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Considering temporal variations of spatial visual

distortions in video quality assessment
*Alexandre Ninassi, Olivier Le Meur, Patrick Le Callet, and Dominique Barba

Abstract—The temporal distortions such as flickering, jerki-
ness and mosquito noise play a fundamental part in video quality
assessment. A temporal distortion is commonly defined as the
temporal evolution, or fluctuation, of the spatial distortion on
a particular area which corresponds to the image of a specific
object in the scene. Perception along time of a spatial distortion
can be largely modified by its temporal changes, such as increase
or decrease of the distortions, or as periodic changes of the
distortions. In this work, we have chosen to design a perceptual
full reference video quality assessment metric by focusing on the
temporal evolutions of the spatial distortions. As the perception
of the temporal distortions is closely link to the visual attention
mechanisms, we have chosen to first evaluate the temporal distor-
tion at the eye fixation level. In this short-term temporal pooling,
the video sequence is divided into spatio-temporal segments in
which the spatio-temporal distortions are evaluated resulting in
spatio-temporal distortion maps. Afterwards, the global quality
score of the whole video sequence is obtained by the long-term
temporal pooling in which the spatio-temporal maps are spatially
and temporally pooled. Consistent improvement over existing
video quality assessments methods is observed. Our validation
has been realized with a dataset build from video sequences of
various contents.

Index Terms—Video quality assessment, temporal distortions,
temporal pooling, spatio-temporal tube, visual fixation.

I. INTRODUCTION

The purpose of an objective image or video quality evalua-

tion is to automatically assess the quality of images or video

in agreement with human quality judgments. Over the past

few decades, image and video quality assessment has been

extensively studied and many different objective criteria have

been built. Video quality metric may be classified into Full

Reference metrics (FR), Reduced Reference metrics (RR), and

No Reference (NR). This paper is dedicated to the design

of a FR video quality metric, for which the original video
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and the distorted video are both required. One obvious way

to implement video quality metrics is to apply a still image

quality assessment metric on a frame-by-frame basis. The

quality of each frame is evaluated independently, and the

global quality of the video sequence can be obtained by a

simple time average, or with a Minkowski summation of per-

frame quality. However, a more sophisticated approach would

model the temporal aspects of the Human Visual System

(HVS) in the design of a quality metric. A number of methods

have been proposed to extend the HVS features towards the

temporal dimension and motion [1]–[5].

In the scope of the error sensitivity-based approaches, Van

den Branden Lambrecht et al. [2], [4] has extended the HVS

modelling into the time dimension by modelling the temporal

dimension of the Contrast Sensitivity Function (CSF), and

by generating two visual streams tuned to different temporal

aspects of the stimulus from the output of each spatial chan-

nel. The two streams model the transient and the sustained

temporal mechanisms of the HVS respectively, which play an

important role in other metrics such as in [1], or in [5] where

only sustained temporal mechanism is taken into account. But,

in these metrics, the temporal variations of the errors are not

considered.

The approach of Wang et al. [6]–[8] was different. Rather

than assessing the error in term of visibility Wang et al. used

structural distortion [6] as an estimate of perceived visual

distortion. This approach had been extended to the temporal

dimension by using motion information in a more [7] or

less [8] sophisticated way. In [8], Wang et al. proposed an

heuristic weighting model which take into account the fact that

the accuracy of the visual perception is significantly reduced

when the speed of the motion is large. In [7], the errors are

weighted by the perceptual uncertainty based on the motion

information, which is computed from a model of human visual

speed perception [9]. However, these metrics do not take into

account the temporal variations of the errors.

Another approach is the one from the National Telecommu-

nications and Information Administration (NTIA), which has

developed a Video Quality Model (VQM) [10] adopted by the

ANSI as a U.S. national standard [11], and as international

ITU Recommendations [12], [13]. NTIA’s research has fo-

cused on developing technology independent parameters that

model how people perceive video quality. These parameters

have been combined using linear models. The General Model

contains seven independent parameters. Four parameters are

based on features extracted from spatial gradients of the Y

luminance component. Two parameters are based on features

extracted from the vector formed by the two (CB , CR)
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Fig. 1. Block diagram of the proposed video quality assessment system.

chrominance components. One parameter is based on the

product of features that measure contrast and motion, both of

which are extracted from the Y luminance component. This

last parameter deals with the fact that perception of spatial

impairments can be influenced by the amount of motion, but

once again the temporal variations of spatial impairments are

not considered.

The effects of the introduction of the temporal dimension

in a quality assessment context can be addressed in a different

way. A major consequence of the temporal dimension is the

introduction of temporal effects in the distortions such as

flickering, jerkiness and mosquito noise. Broadly speaking, a

temporal distortion can be defined as the temporal evolution, or

fluctuation, of the spatial distortion on a particular area which

corresponds to the image of a specific object in the scene.

Perception along time of a spatial distortion can be largely

modified (enhanced or lessened) by its temporal changes.

The time frequency and the speed of the spatial distortion

variations, for instance, can significantly influence the human

perception. The temporal variations of the distortions has

been study in the scope of continuous quality evaluation

[14], [15], where objective quality metrics try to mimic the

temporally varying subjective quality of video sequences as

recorded by subjective continuous evaluation such as Single

Stimulus Continuous Quality Evaluation (SSCQE). In [15], the

existence of both a short-term and a long-term mechanisms

in the temporal pooling of the distortions is introduced. The

short-term mechanisms is a smoothing step of per-frame

quality scores, and the long-term mechanisms is addressed by

a recursive process on the smoothed per-frame quality scores.

This process includes perceptual saturation and asymmetrical

behavior.

In this work, we have chosen to address the effects of

the introduction of the temporal dimension by focusing on

the temporal evolutions of the spatial distortions. Then, the

question is how does a human observer perceive a temporal

distortion?

The perception of the temporal distortions is closely link

to the visual attention mechanisms. HVS is intrinsically a

limited system. The visual inspection of the visual field is

performed through many visual attention mechanisms. The eye

movements can be mainly decompose into three types [16]:

saccades, fixations and smooth pursuits. Saccades are very

rapid eye movements allowing human to explore the visual

field. Fixation is a residual movement of the eye when the

gaze is fixed on a particular area of the visual field. Pursuit

movement is the ability of the eyes to smoothly track the image

of a moving object. Saccades allow human to mobilize the

visual sensory resources (i.e. all parts of the HVS dedicated

to processing of the visual signal coming from the central

part of the retina: the fovea) on the different parts of a scene.

Between two saccade periods a fixation (or smooth pursuit)

occurs. When a human observer assesses a video sequence,

different spatio-temporal segments of the video sequence are

successively assessed. These segments are spatially limited by

the area of the sequence projected on both the fovea and the

perifovea. Even if the perifovea plays a role in the perception

of the temporal distortion, we have chosen to simplify the

problem by using a foveal model. Motion information is

essential to perform the temporal distortions evaluation of a

moving object, because the eye movement is very likely a

pursuit in this situation. In that case, the evaluation of the

temporal distortions must be done according to the apparent

movement of this object. Furthermore, these segments are

temporally limited by the fixation duration, or by the smooth

pursuit duration. The perception of a temporal distortion

likely happens during a fixation, or during a smooth pursuit.

The fixation duration being shorter than the smooth pursuit

duration, the temporal distortions must be evaluated first at

the eye fixation level. This short-term evaluation constitutes

the first stage of our approach. This stage then is completed

by a long-term evaluation in which the global quality of the

whole sequence is evaluated from the quality perceived over

each fixation.

In this paper, a objective video quality assessment method

is proposed. The spatio-temporal distortions are evaluated
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(d) (e) (f)

Fig. 2. Examples of WQA perceptual distortion maps: (a) and (d) are original Mandrill and Plane respectively; (b) is JPEG compressed Mandrill image; (c)
is WQA perceptual distortion map of JPEG compressed Mandrill image; (e) is JPEG2000 compressed Plane image; (f) is WQA perceptual distortion map of
JPEG2000 compressed Plane image. In (c) and (f), brightness indicates the magnitude of the perceptual distortion (black means no perceptual distortion).

through a temporal analysis of spatial perceptual distortion

maps. The spatial perceptual distortion maps are computed for

each frame with a wavelet based quality assessment (WQA)

metric developed in a previous study [17]. This paper is

decomposed as follows. In section II, the new video quality

assessment metric (VQA) is presented. In order to investigate

its efficiency, the VQA metric is compared with subjective

ratings and two state-of-the-art metrics (VSSIM [8], VQM

[10]) in section III. Finally conclusions are drawn.

II. VIDEO QUALITY ASSESSMENT METHOD

In the proposed video quality assessment system, the tem-

poral evolution of the spatial distortions is locally evaluated,

at short-term, through the mechanisms of the visual attention.

The mechanisms of the visual attention indicate that the HVS

integrates most of the visual information at the scale of the

fixations [16]. So, the spatio-temporal distortions are locally

observed and measured for each possible fixation. It does not

make sense to evaluate the distortion variations on a period

longer than the fixation duration, because it does not happen

in the reality. The duration of 400 ms is chosen in accordance

to the average duration of the visual fixation. This is the most

simple and straightforward solution. A better solution, but

much more complex, would be to adjust this value depending

on the local spatial and temporal properties. A rather simple

content, such as flat areas, probably requires less attentional

resources than a more complex area [18]. Moreover, a smooth

pursuit movement can be longer than a fixation duration. The

complexity as well as the validation of such a solution still

remains an issue.

Since the variations of the spatial distortions are evaluated

locally according to where humans gaze, a special attention

must be paid to the moving objects. In the case of a moving

object, the quality of its rendering cannot be evaluated if

it is not well stabilized on the fovea, which means that

eye movement is a pursuit. Consequently, the evaluation of

the temporal distortions must take into account the motion

information, and the locality of evaluation must be motion

compensated. These spatio-temporal segments of the sequence,

evaluated by human observer during fixations, can be roughly

linked to spatio-temporal distortion tubes (cf. section II-B1).

These structures contain the spatial distortion variations for

each possible fixation.

The description of the proposed method is divided into three

subsections. The general architecture of the proposed metric

is presented in section II-A. Section II-B is devoted to the

evaluation of the spatio-temporal distortions at the eye fixation

level. Finally, the evaluation of the temporal distortion on the

whole video sequence is described in section II-C.

A. General architecture

The proposed video quality assessment system is composed

of four steps as shown in Fig. 1. In the first step, numbered 1
in Fig. 1, for each frame t of the video sequence, a spatial

perceptual distortion map V Et,x,y is computed. Each site

(x, y) of this map encodes the degree of distortion that is



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, *A. NINASSI, O. LE MEUR, P. LECALLET AND D. BARBA, LATEX 4

perceived at the same site (x, y) between the original and

the distorted frame. In this first step, there is no temporal

consideration. In this work, the spatial perceptual distortion

maps are obtained through the WQA metric developed in our

previous work [17]. The WQA metric is a still image quality

metric, which is based on a multi-channel model of HVS. HVS

model of the low-level perception used in this metric includes

subband decomposition, spatial frequency sensitivity, contrast

masking and semi-local masking. The subband decomposition

is based on a spatial frequency dependent wavelet transform.

The spatial frequency sensitivity of the HVS is simulated

by a wavelet CSF derived from Daly’s CSF [19]. Masking

effects include both contrast masking and semi-local masking.

Semi-local masking allows to consider the modification of

the visibility threshold due to the semi-local complexity of

an image. The objective quality scores computed with this

metric are well correlated with subjective scores [17]. The

WQA distortion maps of a JPEG compressed image, and of a

JPEG2000 compressed image, are shown in Fig. 2.

The second step, numbered 2 in Fig. 1, performs the motion

estimation, in which the local motion between two frames

are estimated, as well as the dominant motion. This step

is achieved with the use of a classical Hierarchical Motion

Estimator (HME). The local motion is a block-based motion

estimation (block 8× 8). The motion estimated is expected to

be as close as possible to the real apparent movement. Local

motion and dominant motion is used to construct the spatio-

temporal structure (spatio-temporal tube) in which the spatio-

temporal distortions are evaluated. The local motion is used

to track a moving object in the past, and the dominant motion

is used to determine the temporal horizon on which the object

can be tracked (appearance or disappearance of the object).

Local motion
−→
V local at each site (x, y) of an image (or the mo-

tion vector) is produced by a hierarchical block matching. It is

computed through a series of levels (different resolution), each

providing input for the next. Dominant motion corresponds the

motion of the camera. To estimate the global transformation

that two successive images undergo, the dominant motion

or the global transformation is estimated from the previous

estimated local motion. The displacement
−→
V Θ(x, y), at site

(x, y) related to a motion model parametrized by Θ is given

by a 2D affine motion model:

−→
V Θ(s) =

(

a1 + a2x + a3y
a4 + a5x + a6y

)

, (1)

where Θ = [a1, a2, a3, a4, a5, a6] represents the 2D affine

parameters of the model. The affine parameters are computed

with a popular robust technique based on the M-estimators

[20].

Temporal evaluation of the quality is performed through

steps 3 and 4. Step 3 realizes the short-term evaluation of the

temporal distortions, in which the spatio-temporal perceptual

distortion maps VEt,k,l are computed from the spatial dis-

tortion maps and the motion information. For each frame of

the video sequence, a temporal perceptual distortion map is

computed. Each site (k, l) of this map encodes the degree

of distortion that is perceived between the block (k, l) of

the original frame and the block (k, l) of the distorted frame
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Fig. 3. Block diagram of the Spatio-temporal Perceptual Distortion Evalua-
tion.

including temporal considerations (temporal distortions, etc.).

The time scale of this evaluation is the one of the human eye

fixation [21] (around 400ms). This step is accurately described

in section II-B. Step 4 performs the long-term evaluation of the

temporal distortions, in which the quality score for the whole

video sequence is computed from the temporal perceptual

distortion maps. Section II-C will describe this last part.

B. Spatio-temporal distortion evaluation at the eye fixation

level

Spatio-temporal distortion evaluation is a complex problem.

The purpose of this step is to perform the short-term evaluation

of the temporal distortions at the eye fixation level. The

video sequence must be divided into spatio-temporal segments

corresponding to each possible fixation. It means that a fixation

can start at every time t, and every site (x, y) of the sequence.

At the eye fixation level, the temporal distortions evaluation

depends both on the mean distortion level, and on the temporal

variations of distortions. The temporal variations of distortions

have to be smoothed to obtain the mean distortion level

that is perceptible during fixation. The insignificant temporal

variations of distortions have to be discard, and only the most

perceptually important temporal variations of distortions have

to be taken into account. Fig. 3 gives the main components

involved in this evaluation. The first component (3.1) is dedi-

cated to the creation of the spatio-temporal structures required

to analyze the variation of the distortion during a fixation, i.e.
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the spatio-temporal tubes. The process is then separated into

two parallel branches. The purpose of the first branch is to

evaluate a mean distortion level during the visual fixation. The

aim of the second branch is to evaluate the distortion variations

occurring during a fixation, and at which humans are the most

sensitive. Next, these two branches are merged resulting in the

spatio-temporal distortion maps.

1) Spatio-temporal tube creation: In step 3.1, the Spatio-

temporal Distortion Tubes are created. The aim of this step

is to divided the video sequence into the spatial-temporal

segments corresponding to each possible fixation. A spatio-

temporal distortion tube is computed for each block of a

frame t. A spatio-temporal distortion tube is a spatio-temporal

structure containing the past of a block in terms of spatial

distortion (cf. Fig. 4). It means that this structure contains the

different distortion values of this block for each past frame

over a specific temporal horizon. The motion vectors MVt,k,l

are used to find the different position of a block (k, l) in

the past frames of its temporal horizon. The positions of the

past blocks are then motion compensated in order to have

its real trajectory. The temporal horizon is limited to 400ms,

and can be shortered if the object inside the block appears or

disappears in the image of the scene. To detect appearance

or disappearance of an object, each block is classified by

comparing its motion with the parametric representation of

the dominant motion: each block is either inlier or outlier

to the dominant motion. A modification of the classification

(inlier/outlier) of a block between two consecutive frames

means appearance or disappearance of the object it belongs

to, and so indicates the limit of the temporal horizon of this

block.

2) Temporal filtering of the spatial distortion in the tube:

Step 3.2 realizes the Temporal Filtering of Spatial Distortions.

The goal of this step is to obtain a mean distortion level

over the fixation duration. The large temporal variations of

distortions are the most annoying for observers, and their

contribution should be more important than limited temporal

variations of distortions. The spatial distortions are then tem-

porally filtered in each tube of a frame t. The temporal filter is

a recursive filter. The characteristics of the filter are modified

according to the importance of the temporal variations of

distortions. The contribution of the large temporal variations

of the distortions is increased compare to the contribution of

the limited temporal variations of distortions. Time constant

of this filter changes depending on the value of the corre-

sponding distortion gradient value (cf. step 3.4). Time constant

α1 = 200ms is used if the absolute value of the distortion

gradient value is greater than µ, otherwise α2 = 400ms is

used. The output of this step is the map VE
tube

t,k,l where each

block (k, l) is the result of the temporal filtering of the spatial

distortions in each tube finishing at frame t.

3) Temporal distortion evaluation in the tube: The purpose

of step 3.3 is to evaluate the temporal variation of distortions.

The temporal gradients of the spatial distortions in the tubes

are computed, in order to evaluate the most perceptually

important temporal variations of distortions during fixations. In

a tube, the distortion gradient ∇VEtube
ti,k,l at time ti is computed

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

Number of sign changes

fs

Fig. 5. Plot of the fs response. The function reaches his maximum around
one sign change of the distortion gradients per fixation.

as follows:

∇VEtube
ti,k,l =

δVEtube
ti,k,l

δt

∣

∣

∣

∣

δt = ti − ti−1

ti ∈ TemporalHorizon
, (2)

where VEtube
ti,k,l is the distortion value at instant ti.

The limited temporal variations of distortions which are

probably not annoying must not be taken into account. The

aim of step 3.4 is to delete them. In this step, a thresholding

operation is performed on the absolute value of the gradient

values. The purpose is to reduce the weight of the limited

temporal variations of distortions (below µ) compare to large

temporal variations of distortions (above µ). If the absolute

value of the gradient is lower than µ the gradient value

becomes 0. This thresholding operation is also used to manage

the temporal filtering of the step 3.2, as described in the

previous section.

The characteristics of temporal distortions, such as time

frequency and amplitude of the variations, impact the percep-

tion. The purpose of step 3.5 is to evaluate the perceptual

impact of temporal distortions according to the characteristics

of the temporal variations of distortions. In this step, the

temporal filtering of distortion gradient is realized, in which

the distortion gradients are temporally filtered in each tube

of a frame t. This temporal filtering operation is achieved by

counting the number of sign changes of the distortion gradi-

ents nStube
t,k,l along the tube duration. The maximal distortion

gradient Max∇VEtube
t,k,l is computed, and used as maximal

response of the filter. The temporal filtering result is obtained

by:

VĔtube
t,k,l = Max∇VEtube

t,k,l · fs(nStube
t,k,l ) , (3)

where fs is the response of the filter depending on the number

of sign changes:

fs(n) =
gs

σs

√
2π

· e
−

(n−µs)2

2σ2
s , (4)

The response of the function fs(n) is given Fig. 5. Function

fs(n) gives more importance to temporal distortion at medium

frequencies than at low or high frequencies. The HVS is the
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Fig. 4. Spatio-temporal tube illustration. The past trajectory of a block of the frame It is reconstituted by using the past motion vectors of this block.

most sensitive to temporal variations around 2cy/s, which

correspond to about one sign change by fixation duration. The

output of this step is the map VĔtube
t,k,l where each block (k, l)

is the result of the temporal filtering of the distortion gradient

in each tube finishing at frame t.

The results coming from the two branches are then mixed

together in step 3.6. This step performs the Fixation Pooling,

in which the map VEt,k,l and the map VĔt,k,l are merged

in order to obtain the final spatio-temporal distortion map

VEt,k,l. If there is no temporal variations of distortions in the

video sequence the final map VEt,k,l is equal to the VEt,k,l

map. But when temporal variations of distortions occurred,

the VEt,k,l map are consolidated by the temporal variation

evaluation of the map VĔt,k,l. This map is computed according

to the following relation:

VEt,k,l = VEt,k,l · (1 + β · VĔt,k,l) , (5)

where value of parameter β is empirically deduced from

experiments on synthetic sequences. These experiments aimed

at obtaining relevant spatio-temporal distortion maps from

synthetic sequences with synthetic distortions. It was achieved

by setting the value β at 3.

Until now, the impact of the temporal distortions has been

evaluated at the fixation level, resulting in the final spatio-

temporal distortion maps VEt,k,l. However, a human observer

scores a video sequence using the impairments he perceived

during the whole sequence. This is the issue addressed by the

next section.

C. Temporal distortion evaluation on the whole video se-

quence

The long-term temporal pooling is the final stage that

allows to construct the global objective quality score of a

video sequence. The global objective quality score depends

both on the mean distortion level over the whole sequence,

and on the temporal variations of distortions over the whole

sequence. The temporal variations of the distortions along a

video sequence play an important part in the global score, and

a mean distortion level on the whole sequence is not sufficient

to evaluate the quality of the video. The evaluation process of
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Fig. 6. Block diagram of the long-term temporal pooling.

a human observer could be sum up by the following sentence

quick to criticize and slow to forgive. So, the overall temporal

distortions evaluation of the whole video sequence is divided

in two steps as shown in Fig. 6.

1) Spatial pooling: The purpose of the step 4.1 is to obtain

a perceptual distortion score for each frame. A per-frame

perceptual distortion score Dt is computed from the spatio-

temporal distortion map of each frame through a classical

Minkowski summation:

Dt =

(

1

K · L

K
∑

k=1

L
∑

l=1

(

VEt,k,l

)βs

)
1

βs

, (6)

where K and L are the height and the width of the spatio-

temporal distortion maps respectively (i.e. the vertical and the

horizontal number of blocks in the original frame), and βs is

the Minkowski exponent (βs = 2).

2) Temporal pooling: The global objective perceptual dis-

tortion score, called D, depends both on the average of

distortion level over the whole sequence, and on the tem-

poral variations of distortions over the whole sequence. The

perceptual distortion is increase by the temporal variations of

distortions over the whole sequence. The proposed temporal

pooling contains two main elements: perceptual saturation and

asymmetric behavior. There are limitations in viewer’s ability

to observe any further changes in the frame quality after it
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exceeds certain thresholds, either toward better or worse qual-

ity [14]. This is what we called the perceptual saturation. The

asymmetrical behavior is the fact that humans are better able to

remember unpleasant experiences than pleasant moments, and

also experience with great intensity of feelings from disliked

situations compared to favorable situations [14].

The global perceptual distortion score D of a video is

computed from every per-frame perceptual distortion scores

Dt, as the sum (D = D̄+∆D) of the time average of distortion

D̄, and a term representing the variation of distortions along

the sequence ∆D. But to limit the influence of too high

distortion variations, D is computed with a saturation effect

as follows:

D =

{

D̄ + ∆D for ∆D < λ1 · D̄
D̄ + λ1 · D̄ for ∆D ≥ λ1 · D̄

. (7)

The global distortion score D increases linearly with the tem-

poral variation until a saturation threshold value proportional

to D̄. The term ∆D favours the most important variations of

distortions, and is computed as follows:

∆D = λ2 · avgn %(abs(∇′Dt)) , (8)

where ∇′Dt is the temporal gradient of the per-frame dis-

tortion values Dt after the asymmetrical transformation of

the gradient values, abs(X) is the absolute value of X , and

avgn %(X) is the average of X values above the nth percentile

of X. The asymmetrical transformation of the gradient values

is computed as follows:

∇′Dt =

{

λ3 · ∇Dt for ∇Dt < 0
∇Dt for ∇Dt ≥ 0

∣

∣

∣

∣

λ3 ≤ 1, (9)

where value of λ3 controls the asymmetrical behavior. If λ3 <
1, more weight is given to the distortion increases than to

distortion decreases.

Finally, the global quality score VQA is computed from per-

ceptual distortion score D by using a psychometric function,

as recommended by the Video Quality Expert Group (VQEG)

[22]:

VQA =
b1′

1 + e−b2′
·(D−b3′)

, (10)

where b1′, b2′ and b3′ are the three parameters of the psy-

chometric function. These psychometric function is also used

to compared VQA, with state-of-the-art metrics (cf. section

III-C).

III. EXPERIMENTATION

A. Video database

1) Participants: Thirty six compensated participants are

asked to assign each sequence with a quality score, indicating

the extent to which the artifacts were more or less annoying.

Prior to the test, subjects were screened for visual acuity by

using a Monoyer optometric table. Besides, test for normal

color vision were performed using Ishihara’s tables. So, all

observers had normal or corrected to normal visual acuity

(Monoyer test), and normal color perception (Ichihara test).

All were inexperienced observers (not familiar with video

processing) and naive to the experiment.

2) Method: The standardized method DSIS (Double Stimu-

lus Impairment Scale) is used to determine the Mean Opinion

Score (MOS). In DSIS, each observer views an unimpaired

reference video sequence followed by its impaired version,

each lasting 8s. Experiments were conducted in normalized

viewing conditions [23]. The scale used to score the distortion

level is composed of 5 distortion grades:

• imperceptible (MOS=5);

• not annoying (MOS=4);

• slightly annoying (MOS=3);

• annoying (MOS=2);

• very annoying (MOS=1).

3) Stimuli: The video database is build from ten unimpaired

video sequences of various contents as illustrated in Fig. 7.

The spatial resolution of video sequence is 720x480 with a

frequency of 50Hz in a progressive scan mode. Each clip lasts

8s. They were displayed at a viewing distance of four times the

height of the picture (66 cm). These video sequences have been

degraded by using a H.264/AVC compression scheme at five

different bitrates, resulting in fifty impaired video sequences.

The five different bitrates were chosen in order to generate

degradations all over the distortion scale (from imperceptible

to very annoying).

The impairments produced by the encoding are evidently

neither spatially nor temporally uniform, and therefore depend

on each video content. Fig. 8a illustrates the temporal varia-

tions of the quality through the scores given by the WQA

metric (cf. Section II). This example indicates that the quality

of the sequences varies from frame to frame, which is a clue

on the presence of temporal distortions.

B. Video quality metrics tested

Several quality assessment metrics have been compared with

subjective scores (MOS):

• The proposed video quality metric VQA (achromatic

version),

• The usual PSNR (achromatic version). The PSNR global

score is the temporal average of the per-frame PSNR.

• VSSIM developed by Wang et al. [8]. We used all the

parameters described in [8], except for the normalization

factor KM of the frame motion level which has been

adapted to our frame rate.

• VQM developed by NTIA [10]. Among the different

models of VQM, we have chosen to use the General

Model which is considered to be the most accurate.

The General Model is known as metric H in the Video

Quality Experts Group (VQEG) Phase II Full Reference

Television (FR-TV) tests [24].

In order to evaluate the different steps of the VQA metric

two alternative video perceptual distortion scores (VQA1,

VQA2) are computed in addition to the global quality score.

The first intermediate video perceptual distortion score is a

purely spatial quality score called VQA1; It is computed from

the spatial distortion maps of the still image metric WQA [17]

as follows:

VQA1 =
1

T

T
∑

t=1

dt , (11)
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Examples of video sequences from the database. (a) MobCal, (b) InToTree, (c) ParkJoy, (d) DucksTakeOff, (e) CrowdRun, and (f) ParkRun.
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Fig. 8. Temporal evolution of the per-frame distortion score dt (a), and the per-frame distortion score Dt (b) for the three impaired sequences of the database:
Hockey (MOS=1.4), PrincessRun (MOS=2.6) and MobCal (MOS=1.3). The horizontal scale is the frame number, and the vertical scale is a distortion scale,
which goes from 0 (best quality) to 0.5 (worst quality).

where T is the total number of frames and dt is a frame score

computed as follows:

dt =

(

1

K · L

K
∑

k=1

L
∑

l=1

(

VEt,k,l

)βs

)
1

βs

, (12)

where VEt,k,l are the spatial distortion maps computed with

WQA [17], K and L are the height and the width of the

spatial distortion maps, respectively, and βs is the Minkowski

exponent.

In the second intermediate quality score called VQA2

the fixation temporal pooling is disabled, which means that

perceptual distortion score is computed from the long-term

temporal pooling (Eq. 7) where Dt is replaced by dt. Dt is the

spatio-temporal per-frame distortion score (with the fixation

temporal pooling), whereas dt is the purely spatial per-frame

distortion score (without the fixation temporal pooling).

Comparison between VQA2 and VQA allows to evaluate

the improvement due to spatio-temporal distortion evaluation

at the eye fixation level (or short-term temporal pooling). On

the other hand, comparison between VQA1 and VQA allows

to evaluate the improvement due to temporal pooling.

C. Results

As said previously, prior to evaluate the objective image

quality measures, a psychometric function (Eq. 10) is used

to transform the different objective quality score in predicted
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MOS (MOSp), as recommended by VQEG [22]. The objective

quality metrics are evaluated using three performance indica-

tors recommended by VQEG [22]. The three performance indi-

cators are the linear correlation coefficient (CC), the Spearman

rank order correlation coefficient (SROCC) and the root-mean-

square-error (RMSE). The CC between the MOS and MOSp

scores provides an evaluation of the prediction accuracy. The

SROCC between the MOS and MOSp is considered as a

measure of prediction monotonicity.

TABLE I
PERFORMANCE COMPARISON OF QUALITY METRICS ON THE ENTIRE

DATASET IN TERMS CC, SROCC AND RMSE.

Metrics (MosP) CC SROCC RMSE

PSNR 0.516 0.523 0.982

VQM 0.854 0.898 0.597

VSSIM 0.738 0.758 0.773

VQA 0.892 0.903 0.519

VQA1 0.831 0.872 0.638

VQA2 0.834 0.863 0.633

Results, presented in Table I, are reported for the different

metrics (VSSIM, VQM and VQA) and for the two intermedi-

ate quality score (VQA1 and VQA2) of VQA. PSNR results

are provided for information and to allow readers to make

their own opinions on the image dataset. Fig. 9 shows the

scatter plots of the MOS/MOSp comparisons on the whole

database given by PSNR, VSSIM, VQM, VQA, and by the

two intermediate video quality score (VQA1 and VQA2) of

VQA. The PNSR does not lead to a good prediction of quality

as CC is only 0.516. This result gives a clue of how the quality

of the video sequences of the database is difficult to evaluate.

The proposed method provides good results compared with

the other approaches. It is important to mention that the

parameters of the proposed method (VQA) were selected

empirically, without any optimization process for the video

database (λ1=1, λ2=10, λ3=0.25, and n=95). Fig. 9 shows

that the prediction performances of the metrics depend of

the video content, and the video content does not disturb

the different metrics in the same way. For example, VQM

overestimates the quality of sequence Ducks, whereas VQA

does not overestimate it. VQA overestimates the quality of

sequences PrincessRun and Dance, and underestimates the

quality of sequence Hockey. A possible explanation lies in

the fact that the spatial distortions are also overestimated, and

underestimated respectively. Fig. 8 shows that the per-frame

distortion scores (dt and Dt) of sequence Hockey are lower

that the per-frame distortion scores of sequence PrincessRun,

whereas the MOS of sequence Hockey are lower than the MOS

of sequence PrincessRun. In these sequences, the temporal

variations of the distortions could not explain the prediction

errors of the quality. It shows that, in the proposed metric,

the evaluation of temporal distortions is dependent of a good

evaluation of the spatial distortion in the first step of the metric.

Comparison between the results from VQA1, VQA2 and

VQA shows the positive contribution of the different steps

of the proposed metric. The prediction improvement of the

quality from the purely spatial quality score (VQA1) to the

spatio-temporal quality score (VQA) is significant. For exam-

ple, ∆CC between these two configurations is +0.061. As

expected, it shows that temporal distortions play an important

part in video quality assessment. The prediction improvement

of quality between VQA2 and VQA shows the importance

of the spatio-temporal distortion evaluation at the eye fixation

level (short-term temporal pooling). This step seems funda-

mental prior to the long-term temporal pooling. One possible

explanation is the smoothing effect of the short-term temporal

distortion variations due to the fixation temporal pooling. This

effect enables a better analysis of the long-term temporal

distortion variations, by eliminating parasite temporal distor-

tion variations. This smoothing effect is illustrated Fig. 8, by

comparing the temporal variation of the per-frame distortion

scores dt (Fig. 8(a)) and Dt (Fig. 8(b)). The fixation temporal

pooling does not only improve the prediction performance of

the metric, but it also improves the relevancy of distortions

maps.

TABLE II
PERFORMANCE COMPARISON OF VQA FOR DIFFERENT VALUES OF THE

PARAMETERS λ3 AND n, IN TERMS CC, SROCC AND RMSE. THE

PARAMETERS λ1 AND λ2 ARE CHOSEN TO OPTIMIZE PREDICTION

PERFORMANCES. RESULTS ON THE ENTIRE DATASET.

λ3 nth percentile CC SROCC RMSE

0 0 0.85 0.874 0.605

0 80 0.879 0.892 0.547

0 85 0.885 0.893 0.535

0 90 0.892 0.901 0.518

0 95 0.895 0.912 0.512

0.25 0 0.851 0.874 0.601

0.25 80 0.88 0.892 0.545

0.25 85 0.885 0.893 0.533

0.25 90 0.892 0.901 0.518

0.25 95 0.895 0.912 0.511

0.5 0 0.853 0.875 0.599

0.5 80 0.877 0.89 0.551

0.5 85 0.883 0.895 0.539

0.5 90 0.89 0.901 0.522

0.5 95 0.894 0.912 0.513

0.75 0 0.854 0.878 0.597

0.75 80 0.872 0.89 0.561

0.75 85 0.876 0.893 0.552

0.75 90 0.883 0.896 0.538

0.75 95 0.892 0.91 0.519

1 0 0.854 0.877 0.596

1 80 0.867 0.883 0.571

1 85 0.87 0.886 0.565

1 90 0.875 0.89 0.554

1 95 0.887 0.908 0.53

Results, presented in Table II, are reported for VQA and

for different values of the parameters λ3 and n. In this

experiment, values of parameters λ1 and λ2 are selected to

optimize prediction performances. The parameter λ3 modifies

the asymmetrical behavior of the long-term temporal pooling.

The prediction modification of quality as function of λ3 shows



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, *A. NINASSI, O. LE MEUR, P. LECALLET AND D. BARBA, LATEX 10

that long-term temporal pooling with symmetrical behavior

(λ3=1) leads to lower results than long-term temporal pooling

with asymmetrical behavior. It is interesting to note that, to

reach the best prediction performances, asymmetrical behavior

must give, at least, twice more weight to the distortion in-

creases than to distortion decreases. Besides, the choice of the

empirical value of λ3 (λ3=0.25), seems to be a good option.

The parameter n modifies the weight given to maximal

temporal gradients of per-frame distortion values. The worst

results are obtained when all temporal gradients of per-frame

distortion values are considered (n=0). The prediction modi-

fication of the quality as function of n shows that long-term

temporal pooling takes advantage of using maximal temporal

gradients of per-frame distortion values. Even if the best

prediction performances are obtained with n=95, the results

are robust to high value of n. It is interesting to note that n=95

means that the most important distortion variations occurring

5 percent of the time are the most significants in term of

prediction performance. It strengthens the fact that distortion

variations with high dynamic range must be considered.

TABLE III
PERFORMANCE COMPARISON OF VQA2 FOR DIFFERENT VALUES OF THE

PARAMETERS λ3 AND n, IN TERMS CC, SROCC AND RMSE. THE

PARAMETERS λ1 AND λ2 ARE CHOSEN TO OPTIMIZE PREDICTION

PERFORMANCES. RESULTS ON THE ENTIRE DATASET.

λ3 nth percentile CC SROCC RMSE

0 0 0.831 0.872 0.638

0 80 0.831 0.872 0.638

0 85 0.831 0.872 0.638

0 90 0.831 0.872 0.638

0 95 0.832 0.869 0.636

0.25 0 0.831 0.872 0.638

0.25 80 0.831 0.872 0.638

0.25 85 0.831 0.868 0.638

0.25 90 0.832 0.867 0.636

0.25 95 0.834 0.863 0.633

0.5 0 0.831 0.872 0.638

0.5 80 0.831 0.868 0.638

0.5 85 0.832 0.866 0.636

0.5 90 0.833 0.87 0.634

0.5 95 0.839 0.866 0.624

0.75 0 0.831 0.872 0.638

0.75 80 0.832 0.868 0.636

0.75 85 0.833 0.867 0.635

0.75 90 0.834 0.869 0.633

0.75 95 0.846 0.869 0.611

1 0 0.831 0.872 0.638

1 80 0.832 0.867 0.636

1 85 0.833 0.87 0.634

1 90 0.835 0.869 0.632

1 95 0.85 0.865 0.605

Results are also reported for VQA2 (without the fixation

temporal pooling), presented in Table III, and for different

values of parameters λ3 and n. In this experiment, values of

parameters λ1 and λ2 are selected to optimize prediction per-

formance. The results show that long-term temporal pooling

failed to improve the prediction performance when the fixation

pooling is disabled. This observation is still valid whatever are

the values of the parameters λ1, λ2, λ3, and n. Consequently,

the fundamental nature of fixation pooling step is enhanced

by these results.

IV. CONCLUSION

This paper described a full reference video quality assess-

ment metric. This metric focuses on the temporal variations of

the spatial distortions. The temporal variations of the spatial

distortions are evaluated both at the eye fixation level, and

on the whole video sequence. The former, and the latter are

assimilated to a short-term temporal pooling, and a long-term

temporal pooling respectively.

Consistent improvement over existing video quality assess-

ments methods is observed. CC between VQA and subjective

scores is 0.892, and the prediction improvements in term of CC

are +73%, +21% and +4% compare to PSNR, VSSIM and

VQM, respectively. Results also show the positive contribution

of the different steps of the proposed metric. In particularly

it shows that the short-term temporal pooling is fundamental

prior to the long-term temporal pooling, as its use significantly

improves the prediction performances of VQA. An interesting

point of the proposed method is that the spatial distortion

maps could be considered as an input. In this work, we used a

still image quality metric WQA developed in a previous work

to compute the spatial perceptual distortion map, but we can

imagine to replace it by any still image quality metric which

compute a spatial perceptual distortion map. The performance

comparison of the proposed method, using different models

to obtain the spatial perceptual distortion maps, could be an

interesting investigation.

Further work includes further research to find a more

sophisticated way to realize the long-term temporal pooling.

In the proposed metric, we think that relevant information are

lost in the spatial pooling step, and a more sophisticated long-

term temporal should suppress this step.
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Fig. 9. Scatter plot comparison of different video quality assessment metrics on our video database. Vertical and horizontal axes are for subjective (MOS)
and objective measurement (MOSp), respectively. Each sample point represents one test video sequence. The same marker type is used for each impaired
video obtained from the same original video: (a) PSNR, (c) VSSIM, (e) VQM, (b) VQA1, (d) VQA2, and (f) VQA.
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