
royalsocietypublishing.org/journal/rsta

Review

Cite this article: Lei CL et al. 2020

Considering discrepancy when calibrating a

mechanistic electrophysiology model. Phil.

Trans. R. Soc. A 378: 20190349.

http://dx.doi.org/10.1098/rsta.2019.0349

Accepted: 21 April 2020

One contribution of 16 to a theme issue

‘Uncertainty quanti
cation in cardiac and

cardiovascular modelling and simulation’.

Subject Areas:

computational biology, applied mathematics,

mathematical modelling, statistics,

cellular biophysics, electrophysiology

Keywords:

model discrepancy, uncertainty quanti
cation,

cardiac model, Bayesian inference

Author for correspondence:

Chon Lok Lei

e-mail: chon.lei@cs.ox.ac.uk

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.
gshare.

c.4978052.

Considering discrepancy when
calibrating a mechanistic
electrophysiology model
Chon Lok Lei1, Sanmitra Ghosh2,

Dominic G. Whittaker3, Yasser Aboelkassem4, Kylie

A. Beattie5, Chris D. Cantwell6, Tammo Delhaas7,

Charles Houston6, Gustavo Montes Novaes8,

Alexander V. Pan
lov9,10, Pras Pathmanathan11,

Marina Riabiz12, Rodrigo Weber dos Santos8,

John Walmsley13, Keith Worden14, Gary R. Mirams3

and Richard D. Wilkinson15

1Computational Biology and Health Informatics, Department of

Computer Science, University of Oxford, Oxford, UK
2MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
3Centre for Mathematical Medicine and Biology, School of

Mathematical Sciences, University of Nottingham, Nottingham, UK
4Department of Bioengineering, University of California San Diego,

La Jolla, CA, USA
5Systems Modeling and Translational Biology, GlaxoSmithKline

R&D, Stevenage, UK
6ElectroCardioMaths Programme, Centre for Cardiac Engineering,

Imperial College London, London, UK
7CARIM School for Cardiovascular Diseases, Maastricht University,

Maastricht, The Netherlands
8Graduate Program in Computational Modeling, Universidade

Federal de Juiz de Fora, Juiz de Fora, Brazil
9Department of Physics and Astronomy, Ghent University, Ghent,

Belgium
10Laboratory of Computational Biology and Medicine, Ural Federal

University, Ekaterinburg, Russia

2020 The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2019.0349&domain=pdf&date_stamp=2020-05-25
http://dx.doi.org/10.1098/rsta/378/2173
mailto:chon.lei@cs.ox.ac.uk
https://doi.org/10.6084/m9.figshare.c.4978052
https://doi.org/10.6084/m9.figshare.c.4978052
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A

378:20190349
................................................................

11US Food and Drug Administration, Center for Devices and Radiological Health, Oce of Science and Engineering

Laboratories, Silver Spring, MD, USA
12Department of Biomedical Engineering King’s College London and Alan Turing Institute, London, UK
13James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational

Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
14Dynamics Research Group, Department of Mechanical Engineering, University of Sheeld, Sheeld, UK
15School of Mathematics and Statistics, University of Sheeld, Sheeld, UK

CLL, 0000-0003-0904-554X; SG, 0000-0002-4879-7587; DGW, 0000-0002-2757-5491; YA, 0000-0002-4993-4141;

KAB, 0000-0002-8579-6321; CDC, 0000-0002-2448-3540; TD, 0000-0001-6897-9700; CH, 0000-0002-0507-2551;

GMN, 0000-0002-1484-5093; AVP, 0000-0003-2643-642X; PP, 0000-0003-2111-6689; MR, 0000-0003-2458-4947;

RWS, 0000-0002-0633-1391; JW, 0000-0001-9171-7530; KW, 0000-0002-1035-238X; GRM, 0000-0002-4569-4312;

RDW, 0000-0001-7729-7023

Uncertainty quantification (UQ) is a vital step in using mathematical models and simulations

to take decisions. The field of cardiac simulation has begun to explore and adopt UQ methods

to characterize uncertainty in model inputs and how that propagates through to outputs

or predictions; examples of this can be seen in the papers of this issue. In this review

and perspective piece, we draw attention to an important and under-addressed source of

uncertainty in our predictions—that of uncertainty in the model structure or the equations

themselves. The difference between imperfect models and reality is termed model discrepancy,

and we are often uncertain as to the size and consequences of this discrepancy. Here,

we provide two examples of the consequences of discrepancy when calibrating models at

the ion channel and action potential scales. Furthermore, we attempt to account for this

discrepancy when calibrating and validating an ion channel model using different methods,

based on modelling the discrepancy using Gaussian processes and autoregressive-moving-

average models, then highlight the advantages and shortcomings of each approach. Finally,

suggestions and lines of enquiry for future work are provided.

This article is part of the theme issue ‘Uncertainty quantification in cardiac and

cardiovascular modelling and simulation’.

1. Introduction
This perspective paper discusses the issue of model discrepancy—the difference between a

model’s predictions and reality. The concepts and issues we highlight are applicable to any

modelling situation where governing equations are approximations or assumptions; thus our

perspective paper is intended for computational, mathematical and statistical modellers within

many other fields as well as within and outside biological modelling. The focus of our examples

is cellular cardiac electrophysiology, a well-developed area of systems biology [1].

(a) Cardiac modelling

Cardiac models are typically a collection of mathematical functions governed by systems

of ordinary and/or partial (when spatial dimensions are considered) differential equations,

integrated using computational techniques, which produce responses that depend on the model

inputs. Inputs can include model parameters, initial conditions, boundary conditions, and

cellular, tissue or whole organ geometrical aspects. Inputs which have physiological meaning

can sometimes be obtained by direct measurement, while others may need to be estimated via an

indirect calibration procedure using experimental data. There are many examples of such cardiac

models, at a variety of different scales, discussed in the papers of this special issue.
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Mathematical modelling and computational simulation has been remarkably successful at

providing insights into cardiac physiological mechanisms at cellular, tissue and whole organ

scales [2–7]. In the majority of these quantitative efforts, models are derived based on simplified

representations of complex biophysical systems and use in vitro and in vivo experimental data

for calibration and validation purposes. Quantitative cardiac models have been a crucial tool for

basic research for decades, and more recently have begun to transition into safety-critical clinical

and pharmaceutical development applications [8–12]. The use of cardiac mathematical models in

such applications will require high levels of credibility in the predictive model outputs, as well as

an accurate quantification of the uncertainty in these predictions.

Parameters in cardiac models are often uncertain, mainly due to measurement uncertainty

and/or natural physiological variability [13]. Thus, uncertainty quantification (UQ) methods are

required to study uncertainty propagation in these models and help to establish confidence in

model predictions. Parametric UQ is the process of determining the uncertainty in model inputs

or parameters, and then estimating the resultant uncertainty in model outputs, thus testing the

robustness of model predictions given our uncertainty in their inputs, and has been applied to a

variety of cardiac models [14–19].

Another major source of uncertainty in modelling is uncertainty in the model structure,

i.e. the form of the governing equations. There is always a difference between the imperfect

model used to approximate reality, and reality itself; this difference is termed model discrepancy.

Assessment of the robustness of model predictions given our uncertainty in the model structure,

and methods to characterize model discrepancy, has received relatively little attention in this field

(and mathematical/systems biology more generally). We have found only two published explicit

treatments of discrepancy in cardiac electrophysiology models, in papers by Plumlee et al. [20,21].

In these studies, the assumption that ion channel rate equations follow an explicit form (such

as that given, as we will see later, by equation (3.5)) was relaxed, and rates were allowed to be

Gaussian processes (GPs) in voltage. A two-dimensional GP (in time and voltage) was then also

added to the current prediction to represent discrepancy in current for a single step to any fixed

voltage.

(b) Notation and terminology

Before discussing model discrepancy in detail, we introduce some notation and terminology.

As the concepts introduced here are intended to be understood not just by a cardiac

modelling audience, we provide a non-exhaustive list of terminology we have encountered in

different fields to describe useful concepts relating to calibration and model discrepancy (and

mathematical/computational modelling in general) in table 1.

Here, we delve into some of those concepts in more detail. Suppose a physiological system

is modelled as y = f (θ , u), where f represents all governing equations used to model the system

(also referred to as model form or model structure), θ is a vector of parameters characterizing

the system, and u are known externally applied conditions or control variables applied in

the particular experimental procedure. In a cardiac modelling context, these might represent a

stimulus protocol, a drug concentration or the applied voltage protocol in a simulated voltage-

clamp experiment. In general, θ = {θD, θC}, where values of θD are directly measured, and where

values of θC are determined by calibration using the model f . Here, for simplicity of exposition,

we assume θD is fixed (and known) and θ = θC.

We can distinguish between external conditions used for calibration, validation and prediction

(that is, the application of the model, or context of use (CoU)), uC, uV , uP, say. Suppose we have

experimental data YC for calibration and YV for validation. A typical workflow, without UQ, is

— Calibration: estimate θ̂ = argmin
θ∈Θ

dC(f (θ , uC), YC), using some calibration distance

function dC(·, ·) (e.g. a vector norm: dC(x, y) = ‖x − y‖), and some subset of parameter

space Θ ;
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Table 1. Terminology used in di�erent 
elds to refer to inverse problem concepts.

concept terminologies


tting parameters in a given model to data calibration inverse problem
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

parameter inference parameter identi
cation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

parameter estimation parameter tuning
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

parameter 
tting parameter optimization
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

model matching/
tting
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

do data from given experiment provide sucient

information to identify the model parameters?

parameter identi
ability practical identi
ability
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

structural identi
ability well-posedness
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

altering experiments to improve parameter identi
ability experimental design protocol design
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

choosing model equations model selection model choice
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

system identi
cation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the di�erence between model and reality model discrepancy model uncertainty
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

model misspeci
cation model mismatch
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

model inadequacy model form error
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

structural error model structure error
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the observable measurements (data) observables observable outputs
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

quantities of interest (QoIs)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a simpli
ed version of the simulator/model surrogate model metamodel
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

proxy emulator
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

look-up table
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

checking the performance of the 
tted model validation certi
cation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

quali
cation performance estimation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

— Validation: compare yV = f (θ̂ , uV) against YV , either qualitatively or using a suitable

validation distance dV(f (θ̂ , uV), YV);

— Context of use: compute YP = f (θ̂ , uP), or some quantity derived from this, to learn about

the system or to make a model-based decision.

The calibration stage has many different names (table 1).

In practice, there a number of reasons why we cannot infer parameter values with certainty.

The most commonly considered situation is when the link between the data and the model

output is stochastic, e.g. because of measurement error on YC or because of model discrepancy.

Computing the uncertainty about θ based on noisy data YC is referred to as ‘inverse UQ’,

and requires a statistical model of the experimental data to be specified. For example,

when considering measurement error, a common choice is to assume independent identically

distributed zero-mean Gaussian errors on all data points, in which case (neglecting model

discrepancy; see later) our model for the data is

YC = f (θ , uC) + ǫ, (1.1)

with ǫ = (ǫ1, ǫ2, . . .)⊤, where ǫi ∼N (0, σ 2). There are many different approaches to solving inverse

UQ problems (e.g. [22,23]), most of which are based on inferring probability distributions to

describe the relative likelihood that each different parameter set is consistent with the available

data. Though a number of different methods to solve inverse UQ problems have been applied in

cardiac electrophysiology [13], the most common is a Bayesian approach, which combines prior
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information about the parameters, π (θ ), with the probability of observing the data given each

parameter π (YC | θ ) (referred to as the likelihood of θ ), to find a posterior distribution over the

parameters

π (θ | YC) =
π (YC | θ )π (θ)

π (YC)
. (1.2)

For an introduction to Bayesian methods, see [24,25]. For the i.i.d. Gaussian error model

(equation (1.1)), the likelihood is given by

π (YC | θ ) = (2πσ 2)−n/2 exp

(

−
||YC − f (θ , uC)||22

2σ 2

)

, (1.3)

where ||x||22 =
∑

i x2
i , and n is the number of data points.

Another potential source of uncertainty about θ can occur when the parameter varies across

the (or a) population. Estimating population variability in θ requires multiple YC recordings,

{Y
(1)
C , Y

(2)
C , . . .}. Multilevel or hierarchical models can then be used: we assume the parameters for

population i are drawn from some distribution θ
(i) ∼ π (θ | ψ), and infer the population parameters

ψ , see [26].

Once uncertainty in θ (given the data) has been determined, the impact of this uncertainty

on validation simulations YV or CoU simulations YP can be computed by propagating the

uncertainty through the model f in the validation/CoU simulations, e.g.

π (YP | YC) =

∫
π (YP | θ )π (θ | YC)dθ .

This is referred to as ‘uncertainty propagation’ or the ‘posterior predictive distribution’.

Uncertainty in the prediction of YV helps provide a more informed comparison to the observed

validation data (especially if experimental error in YV is also accounted for). Uncertainty in YP

enables a more informed model-based decision-making process.

(c) Model discrepancy

UQ as outlined above does not account for the fact that the model is always an imperfect

representation of reality, due to limited understanding of the true data-generating mechanism and

perhaps also any premeditated abstraction of the system. The model discrepancy is the difference

between the model and the true data-generating mechanism, and its existence has implications

for model selection, calibration and validation, and CoU simulations.

For calibration, the existence of model discrepancy can change the meaning of the estimated

parameters. If we fail to account for the model discrepancy in our inference, our parameter

estimates, instead of being physically meaningful quantities, will have their meaning intimately

tied to the model used to estimate them (we end up estimating ‘pseudo-true’ values; see §2c). The

estimated parameter values depend on the chosen model form, and the uncertainty estimates

obtained during inverse parameter UQ tell us nothing about where the true value is (only how

confident we are about the pseudo-true values). In other words, there is no guarantee the obtained

θ will match true physiological values of any parameters that have a clear physiological meaning.

We can try to restore meaning to the estimated parameters by including a term to represent

the model discrepancy in our models. Validation, in particular, provides an opportunity for us to

identify possible model discrepancy. In many cases, validation, rather than being considered as

an activity for confirming a ‘model is correct’, is better considered as a method for estimating the

model discrepancy. To maximize the likelihood that the validation can discern model discrepancy,

the validation data should ideally be ‘far’ from the calibration data, and as close to the CoU as

possible.
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Figure 1. A comparison of the Ten Tusscher (Model T [28], blue) and Fink (Model F [29], green) kinetics. These currents are

voltage-clamp simulations under the same action potential clamp (shown in the top row panels). Only those currents with

di�erent kinetics are shown; the kinetics of INa, INaCa and INaK are identical in both models. Two of the gates in ICaL are identical

in the twomodels, one gate has a di�erent formulation, and Model F has one extra gate compared to Model T. The twomodels

use di�erent formulations for IKr (IKr activates during depolarization in Model T but not Model F), di�erent parametrizations

of the kinetics for IKs and Ito, and di�erent equations for IK1 steady state. Currents are normalized in this plot by minimizing

the squared-di�erence between the two models’ currents such that we emphasize the di�erences in kinetics rather than the

conductances (which are rescaled during the calibration). Only ICaL shows what we would typically consider to be a large

di�erence in repolarization kinetics, with the rest of the currents apparently being closematches betweenModel T andModel F.

(Online version in colour.)

2. A motivating example of discrepancy
To illustrate the concept of model discrepancy and some of its potential consequences, we

have created a cardiac example inspired by previous work [27], using mathematical models

of the action potential (AP) of human ventricular cells. These models have a high level of

electrophysiological detail, including most of the major ionic currents as well as basic calcium

dynamics, and have been used to study reentrant arrhythmias. We assume that the Ten Tusscher et

al. ventricular myocyte electrophysiology model [28] (Model T) represents the ground truth, and

use this model to generate data traces in three different situations: for calibration data we use the

AP under 1 Hz pacing; to generate validation data we use 2 Hz pacing; and for context of use (CoU)

data we use 1 Hz pacing with the 75% IKr block (gKr multiplied by a scaling factor of 0.25).

To illustrate the problem of fitting a model under model discrepancy, we assume we do not

know the ground truth model and instead fit an alternative model, the Fink et al. model [29]

(Model F), to the synthetic data generated from Model T. Both models F and T were built for

human ventricular cardiomyocytes, with Model F being a modification of Model T that improves

the descriptions of repolarizing currents, especially of the hERG (or IKr) channel (which is a

major focus for safety pharmacology). A comparison of the differences in the current kinetics

between the two models is shown in figure 1, and the model equations are given in electronic

supplementary material, §S1. Only five currents have kinetics that vary between the two models,

and, importantly, no currents or compartments are missing (unlike when attempting to fit a model

to real data).

In this example, the control variables are the stimulus current and IKr block, the model outputs

are the membrane voltage, and the parameters of interest are the maximum conductance/current

density of the ionic currents. We use Model T to generate synthetic current-clamp experiments by
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simulating the different protocols (control variables) then adding i.i.d. Gaussian noise ∼N (0, σ 2)

to the resulting voltage traces (model outputs), with σ chosen to be 1 mV. We use the calibration

data (1 Hz pacing) to estimate eight maximal conductance/current density parameters for INa,

ICaL, IKr, IKs, Ito, INaCa, IK1 and INaK using Model F. We will investigate whether the calibrated

Model F makes accurate predictions in the validation and CoU situations (using the parameter

estimates from the calibration data, as is commonly done in electrophysiology modelling [30–

34]). The code to reproduce all of the results in this paper are available at https://github.com/

CardiacModelling/fickleheart-method-tutorials.

(a) Model calibration

We calibrate the model using a train of five APs stimulated under a 1 Hz pacing protocol as the

calibration data. Before attempting to do this fitting exercise, the appropriately sceptical reader

might ask whether we are attempting to do something sensible. Will we get back information on

all the parameters we want, or will we just find one good fit to the data among many equally

plausible ones, indicating non-identifiability of the parameters?

To address these questions, we first look at inferring the parameters of the original Model T (as

well as inferring the noise model parameter, σ ). We use equation (1.1) with Gaussian noise giving

the likelihood in equation (1.2), together with a uniform prior distribution from 0.1× to 10× the

original parameters of Model T. We take two different approaches to calibration. Firstly, we find

a point estimate using a global optimization algorithm [35] to find the optimal model parameters

(with no estimate of uncertainty). Secondly, we approximate the full posterior distribution using

Markov chain Monte Carlo (MCMC). All inference is done using an open-source Python package,

PINTS [36], and simulations are performed in Myokit [37].

The results are shown in electronic supplementary material, figure S1. This exercise results in a

narrow plausible distribution of parameters very close to the ones that generated the data, and we

conclude that the model parameters are identifiable with the given data. Additionally, electronic

supplementary material, figure S1 shows that when using samples of these distributions to make

predictions, all of the forward simulations are very closely grouped around the synthetic data for

the IKr block CoU.

We now attempt the fitting exercise using Model F (i.e. the misspecified model). The fitted

model prediction (using the maximum a posteriori (MAP) parameter estimate) is shown in

figure 2a. The agreement between the calibrated model output and the synthetic data would be

considered excellent if these were real experimental data. Therefore, it is tempting to conclude

that this calibrated model gives accurate predictions, and that the model discrepancy is minor.

But can we trust the predictive power of the model in other scenarios based solely on the result

we see in figure 2a?

(b) Discrepant model predictions

Interestingly, the calibrated Model F gives very accurate predictions for the 2 Hz pacing validation

protocol (data that are not used to estimate the parameters), as shown in figure 2b. Such rate-

adaptation predictions are used commonly as validation evidence for AP models. At this stage,

we may be increasingly tempted to conclude that we have a good model of this system’s

electrophysiology.

But if one now uses the model to predict the effect of drug-induced IKr block, the catastrophic

results are shown in the bottom right panel of figure 2. The calibrated Model F fails to

repolarize, completely missing the true IKr block response of a modest AP duration prolongation.

This example highlights the need for thorough validation and the CoU-dependence of model

validation, but also the difficulty in choosing appropriate validation experiments.

We can also quantify the uncertainty in parameter estimates and predictions while continuing

to ignore the discrepancy in Model F’s kinetics. Again, we use equation (1.2) together with

a uniform prior to derive the posterior distribution of the parameters. The marginals of the

https://github.com/CardiacModelling/fickleheart-method-tutorials
https://github.com/CardiacModelling/fickleheart-method-tutorials
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Figure 2. Model F 
tting and validation results. (a) Model F is 
tted to the synthetic data (generated fromModel T), using 
ve

action potentials recorded under a 1 Hz pacing protocol. The calibrated Model F (blue dashed line) shows an excellent 
t to the

calibration data (grey solid line). (b,c)Model F predctions for validation and context of use (CoU) data. (b) The calibratedModel F

predictions closelymatches the validation data (2 Hz pacing), giving a (false) con
dence in themodel performance. (c) Notably,

Model F gives catastrophic predictions for the IKr block (CoU) experiments (suggesting the validation data are not an appropriate

test given the intendedmodel use). The posterior predictions aremodel predictionsmade using parameter values sampled from

the posterior distribution (
gure 3); here, 200 samples/predictions are shown, but they overlay and are not distinguishable by

eye. (Online version in colour.)

posterior distribution, estimated by MCMC, and the point estimates obtained by optimization

are shown in figure 3. The posterior distribution is very narrow (note the scale), which suggests

that we can be confident about the parameter values. The resulting posterior predictions, shown

in figure 2c, give a very narrow bound. By ignoring model discrepancy we have become highly

(and wrongly) certain that the catastrophically bad predictions are correct.

It is worth noting that all of the issues above arise from the fact that the model discrepancy

was ignored during calibration. In the scenario of no model discrepancy, i.e. when fitting Model T

to the data, none of the issues above occurred, as shown in electronic supplementary material,

figure S1.

To conclude our motivation of this paper, we can see that neglecting discrepancy in the model’s

equations is dangerous and can lead to false confidence in predictions for a new context of use.

We discuss methods that have been suggested to remedy this in §3.

(c) A statistical explanation

To understand what happens when we fit an incorrect model to data, let us first consider the

well-specified situation where the data generating process (DGP) has probability density function

(pdf) g(y), and for which we have data yi ∼ g(·) for i = 1, . . . , n. Then suppose we are considering

the models P = {p(y | θ ) : θ ∈ Θ}, i.e. a collection of pdfs parameterized by unknown parameter
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Model T (si = gModel Fi /gModel Ti ). Values of 1 would represent the parameters of Model T that generated the data; note that none

of the inferred parameters for Model F are close 1. The red dashed lines indicate the result of the global optimization routine.

Two of these parameters, SKs and SNaK , have distributions hitting the lower bound that was imposed by the prior, indicating that

the calibration process is attempting to make them smaller than 10% of the original Model F parameter values. (Online version

in colour.)

θ . If the DGP g is in P , i.e. we have a well-specified model so that for some θ0 ∈ Θ , we have

g(·) = p(· | θ0), then asymptotically, as we collect more data (and under suitable conditions [38]),

the maximum-likelihood estimator converges to the true value θ0 almost surely

θ̂n = argmax
θ

n
∑

i=1

log p(yi | θ ) −→ θ0, almost surely as n −→ ∞,

or equivalently p(· | θ̂n) converges to g(·). Similarly, for a Bayesian analysis (again under suitable

conditions [39]), the posterior will converge to a Gaussian distribution centred around the true

value θ0, with variance that shrinks to zero at the asymptotically optimal rate (given by the

Cramér–Rao lower bound), i.e.

π (θ | y1:n) ≈N

(

θ0,
1

n
I(θ0)−1

)

,

where y1:n = (y1, . . . , yn), and I(θ0) is the Fisher information matrix for the true parameter

value θ0.

However, when our model is misspecified, i.e. g 	∈P (there is no θ ∈ Θ for which

g(·) = f (· | θ )), if we do inference for θ ignoring the discrepancy, then we usually still get asymptotic

convergence of the maximum-likelihood estimator and Bayesian posterior [40,41]. However,

instead of converging to a true value (which does not exist), we converge to the pseudo-true value

θ
∗ = argmin

θ∈Θ
KL(g(·) || p(· | θ )),

where KL(g||p) =
∫

g(x) log(g(x)/p(x))dx is the Kullback–Leibler divergence from p to g (a measure

of the difference between two distributions). In other words, we converge upon the model,

p(· | θ∗), which is closest to the DGP as measured by the Kullback–Leibler divergence (figure 4).

Perhaps more importantly from a UQ perspective, as well as getting a point estimate that

converges to the wrong value, we still usually get asymptotic concentration at rate 1/n, i.e. the
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data generating process
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model 2

model output space

p1 (·Ωq*1)

p2 (·Ωq*2)

Figure 4. A cartoon to illustrate the e�ect of model discrepancy on parameter 
ts in di�erent models. Each cloud represents

a range of possible outputs from each model, which they can reach with di�erent parameter values. The true data generating

process (DGP) lies outside either of our imperfect model classes 1 and 2, and neither can 
t the data perfectly due to model

discrepancy. When we attempt to infer parameters, we will converge upon models that generate outputs closest to the true

DGP under the constraint of being in eachmodel. Addingmore data just increases the con
dence in being constrained tomodel

parameterizations on the boundary of the particularmodel, i.e. we become certain about θ∗, the pseudo-true parameter value

for each model. Note that di�erent models will have di�erent pseudo-true parameter values. (Online version in colour.)

posterior variance shrinks to zero. That is, we have found model parameters that are wrong,

and yet we are certain about this wrong value. The way to think about this is that the Bayesian

approach is not quantifying our uncertainty about a meaningful physical parameter θ0, but

instead it gives our uncertainty about the pseudo-true value θ
∗. Consequently, we can not expect

our calibrated predictions

π (y′ | y) =

∫
p(y′ | θ )π (θ | y1:n) dθ ,

to perform well, as we saw in the AP example above.

This leaves us with two options. We can either extend our model class P in the hope that we

can find a class of models that incorporates the DGP (and which is still sufficiently simple that we

can hope to learn the true model from the data), or we can change our inferential approach.

3. Accounting for model discrepancy
Once we have acknowledged that a model is misspecified, we are then faced with the challenge

of how to handle the misspecification. The approach taken should depend upon the aim of the

analysis. Using the model to predict independent events, for example a current time-series for

some experimental protocol, will require a different approach if our aim is inference/calibration,

i.e. if interest lies in the physical value of a particular parameter. In the first case (prediction), it can

often suffice to fit the model to the data ignoring discrepancy, and then to correct the predictions in

some way,1 although this may not work well if the prediction involves extrapolating into a regime

far away from the data. The latter case (calibration) is more challenging, as we need to jointly fit

the model and the discrepancy model, which can lead to problems of non-identifiability.

The most common approach for dealing with discrepancy is to try to correct the simulator

by expanding the model class. The simplest approach is simply to add a flexible, non-parametric

term to the simulator output, i.e. instead of assuming the data arose from equation (1.1), to assume

y = f (θ , uC) + δ(vC) + ǫ. (3.1)

Here, δ(vC) is the model discrepancy term, and ǫ remains an unstructured white noise term. Note

that vC is used as the input to δ as it is not necessary to have the same input as the mechanistic

1Note, however, that jointly fitting model and discrepancy can make the problem easier, for example by making the
discrepancy a better behaved function more amenable to being modelled.
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Figure 5. Markov model representation of Models A, B and C used in the ion channel model tutorial where Model C is taken as

ground truth and used to generate synthetic data, while Models A and B are candidate models that we attempt to 
t and use

for predictions, demonstrating the challenge of both model discrepancy and model selection. (Online version in colour.)

model: vC could include some or all of uC, but may also include information from internal model

variables (see §3d). To train this model, one option is to first estimate θ assuming equation (1.1),

and then to train δ to mop up any remaining structure in the residual. However, a better approach

is to jointly estimate δ and θ in a Bayesian approach [42]. Unfortunately, as demonstrated below,

this often fails as it creates a non-identifiability between θ and δ when δ is sufficiently flexible: for

any θ , there exists a functional form δ(·) for which equation (3.1) accurately represents the DGP.

Brynjarsdóttir et al. [27] suggested that the solution is to strongly constrain the functional form of

δ(·) using prior knowledge. They present a toy situation in which δ(0) = 0 and δ(x) is monotone

increasing, and show that once armed with this knowledge, the posterior π (θ | y) more accurately

represents our uncertainty about θ . However, knowledge of this form is not available in many

realistic problems.

(a) Ion channel model example

We now illustrate the difficulty of accounting for model discrepancy in a tutorial example. We

demonstrate that it can be hard to determine the appropriate information to include in δ, and that

different functional forms for δ can lead to different parameter estimates.

We consider three structurally different models: Models A, B and C. We take Model C as the

ground truth model in this particular example, and use it to perform synthetic voltage-clamp

experiments and generate synthetic data. The goal is to use Models A and B to explain the

generated synthetic data, assuming we have no knowledge about the ground truth Model C.

This tutorial aims to demonstrate the importance of considering model discrepancy, jointly with

model selection, to represent given data with unknown true DGP.

We use the hERG channel current as an example, and use three different model structures

(shown in figure 5). Model A is a variant of the traditional Hodgkin–Huxley model, described in

Beattie et al. [43]; Model B is used in Oehmen et al. [44]; and Model C is adapted from Di Veroli

et al. [45].

All three ion channel models can be expressed using a Markov model representation. For a

model with a state vector, x = (x1, x2, . . .)T, then in each case x evolves according to

dx

dt
= Mx, (3.2)

where M is the Markov matrix describing the transition rates between states. Markov models

are linear coupled ordinary differential equations (ODEs) with respect to time, t, and states, x.

Typically, the components in the Markov matrix, M, are nonlinear functions of voltage, V(t),

which in these voltage-clamp experiments is an externally prescribed function of time known

as the ‘voltage-clamp protocol’ (i.e. uC in equation (1.1)). The observable, the macroscopic ionic

current, I, measured under V(t), is

I(t, V) = g · O · (V − E), (3.3)

where g is the maximum conductance, E is the reversal potential and O is the sum of all ‘open

states’ in the model.
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Take Model B as an example. Its state vector, x, and Markov matrix, M, can be written as

x =

⎛

⎜

⎜

⎜

⎝

x1

x2

x3

x4

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

C2

C1

O

I

⎞

⎟

⎟

⎟

⎠

; and M =

⎛

⎜

⎜

⎜

⎝

−k1,2 k2,1 0 0

k1,2 −k2,1 − k2,3 k3,2 0

0 k2,3 −k3,2 − k3,4 k4,3

0 0 k3,4 −k4,3

⎞

⎟

⎟

⎟

⎠

, (3.4)

where xi is the probability a gate is in state i (or equivalently, the proportion of gates which are

in state i), with
∑

xi = 1. The parameters ki,j represent the transition rates from state xi to state xj.

Note that for all our models, there is just one open state so that O = O. For all three models, each

transition rate, ki,j, is voltage dependent and takes the form

ki,j(V) = Ai,j exp(Bi,jV), (3.5)

with two parameters (Ai,j, Bi,j) to be inferred. This yields a total of 12 parameters for Model B

which we denote as {p1, . . . , p12}, together with the maximum conductance, g, to be found.

Similarly for Model A, it has eight parameters {p1, . . . , p8} together with g, to be inferred.

(b) Synthetic experiments

We let Model C be the ground truth DGP and simulate data from it (using parameter values

estimated from real room temperature data by Beattie et al. [43], where g = 204 nS). We add

i.i.d. Gaussian noise with zero mean and standard deviation σ = 25 pA to the simulated data.

We generate data under three different voltage-clamp protocols, V(t). These are a sinusoidal

protocol (see top plot in figure 6) and an AP series protocol from Beattie et al. [43] (see electronic

supplementary material, figure S9), and the staircase protocol from Lei et al. [26,46] (figure 6b).

(c) Standard calibration ignoring model discrepancy

To calibrate the model (without considering any model discrepancy), we assume a statistical

model of the form of equation (1.1), which has the same observation noise model as our synthetic

data. The likelihood of model parameter θ , having observed the data y = y1:n, is given by

equation (1.3).

We use the sinusoidal protocol (figure 6a) as the calibration protocol; the AP series

protocol (electronic supplementary material, top, figure S9) and the staircase protocol (electronic

supplementary material, figure S9) are used as validation data. We use a global optimization

algorithm [35] to fit the model parameters using their maximum-likelihood estimates. All

inference is done using PINTS [36].

The fitting results of Models A and B are shown in figure 6. Using different starting points in

the optimization gives almost exactly the same parameter sets each time. Although both models

fit the calibration data reasonably well, neither matches perfectly, due to model discrepancy. While

the exact forms of the model discrepancy differs between the two models, both models notably

fail to reproduce the correct form of the current decay following the step to −120 mVshortly after

2000 ms.

The validation predictions for the staircase protocol are also shown in figure 6. Unlike in the

sinusoidal protocol, where Model A generally gives a better prediction than Model B, in the

staircase protocol, it is more evident that the model discrepancy traits are different for each model.

For example, Model B appears to give slightly better predictions of the current during the first

10 000 ms, whereas after this point Model A begins to give better predictions.

(d) Calibration with model discrepancy

We now consider an approach that allows us to incorporate model discrepancy when doing

parameter inference and making predictions. We adapt the method proposed in [42] and instead

of assuming independent errors in equation (1.1), which corresponds to assuming a diagonal
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covariance matrix for the vector of errors ǫ, we consider an additive discrepancy model of the

form given by equation (3.1), giving a correlated (non-diagonal) error structure. We consider

three different choices for the discrepancy δ(vC), and jointly infer θ and δ. Note that we allow

for a different choice of input vC, compared to the input of model f , uC.

First, we model δ as a sparse-GP [47,48], for which we adapted the implementation in

PyMC3 [49] using Theano [50]. The radial basis function was used for the results presented

here; we also tried two other GP covariance functions (the exponential covariance function

and the Matérn 3/2 covariance function) in electronic supplementary material, §S7c, where we

found the impact of the choice of covariance functions in this problem is not as sensitive as the

formulation of the discrepancy models. We explore two possibilities: choosing vC to be either

(i) t (time); or (ii) O,V (the open probability, O in equation (3.3), and the voltage, V). In

fitting the model, we estimate hyperparameters associated with the GP covariance function,

and condition the model on the observed discrepancies. For the GP(O, V) model, this means

that we assume that the discrepancy is a function O and V so that we use the observed

combinations of (O, V, δ) to predict future discrepancies; in the GP(t) model, it means that we

assume the discrepancy process is always similarly distributed in time (which will not be a

sensible assumption in most situations). Full details are provided in the electronic supplementary

material, §S2.

As a third approach, we model discrepancy δ and the white noise error ǫ, as an autoregressive-

moving-average (ARMA) model of order p, q [51]. If et = δt(vc) + ǫt is the residual at time t, then
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an ARMA(p, q) model for et is

et = νt +

p
∑

t′=1

ϕtet−t′ +

q
∑

t′=1

ζt′νt−t′ , (3.6)

where νt ∼N (0, τ 2), and ϕ1, . . . , ϕp and ζ1, . . . , ζq are, respectively, the coefficients of the

autoregressive and moving-average part of the model. We used the StatsModels [52]

implementation, and assumed p = q = 2 throughout. Note that when using the ARMA model,

we do not condition on the observed discrepancy sequence (so the mean of the ARMA process

remains zero, unlike in the GP approaches), but only use it to correlate the discrepancy structure

in time. In general, there is an interesting connection between GPs discretely sampled regularly in

time, and autoregressive processes [47], but here we treat the ARMA process differently to how we

use GP discrepancies, and use the data only to estimate the ARMA parameters, not to condition

the process upon the observed temporal structure, i.e. we use the ARMA process as a simple

approach for introducing correlation into the residuals to better account for the discrepancy, not

to correct the discrepancy (as is done with the GP). The motivation is that if the mechanistic model

is correct, the residuals should be uncorrelated, but for misspecified models they will typically be

correlated. For further details, please refer to electronic supplementary material, §S3.

For all methods, i.i.d. noise, GP(t), GP(O, V) and ARMA(2, 2), we infer the posterior

distribution of the parameters (equation (1.2)), where the priors are specified in electronic

supplementary material, §S4. We use an adaptive covariance MCMC method in PINTS [32,36] to

sample from the posterior distributions. The trace plots of the samples are shown in electronic

supplementary material, §S7. The inferred (marginal) posterior distributions for Model A are

shown in figure 7, and they are used to generate the posterior predictive distributions shown

in figure 8. Electronic supplementary material, figure S16 shows the same plots for Model B. Note

that the choice of the discrepancy model can shift the posterior distribution significantly, both in

terms of its location and spread. In particular, the ARMA(2, 2) model gives a much wider posterior

than the other discrepancy models.
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Figure 8. Model A 
tted to the sinusoidal calibration protocol using the di�erent discrepancy models: i.i.d. noise, GP(t),

GP(O, V) and ARMA(2, 2). The plots show the mean (solid lines) and 95% credible intervals (shaded) of the posterior prediction

for each model. (Online version in colour.)

Figure 8 shows the posterior predictive distributions of Model A with the calibration protocol

using the four discrepancy models (electronic supplementary material, figure S17 for Model B),

i.e. predicting the data used in training. The top panel shows the sinusoidal voltage protocol, and

the panels underneath are calibrated model predictions with i.i.d. noise (blue), GP(t) (orange),

GP(O, V) (green) and ARMA(2, 2) (red). The calibration data are shown in grey. Visually, we can

see that the two GP models, GP(t) (orange) and GP(O, V) (green), fit the data with high accuracy;

later we will see one of them is overfitting, while the other is not. The ARMA(2, 2) model (red)

increases the width of the posterior (compared to i.i.d. noise), but its posterior mean prediction

does not follow the data as closely as the two GP models.

Table 2 shows the root mean square errors (RMSEs) of the posterior mean predictions for all

of the models, and is coloured so that yellow highlights the best performing model and red the

worst. The first row of the table shows the results for the calibration (sine wave) protocol, and it

is clear that the GP(t) and GP(O, V) models give the best RMSE values for the calibration data.

Note that the RMSE only assesses the accuracy of the point estimate (given by the posterior

mean). Table S1 in the electronic supplementary material gives the posterior predictive log-

likelihoods; the log-likelihood is a proper scoring rule [53] which assesses the entire predictive

distribution, not just the mean prediction. The ARMA(2, 2) and GP(O, V) models achieve the

highest log-likelihood scores on the calibration data (best all round predictions when accounting

for uncertainty).

Figure 9 shows the prediction results for the staircase validation protocol for Model A

(electronic supplementary material, figure S18 for Model B) using different discrepancy models,

with the same layout as figure 8. Similar figures for the AP protocol predictions are shown

in electronic supplementary material, figures S9 (Model A) and S19 (Model B). The GP(t)

discrepancy model is conditioned to give the same temporal discrepancy pattern as in the

calibration protocal, and is unable to change its predicted discrepancy in any way for the

validation protocol; i.e. the GP(t) discrepancy predicts as if it were still under the sinusoidal

protocol. Thus, there is some residual from the calibration protocol shown in the GP(t) (orange)
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Figure 9. Model A’s prediction using the discrepancy models (i.i.d. noise, GP(t), GP(O, V) and ARMA(2, 2)), trained using the

staircase voltage-clamp protocol [26]. We plot the posterior predictive mean (solid lines) with 95% credible intervals (shaded).

The red arrows point to the tail current after the two activation steps, and mark an area of visible model mismatch: note

the di�erent performance of the four discrepancy models in this region. The blue arrow points to an obvious artefact at

approximately 7000 ms induced by the GP(t) prediction which was trained on the sinusoidal protocol, and which does not take

into account that we are now predicting for the staircase protocol. (Online version in colour.)

Table2. Models A (top) andB (bottom)RMSEswithdi�erent discrepancymodels: i.i.d. noise, GP(t), GP(O, V) andARMA(2, 2) for

each of the three voltage protocols. Here, ‘ODEmodel-only’ refers to the predictions using only the calibrated ODEmodel under

di�erent discrepancy models (i.e. the model is calibrated assuming equation (3.1), but prediction is done using only f (θ̂ , uC )).

See also electronic supplementary material, 
gures S13–S15 for Model A and 
gures S23–S25 for Model B.

prediction for the staircase protocol, e.g. see ‘wobbly’ current at approxiametely 7000 ms as

pointed at by the blue arrow.

For Model A, it is interesting to see that the RMSE of the point prediction (the posterior

mean) in table 2 (top) is best for the i.i.d. noise model with the GP(O, V) model only a little

worse. Note that the GP(O, V) model is able to capture and accurately predict the tail current

after the two activation steps, as indicated by the red arrows in figure 9—a visible area of model

mismatch in our calibration without model discrepancy. The uncertainty quantification in the

predictions is poor for all of the discrepancy models, but from electronic supplementary material,
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table S1 we can see that when we assess the uncertainty in the prediction, the i.i.d. noise model

is the worst performing model (as for intervals where the prediction is wrong, each error is

equally surprising, whereas in correlated models, the first error in any interval makes subsequent

errors more probable). The unstructured ARMA(2, 2) and GP(O, V) models score highest for their

uncertainty quantification.

For Model B, the GP(O, V) discrepancy model gives the best overall predictions for both the

staircase and the AP protocols, although when we examine the contributions of the mechanistic

and discrepancy models, we see that an element of non-identifiability between them has arisen

(electronic supplementary material, §S7b). In terms of the posterior predictive log-likelihood,

electronic supplementary material table S1 (bottom) again highlights that the ARMA(2, 2) and

GP(O, V) models tend to be better than the i.i.d. noise and GP(t) models.

Electronic supplementary material, figures S10, S11 and S12 show the model discrepancy for

Model A for the sine wave protocol, AP protocol and staircase protocol, respectively; electronic

supplementary material, figures S20, S21 and S22 show the same plots for Model B. Electronic

supplementary material, figures S21 and S22, in particular, highlight that the GP(t) model has,

by design, learnt nothing of relevance about model discrepancy for extrapolation under an

independent validation protocol (in which V(t), and indeed the range of t differs from that of the

training protocol). Furthermore, the discrepancy model is based only on information extending

to 8000 ms (the duration of the training protocol), after which the credible interval resorts to the

width of the GP prior variance. By contrast, the GP(O, V) model learns, independently of t, the

discrepancy under combinations of (O, V) present in the training data (such as the activation step

to 40 mV followed by a step to −120 mV), which is why it is able to better predict the tail current

after the two activation steps. Finally, the ARMA(2, 2) model has zero mean with similar 95%

credible intervals to the i.i.d. noise model, but has correlated errors and so scores better in terms

of the posterior predictive log-likelihood. The ion channel (ODE) model-only predictions for the

sine wave protocol, AP protocol and staircase protocol are shown in electronic supplementary

material, figures S13, S14 and S15 for Model A and figures S23, S24 and S25 for Model B.

For a given dataset, the RMSE and log-likelihood values in table 2 and electronic

supplementary material table S1 are comparable across models. Note that Model A is more

accurate than Model B on all datasets and with all discrepancy models. With Model A, none

of the discrepancy models are able to improve the mean predictions over the i.i.d. noise model

performance, but the GP(O, V) comes close (in RMSE) while being able to capture some of the

nonlinear dynamics that Model A misses, as discussed above. With Model B, the GP(O, V) model

gives the best mean predictions (as measured by the RMSE). The GP(t) model achieves a better

score on the calibration data, but by over-fitting the data. The ARMA(2, 2) model consistently

gives the best posterior predictive log-likelihood values for Models A and B, as it gives a wider

posterior distribution compared to other methods (figure 7). Over-confident predictions are

heavily penalized by the log-likelihood, which explains the large differences observed in these

values.

To conclude, we have used two different incorrect model structures (Models A, B) to fit

synthetic data generated from a third model (Model C). We considered both ignoring and

incorporating discrepancy when calibrating the model. Calibrating with discrepancy improved

predictions notably for Model B, but not for Model A. Although our problem was a time-

dependent (ODE) system, constructing the discrepancy model as a pure time-series based

function is not necessarily useful in predicting unseen situations; we found the GP(O, V) model

performed best at correcting the point prediction from the models.

4. Discussion
In this review and perspective piece, we have drawn attention to an important and under-

appreciated source of uncertainty in mechanistic models—that of uncertainty in the model

structure or the equations themselves (model discrepancy). Focusing on cardiac electrophysiology

models, we provided two examples of the consequences of ignoring discrepancy when calibrating
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models at the ion channel and AP scales, highlighting how this could lead to over-confident

parameter posterior distributions and subsequently spurious predictions.

Statistically, we can explicitly admit discrepancy exists, and include it in the model calibration

process and predictions. We attempted to do this by modelling discrepancy using two proposals

from the literature—GPs trained on different inputs and an autoregressive-moving-average

(ARMA) model. We saw how GPs can achieve some success in describing discrepancy in the

calibration experiment. A two-dimensional GP in voltage and time was used previously by

Plumlee et al. [20,21], where it was used to extrapolate to new voltages for a given single step

voltage-clamp experiment. To use a discrepancy model to make predictions for unseen situations,

it needs to be a function of something other than time, otherwise features specific to the calibration

experiment are projected into new situations. A promising discrepancy model was our two-

dimensional GP as a function of the mechanistic model’s open probability and voltage, although

for Model B this led to ambiguity between the role of the ODE system and the role of the

discrepancy (see electronic supplementary material, §S7b).

The modelling community would hope to study any discrepancy model that is shown to

improve predictions, and use insights from this process to iteratively improve the mechanistic

model. How we handle model discrepancy may depend on whether we are more interested in

learning about what is missing in the model, or in making more reliable predictions: both related

topics are worthy of more investigation.

(a) Recommendations

Very rarely do computational studies use more than one model to test the robustness of their

predictions to the model form. We should bear in mind that all models are approximations and

so when we are comparing to real data, all models have discrepancy. Here, we have seen, using

synthetic data from an assumed true data-generating model, how fragile the calibration process

can be for models with discrepancy, and how this discrepancy manifests itself in predictions

of unseen situations. Synthetic data studies, simulating data from different parameter sets and

different model structures, allow the modeller to test how well the inverse problem can be

solved and how robust predictions from the resulting models are [54]. We strongly recommend

performing such studies to learn more about the chosen, and alternative, models, as well as the

effects of the model choice on parameter calibration and subsequent predictions. To develop our

field further, it will be important to document the model-fitting process, and to make datasets and

infrastructure available to perform and reproduce these fits with different models [55].

(b) Open questions and future work

The apparent similarity of the AP models we looked at (summarized in figure 1) is a challenge

for model calibration. A number of papers have emphasized that more information can be

gained to improve parameter identifiability with careful choice of experimental measurements, in

particular by using membrane resistance [30,34], or other protocols promoting more information-

rich dynamics [31,32] and some of these measurements may be more robust to discrepancy than

others.

In synthetic data, fitting the model used to generate the data will recover the same

parameter set from any different protocol (where there is sufficient information to identify

the parameters). But in the presence of discrepancy, fitting the same model to data from

different protocols/experiments will result in different parameter sets, as the models make the

best possible compromise (as shown schematically in figure 4). This phenomenon may be an

interesting way to approach and quantify model discrepancy.

If the difference between imperfect model predictions represented the difference between

models and reality then this may also provide a way to estimate discrepancy. For instance, the

largest difference between the ion channel Model A and B predictions in the staircase protocol

was at the point in time that both of them showed largest discrepancy (figure 6). Some form of
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Bayesian model averaging [56], using variance-between-models to represent discrepancy, may

be instructive if the models are close enough to each other and reality, but can be misleading if

the ensemble of models is not statistically exchangeable with the DGP [57,58] or if there is some

systematic error (bias) due to experimental artefacts [59].

In time-structured problems, rather than adding a discrepancy to the final simulated trajectory,

as we have done here, we can instead change the dynamics of the model directly. It may be

easier to add a discrepancy term to the differential equations to address misspecification, than

it is to correct their solution, but the downside is that this makes inference of the discrepancy

computationally challenging. One such approach is to convert the ODE to a stochastic differential

equation [60,61], i.e. replace dx/dt = fθ (x, t) by dx = fθ (x, t)dt + Σ1/2dWt where Wt is a Brownian

motion with covariance matrix Σ . This turns the deterministic ODE into a stochastic model and

can improve the UQ, but cannot capture any structure missing from the dynamics. We can go

further and attempt to modify the underlying model equations, by changing the ODE system to

dx

dt
= fθ (x, t) + δ(x), (4.1)

where again δ(x) is an empirical term to be learnt from the data. For example, this has been

tried with a discretized version of the equations using a parametric model for δ [62], with GPs

[63], nonlinear autoregressive exogenous (NARX) models [64] and deep neural networks [65].

Computation of posterior distributions for these models is generally challenging, but is being

made easier by the development of automatic-differentiation software, which allows derivative

information to be used in MCMC samplers, or in variational approaches to inference (e.g. [66,67]).

Ultimately, modelling our way out of trouble, by expanding the model class, may prove

impossible given the quantity of data available in many cases. Instead, we may want to modify

our inferential approach to allow the best judgements possible about the parameters given the

limitation of the model and data. Approaches such as approximate Bayesian computation (ABC)

[68] and history-matching [69,70] change the focus from learning a statistical model within a

Bayesian setting, to instead only requiring that the simulation gets within a certain distance of

the data. This change, from a fully specified statistical model for δ to instead only giving an upper

bound for δ, is a conservative inferential approach where the aim is not to find the best parameter

values, but instead rule out only obviously implausible values [71,72].

For example, in the AP model from §2, instead of taking a Bayesian approach with an i.i.d.

Gaussian noise model, we can instead merely try to find parameter values that get us within some

distance of the calibration data (for details, see electronic supplementary material, figure S2). In

the electronic supplementary material, we describe a simple approach, based on the methods

presented in [73], where we find 1079 candidate parameter sets that give a reasonable match to

the calibration data. When we use these parameters to predict the 2 Hz validation data, and the

75% IKr block CoU data, we get a wide range of predictions that incorporate the truth (electronic

supplementary material, figure S3)—for a small subset of 70 out of 1079, we get good predictions

and not the catastrophic prediction shown in figure 2. By acknowledging the existence of model

discrepancy, the use of wider error bounds (or higher-temperature likelihood functions) during

the fitting process may avoid fitting parameters overly-precisely. However, we have no way of

knowing which subset of remaining parameter space is more plausible (if any) without doing

these further experiments; testing the model as close as possible to the desired context of use

helps us spot such spurious behaviour.

This paper has focused on the ion channel and AP models of cardiac electrophysiology. There is

an audit of where uncertainty appears in cardiac modelling and simulation in this issue [74]. The

audit highlights many other areas where discrepancy may occur: in assumptions homogenizing

the subcellular scale to the models we have here; or at the tissue and organ scales in terms of

spatial heterogeneity, cell coupling or mechanical models for tissue contraction and fluid-solid

interaction. All of these areas need attention if we are to prevent model discrepancy producing

misleading scientific conclusions or clinical predictions.
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5. Conclusion
In this paper, we have seen how having an imperfect representation of a system in a mathematical

model (discrepancy) can lead to spuriously certain parameter inference and overly-confident and

wrong predictions. We have examined a range of methods that attempt to account for discrepancy

in the fitting process using synthetic data studies. In some cases, we can improve predictions

using these methods, but different methods work better for different models in different

situations, and, in some cases, the best predictions were still made by ignoring discrepancy. A

large benefit of the calibration methods which include discrepancy is that they better represent

uncertainty in predictions, although all the methods we trialled still failed to allow for a wide

enough range of possible outputs in certain parts of the protocols. Methodological developments

are needed to design reliable methods to deal with model discrepancy for use in safety-critical

electrophysiology predictions.
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