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ABSTRACT

Our current understanding of cellular networks is rather incomplete. We over look important
but so far unknown genes and mechanisms in the pathways. Moreover, we often only have a
partial account of the molecular interactions and modifications of the known players. When
analyzing the cell, we look through narrow windows leaving potentially important events in
blind spots. Network reconstruction is naturally confined to what we have observed. Little is
known on how the incompleteness of our observations confounds our interpretation of the
available data. Here we ask which features of a network can be confounded by incomplete
observations and which cannot. In the context of nested effects models, we show that in the
presence of missing observations or hidden factors a reliable reconstruction of the full net-
work is not feasible. Nevertheless, we can show that certain characteristics of signaling net-
works like the existence of cross-talk between certain branches of the network can be inferred
in a nonconfoundable way. We derive a test for inferring such nonconfoundable character-
istics of signaling networks. Next, we introduce a new data structure to represent partially
reconstructed signaling networks. Finally, we evaluate our method both on simulated data and
in the context of a study on early stem cell differentiation in mice.
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1. INTRODUCTION

In February 2002, Donald Rumsfeld, then the U.S. Secretary of Defense, stated at a Defense De-

partment briefing that: ‘‘There are known knowns. There are things we know that we know. There are

known unknowns. That is to say, there are things that we now know we don’t know. But there are also unknown

unknowns. There are things we do not know we don’t know’’ (Rumsfeld, 2002). The concept of unknown

unknowns is eminent to many fields of research. In the context of biological networks, known knowns make up

our literature knowledge on physical and functional interactions of signaling molecules. Known unknowns

might be what our current research projects are about, but unknown unknowns are those cellular mechanisms

that we do not even anticipate today. They can be best appreciated in a historic perspective: Today, the role of
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many micro RNAs and epigenetic modifications of chromatin structure are known known mechanisms in many

pathways. For other instances, they are still in the realm of known unknowns. But going back 15 years in

history, they were unknown unknowns. Models of signaling pathways did not include them, and the vast

majority of molecular biologists did not anticipate the important role they play.

Once unknown unknowns become known, two different scenarios can occur: (i) The new observations

can add to our understanding of a network or (ii) they can fundamentally change our perspective of the

networks. In scenario (i), the network becomes more nodes and edges, but the already existing parts of the

network do not change. In scenario (ii), we learn that our old working hypothesis of the network was

confounded by the mechanisms of which we were not aware. The hidden effects of unknown unknown

players made the interplay of the known players appear different than they really are.

This raises the question, what of our current understanding of biological networks can be confounded by

hidden mechanisms and what cannot. We believe the question can only be addressed meaningfully in the

context of a formal statistical network reconstruction framework, like Bayesian networks (Friedman et al.,

2000), Gaussian graphical networks (Schfer and Strimmer, 2005), Boolean networks (Saez-Rodriguez et

al., 2009), or nested effects models (Markowetz et al., 2005).

In these frameworks, unknown unknowns are a set of hidden nodes. Together with the observed nodes

they form a directed large biological network. The edges of the network encode causal relations. This

means that if there is a directed edge from A to B, then perturbing A leads to changes in B. We call this

large network the ground truth network (GTN). In practice, it is almost always unknown. Observed and

modeled is only a subset of the GTN nodes, resulting in a ‘‘current state-of-the-art network’’ (CSAN). This

network only connects observed nodes. Importantly, in the GTN the hidden nodes can affect the observed

nodes. A CSAN is reconstructed correctly if it is identical to the subnetwork that the observed nodes form

in the GTN. However, such a subnetwork does not need to exist (Elidan et al., 2002). Clearly, in such a case

every network built exclusively from observed nodes is incorrect.

The problem of hidden nodes in network analysis has been recognized for a long time, for example, in

causal inference theory (Pearl, 2000). In the context of Bayesian network reconstruction, the structural

expectation maximization (EM) algorithm can be used (McLachlan and Krishnan, 1997) to account for

some missing observations. Moreover, the concept of structural signatures facilitates the detection and

approximate location of a hidden variable in a network (Elidan et al., 2002). However, latent variable

approaches are only practical if the number of hidden nodes is small, an assumption that is questionable,

and it is often violated in the domain of molecular biology.

The reconstruction of a correct subnetwork from very incomplete observations might be too ambitious.

Alternatively, one can strive for deriving features of a network that are correct, no matter what is going on

outside of the observation window. Colombo et al. (2011) introduced the concept of partial ancestral graphs

(PAG), extending the work in Richardson and Spirtes (2002). A PAG describes the common causal features

of all directed acyclic graphs (DAGs) that cannot be reliably distinguished if one accounts for possible

effects of hidden nodes. The PAG is not a fully resolved network. Its information content lies in the features

of the networks it excludes, since this exclusion is guaranteed not to be an artifact caused by hidden nodes.

The inference is not confoundable. Colombo et al. (2011) describe a computationally efficient algorithm

that allows for the asymptotically consistent estimation of sparse high-dimensional PAGs. A charming

feature of the method is that it works exclusively using observational data. Practical drawbacks are the

limited biological interpretability of general Bayesian networks learned on gene expression data and

missing to exploiting functional information revealed in cell perturbation experiments. In fact, applications

to molecular biology have not been reported to date.

Here we consider the concept of a partial but not confoundable network reconstruction in the context of

nested effects models (NEMs) (Markowetz et al., 2005). NEMs differ from the more general networks

designed by Colombo et al. in two ways: (i) They are learned from interventional data, and (ii) all edges

except for those involving leaf nodes encode deterministic information flow, for example, local transition

probabilities are zero or one. NEMs assume that the cellular information flow is deterministic; stochasticity

only comes in via noisy observations (Zeller et al., 2009). These features make nonconfoundable network

inference simpler and allow for straightforward applications in systems biology.

This article is organized as follows. In the context of nested effects models, we show that in the

presence of unknown unknowns, network reconstruction can be flawed. We introduce a simple edge-by-

edge partial network reconstruction algorithm called nonconfoundable network analysis (No-CONAN) to

derive nonconfoundable network properties. In analogy to PAGs, we define a data structure that encodes
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the partially resolved networks (pNEM, for partial nested effects model). On simulated data, we dem-

onstrate the performance of our algorithm, and in a first application to embryonic stem cell differentiation

in mice, we demonstrate that taking unknown unknowns into account changes our account of real

biological networks.

2. METHODS

2.1. Nested effects models

For self-containedness, we briefly review nested effects models as introduced in Markowetz et al. (2005).

NEMs learn upstream/downstream relations in nontranscriptional signaling pathways from the nesting of

transcriptional downstream effects when perturbing the signaling genes. In a nutshell, NEMs infer that gene

A operates upstream of gene B in a pathway if the downstream effects resulting from silencing gene B are a

noisy subset of those resulting from silencing gene A. Following Markowetz et al. (2005), we call the

perturbed genes in the signaling pathway S-genes and the genes that show expression changes in response

to perturbation E-genes.

An NEM is a directed and possibly cyclic network that connects the S-genes representing the flow of

information in the underlying signaling pathway. E-genes can be linked to single S-genes forming leaf

nodes of the network. The directed edges linking E-genes to S-genes can be estimated together with the

S-gene network (Tresch and Markowetz, 2008), or they can be taken by Bayesian maximum a posteriori

approach (Niederberger et al., 2012), or they can be treated as nuisance parameters that are integrated out

(Markowetz et al., 2005, 2007; Anchang et al., 2009).

The underlying data consists of gene expression profiles of gene silencing assays and corresponding

controls. Typically, a pathway is stimulated both in cells where it is intact (controls) and in cells where it is

partially disrupted by silencing one of its S-genes. If the silencing of an S-gene blocks the flow of information

from the pathway initiating receptors to the E-gene, the E-gene no longer changes expression in response to

stimulation. In the language of nested effects models the E-gene shows a silencing effect with respect to the

S-gene, and the crucial assumption is that E-genes must attach to at most one S-gene. In each experiment, one

S-gene is silenced by RNAi, and silencing effects on thousands of E-genes are measured. The expression data

Dij is assumed to be discretized to 0 and 1, with a 1 indicating that a silencing effect of Sj was observed on Ei.

Signal propagation within the pathways is assumed to be deterministic, hence the silencing of Sj is expected to

produce silencing effects in all E-genes downstream of Sj. Consequently, every network topology is asso-

ciated with an expected data pattern across all silencing assays—the silencing scheme (Markowetz et al.,

2005). If the network is acyclic, the silencing scheme defines a partial order relation on the S-genes reflecting

the expected nesting of downstream effects. Noise comes into play at the level of observations. NEMs allow

for both false positive and false negative observations, accounting for them by fixed rates a and b in the

likelihood. Hence, NEMs aim to detect a noisy subset relation in the observations Dij and represent it as a

directed network, where the directed edges can be interpreted as upstream/downstream relations of genes in

the pathway. Clearly if gene A is upstream of gene B, and B is upstream of gene C, then A must be upstream

of C as well. This is reflected in the likelihood equivalence of all networks that have the same transitive

closure. In other words, NEMs are a degenerate type of Bayesian network in which all non-leaf nodes are not

observable and all edges between S-genes are associated with 0/1 local probabilities (Zeller et al., 2009).

While the first property makes network reconstruction hard, the second is a simplification that renders

network reconstruction practical again.

Several extensions of NEMs exist, including networks that distinguish activation and repression (Vaske

et al., 2009), likelihoods allowing continuous silencing data (Tresch and Markowetz, 2008; Fröhlich et al.,

2008b), dynamic models (Anchang et al., 2009; Fröhlich et al., 2011), and models including direct ob-

servations of S-gene activation (Bender et al., 2010). The methodology is implemented in a bioconductor

package nem and cran package nessy (Fröhlich et al., 2008a). A comprehensive review and evaluation can

be found in Fröhlich et al. (2009).

2.2. Hidden nodes compromise NEM-based network reconstruction

For general Bayesian networks, it is well known that hidden nodes can confound the reconstruction of

networks (Colombo et al., 2011; Koller and Friedman, 2009). Here we show that this problem still exists
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for the more specialized NEM. We generated data for networks that include both observed and unob-

served nodes and reconstruct the subnetwork of observed nodes: We generated 100 random networks of

four nodes and extended them by n = 0,4,8,16 additional hidden nodes. Artificial silencing data was

generated for the extended networks as described previously (Markowetz et al., 2005). Only the data for

the four observable nodes was used to reconstruct four node networks. These were compared to the

corresponding subnetworks of the larger networks. The extended networks represent the ground truth

signaling pathway while the four node subnetworks represent the small window through which we

observe it. Figure 1 shows positive predicted values of network reconstruction (y-axis) for different noise

levels (x-axis). The red line corresponds to network reconstruction without hidden nodes, while the

green, blue, and purple lines refer to 4, 8, and 12 additional hidden nodes respectively. We observe a

marked decrease in network reconstruction performance when hidden nodes can confound the flow of

information of the observed nodes.

2.3. Alien silencing patterns are the clue to a non-confoundable network analysis

We analyze all pairs of S-genes S1 and S2 separately using only the data from silencing S1 and S2. Since

our analysis will be nonconfoundble by genes outside of the observation window, it will also not be

affected by the remaining S-genes that we Purposely did not take into account.

For a pair of genes S1 and S2, we distinguish five possible upstream/downstream relations summarized in

Figure 2A. (R1) S1 is upstream of S2, (R2) S1 is downstream of S2, (R3) S1 and S2 lie in a feedback loop in

which case they are both up and downstream from each other as indicated by the double arrow, (R4) S1 and

S2 lie in independent modules of the network and do not interact with each other at all, and (R5) S1 and S2

are in different branches of a signaling network but jointly regulate at least one possibly hidden S-gene H.

The five relations are encoded by the different edge types:

R := fR1‚ � � � ‚ R5g = fS1 ! S2‚ S1)S2‚ S14S2‚ S1� � S2‚ S1 ! H)S2g (1)

With only two S-genes, an E-gene can show four different silencing patterns: It responds to both pertur-

bations (1,1), only to one of them (1,0) and (0,1), or to none (0,0). Each upstream/downstream relation

induces an expected subset of these four patterns. For example, in relation (R1) an E-gene can be unconnected

to both S1 and S2 in which case it does not show a silencing effect neither when silencing S1 nor when

silencing S2, yielding the expected pattern (0,0). It can be attached to S1 in which case it is expected to show

FIG. 1. In simulations, hidden

nodes compromise network recon-

struction: Shown is the accuracy of

standard nested effects model

(NEM)-based network reconstruc-

tions if hidden nodes are present.

The x-axis shows the degree of

noise used in the stimulations. The

y-axis shows the positive predictive

value of reconstructed edges of the

subnetwork of observed nodes. The

different lines correspond to differ-

ent numbers of hidden confounders

(red 0, green 4, blue 8, purple 12).

NONCONFOUNDABLE NETWORK ANALYSIS 923



an effect when silencing S1 but not when silencing the downstream gene S2, yielding the expected pattern

(1,0). And last, it can be linked to S2 and show silencing effects both when silencing S1 and S2, yielding the

pattern (1,1). Figure 2A gives the set of expected silencing patterns for all five upstream/downstream rela-

tions. Note that only relation R5 can produce all four possible silencing patterns. For the remaining relations,

at least one pattern is not expected. We call these unexpected patterns alien patterns.

We next investigated the possible influence of hidden nodes on the sets of expected and alien patterns

(Fig. 2B). There are nine possible positions of a hidden confounder. The silencing patterns associated

with these positions are shown in Figure 2B. The most important observation is that any position of

hidden confounders in the network does not change the sets of expected and alien silencing patterns (Fig.

2B). Note that in (R4) the hidden node marked in red produces the alien pattern of (R4). However, we

have accounted for this problem by distinguishing the two relations (R4) and (R5) from the beginning.

The conclusion that no alien patterns can occur through confounding facilitates our nonconfoundable

analysis: If the observation of an alien pattern cannot be through confounding effects it must be due to

noise in the observation. Note that the assumption of deterministic signal propagation is crucial here. In

relation (R1) we assume that a perturbation of S1 is deterministically propagated to S2, which rules out

the silencing pattern (0,1).

2.4. The accumulation of alien patterns is evidence against respective
upstream/downstream relations

For a pair of S-genes, we can systematically consider all five upstream/downstream relations and see

whether they conform to the observed data. Each of the relations (R1)–(R4) has at least one alien pattern.

Every observation of an E-gene that displays this alien pattern is evidence against the respective relation.

Few alien patterns can occur due to observation noise, but a large number of alien patterns is unlikely. We

will set up a test to detect significantly high occurrences of alien patterns.

Binary NEMs (Markowetz et al., 2005) model observation noise by a false positive rate a, the probability

that an observed effect is a noise artifact and a false negative rate b, and the probability that we miss a true

silencing effect. Further, the occurrence of observation errors is assumed to be independent across E-genes.

We can derive limits for the probability that a certain number k of alien patterns occur given a relation

R 2 R. This derives from the property of a binomial distribution B(n, p) that its tail probability is

monotonically increasing with the parameter p. A proof is provided for completeness. For given k, n,

0 £ k £ n, and p 2 [0‚ 1], let x ~B(n‚ p). Define T( p;k, n) = P(x ‡ k r n, p). Then we wish to show that T is

monotonically increasing in p. Taking the derivative, we obtain
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FIG. 2. Pairwise upstream/downstream relations and their alien patterns: (A) Shown are the five possible possible

relations (R1)‚ . . . ‚ (R5) together with their expected silencing patterns and their alien patterns. (B) Hidden nodes are

introduced in all possible configurations, and the expected patterns of E-genes attached to the hidden nodes are shown.

In (R4) the hidden node marked in red produces the alien pattern of (R4). Note that this constellation leads to the

constellation in (R5).
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T 0(p; k‚ n) =
d

dp

Xn

j = k

n

j

� �
p j(1 - p)n - j

 !

=
Xn

j = k

n

j

� �
p j - 1(1 - p)n - j - 1[j - np]

=
n

k

� �
kpk - 1(1 - p)n - kq0

where the last equality can be proved by induction.

1. The equality clearly holds true for k = 0 since T( p;0, n) = 1, hence T 0( p;0, n) = 0, and

n

k

� �
kpk - 1(1 - p)n - k = 0

for k = 0.

2. Assume now that it holds for k. For k + 1 one gets

T 0(p; k + 1‚ n) =
Xn

j = k

n

j

� �
pj - 1(1 - p)n - j - 1(j - np) -

n

k

� �
pk - 1(1 - p)n - k - 1(k - np)

=
n

k

� �
kpk - 1(1 - p)n - k -

n

k

� �
pk - 1(1 - p)n - k - 1(k - np)

=
n

k

� �
pk - 1(1 - p)n - k k -

(k - np)

1 - p

� �

=
n

k

� �
(n - k)pk(1 - p)n - k - 1

=
n

k + 1

� �
(k + 1)pk(1 - p)n - k - 1

which concludes the proof.

Consider now for example the case R = R1, then we have

P(KqkjS1�!S2)p
Xn

i = k

n

i

� �
ci

R1(1 - cR1)n - i‚ (2)

where k is the observed number of alien patterns, n the total number of E-genes, and cR1 an upper bound for the

probability of observing the alien pattern. If (R1) holds true, the alien pattern (0, 1) needs to be produced by

noise from one of the three expected patterns (1,0), (1,1), and (0,0). Starting from (1,0) requires both a false

positive and a false negative observation, which happens with probability c1 = a $ b, starting from (1,1) we need

one true positive and one false negative observation, which occurs with probability c2 = b $ (1 - b). Finally,

generating the alien pattern (0,1) from (0,0) requires one true negative and one false positive observation and

occurs with probability c3 = (1 - a) $ a. Setting cR1 = max(c1, c2, c3) yields the bound (2). Similarly we obtain:

P(KqkjR)p
Xn

i = k

n

i

� �
ci

R(1 - cR)n - i (3)

for all R 2 R - fR5g. Here cR is a bound for the probability of observing the alien pattern of R. If some of

the above probabilities become sufficiently small, we gather evidence against the respective relations. We

exclude a relation R if and only if

P(KqkjR) < j‚ (4)

where j is a calibration parameter that is set to 0.05 in all applications below. Note that R5 cannot be

rejected since it does not have an alien pattern.

2.5. Partial network reconstruction

If R5 is correct and we can reject relations R1–R4, leaving only relation R5 as compatible with the data,

we have fully resolved the relation of S1 and S2. In cases where R5 is incorrect, the best we can achieve is
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that all but one relation from R1–R4 is rejected, leaving us with one edge type, and the always existing

possibility that R5 is true. However, this does not need to be the case. It is possible that we cannot reject

several relations, leaving us with higher uncertainties on the true structure of the signaling network. We do

not further resolve the network but confine ourselves to describing what we know and what we don’t know.

To do this, we introduce the new data structure of a partial nested effects model (pNEM). A pNEM is a

graph connecting all S-genes, however, using a variety of different edge types. Each edge type is describing

a set of relations that could not be rejected. This language of edge types is summarized in Figure 3. For

example, if we exclude all relations except (R5), there is no edge between S1 and S2. If we reject all

relations except R3, R4, and R5, we draw a red double-sided edge, and so on. Sixteen different edge types

are needed to encode our partial network knowledge. In the next section, we show an example of a pNEM.

Equation (4) has the form of a statistical test. When choosing j sufficiently small, we bound the

probability of excluding a correct relation. The null hypothesis is that the tested relation is correct and that

all observed alien patterns are due to noise alone. However, a small j also leads to poorly resolved

networks with only few excluded relations. This raises the issue of the power of the test. An edge between

two S-genes is well resolved if the true relation generates many E-genes with silencing patterns that are

alien to many alternative relations. For example, if the relation S1 / S2 holds true, every E-gene that is

attached to S1 and produces the expected pattern (1,0) produces evidence against the competing relations

S1 ) S2 and S1 4 S2, since (1,0) is alien to both these relations, but not against the relation S1 $ $ S2, since

(1,0) is not alien to it. However, E-genes attached to S2 with the expected pattern (1,1) produce evidence

against S1 $ $ S2. If we have enough E-genes of both types, we will be able to reject all relations except the

correct one and the not-rejectable relation R5. Inspecting Figure 2 points to a problem with edges that are of

the type S1 4 S2, since in this constellation only the patterns (1,1) and (0,0) are produced but none of the

alien patterns of the two directed relations R1 and R2. Since NEMs operate on transitively closed networks,

the relation S1 4 S2 is indicative of genes involved in a feedback loop. In other words, our method is not

capable of reliably detecting feedback loops; a noncircular constellation often can not be ruled out.

Nevertheless, our method is valid also for biological networks with feedback loops. It does not produce

spurious results in this case, but reports that it cannot resolve the loop reliably. If, in contrast, the true

network is not cyclic, our method has the potential to exclude a loop reliably.

3. SIMULATION EXPERIMENTS

We test the performance of No-CONAN in the context of simulation experiments using artificial data. In such

simulations, the true state of the network is known, unlike in biological scenarios. Moreover, the artificial data

fully conforms to all assumptions of NEMs, which is certainly not the case for real biological data.

3.1. Example

We start with an example to illustrate how No-CONAN works. Consider the GTN in Figure 4. Note that

it has only one hidden node, but this node is in a central position of the network. We attach a total of 350 E-

genes uniformly to the S-genes and generate artificial data using moderate noise levels of 0.15 for both false

negative and false positive observations as described previously (Markowetz et al., 2005). Then, using only

H

No 
edge

Edge types to encode partial network knowledge

Constellations of nonrejected relations

FIG. 3. The partial nested effects model (pNEM) code: The top row of boxes shows combinations of relations, and

the bottom boxes show the corresponding edge types we use to encode that none of the edges in the set could be

excluded by nonconfoundable network analysis (No-CONAN).
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data for the observable nodes, we reconstruct the network using triplet search in a standard NEM approach

(Markowetz et al., 2007) and using No-CONAN. Figure 4 compares the NEM to the pNEM. The NEM

incorrectly predicts a feedback loop–like structure. The pNEM in contrast did not do this. It actually

resolved the relation between S5 and S6 as R5, thus predicting the existence of the hidden node at that

position. Also, all other predicted relations are correct, with the exception of S6 and S3, where the pNEM is

undecided whether a directed relation exists (incorrect) or not (correct).

3.2. Evaluations

We generate 100 random networks of size eight and generate data for these networks using noise levels

varying between 0.005 (very low) and 0.32 (very high). We attach a total of 100 E-genes uniformly to the

S-genes of the network and add another 900 E-genes that are unrelated to the networks. These have an

expected silencing pattern of (0,0) but display occasional silencing effects due to noise. We then run No-

CONAN on every pair of nodes in each of 100 networks and reject all relations possible using j = 0.05.

The results are organized according to the true underlying relations in Figure 5A. Each of the five plots

corresponds to one true relation. The x-axis shows the different noise levels while the y-axis shows the

relative frequency of rejecting the different relations, which are marked by different colors. For example,

the left-most plot corresponds to all situations in which the true relation between nodes is S1- / S2.

Rejection rates for this relation are marked in blue, and we can see that the relation does not get falsely

rejected even for very high noise levels. In contrast, the three competing relations marked in red, purple,

and green are virtually always rejected except for very high noise levels, and even for maximal noise we

reject them in about half the cases. We do similarly well for the next two relations. If the true relation is the

feedback loop S1 4 S2, we still get hardly any false positive rejections but lose almost all power in

rejecting the two directed relations. As described in the previous section, this is expected since a feedback

loop does not produce the alien patterns of these relations.

3.3. Large numbers of unrelated E-genes compromise the resolution of No-CONAN

E-genes that are not related to the modeled pathway produce the silencing pattern (0,0) for all perturbations of

pathway genes. The pattern (0,0) is an expected pattern for all relations in R 2 R (Fig. 2A). In noisy data some

unrelated E-genes produce patterns different from (0,0), including alien patterns. With more unrelated E-genes,

S5
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S5

S1S2S3

S6

S7

S5

S1S2S3

S6

S7

Ground Truth
Network (GTN) 

Reconstructed networks
with NEM 

Reconstructed Network
with pNEM 

FIG. 4. Performance comparison: The left part of the figure shows a GTN that has one hidden node. We attach a total

of 350 E-genes uniformly to the S-genes and generate artificial data using a moderate noise level of 0.15 for both false

negative and false positive observations. The plots in the middle and on the right side of the figure show the re-

constructed network using triplet search in a standard NEM approach and pNEM, respectively, only for the observable

nodes. The NEM incorrectly predicts a feedback loop–like structure. In contrast, the pNEM resolved the relation

between S5 and S6 as R5, thus predicting the existence of the hidden node at that position. Also, all other predicted

relations are correct, with the exception of S6 and S3, where the pNEM is undecided whether a directed relation exists

(incorrect) or not (correct).
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more alien patterns are expected due to noise, and it becomes more difficult for the true alien patterns to stand

out. This compromises the power of our test. To quantify this effect, we generate 100 random networks of size

eight and generate data for these networks with different numbers of unrelated E-genes. We attach a total of 100

E-genes uniformly to the S-genes of the network and add another {0, 100, 500, 1000} E-genes, which are

unrelated to the networks. We run No-CONAN on every pair of nodes in each of the networks and reject

relations on the level j = 0.05. The results are organized according to the true underlying relations in Figure 6.

As expected, the power of our test drops with increasing numbers of unrelated E-genes. However, even for the

maximal number of 10 times unrelated to related genes, we still reject a considerable number of relations and

hence still learn features of the network in a nonconfoundable way.

3.4. Evaluations on a large network

We examine the performance of No-CONAN in the context of the larger 25-node network shown in

Figure 5B. Note that the network contains two feedback loops, one toward the root and another one close to

a leaf. The crucial difference from the smaller networks is the ratio of S-genes inside the observation

window (two in both cases) and those outside of it (6 vs. 23). In fact, this unfavorable ratio of observed

versus unobserved nodes compromises the resolution of the pNEMs generated by No-CONAN. Im-

portantly, we still hardly ever falsely reject a correct relation. However, except for very low noise levels

rejection rates of incorrect relations decrease. Nevertheless, except for very high noise levels, we reject

substantial fractions of relations thus partially learning the structure of the network.

4. AN APPLICATION TO MURINE STEM CELL DEVELOPMENT

We test No-CONAN in a study on molecular mechanisms of self-renewal in murine embryonic stem

cells (ESCs). Ivanova et al. (2006) down-regulated six factors (Nanog, Oct4, Sox2, Esrrb, Tbx3, and Tcl1)

FIG. 5. (A) Small network simulations. Each of the five plots corresponds to one true relation. The x-axis shows the

different noise levels. The y-axis shows the relative frequency of rejecting the relations (R1: blue, R2: purple, R3:

green, R4: red, and R5: orange). (B) Simulations on a large network. Left: The ground truth network. Right: Perfor-

mance plots that organized like in (A).
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that need to be jointly expressed in murine ESCs to keep the cells in a self-renewal state. In response to the

interventions the cells go into differentiation, and the resulting shifts in the transcriptome were monitored in

time series of expression profiles. Differentiation includes the successive destruction of the self-renewal

network. This process of differentiation has been previously modeled twice using nested effect models

(Anchang et al., 2009; Fröhlich et al., 2011). Both models have in common that they are dynamic nested

effects models exploiting the temporal information of the time series but differ in the likelihood functions

used. None of them considered the possibility of unobserved factors.

In the NEM framework, Nanog, Oct4, Sox2, Esrrb, Tbx3, and Tcl1 are S-genes, whereas genes showing

expression changes in response to silencing are E-genes. A silencing effect is observed if the expression of

an E-gene is pushed from its level in self-renewing cells to its level in differentiated cells. We preprocess

and discretize the data as described in Anchang et al. (2009). Then we run No-CONAN on the data of the

last time point of all time series. Figure 7A shows the pNEM produced from No-CONAN while 7C and D

are the transitive closures of the networks derived in Anchang et al. (2009) and Fröhlich et al. (2011).

Notably, many edges of the pNEM are optimally resolved and often agree with those in the two previous

models, for example, the linear backbone of the network Nanog / Sox2 / Oct4 observed in the Anchang

model (Anchang et al., 2009) could be resolved unambiguously even when taking hidden confounders into

account.

In contrast, the role of the remaining genes Tcl1, Tbx3, and Esrrb could not be determined unambig-

uously with the available observations. For example, our pNEM proclaims that there is an interaction

FIG. 6. The number of unrelated E-genes might effect the power of the testing: Rows correspond to the number of

unrelated E-genes in the simulated data sets (0, 100, 500, 1000), while columns represent true relations. In each plot, the

x-axis shows the different noise levels while the y-axis shows the relative frequency of rejecting the different relations,

which are marked by different colors (R1: blue, R2: purple, R3: green, R4: red, and R5: orange). Results show that the

number of unrelated E-genes effect the power of the test. We still have hardly any false-positive rejections but gain

power in rejecting the incorrect relations by decreasing the number of E-genes with (0,0) pattern.
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between Esrrb and Tbx3 but can not determine its nature. It could be a feedback loop as well as any

directed edge depending on how a potential unknown gene is influencing the process. Moreover, the pNEM

differs from the two NEMs in that it predicts the existence of certain hidden nodes in positions marked in

Figure 7B. These predictions result from the observation that all relations except for R5 could be excluded

for the respective pairs of genes. In summary, nonconfoundable analysis sustains a previous hypothesis on

the role of Nanog, Sox2, and Oct4 interactions in stem cell differentiation but also points to possible

ambiguities with respect to the role of Tcl1, Tbx3, and Esrrb.

5. DISCUSSION

We introduced No-CONAN, a novel method that partially reconstructs the upstream/downstream rela-

tions of nontranscriptional signaling networks from interventional data. The method is set in the framework

of nested effects models but has the additional feature that its inference cannot be confounded by hidden

nodes. The key idea is the definition of alien silencing patterns that cannot be confounded by unobserved

nodes. The output of No-CONAN is not a fully resolved network but a pNEM: A network of upstream/

downstream relations in which for some pairs of nodes several relations remain conformable with the data.

The information in a pNEM lies in the upstream/downstream relations that it excludes. A pNEM encodes

what we know but also what we cannot know unless we can be sure that we have observed all nodes of a

network. The uncertainties left with certain edges are the price we have to pay to ensure that our results are

nonconfoundable by mechanisms outside the window of observations.

No-CONAN is reliable in that it does not produce false information by rejecting correct relations. By

construction, No-CONAN has two limitations affecting its power in resolving the network. It can never
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produced from No-CONAN. (B)
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et al. (2011). Many edges of the

pNEM are optimally resolved and

often agree with those in the two
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reject the relation S1 / H ) S2, since this relation has no alien silencing patterns. Moreover, No-CONAN

has very little power in resolving a true feedback loop since feedback does not produce the alien patterns of

the two directed relations. Nevertheless, No-CONAN is generating new nonconfoundable insights into

network structures by rejecting many, though not all, incorrect relations.

Partial network reconstruction is a relatively new concept in network analysis. It can be seen as a

safeguard against possibly severe confounding effects caused by unobserved mechanisms. Clearly, such a

nonconfoundable analysis is only valid within the formal context of a network model. In this article, we

used the framework of nested effects models. The assumptions of nested effects models might be incorrect

in certain applications as is true for every modeling framework. We believe that no formal analysis can

safeguard against this. However, the concept of unknown mechanisms can be represented in many formal

frameworks, and simulations can mimic our partial observation of a true underlying network. Here we

represented all the unknown unknowns of biology as unobserved nodes of nested effects models and strived

for extracting as much information on the full nested effects models from the incomplete data we obtained

by looking through a narrow window.

Donald Rumsfeld continued his speech by saying, ‘‘If I know the answer I’ll tell you the answer, and if I

don’t, I’ll just respond, cleverly.’’ (Rumsfeld, 2002) We do not know whether a pNEM is a ‘‘clever’’

response, but it aims to be a realistic and an honest one. The partial network aims to encode what we know

that we know, but it also encodes what we cannot know for certain, unless we are absolutely sure that we

have a complete account of all biological mechanisms affecting cell signaling.
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