similar to that of CLUS-HMC, except for the s factor which may equal N in the worst
case, although such a worst-case behavior is unlikely.

Additional remarks. The relative influence of the two parts of the linear combination in Formula
(8.6) is determined by a user-defined coefficient α that falls in the interval [0,1]. When α = 0, NHMC
uses only autocorrelation, when α = 0.5, it weights equally variance reduction and autocorrelation, and
when α = 1 NHMC works just as the original CLUS-HMC algorithm. If autocorrelation is present, ex-
amples with high autocorrelation will fall in the same cluster and will have similar values of the response
variable (gene function annotation). In this way, we are able to keep together connected examples without
forcing splits on the network structure (which can result in losing generality of the induced models).

At the end, note that the linear combination that we use here (Formula (8.6)) was selected as a
results of our previous work deling with autocorrelated data (Stojanova et al, 2012). The variance and
autocorrelation can also be combined in some other way (e.g., in a product). Investigating different ways
of combining them is one of the directions for our future work.
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8.4 Empirical Evaluation

In this section, we present the evaluation of the system NHMC on several datasets related to predicting
gene function in yeast. Before we proceed to presenting the empirical results, we provide a description
of the datasets used and of the experimental settings.

8.4.1 Data Sources

We use 12 yeast (Saccharomyces cerevisiae) datasets as considered by Clare and King (2003), but with
new and updated class labels (Vens et al, 2008). The datasets describe different aspects of the genes in the
yeast genome. They include five types of bioinformatics data: sequence statistics, phenotype, secondary
structure, homology and expression. The different sources of data highlight different aspects related to
gene function.

The seq dataset records sequence statistics that depend on the amino acid sequence of the protein for
which the gene codes. These include amino acid frequency ratios. They also include label properties
such as sequence length, molecular weight and hydrophobicity.

The pheno dataset contains phenotype data. These data represent the growth or lack of growth
of knock-out mutants that are missing the gene in question. The gene is removed or disabled and the
resulting organism is grown with a variety of media to determine what the modified organism might be
sensitive or resistant to.

The struc dataset includes features computed from the secondary structure of the yeast proteins. The
secondary structure is not known for all yeast genes, but can be predicted from the protein sequence with
reasonable accuracy, using software such as Prof (Ouali and King, 2000). Due to the relational nature
of secondary structure data, Clare and King (2003) performed a preprocessing step of relational frequent
pattern mining. The struc dataset includes the constructed patterns as binary attributes.

The hom dataset includes, for each yeast gene, information from other, homologous genes. Homol-
ogy is usually determined by sequence similarity; here, PSI-BLAST (Altschul et al, 1997) was used to
compare yeast genes both with other yeast genes and with all genes indexed in SwissProt v39. This
provided (for each yeast gene) a list of homologous genes. For each of these, various properties were
extracted (keywords, sequence length, names of databases they are listed in, ...). Clare and King (2003)
preprocessed these data in a similar way as they preprocess the secondary structure data to produce binary
attributes.

The cellcycle, church, derisi, eisen, gasch1, gasch2, spo, exp datasets are expression datasets. They
include microarray yeast data (Clare and King, 2003). The attributes for these datasets are real valued,
representing fold changes in expression levels.

We construct two versions of each dataset. The values of the descriptive attributes are identical in
both versions, but the classes are taken from two different classification schemes. In the first version,
they are from FUN (http://www.helmholtz-muenchen.de/en/mips/projects/funcat), a scheme for classify-
ing the functions of gene products, developed by MIPS (Ruepp et al, 2004). FUN is a tree-structured class
hierarchy; a small part is shown in Figure 8.2(a). In the second version of the data sets, the genes are an-
notated with terms from the Gene Ontology (GO) (Ashburner et al, 2000) (http://www.geneontology.org),
which forms a directed acyclic graph instead of a tree: each term can have multiple parents (we use GO’s
“is-a” relationship between terms). Only annotations from the first six levels are used. Note that GO has
an order of magnitude more classes than FUN for our datasets. The 24 resulting datasets can be found at
the webpage http://kt.ijs.si/daniela_stojanova/NHMC/.

In addition, we use several protein-protein interaction networks (PPIs) for yeast genes as in (Rahmani
et al, 2010). In particular, the networks DIP (Deane et al, 2002), VM (von Mering et al, 2002) and MIPS
(Mewes et al, 1999) are used, which contain 51233, 65982 and 38845 interactions among 7716, 2399



130 Learning PCTs for HMC from Network Data

and 40374 proteins, respectively. DIP (Database of Interacting Proteins) stores and organizes informa-
tion on binary protein-protein interactions that are retrieved from individual research articles. VM stores
protein-protein interactions that are retrieved from numerous sources, including experimental data, com-
putational prediction methods and public text collections. Finally, MIPS represents interactions between
proteins on the basis of their signal transduction.

The basic properties of the datasets and the networks are given in Table 8.1.

8.4.2 Experimental Setup

In the experiments, we deal with several dimensions: different descriptions of the genes, different de-
scriptions of gene functions, and different gene interaction networks. We have 12 different descriptions
of the genes from the Clare and King’ datasets (Clare and King, 2003) and 2 class hierarchies (FUN and
GO), resulting in 24 datasets with several hundreds of classes each. Furthermore, we use 3 different PPI
networks (DIP, VM and MIPS) for each of those. Moreover, for each dataset, we extracted the subset
containing only the genes that are most connected, i.e., have at least 15 interactions in the PPI network
(highly connected genes).

As suggested by Vens et al (2008), we build models trained on 2/3 of each data set and test on the
remaining 1/3. The subset of highly connected genes may include genes that belong to the testing or the
training set. To prevent over-fitting, we used two pre-pruning methods: minimal number of examples in
a leaf (set to 5) and F-test pruning. The latter uses the F-test to check whether the variance reduction is
statistically significant at a given level (0.001, 0.005, 0.01, 0.05, 0.1, 0.125).

Following Vens et al (2008), we evaluate the proposed algorithm by using the Average Area Under
the Precision-Recall Curve (AUPRC), i.e., the (weighted) average of the areas under the individual (per
class) Precision-Recall (PR) curves, where all weights are set to 1/ | C |, with C the set of classes. The
closer the AUPRC is to 1.0, the better the model is. A PR curve plots the precision of a classifier as a
function of its recall. The points in the PR space are obtained by varying the value for the threshold τ

from 0 to 1 with a step of 0.02. In the considered datasets, the positive examples for a given class are
rare as compared to the negative ones. The evaluation by using PR curves (and the area under them),
is the most suitable in this context, because we are more interested in correctly predicting the positive
instances (i.e., that a gene has a given function), rather than correctly predicting the negative ones.

In order to evaluate the performance of the proposed NHMC algorithm, we compare it to CLUS-
HMC (NHMC works just as CLUS-HMC when α = 1). Moreover, we report the results of NHMC with
α = 0, when it uses only autocorrelation, and with α = 0.5, when it equally weights variance reduction
and autocorrelation.

8.4.3 Comparison between CLUS-HMC and NHMC

For each of the datasets, the AUPRC of CLUS-HMC (which does not consider network information)
and NHMC, which uses the DIP PPI networks is shown in Table 8.2. For each algorithm and dataset,
both FUN and GO annotations are considered. Finally, two variants of each dataset and network are
considered, one with all genes and the other with the subset of highly connected genes (with at least 15
connections).

When using all genes, the best results are obtained by using CLUS-HMC for FUN annotations and
NHMC with α = 0.5 for GO annotations (even if, in this case, the average good results are mainly due
to the results obtained on the cellcycle dataset). This can be explained by the fact that only a half of the
genes have at least one connection to other genes in the PPI networks and this is not enough to improve
the predictive accuracy of the global predictive HMC model that is constructed using NHMC over the
model constructed by using CLUS-HMC.
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NHMC shows competitive results with respect to CLUS-HMC when using GO annotations because
of the larger percentage of function-relevant connections (see Table 8.1) which indicates that DIP network
presents some form of autocorrelation on the GO labels. Moreover, the results obtained on GO annotated
datasets by using NHMC with α = 0.5 and α = 0 are similar, indicating that the combination of variance
reduction and autocorrelation does not lead to significant accuracy improvement.

As expected, the introduction of the PPIs is beneficial in the case of using the subset of highly
connected genes, for both FUN and GO annotations. In this case, the best results are obtained when
using NHMC with α = 0, i.e., by using only the autocorrelation in gene function as a search heuristic.
The average gain is 0.07 (which is an improvement of 54 % on average) in the case of the FUN hierarchy
and 0.04 (43 %) in the case of the GO hierarchy. The advantage of NHMC over CLUS-HMC comes from
the simultaneous use of the hierarchy of classes and the PPI information in protein function prediction
and confirms the benefits coming from the consideration of autocorrelation during the learning phase.
Indeed, this is also possible because of the tree structure of the learned models which consider different
effects of autocorrelation at different levels of granularity.

In addition, in Figure 8.3, we present the AUPRC results obtained by using CLUS-HMC and NHMC
(with α = 0.5 and α = 0) for GO annotations of the gasch2 and cellcycle datasets. These results are
obtained by varying the portions of considered testing data on the basis of the minimum number of
connections of a node in the DIP PPI networks. In this way, it is possible to see the effect on the AUPRC

results, as we concentrate on highly connected nodes. Indeed, in this case, the results show a clear
advantage of NHMC (using both α = 0.5 and α = 0) over CLUS-HMC and that this advantage increases
when considering datasets with more connected genes. These results are particularly interesting if we
consider that we are not including network information on the testing set. This means that network
information extracted from the training set is profitably used in the classification phase.

8.4.4 Comparison with Other Methods

We also compare the results of NHMC to the results of recent bio-inspired strategies which work in
the HMC setting, but do not consider network information, such as Artificial Neural Networks (HMC-
LMLP), Ant Colony Optimization (hmAnt-Miner), as well as a genetic algorithm for HMC (HMC-GA)
(Cerri et al, 2012). While the first algorithm is a 1-vs-all (it solves several binary classification problems)
method based on artificial neural networks trained with the Back-propagation algorithm, the latter two
are methods that discover HMC rules. The algorithms are evaluated on 7 yeast FUN annotated datasets
(Clare and King, 2003) using the same experimental setup as for CLUS-HMC and NHMC.

In Table 8.3, we present the AUPRC results obtained by using HMC-GA, HMC-LMLP, hmAnt-
Miner and NHMC (α = 0.5) on several FUN annotated datasets. NHMC outperforms all other methods
with a great margin. An exception is only the church dataset, for which NHMC performs worse than
hmAnt-Miner. Note that AUPRC (Cerri et al, 2012) is similar to AUPRC, but uses weights that consider
the number of examples in each class - AUPRC is used here to make results easily comparable with
results obtained with the other competitive methods.

8.4.5 Comparison of Different PPI Networks in the Context of Gene Function Prediction
by NHMC

Although all PPI networks are frequently updated and maintained, many works have pointed out that the
PPI networks are also very noisy (e.g., (Shi et al, 2011)). In this paper, we argue that NHMC can be a
valid tool for assessing the quality of network data in the perspective of exploiting information coming
from PPI networks for gene function prediction. Before we compare the results obtained by NHMC
using different PPI networks, we discuss some functional and topological properties of the 3 considered
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yeast PPI networks: DIP, VM and MIPS.
Table 8.1 shows the percentage of proteins that are covered by the PPI networks. On average, only

a half of the proteins are known to interact with other proteins. DIP covers the highest percentage of
proteins. However, this percentage is not much different from that of the other two networks, especially
from MIPS.

In addition, Table 8.1 shows the percentage of function-relevant interactions. An interaction is con-
sidered to be function-relevant if the two proteins involved in the interaction have at least one function
in common (with respect to a given hierarchy). As it is possible to see, 6 %-23 % observed interactions
are relevant. However, a closer look at the statistics reveals that connections are more function-relevant
with respect to GO annotations than with respect to FUN annotations. This is expected, as GO contains
a much larger number of functions.

The modular nature of PPI networks is reflected by a high degree of clustering, measured by the
clustering coefficient. The clustering coefficient measures the local cohesiveness around a node, and it is
defined, for any node i, as the fraction of neighbors of i that are connected to each other:

Ci =
2ni

ki(ki −1)
(8.8)

where ni denotes the number of direct links between the ki neighbors of node i. The clustering coefficient
of a network is the average of the clustering coefficients of all the nodes in the network. Simply stated,
the clustering coefficient Ci measures the presence of ‘triangles’ which have a corner at i. The high
degree of clustering is based on local sub-graphs with a high density of internal connections, while being
less tightly connected to the rest of the network. Table 8.1 presents the clustering coefficients of the
considered PPI networks. As it is possible to see, the network with the highest clustering coefficient
value is MIPS, followed by VM and DIP.

Having described some of the characteristics of the different PPI networks used in this study, we
can now proceed with the comparison of the obtained results using these network data. In Figure 8.4,
we present the AUPRC results of CLUS-HMC and NHMC for each dataset, for both FUN and GO
annotations, obtained by using three different PPI networks (DIP, VM and MIPS), trained on the subset
of the highly connected genes. The results show a clear advantage of NHMC against CLUS-HMC in
most of the cases. Exceptions are the struc and hom datasets, where the high number of attributes leads
NHMC to encounter the curse of dimensionality phenomenon (Hughes, 1968). A detailed analysis of
the results reveals that AUPRC values obtained with the DIP network are better than values obtained
by using the other two PPI networks. By pairwise comparing results obtained with DIP and MIPS
networks, it is possible to see that, although they present the same % of connected genes, the % of

functional related genes is higher for DIP. This explains the better predictive capabilities of models
learned with the DIP network. Moreover, by comparing results obtained with DIP and VM networks, it
is possible to see that, although the % of function related genes is higher for VM (this means that VM is
potentially more autocorrelated on the label than DIP), the % of connected genes is lower. This inhibits
our algorithm from obtaining competitive methods in the case of VM, if compared to those obtained
with DIP. These considerations make the DIP network the most informative network to be exploited in
learning autocorrelation-aware predictive models.

Apparently, the clustering coefficient does not seem to influence predictive accuracy. Indeed, cluster-
ing coefficient only explains (very) local autocorrelation. On the contrary, tree structured model learned
by NHMC allow us to catch different effects of autocorrelation (non-stationarity of the autocorrelation
phenomenon (Angin and Neville, 2008)) at different levels of the tree, and thus, at different granularity
levels (both global and local).

Finally, results in Figure 8.4 show that, although for GO we have higher % of function related genes

in all the PPI networks, due to the significantly higher number of classes, the learning task for GO is
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Table 8.1: Basic properties of the datasets and the PPI networks when predicting gene function in yeast.

We use 12 yeast (Saccharomyces cerevisiae) datasets (as considered by (Clare and King, 2003)) grouped
by their functional (FUN and GO) annotation and 3 different PPI networks (DIP (Deane et al, 2002),
VM (von Mering et al, 2002) and MIPS (Mewes et al, 1999)). In addition, the percentage of connected
genes, the percentage of function related genes and the clustering coefficients are presented for each of
the networks.

Annotation Dataset #Instan- #Attri- #Classes % of connected genes % of function related genes Clustering coefficient
ces butes DIP VM MIPS DIP VM MIPS DIP VM MIPS

FUN seq 3932 476 499 46 43 46 8 11 7 0.46 0.64 0.66
pheno 1592 67 455 46 34 46 6 6 7 0.48 0.74 0.66
struc 3838 19629 499 13 43 13 7 10 6 0.45 0.64 0.66
hom 3848 47035 499 45 43 45 7 10 6 0.33 0.59 0.66
cellcycle 3757 77 499 72 44 72 2 10 6 0.63 0.63 0.66
church 3779 550 499 46 44 46 15 9 5 0.66 0.63 0.66
derisi 2424 63 499 72 69 72 7 10 6 0.49 0.65 0.66
eisen 3725 79 461 35 31 35 9 10 7 0.46 0.64 0.66
gasch1 3764 172 499 47 44 47 9 10 6 0.49 0.63 0.66
gasch2 3779 51 499 47 44 47 7 10 6 0.34 0.59 0.66
spo 3703 79 499 48 44 48 3 4 3 0.46 0.63 0.66
exp 3782 550 499 46 44 46 15 9 5 0.66 0.63 0.66

GO seq 3900 476 4133 46 43 46 15 22 13 0.46 0.64 0.66
pheno 1587 67 3127 46 34 46 16 18 3 0.58 0.74 0.66
struc 3822 19629 4132 59 42 59 14 19 12 0.33 0.66 0.66
hom 3567 47035 4126 48 47 48 14 22 12 0.33 0.66 0.66
cellcycle 3751 77 4125 47 44 47 17 26 14 0.45 0.63 0.66
church 3774 550 4131 46 44 46 13 23 13 0.66 0.63 0.66
derisi 2418 63 3573 73 69 73 11 18 9 0.45 0.65 0.65
eisen 3719 79 4119 35 31 35 19 25 15 0.49 0.65 0.66
gasch1 3758 172 4125 47 44 47 19 26 14 0.42 0.61 0.66
gasch2 3758 51 4131 47 44 47 17 26 14 0.40 0.40 0.66
spo 3698 79 4119 48 44 48 17 25 14 0.46 0.63 0.66
exp 3773 550 4131 46 44 46 39 23 13 0.66 0.63 0.66

more complex than that for FUN. This explains the better AUPRC results for FUN in comparison to GO,
when comparing the results of NHMC on the same datasets and using the same network.

8.5 Summary

In this work, we tackle the problem of multi-label prediction of gene functional classes when relation-
ships among the classes (instances may belong to multiple classes and classes are organized into a hi-
erarchy), as well as relationships among the instances (instances may be connected in PPI networks)
exist. The use of the latter relationships between the instances introduces autocorrelation and violates
the assumption that instances are independently and identically distributed (i.i.d.), which underlines most
machine learning algorithms. While this consideration introduces additional complexity to the learning
process, it also carries substantial benefits.

The main contributions of this work are in the consideration of network autocorrelation in gene
function prediction. Specifically, in this work, we presented a definition of network autocorrelation in
the hierarchical multi-label classification setting, introduced an appropriate autocorrelation measure for
autocorrelation in such setting and developed a method NHMC for hierarchial gene function prediction
in a PPI network context.

Given a set of genes with known functions, NHMC learns to predict multiple gene functions when
gene classes are hierarchically organized (and, possibly, in the form of DAGs), according to a hierar-
chial classification scheme, such as the MIPS-FUN and the Gene Ontology. During the learning process,
NHMC takes into account PPI networks and the network autocorrelation of gene function that arises in
this context. Due to the tree structure of the learned models, it is also possible to consider non-stationary
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(a) gasch2 (b) cellcycle

Figure 8.3: AUPRC distribution Comparison of the predictive models (AUPRC distribution) obtained by
using CLUS-HMC and NHMC (α = 0.5 and α = 0) for the most connected subsets of (a) gasch2 and
(b) cellcycle datasets for GO hierarchy. The horizontal axis gives the number of interactions from the
DIP PPI network of the genes in the testing data, whereas the vertical axis gives the AUPRC values.

(a) seq (b) pheno (c) struc (d) hom

(e) cellcycle (f) church (g) derisi (h) eisen

(i) gasch1 (j) gasch2 (k) spo (l) exp

Figure 8.4: AUPRC results Comparison of the predictive models (AUPRC results) obtained by using
CLUS-HMC and NHMC (α = 0.5 and α = 0) for each dataset using DIP, VM and MIPS PPI networks,
for both FUN and GO annotations.
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Table 8.2: Comparison of AUPRC results. The AUPRC of CLUS-HMC (α = 1) and NHMC (α = 0.5
and α = 0) when predicting gene function in yeast. We use 12 yeast (Saccharomyces cerevisiae) datasets
(as considered by (Clare and King, 2003)) grouped by their functional (FUN and GO) annotation, using
all genes and the subset of highly connected genes and the DIP PPI network for yeast genes.

Dataset All genes Highly connected genes
α = 1 α = 0.5 α = 0 α = 1 α = 0.5 α = 0

FUN annotated datasets
seq 0.059 0.054 0.053 0.051 0.094 0.130
pheno 0.036 0.035 0.028 0.068 0.333 0.333
struc 0.030 0.020 0.020 0.093 0.088 0.093
hom 0.073 0.020 0.023 0.149 0.088 0.088
cellcycle 0.032 0.030 0.037 0.047 0.098 0.125
church 0.029 0.020 0.020 0.041 0.091 0.091
derisi 0.027 0.028 0.025 0.048 0.098 0.119
eisen 0.047 0.042 0.025 0.067 0.147 0.183
gasch1 0.036 0.040 0.032 0.060 0.103 0.124
gasch2 0.034 0.034 0.027 0.037 0.108 0.112
spo 0.030 0.029 0.025 0.044 0.049 0.134
exp 0.040 0.030 0.025 0.067 0.091 0.132
Average: 0.039 0.032 0.028 0.064 0.116 0.139

GO annotated datasets
seq 0.034 0.032 0.030 0.037 0.072 0.100
pheno 0.019 0.016 0.016 0.051 0.016 0.051
struc 0.018 0.012 0.012 0.078 0.078 0.078
hom 0.040 0.013 0.013 0.047 0.068 0.068
cellcycle 0.019 0.287 0.288 0.027 0.036 0.018
church 0.014 0.015 0.012 0.017 0.025 0.025
derisi 0.017 0.015 0.017 0.078 0.078 0.106
eisen 0.030 0.024 0.024 0.043 0.061 0.146
gasch1 0.024 0.018 0.019 0.051 0.094 0.095
gasch2 0.020 0.021 0.021 0.040 0.088 0.107
spo 0.019 0.018 0.015 0.040 0.078 0.090
exp 0.023 0.017 0.016 0.045 0.036 0.092
Average: 0.022 0.041 0.040 0.046 0.058 0.081

Table 8.3: Comparison with other methods The AUPRC of HMC-GA, HMC-LMLP, hmAnt-Miner and
NHMC (using α = 0.5 and the DIP PPI network), for 7 FUN annotated yeast datasets, as used in (Cerri
et al, 2012).

Dataset HMC-GA HMC-LMLP hmAnt-Miner NHMC_05
pheno 0.148 0.085 0.162 0.241
cellcycle 0.150 0.144 0.154 0.173
church 0.149 0.140 0.168 0.152
derisi 0.152 0.138 0.161 0.172
eisen 0.165 0.173 0.180 0.196
gasch2 0.151 0.132 0.163 0.186
spo 0.151 0.139 0.174 0.181

autocorrelation, i.e., different effects of network autocorrelation at different levels of granularity. How-
ever, NHMC does not need the PPI network in the prediction phase, which is beneficial, especially in
cases where the prediction needs to be made for new examples (genes) for which connections/interactions
to other examples (genes) are not known or still need to be confirmed.

Empirical evidence shows that explicitly taking network autocorrelation into account increases the
predictive capability of the models, especially when the considered PPI networks are dense. Furthermore,
NHMC can be used as a tool to assess network data and the information it provides with respect to the
hierarchy of functions used to classify the genes. This would give the opportunity of discarding less
promising hypotheses, whose (wet-lab) validation is expensive and, to concentrate on the verification of
potentially valid ones.

In future work, we intend to evaluate our approach by using additional datasets and networks. This
will include datasets for organisms other that yeast. This will also include networks based on sequence
similarities (usually implying homology) among genes.
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9 Conclusions and Further Work

In this dissertation, we proposed several extensions of the predictive clustering approach for handling
non-stationary autocorrelation in spatial and network data. We developed new heuristic functions that
take into account both the variance of the target variables and its spatial/network autocorrelation. The ad-
vantages of the proposed extensions arise from the fact that they inherit the characteristics of the predic-
tive clustering approach and at the same time deal with the global and local effects of the autocorrelation
phenomenon, if it exists in the analyzed data.

We evaluated the proposed extensions on a wide range of real-world datasets with spatial and net-
work data from a variety of domains, for single target classification and regression problems, as well
as multi-target classification and regression problems. We also considered the hierarchical multi-label
classification problem of gene function prediction in a network context. In this case protein-protein
interaction networks were taken into account.

In the remainder of this chapter, we first summarize the scientific contributions of the dissertation.
We then discuss how the proposed methods can be further improved and applied.

9.1 Contribution to science

The methods we propose in this dissertation extend the predictive clustering framework towards learning
predictive models from autocorrelated (spatial and network) data. They also include new autocorrelation
measures designed for use on existing and new predictive modeling tasks, rather than classification and
regression. We summarize the contributions as follows:

• We defined the problem of considering autocorrelation in a general predictive modeling context, as
supported by the predictive clustering paradigm and predictive clustering trees (PCTs) induction.
Besides considering the classical predictive modeling tasks of classification and regression, we also
consider the task of milti-target classification and regression, as well as Hierarchial Multi-Label
Classification (Section 2.1). To the best of our knowledge, this is the first time that autocorrelation
has been considered in a structured-output prediction setting. We focus on:

– Autocorrelated data, i.e., data for which the independent and identically distributed (i.i.d.)
assumption (Clauset, 2001), which typically underlies machine learning methods and multi-
variate statistics, is no longer valid. The assumption is important in the classical form of the
central limit theorem, which states that the probability distribution of the sum (or average)
of i.i.d. variables with finite variance approaches a normal distribution and tends to simplify
the underlying mathematics of many statistical and machine learning methods.

– A context space D is introduced, as a result of this, into the definition of the predictive
modeling task that we consider. This dimension generalizes the explicitly given temporal
and spatial dimension and the implicit space defined by a network. It serves as background
knowledge and introduces information related to the modeling space, in the form of relations
between the training examples.
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– The tree structure of PCTs enables us to represent and capture for non-stationary autocor-
relation, in contrast to the many machine leaning algorithms assuming that autocorrelation
dependencies are stationary (Angin and Neville, 2008) (i.e., do not change) throughout the
considered dimension (time, space, or network).

• We presented a broad overview of different autocorrelation measures introduced in the literature
and their use in the case of non i.i.d. data. To our knowledge, such a broad overview has not been
completed before (chapter 3)

– The autocorrelation measures are organized according to the different forms of autocorrela-
tion that they consider (spatial, temporal, spatio-temporal and network autocorrelation), as
well as to the predictive (classification and regression) task that they are used for. In addition,
we investigate the use of these autocorrelation measures in the induction of PCTs by taking
into account variations in the global/ local data distribution across the network.

– We defined new autocorrelation measures by generalizing the already existing ones, in or-
der to be able to deal with the autocorrelation phenomenon within a variety of predictive
modeling tasks.

∗ New autocorrelation measure for spatial and network autocorrelation in for the classifi-
cation task (Section 3.2.2, Section 3.2.2, Section 3.4.2).

∗ New autocorrelation measures for network autocorrelation in the HMC setting (Sec-
tion 8.2).

– Moreover, we provided a theoretical discussion based on specific properties of autocorre-
lation that, when exploited in the PCTs induction, allow the discovery of clusters or dense
zones of the network with similar values in the response variable.

• We presented a comprehensive review of state-of-the-art methods, proposed both in statistics and
data mining, which explicitly consider the autocorrelation phenomenon (chapter 4). The review is
very broad and systematic. The relevant methods are organized according to the different forms of
autocorrelation that they consider (spatial, temporal, spatio-temporal and network autocorrelation),
as well as to the predictive (classification and regression) task that they concern. Again, such a
broad review, organized along these two dimensions together, has not been done before.

• The major contributions of this dissertation are three extensions of the predictive clustering ap-
proach for handling non-stationary (spatial and network) autocorrelated data for different predic-
tive modeling tasks.

– These include:

∗ SCLUS (Spatial Predictive Clustering System) (Stojanova et al, 2011) (chapter 6), that
explicitly considers spatial autocorrelation in regression (and classification),

∗ NCLUS (Network Predictive Clustering System) (Stojanova et al, 2011, 2012) (chap-
ter 7), that explicitly considers network autocorrelation in regression (and classification),
and

∗ NHMC (Network Hierarchical Multi-label Classification) (Stojanova et al, 2012) (chap-
ter 8), that explicitly considers network autocorrelation in hierarchical multi-label clas-
sification.

– The algorithms are heuristic: we define new heuristic functions that take into account both
the variance of the target variables and its spatial/network autocorrelation. Different com-
binations of these two components enable us to investigate their influence in the heuristic
function and on the final predictions.
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– To the best of our knowledge, this is the first approach that uses predictive clustering trees
that consider the autocorrelation phenomenon, in particular the autocorrelation that comes
from the spatial arrangements of objects in space and the network homophily. The advan-
tages of the proposed methods arise from the fact that they inherit the characteristics of the
predictive clustering approach and at the same time deal with the global and local effects of
the autocorrelation phenomenon, if it exists in the analyzed data.

– Within these extensions, we have developed techniques to automatically estimate the size of
the neighborhood where the effects of autocorrelation are the highest.

• We have performed extensive empirical evaluation of the newly developed methods on single target
classification and regression problems, as well as multi-target classification and regression prob-
lems. We consider 9 datasets for the regression task and 4 datasets for the classification task for the
evaluation of SCLUS, 11 datasets for the evaluation of NCLUS and 24 datasets for the evaluation
of NHMC.

– We have compared the performance of the proposed predictive models for classification
and regression tasks, when predicting single and multiple targets simultaneously to current
state-of-the-art methods. Our approaches compare very well to mainstream methods that do
not consider autocorrelation (support vector regression (SVR), k-Nearest Neighbor and M5’
Model Trees), as well as to well-known methods that consider autocorrelation (Geographi-
cally Weighted Regression (GWR) that considers spatial autocorrelation). Furthermore, our
approach can more successfully remove the autocorrelation of the errors of the obtained mod-
els. Finally, the obtained predictions are more coherent in space (or in the network context).

– We have also applied the proposed predictive models to real-word problems, such as the pre-
diction of outcrossing rates from genetically modified crops to conventional crops in ecology
(Stojanova et al, 2012), prediction of the number of views of online lectures (Stojanova et al,
2011, 2012) and protein function prediction in functional genomics (Stojanova et al, 2012).

9.2 Further Work

In this dissertation, we presented several extensions of the methods for learning predictive clustering
trees in the direction of taking into account autocorrelation in the training data. The methods developed
can take into account non-stationary spatial and network autocorrelation on neighborhoods of varying
sizes, where the appropriate size of the neighborhood (bandwidth) is determined automatically. They
can be used to solve three different tasks of predicting structured outputs: multi-target regression, multi-
target classification and hierarchical multi-label classification. The approaches developed were empir-
ically evaluated on a variety of real-world datasets, including datasets from the area of ecological and
bioinformatics.

Due to the generality of our approach and the broad range of methods developed and problems
addressed, many directions for further work have opened up during the research presented in this thesis.
On one hand, many improvements and extensions of the proposed approaches can be conceived. On the
other hand, the already developed approaches and their possible improvements/extensions can be applied
to many new practically relevant problems.

At least two improvements of the developed methods come to mind immediately. First, other ways of
determining an appropriate bandwidth or neighborhood size should be explored. Second, better ways to
combine variance reduction and autocorrelation in the heuristic functions for learning PCTs are needed.
For example, one might consider automated tuning of the parameter α that determines the relative im-



140 Conclusions and Further Work

portance of the two in the combined heuristic. Nonlinear methods for combining the two might be
considered as well.

In terms of extensions of the developed methods, we should consider also the types of autocorrela-
tion not addressed in this thesis, such as temporal and spatio-temporal autocorrelation. Other types of
structured targets should be considered as well, such as short time series of real numbers. In this context,
new autocorrelation will need to be defined, implemented and included within the context of learning
predictive clustering trees from autocorrelated data.

Moreover, the methods we presented can also be extended to the transduction setting. In this way, the
methods can benefit from the advantages of the transductive approach over the basic inductive approach
when few labeled examples are available and manual annotation is fairly expensive ((Appice et al, 2010;
Ceci et al, 2010)). Extensions in the direction of transfer learning can also be envisaged.

In terms of applications, many possible directions can be explored for gene function prediction in
the context of protein-protein interaction networks. Different organisms can be considered as well as
different types of input data. Also, different types of networks can be considered, such as networks
derived from homology data.

In the area of ecological modeling, different task of habitat modeling can be considered in a spatial
context. Different individual species may be considered, as well as entire communities: Predicting
community structure is a task of multi-target prediction. Finally, if we consider the taxonomy of living
organisms, this becomes a task of hierarchical multi-label classification.
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Appendix A: CLUS user manual

The methods presented in this thesis are implemented in the CLUS system. Here, we provide a short
user manual for CLUS. We begin by stating some general information about the system and some general
settings. Next, we describe the settings that are specific to our method.

A.1 General information

CLUS is an open source machine learning system that implements the predictive clustering framework. It
supports learning of predictive clustering trees and predictive clustering rules. The predictive clustering
framework unifies unsupervised clustering and predictive modelling and allows for a natural extension
to more complex prediction settings, such as predicting multiple target variables, hierarchical multi-label
classification and prediction of time series.

CLUS is co-developed by the Declarative Languages and Artificial Intelligence group of the
Katholieke Universiteit Leuven, Belgium, and the Department of Knowledge Technologies at the Jožef

Stefan Institute, Ljubljana, Slovenia. CLUS is a free software (licensed under the GPL) and can be
downloaded from ❤tt♣✿✴✴❞t❛✐✳❝s✳❦✉❧❡✉✈❡♥✳❜❡✴❝❧✉s✴.

CLUS uses (at least) two input files and these are named ❢✐❧❡♥❛♠❡✳s and ❢✐❧❡♥❛♠❡✳❛r❢❢, with
❢✐❧❡♥❛♠❡ a name chosen by the user. The file ❢✐❧❡♥❛♠❡✳s contains the parameter settings for CLUS.
The file ❢✐❧❡♥❛♠❡✳❛r❢❢ contains the training data, which need to be in ARRF data format for the tasks
of predicting a single or multiple target variables (for HMC and clustering short time series, an extension
of the ARFF format is used). For example, a file (that has the spatial coordinates as the first two attributes
in the file) that can be used for the SCLUS or NCLUS algorithms is given below.

❅r❡❧❛t✐♦♥ ❢♦r❡st❢✐r❡s

❅❛ttr✐❜✉t❡ ❳ ♥✉♠❡r✐❝

❅❛ttr✐❜✉t❡ ❨ ♥✉♠❡r✐❝

❅❛ttr✐❜✉t❡ ♠♦♥t❤ ④♠❛r✱♦❝t✱❛✉❣✱s❡♣✱❛♣r✱❥✉♥✱❥✉❧✱❢❡❜✱❥❛♥✱❞❡❝✱♠❛②✱♥♦✈⑥

❅❛ttr✐❜✉t❡ ❞❛② ④❢r✐✱t✉❡✱s❛t✱s✉♥✱♠♦♥✱✇❡❞✱t❤✉⑥

❅❛ttr✐❜✉t❡ ❋❋▼❈ ♥✉♠❡r✐❝

❅❛ttr✐❜✉t❡ ❉▼❈ ♥✉♠❡r✐❝

❅❛ttr✐❜✉t❡ ❉❈ ♥✉♠❡r✐❝

❅❛ttr✐❜✉t❡ ■❙■ ♥✉♠❡r✐❝

❅❛ttr✐❜✉t❡ t❡♠♣ ♥✉♠❡r✐❝

❅❛ttr✐❜✉t❡ ❘❍ ♥✉♠❡r✐❝

❅❛ttr✐❜✉t❡ ✇✐♥❞ ♥✉♠❡r✐❝

❅❛ttr✐❜✉t❡ r❛✐♥ ♥✉♠❡r✐❝

❅❛ttr✐❜✉t❡ ❛r❡❛ ♥✉♠❡r✐❝

❅❞❛t❛

✼✱✺✱♠❛r✱❢r✐✱✽✻✳✷✱✷✻✳✷✱✾✹✳✸✱✺✳✶✱✽✳✷✱✺✶✱✻✳✼✱✵✱✵

http://dtai.cs.kuleuven.be/clus/
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✼✱✹✱♦❝t✱t✉❡✱✾✵✳✻✱✸✺✳✹✱✻✻✾✳✶✱✻✳✼✱✶✽✱✸✸✱✵✳✾✱✵✱✵

✼✱✹✱♦❝t✱s❛t✱✾✵✳✻✱✹✸✳✼✱✻✽✻✳✾✱✻✳✼✱✶✹✳✻✱✸✸✱✶✳✸✱✵✱✵

✽✱✻✱♠❛r✱❢r✐✱✾✶✳✼✱✸✸✳✸✱✼✼✳✺✱✾✱✽✳✸✱✾✼✱✹✱✵✳✷✱✵

The results of a CLUS run go to an output file ❢✐❧❡♥❛♠❡✳♦✉t. Figure 11.1 gives an overview of the
input and output files of CLUS.

[Model]
MinimalWeight = 2.0
[Tree]
FTest = 1.0
...

@relation data
@attribute x 0,1
@attribute y numeric
@data
0,0.5
1,0.75
...

@relation data
@attribute x 0,1
@attribute y numeric
@data
0,0.5
1,0.75
...

@relation data
@attribute x 0,1
@attribute y numeric
@data
0,0.5
1,0.75
...

@relation data
@attribute x 0,1
@attribute y numeric
@data
0,0.5
1,0.75
...

Settings file
(filename.s)

Training data
(filename.arff)

Validation data
(optional)

Test data
(optional)In

p
u
t
d
a
ta

in
A
R
F
F

fo
rm

a
t

Clus system

Output file
(filename.out)

Cross-validation
details

(filename.xval)

Predictions
(ARFF format)

. . .

Figure 11.1: Input and output files of CLUS.

The algorithms implemented in the CLUS system are controlled by a number of parameters. These
parameters are specified in a settings file. For most of the parameters there are default values that are
used, unless a different value is specified by the user. The parameters in the settings file are grouped in
the following sections:

• ●❡♥❡r❛❧: specifying the training, testing and validation datasets and number of folds for cross-
validation,

• ❆ttr✐❜✉t❡s: lists the attributes that should be used as decsriptive, target etc.,

• ❚r❡❡: type of heuristic score used for tree learning, tree pruning algorithm, pruning parameters
etc.,

• ❘✉❧❡s: type of heuristic score used for rule learning, coverage, optimization parameters etc.,

• ❖✉t♣✉t: which errors and models should be output by CLUS, should the predictions of the model
also be provided, etc.,

• ❈♦♥str❛✐♥ts: size, depth and error of the tree, syntactic constraints etc.,

• ❚✐♠❡❙❡r✐❡s: the distance used for clustering time series and thye type of sampling when calcu-
lating the ICV heuristic,

• ❍✐❡r❛r❝❤✐❝❛❧: parameters for hierarchical multi-label classification, such as type of hierarchy,
weighting, threshold for making a prediction, etc.,

• ❇❡❛♠: parameters for beam search, such as number of trees in the beam, soft and hard size con-
straints, similarity constraint, etc.,
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• ❊♥s❡♠❜❧❡s: parameters for constructing the ensembles, such as number of base predictive models,
type of ensemble learning method, voting scheme, etc.

The sections in a settings file are described in detail in the document CLUS: User’s manual which
is available within the CLUS project documentation files. In the remainder of this section, we shortly
present the ❆ttr✐❜✉t❡s and ❍✐❡r❛r❝❤✐❝❛❧ Sections. In the next section, we describe the relevant
setting in the ❚r❡❡ section in more detail.

In the following example, we present a scenario for learning a PCT for predicting multiple targets.
First, the attributes from the 25-th position in the dataset until the 28-th position are used as target
attributes in the PCT construction. Second, the attributes from the 2-nd until 24-th position are used
as descriptive attributes (the splits in the internal nodes of the tree will use these attributes). Next, the
construction algorithm will ignore (i.e., disable) the attribute in the first position. Finally, the algorithm
will perform normalization of the numeric attributes thus they equally contribute to the overall heuristic
score.

❬❆ttr✐❜✉t❡s❪

❉❡s❝r✐♣t✐✈❡ ❂ ✷✲✷✹ ✪ ✐♥❞❡① ♦❢ ❞❡s❝r✐♣t✐✈❡ ❛ttr✐❜✉t❡s

❚❛r❣❡t ❂ ✷✺✲✷✽ ✪ ✐♥❞❡① ♦❢ t❛r❣❡t ❛ttr✐❜✉t❡s

❉✐s❛❜❧❡ ❂ ✶ ✪ ❉✐s❛❜❧❡s s♦♠❡ ❛ttr✐❜✉t❡s ✭❡✳❣✳✱ ✧✺✱✼✲✽✧✮

❑❡② ❂ ◆♦♥❡ ✪ ❙❡ts t❤❡ ✐♥❞❡① ♦❢ t❤❡ ❦❡② ❛ttr✐❜✉t❡

❲❡✐❣❤ts ❂ ◆♦r♠❛❧✐③❡ ✪ ◆♦r♠❛❧✐③❡ ♥✉♠❡r✐❝ ❛ttr✐❜✉t❡s

The next example considers construction of a PCT for hierarchical multi-label classification. The
classes are organized into a DAG hierarchy and the weighting factor (w0) is set to 0.75. The weights for
the classes with multiple parents are calculated by using average value over the weights of all parents.
The Ftest pruning of the PCT should be done to optimize the pooled AUPRC performance measure.

❬❍✐❡r❛r❝❤✐❝❛❧❪

❚②♣❡ ❂ ❉❆● ✪ ❚r❡❡ ♦r ❉❆● ❤✐❡r❛r❝❤②❄

❲❚②♣❡ ❂ ❊①♣❆✈❣P❛r❡♥t❲❡✐❣❤t ✪ ❛❣❣r❡❣❛t✐♦♥ ♦❢ ❝❧❛ss ✇❡✐❣❤ts

❲P❛r❛♠ ❂ ✵✳✼✺ ✪ ♣❛r❛♠❡t❡r ✇❴✵

❖♣t✐♠✐③❡❊rr♦r▼❡❛s✉r❡ ❂ P♦♦❧❡❞❆❯P❘❈ ✪ ❋❚❡st ♦♣t✐♠✐③❛t✐♦♥ str❛t❡❣②

❈❧❛ss✐❢✐❝❛t✐♦♥❚❤r❡s❤♦❧❞ ❂ ✹✵ ✪ t❤r❡s❤♦❧❞ ❢♦r ✧♣♦s✐t✐✈❡✧

A.2 Settings for Autocorrelated PCTs

In the CLUS system, the predictive clustering trees can be constructed by using the standard top-down
induction of decision trees strategy (a default setting in CLUS). Here, we shortly describe the parameters
(discussed in Section 3) that control the induction of Autocorrelated PCTs and give an excerpt of a
settings file.

The ❚r❡❡ section from the settings file contains the following options:

• ❍❡✉r✐st✐❝❂ VarianceReductionGIS : sets the correct heuristic for building Autocorrelated PCTs.

• ❙♣❛t✐❛❧▼❛tr✐① ❂ o : o is an element of {❇✐♥❛r②✱ ▼♦❞✐❢✐❡❞✱ ❊✉❝❧✐❞❡❛♥✱ ●❛✉ss✐❛♥} and
defines the weights in the autocorrelation statistic, by default it is set to ❇✐♥❛r②.

– ❇✐♥❛r②: Binary weights.

– ▼♦❞✐❢✐❡❞: Modified weights.
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– ❊✉❝❧✐❞❡❛♥: Euclidean weights.

– ●❛✉ss✐❛♥: Gaussian weights.

• ❙♣❛t✐❛❧▼❡❛s✉r❡ ❂ o : o is an element of {●❧♦❜❛❧▼♦r❛♥✱ ●❧♦❜❛❧●❡❛r②✱

●❧♦❜❛❧●❡t✐s✱ ▲♦❝❛❧▼♦r❛♥✱ ▲♦❝❛❧●❡❛r②✱ ▲♦❝❛❧●❡t✐s✱ ❙t❛♥❞❛r❞✐③❡❞●❡t✐s✱

❊q✉✈❛❧❡♥t■✱ ■✇✐t❤◆❡✐❣❤❜♦✉rs✱ ❊q✉✈❛❧❡♥t■✇✐t❤◆❡✐❣❤❜♦✉rs✱ ●❧♦❜❛❧▼♦r❛♥❉✐st❛♥❝❡✱

●❧♦❜❛❧●❡❛r②❉✐st❛♥❝❡✱ ❈■✱ ▼✉❧t✐❱❛r✐❛t❡▼♦r❛♥■✱ ❈✇✐t❤◆❡✐❣❤❜♦✉rs✱ ▲❡❡✱

▼✉❧t✐■✇✐t❤◆❡✐❣❤❜♦✉rs✱ ❈■✇✐t❤◆❡✐❣❤❜♦✉rs✱ ▲❡❡✇✐t❤◆❡✐❣❤❜♦✉rs✱ P❡❛rs♦♥✱

❈■❉✐st❛♥❝❡✱ ❉❍✱ ❊q✉✈❛❧❡♥t■❉✐st❛♥❝❡✱ P❡❛rs♦♥❉✐st❛♥❝❡✱ ❊q✉✈❛❧❡♥t●✱

❊q✉✈❛❧❡♥t●❉✐st❛♥❝❡✱ ❊q✉✈❛❧❡♥tP❉✐st❛♥❝❡} and defines the autocorrelation statistic,
by default it is set to ◆♦♥❡.

– ●❧♦❜❛❧▼♦r❛♥: uses Global Moran (Legendre, 1993).

– ●❧♦❜❛❧●❡❛r②: uses Global Geary (Legendre, 1993).

– ●❧♦❜❛❧●❡t✐s: uses Global Getis (Getis and Ord, 1992).

– ▲♦❝❛❧▼♦r❛♥: uses Local Moran (Anselin, 1988).

– ▲♦❝❛❧●❡❛r②: uses Local Geary (Anselin, 1988).

– ▲♦❝❛❧●❡t✐s: uses Local Getis (Getis and Ord, 1992).

– ❙t❛♥❞❛r❞✐③❡❞●❡t✐s: uses Local Standardized Getis (Getis and Ord, 1992).

– ❊q✉✈❛❧❡♥t■: uses an incremental formula for Global Moran.

– ■✇✐t❤◆❡✐❣❤❜♦✉rs: uses Global Moran statistics by setting the number of neighbors instead
of the bandwidth.

– ❊q✉✈❛❧❡♥t■✇✐t❤◆❡✐❣❤❜♦✉rs: uses an incremental formula for Global Moran by setting the
number of neighbors instead of the bandwidth.

– ●❧♦❜❛❧▼♦r❛♥❉✐st❛♥❝❡: uses Global Moran (Legendre, 1993) with a separate distance file
statistics.

– ●❧♦❜❛❧●❡❛r②❉✐st❛♥❝❡: uses Global Geary (Legendre, 1993) with a separate distance file
statistics.

– ❈■: uses Connectivity Index (CI) for Graph Data (Randic, 1998).

– ▼✉❧t✐❱❛r✐❛t❡▼♦r❛♥■: uses Cross Moran (Zhu et al, 2007).

– ❈✇✐t❤◆❡✐❣❤❜♦✉rs: Global Geary by setting the number of neighbors instead of the band-
width.

– ▲❡❡: uses Bivariate Lee’s measure (Lee, 2001).

– ▼✉❧t✐■✇✐t❤◆❡✐❣❤❜♦✉rs: uses Cross Moran (Zhu et al, 2007) by setting the number of
neighbors instead of the bandwidth.

– ❈■✇✐t❤◆❡✐❣❤❜♦✉rs:uses Connectivity Index (CI) for Graph Data (Randic, 1998) by setting
the number of neighbors instead of the bandwidth.

– ▲❡❡✇✐t❤◆❡✐❣❤❜♦✉rs:uses Bivariate Lee’s measure (Lee, 2001) by setting the number of
neighbors instead of the bandwidth.

– P❡❛rs♦♥:uses Pearson correlation coefficient (Angin and Neville, 2008).

– ❈■❉✐st❛♥❝❡:uses Connectivity Index (CI) for Graph Data (Randic, 1998) with a separate
distance file.
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– ❉❍:uses Dyadicity and Heterophilicity (Park and Barabasi, 2007) for Graph Data with a sep-
arate distance file.

– ❊q✉✈❛❧❡♥t■❉✐st❛♥❝❡:uses an incremental formula for Global Moran with a separate dis-
tance file.

– P❡❛rs♦♥❉✐st❛♥❝❡:uses Pearson correlation coefficient (Angin and Neville, 2008) with a
separate distance file.

– ❊q✉✈❛❧❡♥t●:uses an incremental formula for Global Geary.

– ❊q✉✈❛❧❡♥t●❉✐st❛♥❝❡:uses an incremental formula for Global Geary with a separate dis-
tance file.

– ❊q✉✈❛❧❡♥tP❉✐st❛♥❝❡:uses an incremental formula for Pearson correlation coefficient (An-
gin and Neville, 2008) with a separate distance file.

• ❇❛♥❞✇✐❞t❤ ❂ n : sets the b parameter that controls the bandwidth used in the calculation of
autocorrelation. It ranges in [0, 1], it is expressed in % of the maximum bandwidth calculated
from the dataset and its default value is 0.0.

• ❆❧♣❤❛ ❂ ♥ : sets the α parameter that gives the relative influence of variance reduction and auto-
correlation. It ranges in [0, 1] and its default value is ✶✳✵ i.e., do not consider autocorrelation and
works just like a PCT.

• ▲♦♥❣❧❛t ❂ ❨❡s✴◆♦ : If ❨❡s, the spatial coordinates are given in longitude-latitude format and
need to be converted into a cartesian coordinate system. Since this is rarely the case, the default
setting is ◆♦.

• ◆✉♠◆❡✐❣❤t❜♦✉rs ❂ n : sets the number of neighbors n when used with SpatialMeasures that
require it. Its default value is ✵✳✵.

We also need to specify the attributes involved in the calculation of the autocorrelation. This will be
done using the following option in the ❆ttr✐❜✉t❡s section:

• ●■❙ ❂ o : o is an element of {◆♦♥❡✱ n}, where n specifies the autocorrelation related attribute(s),
by default it is set to ◆♦♥❡.

At the end, we give an example of a setting file that can be used with the data example given above.

❬❉❛t❛❪

❋✐❧❡ ❂ ❢❢✳❛r❢❢

❬❆ttr✐❜✉t❡s❪

❚❛r❣❡t ❂ ✸

❉❡s❝r✐♣t✐✈❡ ❂✹✲✶✷

●■❙❂✶✲✷ ✪ ❙♣❛t✐❛❧ ❝♦♦r❞✐♥❛t❡s

❬▼♦❞❡❧❪

▼✐♥✐♠❛❧❲❡✐❣❤t ❂ ✷✵✳✺

❬❚r❡❡❪

❍❡✉r✐st✐❝ ❂ ❱❛r✐❛♥❝❡❘❡❞✉❝t✐♦♥●■❙

❙♣❛t✐❛❧▼❛tr✐① ❂ ❊✉❝❧✐❞✐❛♥

❙♣❛t✐❛❧▼❡❛s✉r❡ ❂●❧♦❜❛❧▼♦r❛♥
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❇❛♥❞✇✐❞t❤❂✵✳✺

❆❧♣❤❛ ❂ ✵✳✺
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