
 Open access Proceedings Article DOI:10.1109/UIDIS.2001.929928

Considering possible outcomes and the user's environment in designing user
interfaces for data-intensive systems — Source link

Karen Renaud, R. Cooper

Institutions: University of South Africa, University of Glasgow

Published on: 31 May 2001

Topics: User modeling, User interface, User interface design, User story and Computer user satisfaction

Related papers:

 A Model Based Approach for the Development of Consistent User Interfaces Ensuring an Enhanced User Experience

 Use of task, user and formal models to support development of multimedia interactive systems

 Context-Aware Intelligent User Interfaces for Supporting System Use

 MAGUI - A Multi-Agent Graphical User Interface

 Exploiting User Feedback to Compensate for the Unreliability of User Models

Share this paper:

View more about this paper here: https://typeset.io/papers/considering-possible-outcomes-and-the-user-s-environment-in-
2azx6yzqj0

https://typeset.io/
https://www.doi.org/10.1109/UIDIS.2001.929928
https://typeset.io/papers/considering-possible-outcomes-and-the-user-s-environment-in-2azx6yzqj0
https://typeset.io/authors/karen-renaud-1mf8hswu2m
https://typeset.io/authors/r-cooper-58qhf3u7nh
https://typeset.io/institutions/university-of-south-africa-3vdmvbhg
https://typeset.io/institutions/university-of-glasgow-1li5yodc
https://typeset.io/topics/user-modeling-1n8gnytp
https://typeset.io/topics/user-interface-m9tigr1x
https://typeset.io/topics/user-interface-design-11ky9oue
https://typeset.io/topics/user-story-1ek85kit
https://typeset.io/topics/computer-user-satisfaction-xy8b5jtx
https://typeset.io/papers/a-model-based-approach-for-the-development-of-consistent-2erwu6kb5o
https://typeset.io/papers/use-of-task-user-and-formal-models-to-support-development-of-ujpau0zk30
https://typeset.io/papers/context-aware-intelligent-user-interfaces-for-supporting-1mqskjfnr7
https://typeset.io/papers/magui-a-multi-agent-graphical-user-interface-41sqatne8w
https://typeset.io/papers/exploiting-user-feedback-to-compensate-for-the-unreliability-4m5fu7nxc2
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/considering-possible-outcomes-and-the-user-s-environment-in-2azx6yzqj0
https://twitter.com/intent/tweet?text=Considering%20possible%20outcomes%20and%20the%20user's%20environment%20in%20designing%20user%20interfaces%20for%20data-intensive%20systems&url=https://typeset.io/papers/considering-possible-outcomes-and-the-user-s-environment-in-2azx6yzqj0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/considering-possible-outcomes-and-the-user-s-environment-in-2azx6yzqj0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/considering-possible-outcomes-and-the-user-s-environment-in-2azx6yzqj0
https://typeset.io/papers/considering-possible-outcomes-and-the-user-s-environment-in-2azx6yzqj0

Considering Possible Outcomes and the User’s Environment in Designing User

Interfaces for Data-Intensive Systems

Karen Renaud

University of South Africa

P O Box 392

UNISA, 0003

SOUTH AFRICA

renaukv@unisa.ac.za

Richard Cooper

University of Glasgow

17 Lilybank Gardens

Glasgow, G12 8RZ

UNITED KINGDOM

rich@dcs.gla.ac.uk

Abstract

Application programmers are often unrealistic about the

end-user’s working environment and seldom cater for the

effects of events which will interfere with the use of the

application. Such events can disrupt the straightforward

execution of a task and interfere with a user’s concentra-

tion. These events, which will be referred to in this paper

as “quirks”, could be system breakdowns, various types of

interruptions to application use, or human errors. Applica-

tions often make no concession to the inevitability of quirks

and seldom give assistance in rebuilding mental context af-

terwards or facilitate understanding of the cause in the case

of an error.

In addition to the normal quirks caused merely by shar-

ing office space or in working as part of a group of peo-

ple, most data-intensive systems are distributed and this

tends to precipitate a whole range of errors, hitherto un-

suspected, which will probably be reported to the user in all

their technical verbosity, reducing the user’s understanding

of, and confidence in, the system and perhaps necessitat-

ing intervention by specialists. The inherent distributed na-

ture of data-intensive systems also increases the likelihood

of breakdowns, since so many more computers are involved

in the application than the computer being used by the end-

user.

Few applications consider the effects of quirks while de-

veloping their systems, and the user is therefore unsup-

ported in recovering from them. This paper discusses how

applications may be designed to better support users in

dealing with the effects of quirks in data-intensive systems.

1 Introduction

The trend towards the online use of data-intensive sys-

tems has led to a greater emphasis on the importance of the

usability of applications. One often overlooked aspect of

usability concerns the context in which the user is working.

Take, for example, a designer using software which man-

ages design data held in a database. The designer may well

be working with a necessarily complex user interface in an

open-plan office on a networked computer. This gives rise

to a greater variety of error possibilities than will be evident

with a single-user system or with a client application tai-

lored for naı̈ve users. As well as standard problems such as

faulty software or user mistakes, the network might fail or

the user might suffer an interruption.

In this paper we discuss the effect of the various kinds

of problems that the user might suffer, grouping them all

together under the term “quirk”. It should clearly be one

important aspect of support for the user that the applica-

tion help the user cope with quirks. Unfortunately, we find

that this is usually not the case. Problems are reported us-

ing technically verbose language which does not always let

the user know what caused the problem. What is needed is

support for recovery by giving assistance in rebuilding the

user’s mental context after a quirk and by facilitating under-

standing of the cause of the problem.

Few application developers consider the effects of quirks

while designing their systems, and the user is therefore un-

supported in recovering from them. This paper discusses

how applications may be designed to support users when

dealing with the effects of quirks in data-intensive systems.

We start by considering the method of use assumed by

application designers, as being one from which the user reg-

ularly departs. This is shown in Figure 1, as the direct route

which proceeds from the initial state I to the final state F,

reaching this upon completion of the task. Using this direct

Proceedings of the Second International Workshop on User Interfaces to Data Intensive Systems (UIDIS ’01)

0-7695-0834-0/01 $10.00 © 2001 IEEE

I F

Q

U

R

Q

R: Resumption

Q: Quirk

U: Unexpected State

F: Final State

I:Initial State

Figure 1. Initial and Final States in Task Exe-

cution

path, with no detours on the way, is only one possible way

of proceeding. In reality, this is a simplistic and unrealistic

view of the way humans interact with computer applica-

tions.

The execution of a task can be disrupted by a system

breakdown, a user error or an interruption — these will

all be referred to as quirks — as indicated by the transi-

tion leading to an unexpected state as depicted by node U

in Figure 1. The recursive arrow indicates the possibility

of multiple quirks occurring between the start and end of

application use. Humans are basically serial in their opera-

tion [38], so that they can process only a few symbols at a

time. To compensate for this, these symbols must be held in

complex structures in working memory - the mental context

of the interaction - while they are being processed. Quirks

cause the mental context to collapse while the user deals

with something unexpected or unrelated. It is thus logical

that quirks will tend to be troublesome.

Many researchers have worked on each of these different

aspects — errors, interruptions and breakdowns — in iso-

lation, but since there is often a commonality in the user’s

handling of each of these and in the effects on the user’s

emotions and task completion, it is useful to consider them

as forming part of group of similar concepts. This paper

will consider quirks with particular emphasis on distributed,

data-intensive systems.

Figure 2 gives a classification of quirks, which are a su-

perset of Jambon’s singularities [16]. Quirks can be initi-

ated either by the user, by the system or by some external

entity (Other) — and can disrupt the user’s task process-

ing by demanding attention elsewhere (The telephone could

ring, for example). The user could make an error, or inter-

rupt the process voluntarily. Users often switch tasks when

the computer is slow in completing a task [8]. The sys-

tem could crash, or interrupt the process. The presence of

Initiated
SystemUser

Initiated

Crash

System
Interruption

Other

User Error Interruption

Quirk

Figure 2. Classification of Quirks

a quirk could cause the system to end up in any of a num-

ber of different states, depending on the user’s handling of

the quirk. These different states will be explained in detail

further on.

Section 2 discusses the importance of quirks. Sections 3,

4 and 5 will describe the nature of each of the three types

of events which are grouped under the label of quirks. Sec-

tion 6 makes recommendations about how systems can be

designed to ease recovery from quirks. Section 7 introduces

the HERCULE prototype, which assists users in recovering

from quirks, and Section 8 concludes.

2 Do Quirks Merit Consideration?

Quirks are not merely an irritating fact of life. Research

shows that they can raise worker stress and in some cases

affect the health of workers [3, 18, 20, 41, 43, 45]. In-

terruptions have been shown to lead to lower quality de-

cisions and reduced speed on intellective tasks [39]. How-

ever, while many people perceive quirks to be exclusively

negative, there are also occasions when quirks have positive

effects [17, 28, 35].

Quirks have a substantial effect on users’ interaction with

applications due to human information processing limita-

tions. A user who is busy with some activity builds up

a context [6] — a rich mental environment that stores all

sorts of information built up during the time spent using

that particular system to execute that particular task. Even a

momentary interruption, such as a quirk, causes the mental

context to collapse. The extent to which the system designer

develops the system with possible disruptions in mind, to

ease recovery of context after a quirk, will therefore con-

tribute to the usability of the system.

Quirks are more common than one might expect. Perry

et al. [30] found that a group of software developers spent

75 minutes per day, on average, in unplanned interpersonal

interactions which interrupted their work. Surveys of com-

puter use by expert users show that up to 10% of working

Proceedings of the Second International Workshop on User Interfaces to Data Intensive Systems (UIDIS ’01)

0-7695-0834-0/01 $10.00 © 2001 IEEE

time can be spent handling errors [3]. Eldridge and New-

man [10] found that the negative effect of a technological

fault due to time lost in dealing with it was exacerbated by

the damage done to the rest of the day’s activities. Often one

person’s technological problem has an effect on other peo-

ple’s agendas too, so that a “simple” computer breakdown

often has a bigger impact than meets the eye.

Users will have different attitudes towards quirks. The

frequency of the quirks, together with user perceptions of

the benefits or disadvantages of quirks, will play a part in

determining users attitudes towards an application in par-

ticular, and towards their work satisfaction in general. Fogg

and Nass [11] argue that the rule of reciprocity, which exists

in all cultures, also applies to human-computer interactions.

As a consequence of this, users will tend to “help” comput-

ers that have previously helped them and retaliate against

computers that have performed poorly. The frequent occur-

rence of errors would therefore tend to have far more long-

term effects than merely the time spent in repairing the error

would suggest.

Breakdowns will be discussed in Section 3, human er-

ror will be discussed in Section 4 and interruptions will be

described in Section 5.

3 System Crashes and Breakdowns

Data-intensive systems are typically distributed, involv-

ing components at possibly more than one geographical

location. The possibility of something breaking down is

thus greatly increased, as is the possibility that one person’s

computer breakdown will affect other users [10]. The type

of problems which can be classified as breakdowns are a

failure of (shown in Figure 3)1:

1. the user’s computer, a failure of either some applica-

tion or of the whole computer.

2. the network, which can be affected by a crash, an omis-

sion, arbitrary or timing errors [23].

3. an application server, which could be the failure of the

server host, or failure of the server housing the server

component.

4. the data store being used. Since the application is com-

pletely separated from the data store by the middle tier,

this type of failure will present as a failure of the pre-

vious type.

1The situation has been simplified for the purposes of this paper. Break-

downs are often very difficult to categorise in this fashion since their re-

porting is so difficult to do effectively and multiple network stages make

errors difficult to interpret.

1

2

2

3

4

Client
Application

Application

Server

Database

Figure 3. Breakdown Location

In the case of the end-user computer crashing, the user is

generally left with little choice about how to handle the sit-

uation or doubt of its severity. After a crash, the user gener-

ally ends up in state IR shown in Figure 4 — the initial state

reinstated after a recovery. This is not the same as the initial

state I, since any application state built up before the crash

will be lost and the user’s context has been modified by the

lost work. The work done before the crash might persist,

depending on whether the application on the end-user com-

puter had communicated the commands to the underlying

data store or not. The user will have to check on whether

their work was “saved” or not after the end-user computer

starts up again.

In the case of a breakdown of the other computers in-

volved in the distributed system or of the network, things

become more difficult. The failure of some section of the

system will mostly manifest itself by the reporting of an er-

ror by the end-user application. Sometimes the user will

simply be faced with a lack of response from the computer,

which could indicate a breakdown, but which could also

conceivably simply be a symptom of an overloaded net-

work. After a certain time period, the user will detect the

problem and assume that the application has crashed. What-

ever the source of the problem, the user is left to deal with

the results thereof. The rest of this section will therefore

address the effects of breakdowns on the user — whatever

their source.

The handling and effects of possible breakdowns can be

classified on three axes — extent, time taken to recover and

Proceedings of the Second International Workshop on User Interfaces to Data Intensive Systems (UIDIS ’01)

0-7695-0834-0/01 $10.00 © 2001 IEEE

I

IR

F

Q

U

RQ

IR: Initial State

 after Recovery

Figure 4. States in Task Execution, including

state IR

assistance required [17]. The resulting graph is shown in

Figure 5.

Each of the axes will be explained in turn. The planes

of the Y axis (labeled Extent), refer to the severity of the

breakdown which is one of:

1. moderate — where the user’s immediate process is dis-

rupted. This is typically the failure of an application

thread.

2. severe — where the user’s entire task is disrupted. This

is the failure of the application.

3. chronic — where the entire end-user computer crashes

and no work can be done.

A computer failure cannot realistically be resolved in less

than 10 minutes and an application failure cannot be recti-

fied in less than one minute. Intervention cannot realisti-

cally occur in less than 10 minutes, since presumably the

user would have to summon assistance.

The X axis, labeled Time, refers to the time taken for the

user to recover from the breakdown. This axis has three

possible values, linked to the recovery from the disruption

of the user’s task. The values have been split up into the val-

ues of < 1 minute, < 10 minutes and > 10 minutes. This

is due to the findings of Brodbeck et al. [3], which show

a sharp increase in negative emotions when longer than 10

minutes is spent resolving an error. The Z axis, labeled As-

sistance Required has three possible values:

1. The user will sometimes be able to handle the recovery

from a breakdown — linked to value none.

2. The user may telephone someone for advice, or consult

a manual — linked to the value advice.

None

<10min< 1min >10min

Computer

App

Thread

Intervention

E
X

T
E

N
T

Advice

ASSISTANCE

REQUIRED

TIME

Figure 5. Classification of Breakdowns

3. When all else fails, the user may have to request inter-

vention from a specialist.

Once again the planes can be limited since it is simply not

possible to get advice or assistance in less than a minute

and intervention will probably take longer than 10 minutes

to summon.

When all these restrictions are taken into account, the

classification graph is reduced to the one shown in Figure

6. The obvious conclusion to be drawn from this graph is

no surprise. The summoning of assistance from a special-

ist should be minimised so that the user’s problem can be

solved in the fastest possible time, thereby improving pro-

ductivity and minimising stress. It is also obvious from the

graph that breakdowns are almost certain to lead to negative

emotions, something to which any computer user can attest.

4 Human Error

There is ample evidence in the literature [31] to lead to

the conclusion that humans do indeed err, that they are un-

realistic about their propensity for making errors and their

ability to detect them, and thus, having erred, will convince

themselves, in spite of clear evidence to the contrary, that

they did not err [41, 44].

Errors will have to be handled in the course of a user’s

working day and can be considered to be part and parcel

of the task execution — albeit an unpleasant or unexpected

one. Error recovery can be likened to a “repair” effect often

encountered in conversation. The end-user application will,

as does the listener in a conversation, give negative feed-

back if it either does not understand, or is not satisfied with,

the inputs the user is providing. The user (the speaker) will

Proceedings of the Second International Workshop on User Interfaces to Data Intensive Systems (UIDIS ’01)

0-7695-0834-0/01 $10.00 © 2001 IEEE

Intervention

Advice

None

App

Thread

Computer

< 1min <10min >10min

E
X

T
E

N
T

TIME
ASSISTANCE

REQUIRED

Figure 6. Classification of Probable Break-
downs

then attempt a repair and get the human-computer “conver-

sation” back on course.

Errors are generally split up into two distinct types —

slips and mistakes. Slips generally result from unintended

actions, where the action does not match the intention. Mis-

takes are intended actions, and occur because a user does

not understand the system correctly and are thus far more

difficult to recover from [31].

Surveys of computer use by expert users show that up to

10% of working time is spent handling errors [3]. Errors can

therefore be expensive in both human and economic terms.

The way error situations are handled is thus critical for us-

ability.

4.1 Error Detection

Detecting an error is the first step towards recovery. It

is often hard for a user to detect an error due to overconfi-

dence, with the user using intelligence to explain away un-

usual occurrences thus failing to register the presence of an

error.

Errors will typically be detected by some mismatch be-

tween what the user thinks the state of the system should

be and what it seems to be. The user relies on some feed-

back mechanism — either by the computer or by some other

means — which enables the user to compare what is ex-

pected with what has occurred. Data-intensive systems are

generally structured in three tiers, which means that the

state of the data store, which generally makes up the lowest

tier, must be displayed by the end-user application. Thus the

end-user application developer needs to portray, in the user

interface, not only the state of the end-user application, but

also that of the underlying data store — information which

must be obtained remotely. It is difficult for the end-user

application to portray enough information about the under-

lying data store based only on limited information gleaned

from remote method invocations.

Most systems react to errors by generating error mes-

sages, but error messages are not necessarily the solution

to the problem [19, 24]. Error messages generated at lower

tiers of the system will generally not cater for the current

state of the end-user application or the context from which

the user needs to be relocated. Hammond [14] points out

that interpretation of unfamiliar information makes heavy

demands on working memory. An error message can be

seen as an unfamiliar situation — since an error is always

an unexpected occurrence. Thus it is to be expected that the

user will be extremely likely to forget exactly what was be-

ing done prior to the error situation. This means that error

recovery is not necessarily a simple process. The user needs

to diagnose the source of the problem, and then correct it.

Diagnosis implies an understanding of the state of the sys-

tem, and recovery requires an understanding of the repair

process.

4.2 System State after an Error

The occurrence of a user error can cause the system to

enter a number of states, as illustrated by Figure 7. The

discussion so far did not distinguish between user and sys-

tem error detection. There is a need to distinguish between

system detection of an error and user detection of an error

because this typifies the so-called “gulf of evaluation” [25].

The width of this gulf is determined by the quality of the

feedback in the user interface.

System Detection. If a user submits some input for a sys-

tem to act upon, the system could detect an error and

abort the action. The system then informs the user of

the error with the success of the notification depending

firstly on the quality of the feedback and secondly on

whether the user is concentrating on the system at the

time. If the user ignores or misses this notification and

continues working, the gulf of evaluation has become

wider and future actions will possibly be affected by

this misunderstanding.

If the user does indeed realise that an error has oc-

curred, either a decision can be made to abort the task

— ending up at state IA (Initial State after an Abort)

shown in Figure 8 — or to correct the input and con-

tinue working. Since the error was detected by the sys-

tem, the effects of this error are not critical and the

consistency of any underlying data store will not be

compromised.

Proceedings of the Second International Workshop on User Interfaces to Data Intensive Systems (UIDIS ’01)

0-7695-0834-0/01 $10.00 © 2001 IEEE

invalid

input

Human Error

feedback

inadequate

Error

Message

No Error

Message

time
delayfeedback

adequate

delay
time

Detection

Detection
No

Delayed

Detection

valid but

incorrect

input

Retry
Compensating

Actions

Perfect

Forward

Imperfect

Recovery Recovery

Forward

Abandon

IRIA

Approaching

FU

FRApproaching

Figure 7. Analysis of an Error Occurrence

FR

FU

FI

IA

IR Q

R

U

Q

IA: Initial State after Abort

FR: Final State after Forward Recovery

FU: Final State after an Undetected Error

Figure 8. All Possible States in Task Execu-
tion

User Detection. If the user provides input to the system

which is valid, but not what they intended, the system

has no way of realising that this is a mistake on the

part of the user and accepts the input. The input will

thus be processed and changes will possibly be made

in one or more underlying data stores as a result. 2 If

the user were to discover the error, as a result of its

effect, a decision could be made to supply inputs to

the application which compensate for the error. The

user could continue to work on the task in hand, but

the final state will not be state F, but rather state FR,

since another user could have made use of the incor-

rect information between the erroneous action and the

compensation. If the user does not realise that an error

has been made, then the gulf of evaluation, which has

just become wider, needs to be bridged in order for the

user to realise that an error has been made. The sys-

tem is now in state FU, since the state of the system

is not what the user intends and the consistency of the

underlying data store has possibly been compromised.

The effects of user errors could accumulate, affecting the

eventual recovery process and the error handling time, and

exacerbating long-term effects of the error. The more unre-

solved errors in the system, the more time and effort will be

taken to restore the data store to the correct state.

4.3 Error Recovery

Many applications today provide an undo feature so that

a user can backtrack and undo the effects of an error [1]. In

non-transactional systems the undo function will work ad-

mirably but is probably not an option in transactional sys-

tems. If the system detects the error, undo is not really nec-

essary since the database will not be affected by the error. If

the system does not detect the error, undo is also not an op-

tion, unless the application is “intelligent” enough to gen-

erate a compensating transaction automatically. Thus in a

transactional system, slips, which are traditionally easy to

recover from, become far more difficult to manage.

Recovering from mistakes requires complex actions

compelling the user to go back through some actions to re-

cover [3]. Users will often realise that something is amiss

with their reasoning, or method of achieving the goal, but

are at a loss as to how to go about recovering. Rizzo

et al.[34] argue that most mistakes depend on the mis-

activation, conscious or unconscious, of knowledge. Rizzo

et al. propose the following guidelines for supporting the

handling of human errors [34]:

2Most distributed data-intensive systems are structured as an n-tier and

the nature of these systems implies that every remote method invocation

originating from the end-user application constitutes a complete transac-

tion. Thus each method invocation will potentially make immediate and

durable changes to the underlying data store.

Proceedings of the Second International Workshop on User Interfaces to Data Intensive Systems (UIDIS ’01)

0-7695-0834-0/01 $10.00 © 2001 IEEE

1. Make the action perceptible — by this is meant that

designers should make the match between action and

outcome more obvious.

2. Display the error message at a high level — messages

should be displayed at the user’s level of understand-

ing, with the possibility of getting more detailed mes-

sages should they be required.

3. Provide an activity log — thus supplying people with

an external memory aid.

4. Allow comparisons — the user must be assisted in

comparing the state with other, perhaps intended,

states.

5. Make the action result available to user evaluation —

this needs to be achieved as soon as possible. This

aspect coincides with the discussion on feedback in

the following chapter, which stresses that the feedback

should provide aspects relevant to the task just per-

formed.

6. Provide result explanations — the best way to provide

error diagnosis is to give specific answers to the user.

The user should not be overwhelmed by reams of ex-

planations. The user should only be given a high-level

message, with further details available upon request.

5 Interruptions

Interruptions pervade our 21st Century lives. Telephones

ring, people pop into the office and email continuously de-

mands to be read and answered. For example, studies by

van Solingen et al. [40] into the effects of interrupts in

software development found that the subjects of the study

spent 20% of their time servicing interrupts. A study by

Rouncefield et al. [35] found that the staff in one partic-

ular organisations actually prefered handling interruptions

to doing more mundane tasks — so that interruptions are

clearly not universally considered to be negative.

Disruptions have been shown to inhibit performance in

the execution of complex tasks [39]. Attention is broken

if the same sensory channel is used by the disruption as

is being used by the current task. Computer application

users are using their eyes, ears and touch senses (via their

fingertips). They are also making heavy use of short-term

memory. Thus computer users are less tolerant of interrup-

tions than traditional workers because it disrupts their short-

term memory and makes it hard for them to continue their

task easily [2]. This intense use of the person’s cognitive

abilities is in stark contrast to the traditional nature of the

workplace where social interaction plays an important part

in making up the person’s working day and often makes it

more enjoyable.

Interruptions tend to break what Dix et al. [8] refer to

as the loop of interaction. This means that there could be

a delay between user actions and the feedback on these ac-

tions — so that the action and the observable effect can no

longer be linked in the user’s mind. Users tend to operate in

terms of an action-evaluation of effect-action paradigm and

once the time delay between action and observable effect

is longer than the short-term memory span the evaluation

becomes difficult and decisions about the following action

take longer.

Interruptions can occur concurrently or consecutively.

Humans routinely handle up to five activities simultane-

ously by interleaving them. Cypher [6] maintains that they

do this by linearising — organising the parallel activities

into a single linear stream of actions.

This interleaving of activities could be voluntary — such

as when we decide that we do not want to wait for some-

thing to finish, and switch to another activity — or involun-

tary when, for example, the phone rings and has to be an-

swered. In Section 2, the context which a user builds up dur-

ing an activity was mentioned. Waern [41] notes that work-

ing memory is only able to retain information for a couple of

seconds at a time and that unexpected interruptions can thus

be fatal to an entire problem solving process. Studies have

shown the process of switching tasks to be costly. Cutrell et

al. [5] cite a study by Gopher et al. [13] which has shown

that the cost is related to the nature of the current and pend-

ing activity, as well as the user’s proficiency in the task at

hand. The context switch cost can affect a person’s general

performance, stress levels and job satisfaction. One way to

measure the cost of task switching is to gauge the amount of

time it takes to recover from interruptions. A study by van

Solingen found the recovery time after an interrupt to be a

minimum of 15 minutes [40].

When people are doing paper work it is relatively simple

to mark their current position so that they can return later

[35]. In order for a computer system to support the user in

linearising of multiple activities, it is essential that the user

be provided with some sort of memory aid. This should

keep the activity visible and provide a way for the user to

“pick up the threads” as quickly as possible upon resuming

an activity. It is hard for applications to provide this facility

effectively. Czerwinski et al. [7, 5] experimented with the

provision of a marker to assist users returning to previous

on-screen tasks but found that this did not assist users as

much as expected.

Care should be taken that any provided memory aid

should itself not be distracting or clutter up the display.

There is a continuous trade-off between providing the user

with external memory aids and the limitations of working

space [22].

Proceedings of the Second International Workshop on User Interfaces to Data Intensive Systems (UIDIS ’01)

0-7695-0834-0/01 $10.00 © 2001 IEEE

I F

O

Q

U

D

O: Other ActivityQ

D: Diversion

Figure 9. Non-Resumption of the Primary
Task

5.1 Handling Interruptions

It may appear that a user will simply handle an inter-

ruption and then continue with the task. This might indeed

be the case for isolated interruptions, but repeated and nu-

merous interruptions may require more sophisticated han-

dling. The user in the process of handling one interruption

could be interrupted by yet another. The interruptions could

be handled immediately so that the first interruption is sus-

pended to deal with the most recent one, or the most re-

cent one is queued and forced to wait until the handling of

the first one has been completed [42]. The user may also

choose to interleave the handling of the interruptions. After

the interruption, the user may resume the original task, but

in 45% of cases, according to a study done by O’Conaill and

Frohlich [28], the user will not resume the disrupted task,

but will be diverted to another task. This is illustrated in

the diagram in Figure 9, by the transition to node O (Other

activity state), instead of node F (Final state).

After the interruption has been dealt with, the user needs

to change context again and decide which task to proceed

with. Miyata and Norman [22] suggest that a system of re-

minders might be a good idea in ensuring that the user does

indeed resume a suspended activity. Human memory limita-

tions require these prompts, if a potentially critical activity

is not to be forgotten.

5.2 Recovery from Interruptions

In order to assist the user in recovering from interrup-

tions, it would thus be helpful to have the following features

provided by the application:

� mental aids, to help the user remember past actions;

� graphical features to allow the user to take a couple of

steps back to rebuild the mental context.

� user assistance in building an awareness of the history

of interaction with the application, by linking past in-

puts to the results — or outputs – thereof.

Since each user has different “remembering” needs, the

principle of giving the user an overview and then allow-

ing zooming-in [37] to get required detailed information,

applies here.

6 Designing for Quirks

Jambon [16] urges system developers to design with in-

terruptions and errors in mind. He argues that this would

decrease the possibility of operators forgetting something

critical after handling a quirk, thereby causing a serious ac-

cident. The focus of Jambon’s research was interfaces for

pilots. Errors made by users using other systems may not

have such serious repercussions as those made by pilots,

but that does not make them any less annoying. The dis-

cussion of the different types of quirks has made the need

for two distinct different types of feedback obvious. The

first type is feedback with respect to the latest user action,

or error, being reported to the user — this can be referred

to as immediate feedback. The second type is feedback with

respect to past actions, to support the user in rebuilding con-

text about what they were busy doing before the occurrence

of the quirk — this can be referred to as archival feedback

[32]. The contribution made by both types of feedback in

alleviating the effects of each of the quirk categories will be

discussed in the following sections.

6.1 Breakdowns

Immediate feedback is not much use if the end-user com-

puter breaks down. Archival feedback can only be useful if

it persists. If another part of the distributed system breaks

down, it will depend on the forethought of the application

designer whether the system will respond in a helpful way

or not. If the breakdown was not anticipated by the designer

during system development, the user is sure to receive an

unintelligible response. Archival feedback could very well

be helpful to the specialist summoned to track the events

leading to the breakdown. What will be useful is some way

of understanding exactly what the problem is together with

some indication of the course of action to be taken.

It is notable that, whereas a data-intensive application is

expected to recover the consistency of the data store after a

breakdown, there is often no equivalent attempt to recover

the user’s mental context at the same time. With archival

information being available, there is no reason why the user

Proceedings of the Second International Workshop on User Interfaces to Data Intensive Systems (UIDIS ’01)

0-7695-0834-0/01 $10.00 © 2001 IEEE

interface might not be similarly rebuilt, given a modern user

interface toolkit, such as Java’s Swing [21].

6.2 Human Error

The recommendations given for error recovery by Rizzo

et al. [34] for supporting the handling of human errors

were discussed in Section 4.3. The first, second, fifth and

sixth recommendations are satisfied by immediate feed-

back, while the third and fourth are satisfied by archival

feedback. Zakay [44] has shown that immediate comput-

erised feedback reduces overconfidence which means that

the error is more likely to be detected, and archival feed-

back is likely to assist the user in understanding an error,

and in comprehending the current state of the system. This

should lead to speedier error recovery.

6.3 Interruptions

Users have severe limits with respect to memory, often

forgetting what they have done, and they often experience

difficulty in holding recently experienced information until

needed [29]. Users can be supported in handling interrup-

tions by archival feedback, which assists them by providing

a mental aid to help them remember things [26, 37]. A log

of recent actions can help by reminding the user of the ac-

tivity that was interrupted.

Archival feedback can also be used to provide inter-

referential feedback. Draper [9] argues the importance of

a mutual reference between user input and application reac-

tion so that the previous parts of the user-machine dialogue

can be referred to. A mere list of the user’s inputs to the

system is of limited use because there is no way for the user

to remember what the application state was at the time that

particular command was entered or menu choice made. In

order to support users adequately archival feedback should

provide such a link between user actions and application

state and allow browsing of such information.

7 HERCULE

The HERCULE3 prototype was developed, using Java,

to be a generic facility for the visualisation of application

activity. HERCULE provides both context sensitive imme-

diate feedback, archival feedback, and overview functions

[33]. This supports the user in understanding the nature of

breakdowns and errors, and in recovering from the quirks

mentioned in this paper.

HERCULE’s approach is that feedback be provided in

a generic fashion, produced independently of the applica-

tion implementation. This approach necessitates treating

3Named after Hercule Poirot, Agatha Christie’s legendary detective.

the provision of feedback as a separate concern. This well-

established technique has been successfully applied in sep-

arating several non-functional characteristics from the main

concern of application programs, but has hitherto not been

applied to the provision of feedback. Separating feedback

provision from the application makes things easier for the

programmer and provides a mechanism for augmenting the

feedback provided by the application itself.

There are many approaches to achieving separation of

concerns [15]. One approach, application tracking, requires

the least effort from the programmer and was thus the ap-

proach applied in the development of HERCULE. It is also

the least invasive way of achieving the required separation

of concerns. Application tracking is widely used for many

purposes, but once again has not hitherto been used to aug-

ment application feedback.

The success of the HERCULE prototype has shown that

this means of augmenting application feedback can indeed

be used and that it enriches the concept of feedback in such

a way that it can enhance the recovery process in the pres-

ence of quirks.

8 Conclusion

There is a commonality in the user’s handling of errors,

breakdowns and interruptions. In the case of error, the user

has to understand the cause of the error and understand how

to recover from it. In the case of breakdowns, the user needs

to understand what caused the breakdown and what, if any,

action should be taken to recover. In the case of interrup-

tions, the user attempting to resume context must correctly

perceive the state of the application in order to take up their

task at the point of interruption.

We can conclude that feedback which enhances the

user’s comprehension of the application state, and the

events that led to that state, is a valuable tool in ensuring

that users are able to handle quirks easily. Furthermore, this

will comprise a judicious mixture of immediate and archival

feedback.

The development of the HERCULE prototype is just a

first step to providing software which is usable after unan-

ticipated events during application use. The techniques of

monitoring user actions, system responses and the relation-

ship between them should prove a fruitful method of ad-

vancing the usability of software under modern conditions.

Acknowledgements

The authors thank Phil Gray and Francis Jambon for

their contributions towards this work. The authors are grate-

ful to the referees of this paper for their very helpful com-

ments.

Proceedings of the Second International Workshop on User Interfaces to Data Intensive Systems (UIDIS ’01)

0-7695-0834-0/01 $10.00 © 2001 IEEE

References

[1] G. D. Abowd and A. J. Dix. Giving Undo Attention. Inter-

acting with Computers, 4(3):317–342, 1992.

[2] C. Brod. Technostress. Addison-Wesley, Reading, Mass,

1984.

[3] F. C. Brodbeck, D. Zapf, J. Prümper, and M. Frese. Er-

ror handling in office work with computers: A field study.

Journal of Occupational and Organizational Psychology,

66:303–317, 1993.

[4] J. M. Carroll, editor. Interfacing Thought: Cognitive Aspects

of Human-Computer Interaction. MIT Press, Cambridge,

MA, 1987.

[5] E. Cutrell, M. Czerwinski, and E. Horvitz. Notification, dis-

ruption and memory: Effects of messaging interruptions on

memory and performance. In INTERACT 2001. Eighth IFIP

TC.13 Conference on Human-Computer Interaction. 9–13

July, Tokyo, Japan, 2001. To appear.

[6] A. Cypher. The structure of users’ activities. In D. A.

Norman and S. W. Draper, editors, [27], chapter 12, pages

243–264. Lawrence Erlbaum Associates, Publishers, Hill-

dale, New Jersey, 1986.

[7] M. Czerwinski, E. Cutrell, and E. Horvitz. Instant messag-

ing and interruption : Influence of task on performance. In

OZCHI 2000. Interfacing Reality in the New Millennium.

December 4 - 8, Univ. of Technology Sydney, Sydney, Aus-

tralia, 2000.

[8] A. Dix, D. Ramduny, and J. Wilkinson. Interaction in the

Large. Interacting with Computers, 11(1):9–32, 1998.

[9] S. Draper. Display managers as the basis for user-machine

communication. In D. A. Norman and S. W. Draper, edi-

tors, [27], chapter 16, pages 339–352. Lawrence Erlbaum

Associates, Publishers, Hilldale, New Jersey, 1986.

[10] M. Eldridge and W. Newman. Agenda Benders: Modelling

the Disruptions Caused by Technology Failures in the Work-

place. In Proceedings of ACM CHI 96 Conference on Hu-

man Factors in Computing Systems, volume 2 of SHORT

PAPERS: Models of Work Practice (Short Papers Suite),

pages 219–220, 1996.

[11] B. Fogg and C. Nass. How Users Reciprocate to Comput-

ers: An Experiment that Demonstrates Behavior Change. In

Proceedings of ACM CHI 97 Conference on Human Fac-

tors in Computing Systems, volume 2 of SHORT TALKS: A

Melange, pages 331–332, 1997.

[12] M. M. Gardiner and B. Christie, editors. Applying Cogni-

tive Psychology to User Interface Design, Chichester, 1987.

John Wiley & Sons.

[13] D. Gopher, Y. Greenshpan, and L. Armony. Switching at-

tention between tasks: Exploration of the components of

executive control and their development with training. In

Proceedings of the 40th Annual Meeting of the Human Fac-

tors and Ergonomics Society, Santa Monica. 2-6 September,

1996.

[14] N. Hammond. Principles from the psychology of skill ac-

quisition. In [12], chapter 6, pages 163–188. John Wiley &

Sons, 1987.

[15] W. Hürsch and C. V. Lopes. Separation of Concerns.

Technical Report NU-CCS-95-03, College of Computer

Science, Northeastern University, Boston, Massachusetts,

Feb.24 1995.

[16] F. Jambon. Erreurs et interruptions du point de vue de

l’ingénierie de l’interaction homme-machine. Phd thesis,

Université Joseph Fourier, 1996.

[17] F. Jambon. Personal communication, May 2000.

[18] G. Johansson and G. Aronsson. Stress reactions in com-

puterized administrative work. Journal of Occupational Be-

haviour, 5:159–181, 1984.

[19] C. Lewis and D. A. Norman. Designing for Error. In D. A.

Norman and S. W. Draper, editors, User Centred System

Design. New Perspectives on Human-Computer Interaction,

chapter 20, pages 411–432. Lawrence Erlbaum Associates,

Publishers, Hilldale, New Jersey, 1986.

[20] K. Lindstrom. Breakdowns and other interruptions in VDT

work as a source of stress in customer service and bank-

ing. In Proceedings of the Fourth International Conference

on Human-Computer Interaction, volume 1 of Congress

I: Work with Terminals: HEALTH ASPECTS: WORK-

LOAD, STRESS AND STRAIN AND IRREGULAR WORK-

ING HOURS; Causes and Measures of Stress, pages 185–

189, 1991.

[21] S. Microsystems. Java foundation classes. Web Document,

1 November 2000. http://java.sun.com/products/jfc.

[22] Y. Miyata and D. A. Norman. Psychological issues in sup-

port of multiple activities. In D. A. Norman and S. W.

Draper, editors, [27], chapter 13, pages 171–186. Lawrence

Erlbaum Associates, Publishers, Hilldale, New Jersey, 1986.

[23] S. Mullender. Distributed Systems. Addison Wesley, Wok-

ingham, second edition, 1993.

[24] J. Nielsen. Usability Engineering. AP Professional, Boston,

1993.

[25] D. Norman. Cognitive engineering. In D. A. Norman

and S. W. Draper, editors, [27], chapter 3, pages 31–62.

Lawrence Erlbaum Associates, Publishers, Hilldale, New

Jersey, 1986.

[26] D. A. Norman. The design of everyday things. MIT Press,

London, England, 98.

[27] D. A. Norman and S. W. Draper, editors. User Centred Sys-

tem Design. New Perspectives on Human-Computer Inter-

action. Lawrence Erlbaum Associates, Publishers, Hilldale,

New Jersey, 1986.

[28] B. O’Conaill and D. Frohlich. Timespace in the workplace:

Dealing with interruptions. In Proceedings of ACM CHI’95

Conference on Human Factors in Computing Systems, vol-

ume 2 of Short Papers: Workplaces and Classrooms, pages

262–263, 1995.

[29] J. R. Olsen. Cognitive Analysis of People’s Use of Software.

In [4], chapter 10, pages 260–293. MIT Press, 1987.

[30] D. E. Perry, N. A. Staudenmeyer, and L. G. Votta. People,

Organizations, and Process Improvement: Two experiments

to discover how developers spend their time. IEEE Software,

11(4):36–45, July 1994.

[31] J. Reason. Human Error. Cambridge University Press, 1990.

[32] K. Renaud and R. Cooper. Feedback in human-computer

interaction - characteristics and recommendations. South

African Computing Journal, (26), 2000.

Proceedings of the Second International Workshop on User Interfaces to Data Intensive Systems (UIDIS ’01)

0-7695-0834-0/01 $10.00 © 2001 IEEE

[33] K. V. Renaud. HERCULE: Non-invasively Tracking Java

Component-Based Application Activity. In 14th European

Conference on Object-Oriented Programming. ECOOP

2000., Sophia Antipolis and Cannes, France., 12 – 16 June

2000.

[34] A. Rizzo, O. Parlangeli, E. Marchigiani, and S. Bagnara.

The management of human errors in user-centered design.

ACM SIGCHI Bulletin, 28(3):114–119, 1996.

[35] M. Rouncefield, J. A. Hughes, T. Rodden, and S. Viller.

Working with “Constant Interruption”: CSCW and the

Small Office. In Proceedings of CSCW ’94, pages 275–86,

Chapel Hill, North Carolina, October 22–26 1994.

[36] G. Salvendy and M. J. Smith, editors. Advances in Human

Factors/Ergonomics. Proceedings of the Fifth International

Conference on Human-Computer Interaction, (HCI Interna-

tional ’93), Orlando, Florida, August 8-13 1993. Elsevier,

Amsterdam.

[37] B. Shneiderman. Designing the User Interface. Addison-

Wesley, Reading, Massachusetts, 1998.

[38] H. A. Simon. The Sciences of the Artificial. The M.I.T Press,

Cambridge, Massachusetts, 1969.

[39] C. Speier, J. S. Valacich, and I. Vessey. The Effects of Task

Interruption and Information Presentation on individual de-

cision making. In Proceedings of the 18th International

Conference on Information Systems, pages 21–26, Atlanta,

GA, USA, December 14-17 1997.

[40] R. van Solingen, E. Berghout, and F. van Latum. Inter-

rupts: Just a Minute Never Is. IEEE Software, 15(5):97–103,

September/October 1998.

[41] Y. Waern. Cognitive Aspects of Computer Supported Tasks.

John Wiley & Sons, Chichester, 1989.

[42] W. Walker and H. G. Cragon. Interrupt Processing in Con-

current Processors. Computer, 28(6):36–46, June 1995.

[43] C. Yang and P. Carayon. Effects of computer system perfor-

mance and job support on stress among office workers. In

[36], 1993. volume I.

[44] D. Zakay. The influence of computerized feedback on over-

confidence in knowledge. Behaviour & Information Tech-

nology, 11(6):329–33, 1992.

[45] D. Zapf, F. C. Brodbeck, M. Frese, H. Peters, and

J. Prümper. Errors in working with office computers: A first

validation of a taxonomy for observed errors in a field set-

ting. International Journal of Human-Computer Interaction,

4(4):311–339, 1992.

Proceedings of the Second International Workshop on User Interfaces to Data Intensive Systems (UIDIS ’01)

0-7695-0834-0/01 $10.00 © 2001 IEEE

