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1. Introduction and Summary. Let {X,, t > 1} bea stochastic process which
satisfies the following set of assumptions:
AssumerionN 1: For every ¢, X, satisfies

(1) Xi=aXiyn +aXp o+ - + aXe + ,

where a1, -+, o are k finite real numbers (unknown parameters) and u, ,
t positive, are independent, identically distributed random variables with mean
zero and a finite positive variance o’

AssumprioN 2: The distribution® of u, is continuous. (Actually Pr{u, = 0} = 0

suffices.)
AssumptioN 3: The roots m;, --- , my of the characteristic equation
k k—1 k—2
(2) m — aym = — aem  — -+ —ay =0,

of (1), are distinct.

Assumprion 4: There is a unique root p of (2) such that |p| > 1, and |p| >
MaX;—s..-. & |m;|. Here p is identified with m; for convenience.

Since complex roots enter in pairs, it follows from this assumption that p is
real. Note that there can be m;,j > 1, such that [m;| > 1.

AssumpTioN 5: For ¢ non-positive, u, = 0.

If Assumption 4 holds, the process {X,;, ¢{ = 1} is said to be (strongly) ex-
plosive, and the corresponding difference equation (1) is called an explosive
(linear homogeneous) stochastic difference equation; this is the subject of the
present paper.

Under the assumptions above, it follows (cf., C. Jordan [5), p. 564, Mann and
Wald [8], p. 178, and also the footnote on p. 22 of [10]) that

t k
Xt = ZZ Aqm;_rura

r=1g¢=1
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t positive, and that A, satisfy the relations
k

(3) b= 2 Am,  t=1,0,—1 -, =(k = 2),
q-

where 8;; = 1if ¢ = 1 and 0 otherwise. (Note that Y = A, = 1.) For conven-
ience, define the random variables

t
(4) XiJ = Zm:_ruf) i=1, 2) Tty k7 (ml = P))

raml
so that X; . = O for ¢ non-positive. Thus one may write X; as follows:
(5) Xe = )\1X1,z + >\2X2.z + -+ )\ka,z .

The first part of this paper is devoted to finding a consistent estimator of p
and its limit distribution. Consequently, in Section 3 some lemmas will be proved
for use in the consistency proof (Theorem I). Similarly, in Section 5, some
lemmas leading to the proof of the limit distribution of the estimator (Theorem
IT) will be given.

In the second part, the consistency of the Least Squares (L.S.) or Maximum
Likelihood (M.L.) estimators of the “structural parameters” o; of (1) will be
considered (Theorem III). The procedure becomes much more involved because
the direct application of the usual limit theorems is not possible, since the process
under consideration is explosive. It is noteworthy that Lemmas 9, 10, 14-16,
and Theorem I are rather general, in that they hold under the only global As-
sumptions 1-5 above, and the further requirement |m;| < 1,7 = 2, ---, k, s0
essential for the rest of the analysis of this paper, is unnecessary for them.

The corresponding problem, in the case |p| < 1, has been completely solved
by Mann and Wald (8]. If £ = 1 in (1), the results of this paper reduce to those
obtained by Rubin [13], White [14], and T. W. Anderson {1]. The vector case
has also been treated by Anderson in [1], but a comparison of the results in this
case with those of the present paper shows that they do not imply each other
except in the first order. In the latter case, however, both reduce to Rubin’s
[13] result. The available results on stochastic difference equations are sum-
marized in a table at the end of the paper. Some of the details and computations
omitted in this paper may be found in {10].

In the following section, some known lemmas related to stochastic convergence
are collected and stated in a convenient form, as they will be constantly referred
to in both parts of the paper. (For proofs, see [2], [3], [4], [6] and {9].)

2. Lemmas Related to Stochastic Convergence. To avoid misunderstanding
certain basic terms, often used in the paper, will first be defined. By a random
variable (r.v.) is meant a finite real valued measurable function on the measure
space in question. A random vector is one which has a finite number of r.v.’s as
its components. Pr {8} and Es(f(X)) are the probability and expectation sym-
bols (cf. [2]). '
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Let {X,} be a sequence of r.v.’s and X be a r.v. Then the stochastic conver-
gence and convergence in distribution of X, to X, as n — «, will be written
X, 5 X, and X, 2 X respectively (cf. [6]). The stochastic equivalence of two
sequences of r.v.’s, { X,} and { Y.}, will be written X,, = Y, (i.e., (X, — ¥, 5 0).

A sequence of r.v.’s {X.,} is bounded in probability if, for any ¢ > 0, there
exists a positive number M, (depending only on ¢) such that

lim supa.. Pr{|X.| = MJ = e

Note that a sequence of r.v.’s is always bounded in probability if their means
and variances are bounded functions of n.

Unless stated otherwise, in what follows in this section, {X,.} and {Y.} are
two arbitrary sequences of r.v.’s. All the limils are taken as n — o, and the
repetition of this phrase will be omitted.

Lemma 1: If X, 5 X, and Y, 5 Y, then XY, 5> XY If further Pr{Y = 0} =
0, then (X./Y,) 5 X/Y.

LemMa 2: If X, 5 0, and {Y.,} is bounded in probability, then X,Y, 5> 0.

LemMa 3: If X, 5 X, then X, 2 X. (The lemma holds if {X.,} is a vector se-
quence. Then the stochastic convergence is component-wise.)

LEMMA 4: Let { X0, Xna, * -+, Xnil be a sequence of random vectors such that
(Xno, Xany o0 5 Xon) D (Xo, X1, -+, Xi) and Pr{Xo = 0} = 0. Then
(ZLl @iXn.i/Xno) 2 (Z'.Ll a;X:/X,), where a; are some constants independent
of n. (e.g.,if k = 1, and X, , X are independent normal with zero means, then the
latter limat distribution is Cauchy.)

Obviously some generalizations hold.

LemMa 5: Let {X.,} be a sequence of rv.’s with {u.} and {c%} as the mean and
variance sequences respectively. If p, — 0, and ¢, — 0, then X, Ao0.

Lemma 6: If X, 2 YV, , and X, 2 X, then Y, 2 X. (Sometimes X, = Y, is
also wrilten as X, = Y, + 0, (1).)

LeMMA 7: (Kolmogorov). Let Yy, Y, - - - be a sequence of mutually independent
r.s with means zero and variances o1, o3, -+ . Then, if D oe1 0w = & < ©,

%1 Y. = X is convergent with probability one. Moreover, E(X) = 0, E (X*) =
o, and if X, = X i Y., then for every ¢ > 0,

Pr{lub [X,| = ¢ = /€.
PART I

3. Lemmas for Theorem I. Define a ‘normalizing factor” s(n) as
s(n) = M lp|*/(8 — 1). For convenience of writing, it is assumed that X is
positive. Otherwise it will be replaced by |Ai|. (Note that X, being the coef-
ficient of the term in p, i.e., X1, , is never zero.) Next define

(6) Ve = (p2 - 1)% ;p_ru,.

LeMMA 8: There exists a r.v., V such that (i) V., — V with probability one, and
(i) Pr{V =0} = 0.
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Proor: (i) This is immediate from Lemma 7, on identifying the V, here
with X, there, and V with X. Thus E(V) = 0, Var V = E(V?®) = ¢°. (ii) Since
the distribution of u, is continuous, the distribution of V is continuous. Hence
Pr{V = a} = 0, for any a, in particular a = 0.

Lumma 9*: If V is the r.v. defined in Lemma 8, then

(7) [s(n)] i X 5V and [s(n)]” Z X, X1 5 pV2h

t=2

The proof of this lemma is omitted as it is similar to, and a special case of, a
more general result to be given in Lemma 15 below.

4. A Consistent Estimator of p. Using (4) and (5) and the relations
X:i: = mX:1 + u, ther.v. X, of (1) can be written as follows:

(8) X, — pXi0 = qZ:ZI)\q(Xq_t — pXgm1)-

Since my = p, et g = 1,

(9) X, — X = u + ;;)\j(mj — p)Xjia = v, say,
so that

(10) X, = oX.01 4+ v

Note that the v, , being dependent, can form an unstable sequence of r.v.’s.
The “first order least squares” estimator p, of p is given by

D =X XL/ T X=e+ T x/z X,

TuroreM 1: Let {X,, t = 1} satisfy Assumptions 1 to 5 of Section 1. Then
Bu > p, or lim,.w Pr{|p. — p| > € = 0 for any positive ¢, (i.e., p. is a consistent
estimator of p) where p. is defined by (11).

Proor: The proof of this theorem is an immediate consequence of Lemmas 1,
8 and 9.

A separate proof of Theorem I and Lemma 9 can be found in [10], without

recourse to Lemma 15. A similar remark applies to Lemma 10 also.

5. Lemmas for the Limit Distribution of .. In this section some lemmas,
useful in the derivation of the limit distribution of the estimator p, of p, will he
proved. Define the r.v.,

(12) Uni = (o = 1)} F T

+ Lemmas 9 and 10 have been proved earlier by T. W. Anderson, [1], for the case k = 1.
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Lemma 10: The ro. s (n) Dt wX,q £ a"Un1V., where U,q, V. and
s(n) are defined respectively in (12), (6), and a = p/|pl.

This is a special case of a result to be given in Lemma 14 below.

Lemma 11: The ro. V. is asymplotically uncorrelated with U,y and X; .,

J=2,-, k where X, = 2 ram; 'u, and |m,| is less than unity.
Proor: From definitions £(U,,) = 0 = E(V,) = E(X;.), all n,
(13) Cov (Una,Va) = o' " (p" — 1) (n — 1) =0,

since |p| > 1. Further,

= (" — Dimin if pm; =1,

(14) COV(Vn y Xj,n) _ az(pz _ 1)%m;‘ [(pm]_)—l _ (mjp)—n—ll

B (1 — (m;p)]

if m]'p;é 1,

which also — 0, since |p| > 1 > |m;|.

LemMa 12: The r.v.’s U, 1 and X ; , are correlated even asymplotically. If m;p = 1
then the asymptotic correlation 1s 1.

The statements are verified analogously.

The next lemma plays an important role in the limit distribution of p, .

LemMma 13: The random vectors (V,, Uny, -+, Xi.n) converge in distribution
to a random vector which will be denoted as (V, U, Wy, - -+ , Wy). Moreover, V and
(U, Wy, -+, W) are independently distributed. Here the V,, U,1, and X, ,
have the same meanings as in Lemmas 11 and 12.

(The factor (p* — 1)%, in U, ; and V, , which is irrelevant here, will be omitted
in the proof for convenience and symmetry, slightly abusing the notation. Note
that the W/’s are defined as the limit in distribution of X;,, the existence of
such a limit being part of the conclusion of the lemma.)

Proor. Let my = 1/p and m,, --- , my be as before. Then |m;} < 1,7 = 1,
-+ k. Since V, — V, with probability one by Lemma 8, so V, 2 V. Let
X®™ = (Uni, X2, -+, Xen) (prime for transpose). To prove the lemma,
it suffices to show that (i) X 2 X = (U, W,, ---, W)’ and (ii) V and X
are independent. Since X‘” 2, X if, and only if, for any (real) vector a =
(a1 y ,ak), aX(") = (dlUn,l + st + dek,n) -1—)—)GX = (dlU + e + aka)
(see e.g., [7], Proposition 7.1), consider aX™, and let ¥(t) = E(e™*").

en(t) = B (exp [it D ulam{™™” + -0+ akm,ﬁ"“”)]>
r=1

n n—1
= [T v(tlam™ + -+ + ami ™)) = Honlx(t[almi + -0+ ami))
(15) r=1 r=

It

n—1
E (exp [it ZO Urp{amy + -+ + akm2)>j|

= E(exp [it(aiV,1 + -+ + aV.)]), say.

Since jm < 1, and u, are independent with means zero etc., it follows by Lemma
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7 that V. — V. with probability one, and consequently, using Lemma 3, one
has that (V,1, -+, Vax) D (Vy, -+, Vi) = (U, Wa, ---, Wi). Hence,
ea(t) = E(e"*™) = B ™) = o(t) = E(¢™7) = E(¢™). This proves
(i). Next (ii) will be proved by slightly extending an argument of J. R. Blum
(1], p. 679). Let [n/2] = integral part of n/2. Define Vi = > 24 miu,, and
V, = retn/z) 1 MU, . Clearly Ve £ V, since V., 5 0, and hence, by Lemma
6, they have the same limit distribution. Similarly, let

n

aX"* = 3 ulamiT + oo+ ampT),

r=[n/2]+1
and

[n/2]
aX™ = 2 ulami™ 4 o 4 awmi ™), (5 0)
so that aX™ £ aX‘”* and since X™ has a limit distribution by part (i) of
this lemma, X* has the same limit distribution. But from definition, for every
n, Vi and X™* are independent, and hence they are also independent as n — «,
proving (ii), q.e.d.
CoroLLARY TO LEMMA 13: Let X;, be as in Lemma 13 and X, =
v (n—r)m} " Mu, for some j(Jmy]) < 1). Then (Xin, X;.) has o joint
limit distribution, and if any X ;. tn Lemma 13 is replaced by X ;.. then the con-
clusions of the lemma remain valid.
Proor: The proof runs on the same lines as in the lemma. In fact (taking < = 1)

n-—1
en(t) = Elexp [it{arnX1n + 02X ;0)]) = HlMt[almi‘" + ax(n — r)m}7Y)
(16) .
= ] v(tdlami + armi™]) = Efexp [it(aVas + a:V. )1}, say.

It was noted that V,, 1 — V, with probability one. But it also follows from Lemma
7, that V,,; = 2.7 rmj 'u, — V; (say), with probability one, since the r.v.
V..; has also a bounded variance. Thus ¢.(t) — ¢(t), as in the lemma itself.

The proof of the last statement is identical to that in the lemma, q.e.d.

6. Limit Distribution of 5, . A complete (i.e., self-contained) statement of the
theorem on the limit distribution of s, will be given here, even if it involves some
repetition. (The W ,’s below are the same as in Lemma 13.)

TraroreM I1: Let {X,, ¢ positive integer} be a stochastic process satisfying the
Sollowing conditions:

ConpITiON 1: For each ¢, X, = auX; 1 + -+ + aaX, 4 + u, k finile, where
ay, -+, ag are finite real numbers (unknoun parameters), and w; , t positive, are
tndependent, identically distributed r..’s with mean zero and a finite posilive vari-
ance o".

Conp1TION 2: The distribution of u, is conlinuous.

Conbrrion 3: The roots my , - - - , my, of the characteristic equation m* — aym*™" —
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© — ox = 0 are simple (i.e.,, m; #= m; of © %= j), with one root, say p = my ,
and the other roots m;,j = 2, - -+ , k, satisfy the inequalities |p| > 1 > |m;].

ConbITiON 4: For ¢ non-positive, u, = 0.

Then, it follows that s(n) (p. — p) has a limit distribution which is that of the
ro. (GU + W + Hu)/V, where W = 3 5,C;W;, s(n) = M |o|*/ (s — 1)
(M ©s positive) and B, = vy X X¢-/ SoraXi, the , G, H, and C; are some
constants that depend only on the roots (p, my, - - - , my).

CoroLLARY II, : If the process satisfies the conditions 1, 3 and 4, and u, are
Gaussian, then the limit distribution of s(n) (p. — p) is a Cauchy distribution.

CorOLLARY Il : Under the hypothesis of Theorem 11, it follows that the limit
distribution of (EZ‘,I Xt (Bn — p) is the same as that of the rv. GU + W +
Hu, and under the hypothesis of Corollary 11, , this limit distribution, i.e., of
(i Xf_l)*~( Bn — p), s Gaussian with mean zero, and a finite variance de-
pending on (p, ma, - -+, mi).

The proof of the theorem and the corollaries will be given in succession.

Proor or TuroreM II: The general idea of the proof is this: From (11)

G- = (5259) /(S X S e,

te=l s(n) t=1

where R, and @, stand respectively for the expressions in the numerator and
denominator. First R, and Q, will be expressed in terms of stochastically equiv-
alent quantities, call them R, and @, (they are given precisely in steps 13 and
14 below), i.e.,

(18) R, = R. + 0,(1) and Q. = Qn + o0p(1).

Then, by Lemma 6, R, and R, , and Q, and @, converge in distribution to the
same r.v.’s. Then, by Lemma 4, R./Q. and R,/Q, converge in distribution to
the same limit if . does not converge to a degenerate distribution at the origin.
Therefore, the main task here is to obtain R, and @, which are simpler to deal
with, and to show that the latter is non-degenerate at the origin. It will be seen
that the r.v.’s R, and @, are “nice” functions of Uni, Vo, and X;,. Then
using Lemma 13 the limit distribution will be obtained.
This plan is carried through in several steps as follows:

1.Q. = > X:4/s'(n) = V21 + 0,(1), by Lemma 9.
t=1
In steps 2-12, R, will be simplified.
U Xig LA ﬂX'tl'tl .
2. R, = L D 2 M N(my — p) D DL yging (10), =

=1 s(n) =2 =1 =1 s(n)
A + B, say.
3.4 = Z wXa/s(n) = a"UniV, + 0,(1), by Lemma 10.
t=1
_ k k n k k n
4.B= =3 (m— o)\ 2 X Xjr + 2 20 Mhg(my —p) 3
s(n) 7=2 . t=1 =2 ¢=2 t=1

Kot Xjus A+ 20 20 M h(m; — p) ’T;)qu,sa)’-

S(n) ’ 7=2 g=2
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5.8(n) "B, 5 0,all ¢, j > 1. For, by Schwarz’ inequality (for the first time
|mg| < 1 will be used)

1 1 n n X2q,t—1 Y /n X?’,t——l )
(19) ‘@B“" = | sy & Ko X | (‘: s(n)) (Z s<n>) ’
<N ¢ W R S i e
E@ s(n))‘@éE@mq ur)
(20)

. (oF — 1) n m— m
=g — -2 2 |1—-0,
Nl LT = G = mp

since |my] < 1 < |pl.

By Markov’s inequality, since the r.v.’s are non-negative and ¢, j > 1 implies
|mg| < 1 and |m;| < 1, it follows that the right side of (19) converges in prob-
ability to zero, so that step 5 is proved. Consequently, the rest of the analysis is
concerned with 4, .

k n k
pY
6. 41 = 2 (m; — )N = D Xuema Xy = 2 Ai(m; — p)Ay; , say.
i=2 s(n) t=1 =2
7. It will be shown that A;; is stochastically equivalent to a r.v. in terms of
Un,i , Vn_i and Xi,n .
t—1

:_ n
8. Alj = d Z;Xj.t—l (Z pt ! u,)

r=1

an [((p2 _ 1)% tzz p—(n—t+l)Xj't_l>((p2 _ 1)% Zl p—rur>]
a® [(p2 _ 1) tz_z P_(n_H_l)Xj.t—l Zt p—rur:l

= a"A*V, — a"B*, say.

The r.v. B* was added and subtracted. Thus

9. A;; = a"(A*V, — B*).

It will now be shown that

10. B* 5 0. Since X, and ZL; p "y, are independent and each has
mean zero, E(B*) = 0. However, different terms are not independent. Conse-
quently, an upper bound for the variance of B* is obtained, using the elementary
inequality Var (X + Y) < [S.D. (X) + S.D. (Y)T?, and that is shown to con-
verge to zero.

Regrouping the terms in B¥, one gets the following:

2 n—1 n—2
p — 1| _, —n—1
B* = ‘;_ |:P Zl Xjrthrr + p Zl Xjr Uri2
r= r=

(21
_.I_ P _I,. p"(zn—?)Xj.l un] .
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The variance of the general term in B* is given by

r=1
< [(n —4)/(1 — m)le"p ™", since |my| < 1.
S.D. (o7 X X ups) £ Lol (= 0)(1 — i)™
where |mo| = max |m;| < 1.
7
Consequently
Var B* < (& — 1)/ (1 — m)l(n — 1) + (n — 2) + -+ + 1F

constant- (p° — 1/p)*[p7*"/(1 — m3)|n* — 0,

(23)

It

so that B* 5 0.
11. Now A* will be simplified.

p2 -1 i n

t=2
24 RS .
(24) =(pp2 )[p( Pug 4 o7 (myu + we)
+ 1 mi a4 e 4 w)),
since X, = D_tm1m; "u, . Another regrouping gives
p2 -1 i n
A* = < 2 ) l:ul m}“zZ; (pm;) ™"
(25)

+ wpm} Zs (pmj) ™" 4 oot 4 un—-l] .

Case 1: m;p ¥ 1. Then (excluding the trivial case m; = 0)

2 1 E . n—1 s n—1 N
A*=<p o '(l—pmj)l[;p( ' )ur—Pmiz;mjl ur:l
= (1 — pm;) Un-so — mi(p" — 1)} X; 04,
Case 2: pm; = 1. Then (25) becomes
2 1 1 n-1 =
(27) A* = <p . ) > mi " 'u, = X;,., say.

P r=1

(26)

In this case, the corollary to Lemma 13 will be used to conclude that
(Va, Xon, -+, X&) has a joint limit distribution which is continuous in the
V component, and the rest of the analysis is unchanged. Therefore, in what
follows, only the relatively harder Case 1 will be considered.

Thus, using the value of A* in 4,; of step 9, and A;; in A, of step 6, and A4,
in B of 4, and finally A from 3 and B from 4 in 2, one obtains the following ex-
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pression for R,

12. Ry = [ it Do gy Y (e P,

=1 — pmy; pm; j=2 1 — pm;
Xj,n—l] Vaa + 0,(1),

because Voy = Vyand Uno 2 Uny. But Upy = p Upcga + 070" — D,
so that

Rn = a"p_lUn—-l.l + a” _I(P - un + E (m] ) i U —1.1
- F=2 1 — pm; pm;
(28) C ey ,,_1} Vi + 05(1)
j=2 1 — pn;
- 3
= | QUu1a + Hu, + 22 C; Xj.n—l] Vaa + Op(l),
- 1=

where G, H and C; are constants that depend only on the roots (p, mz, -« - , my).
Note that (|a| = 1)a” has no influence on any statements since U, ; as well as
u, are r.v.’s with zero means, the same variances as before the multiplication of
a”, and their distributions are still continuous.

13. R, = R, + 0,(1), where R, = [GUp_11 + Hun + 252 CiXjna) V.
Clearly u, is independent of U,—11, Xjngand V, .

14. Q. = Q. + 0,(1), where @, = V2_,. (Cf. step 1.)

By Lemma 13, (%n, Una1, Vaa, Xoma, -+, Xena) has a limit distri-
bution which is continuous in the V component, and the limit distribution
is that of (u, U, V, Wz, ---, Wi), where, in fact, V is independent of the
other r.v.’s. Hence it follows, by Lemma 4, that the limit distribution of
s(n)(pn — p) =R./Q. is the same as that of R./Q., i.e., of the r.v.
(GU + Hu + 2 % C;W ) V]/V?, since Pr{V =0} =0,=[GU + Hu + W]/V,
where G, H, (’s are constants depending on the characteristic roots
(p, ma, -+, m), q.ed.

ProoF oF CoroLLARY II; : It was seen that w and V are independent, and V
is independent with U and W by Lemma 13 above. If %, are N(0, ¢°), then it
follows that U, w, W all have Gaussian distributions (U and W being linear
combinations of u;) with zero means and finite variances. The same is true of V.
Consequently [GU + Hu + W]/V has a Cauchy distribution.

The continuity of the distribution of u, with two moments, which is condition
2, is clearly satisfied, q.e.d.

Proor or CoroLLary II, : It suffices to observe that

(g X%_l)* (b= o) = 20X ) (g Xf_l)’

9 Z v Xia
_ < s (n) >t=18 2, (V) HQU + Hu + W)V
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which, when u; are Gaussian mean zero, (and with finite positive variance) is a
Gaussian r.v. with mean zero and a finite variance depending on the roots
(pa Moy ="y mk)a qed

Some Remarks: If some |m;] = 1for 2 < j < k, then the conclusions of the
above Theorem II and the corollaries need not be valid since, as seen in the
proof, the fact that |m;] < 1 is used in an essential way. If k = 1, the Corollary
II; was proved by White [14] and the theorem and its corollaries by T. W. An-
derson [1]. The result of Theorem I, also for & = 1, was proved by Rubin [13}.

Sometimes it may be of interest to find a lower bound for the variance of p, .
However, because of Corollary II,, variance need not be a good risk function
to consider, and some more general risk functions as in [11], may be more ap-
propriate. This problem will not be considered here.

PART II

7. Introduction. Let {X,, { = 1} be a stochastic process satisfying the Assump-
tions 1 to 5 of Section 1. The problem considered in this part is the consistency
of the L.S. (or M.L.) estimators of the “structural parameters”, or the regres-
sion coefficients, of

(29) Xe=aXig + o0+ X + ue .

The ordinary “normal equations” for the estimators &; of «; are

k n n
(30) Y& ¥y X Xe;= 2 XX, i=12 -,k
pous QRPN e REY =71

where [z, j] = max (4, 7). Introdueing the notation

n

(31) Ch= > X _X.;, and A? = > wuX,.,

t=[1,7]+1 t=1i+1

the equations (30) can be written as

’

(32) (Ci)(dn — @) = A7,

where &, = (61, ---, &) and A™ = (A7, ---, Ar) ete. Since for every fixed
n, the inverse of (C%;) exists, (32) may be written as

(33) (dn — @) = (CH) T A™.

The question considered in this part reduces to this: Is the following equation
true?

(34) plim (é, — &)’ = plim (C%)™ 4™ = 0.

To carry out the work, several auxiliary results are- required, including the
generalized versions of Lemmas 9 and 10. These are proved in Section 8, and
the main problem is considered in Section 9.

8. Lemmas for Theorem IIL The first two lemmas were stated forz = j = 1,
(k = 1).in Part I. Employing the same notation, their general form is given
here.



206 M. M. RAO

LemMA 14: The ro. s(n) ™ A} Z a ULV,
Proor: By equation (5),

= » A " i
(35) s (n)A! =§;T)t . u,XlH+thZl“‘ i = A+ B:, say
=3 i+

1t will be shown that
k
(36) Bi = Z )\j Bij i) 0
=2
Since u; and X ,; are independent, for all j, and ¢ = 1,

E(By;) =0, all4,7 = 1,and Var B;; = Z E(X5...).

2(n) =
But

t—1

E(X3,. ) = 22 mi < t'm?t X constant.

Hence, Var B;; < constant X p ~"n'm}" — 0, since |m;/p| < 1. It follows that

B;; 5 0. Hence, B; 5 0. Consider,

Moo

Tn) - U X1,

i =

1

=a"p 7 [((p2 -1 > ;o_("_““l)uzx(p2 -1y p—’ur>
(37) t=i41 r=1
- (=1 Z IR p~'ur:|
r—-t—i+1

. * t=1+1
= p “ PV, V. — B}], say.
The lemma would follow if it is shown that
(38) Bi50,i=1, -,k

. *
Rewrite B; as,
* 2 (40 ¥ = (n—2)
n —(n —1 —(n—2
B; =a"(p — 1)p [Z Up—ip1Us + p Z Usgqaths + + o+ + p ” UnUit1).
t=14+1 t=241

In the above each term has mean zero (except the one involving
o Y 3 i ui, which by Markov’s inequality = 0) and variance < ne~",
and each component is independent of the other (excluding the squares term)
Hence thelr variance is not greater than n’p " — 0. It follows that B 5 0.
Hence 4; £ a"p “PU,..V..

REMARK: The exact expression is
(39) s (n)AT = a"p VULV — 0 VBT + B,
where B 2> 0, B; %> 0, and |a| =
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Lemma 15: The ro. s 2(n)C3 £ p_(i+j_2).[/i_max(i'j) .
Proor: Since

k

(40) X, = XXy,
=1

it follows that

s (n)C%; = s (n) E X X,

t=[4j]+1

AL $ n
= X _,X — * )\ A —.'X A
§*(n) t=[;j]+1 e vt 2(n) t= UZJ:HI qqz_1 a Ao’ X @ i

where [i, j] = max (¢, j), and where D_* above stands for the sum in which
g = ¢ = 11is omitted; or
(41) s (n)CY = Ay + Qi;, say.

Note that the special case ¢ = j = 1 has been stated as Lemma 9. The general
case is proved here. Also some of the computations (e.g., of 4;;) given here will
be needed later.

First consider A.; .

2 2 n
-1
Aii = ____(p ) Z X%,t—i

o t=311

(P - 1)2 - < 2(t—r—1) 2(t—3)—r—r'
—T Z Z Uy + Z Up Upr

P t=1+1 |_r=1 rar’ —1
= A7 + B , say.
But A may be simplified as follows (more details can be found in [10])'

2
* _p —1| 2 2tun 2 2(n—i—1) 2n—imtnmi=D) 2

Pl
(42) 2 n—i n—i
_# ;1 P 2 P —1
P r=1 r=1
Similarly Bf* can be rewritten as,
* % P2 -1 2(n—i—1)
B, =2 o [ous us(p —1)
+ o us (8T —1) -+ A+ s tn_is(p* — 1)]
(43)
2 _ 1 n—1 , _ 1 n—i—1
=92P — S T Py . — 2 ¢ [ > Uy Urir
P rrﬁr=ll =1

n—i—2

—i—1
Z urur+2+"'+P”1 ulun—i]-

r=1
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Substituting (42) and (43) in 4.,

2 n—1i n—i
p —1 —2(r—1) 2 —(rr'~2)
Au = —5 [E PP+ 2 2 0T u,u,r] -
P r=1 r<r’
ror’=1

2 n—1 n—i—1 .
(44) ° p_ L [E ur + 2 (p > Ut o+ W un—i)]

r=1 ra==l
2 _ 1 _
= (Z T ) — R;, say.
r=1
(45) Aii = P—2(1—1)V:—i - Ri ;

where R; is defined by
1 I:Z_: u? + 2( 2_: Ut + -+ P “lulun_i)].
r=1

Tt is not difficult to see that

(46)

(47) R: 5o, i=12 -,k
Hence,
(48) Ay & 7YV
Using this result it will be shown that (cf. (41), for definition of Qi)
(49) Q:; 50, i=1,+,k

By Schwarz’ inequality,

1 % 3
[ . , | <
(50) §*(n) t-[%:qu'H Xowi| = (s“’(n) i'=zl+1Xq‘ l) (SQ(n) ,.§1X“ ' J) '
For g > 1,

( (n) 3 Xhe .> = %ﬁ—)z > E(‘i mg T ur>2

tani1 t=141 re=1
2 2 —2
Z n'm;"p " X constant — 0,

since |my/p| < 1. Hence, the r.v.’s being non-negative, it follows that,

(51) §7(n) D, Xgu-i >0, i=1,-,kgqg>1

t=1+1

If both ¢, ¢’ > 1, then the right side of (50) 5> 0, so that Q;; = 0. If ¢ = 1 (so
that ¢’ > 1), then the right side of (50) has a factor

n
—2 2 -2 —2( i—1) 772 P —2(i—1)yr2
sHn) 2 Xiei =N A £ o700V, S UV,

t=i+1

by (48) and Lemma 8. Hence by Lemma 1 (for products), it follows that
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Q:; 5 0. To complete the proof of this lemma, it remains to consider A;; for
¢ # j. Since A;; = Aj;, let ¢ > j. Then, from the definition of A4,; (cf. (41)),

Ay= (" — 1)’ ™ Z (tf_‘: i )('ij pH_'m)

t=141 \r=1 re=]

2
— (P 1) 1—) Z X1 e

2n

P t=141
(P - 1)2 = (t._' t—i—r ) = i—j—r )
—_— Up—i—
" t==2c+1 1; ;1’) o

= Pi_jAﬁ + Sij s

where A;; is tlle same as in (41), and S;; is the second term above, and for
symmetry let S;; = 0. Hence using (45), 4; can be written as
A'ij = Pt_J[ _2(’_1)Vn—1 - R'] + Sii

i) r2 s
=P s 2)V.—i - p 'R+ Sij-

Since it is shown that B; 5 0, §;; 5> 0, the lemma would follow if it is shown
that

(53) Sii 5 o0.

After a slight rearrangement one obtains

(52)

2
S; = (p__) [(us Uijr + U2 Uhijio + -+ + Up—s Un_j)

(54) + p(ur Uiy + U Uijiz + o Un—i Un—j1)

541 — i
naR e o R T s o A 7R S X

Now all terms in the square bracket on the right of (54) have means zero, and
the variance of the whole expression is bounded by the quantity

(0 — D% *(n—2)+(n—3i—1)+ - + pEm D ]
< 7’0 ™™ X constant — 0.

Hence it follows that S;; 5 0, 4, j = 1, -+, k. Therefore, from (41), using
(52), one obtains

(55) 3_2(n)0?1' = Aij + Qi:i = _(VH_?)Vn [+.4] -
REMARK: The exact expression is the following: (i = 7)
(56) s (n)Cl = o VI — PR+ 8 + @

where R; 5 0, 8;; 2 0, and @.; 5 0.

In the sequel a second order stochastic difference equation will be considered
in detail. In that connection, it would be of interest to know more about R, and
S;; . More precisely,
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LemMA 16: The rv.’s s(n)R; and s(n)S:; are bounded in probability.

Proor: Since s(n) = N\ |p|"/(s° — 1), from (46) above, one notes that the
first term on the right of s(n)R;, 2> 0, by Markov’s inequality. The second
term, given in (57), will be shown to be bounded in probability.

n—i—1 n—1i—2

(57)  Mlo|” "[p Z Usg1 + P E Uy + -+ + p"_i_lulun_i]

is composed of terms, each with mean zero, which are independent of each other.
The variance of (57) is

(58) Mp e —i— D +pn—5—2)+ - + TV =M < o,
where M is independent of n. It follows that (57), and hence s(n)R;, is bounded
in probability.

For S;;, the case k = 2 will be considered. It is the only case that is required.
Then from definition,

n—2
(59) s(n)8u = Z;;lp o [PZ U Urp1 + p Z Ur Uprg + -+ + p" un—l] .

But this is a special case of (57) (for ¢ = 1), so that s(n)S;; is bounded in
probability, qg.e.d.

Lemma 17: If |mg| < 1, the ro. Ms™'(n) Dov—ijier X1.4—iXq.e—i @5 bounded
in probability (g > 1).

Proor: First consider the case ¢ = j,

E Xl t—'z q.t—j

S(’n) t=1+1

(60) _on—itly 2 b NS (et 2 P
=a" -1 > p Xoi(p” — 1) Z,lp Ur

t=i+1
= anp_“_l)[fii Vi — T?j],
where V,_; is defined in (6), 4; = (& — 1)! D r o "X, and

n n—1t
T:L]- = (p2 — 1) Z p_(n_H_l)Xq,l_]' Z p_rur.
t=1i+1 r=ii4l

Note that E(A4);)
2 n 2
Vard, <2 1 [ 2 |om™? S.D.(Xq,t_,-)] SM < o,

P tmitl
Hence A; is bounded in probability.
It is known from Lemma 8 that V,_; is a r.v. which is bounded in probability
fori =1, .--, k.
Next, as in (38), it is seen that |E(T%;)| £ (o° — 1)n® |p| "> — 0, since
|mg| < 1 < ||, and

Var T < p "[n+ (n — 1) + --- + 1" < constant X n*p " — 0.

0, and since [m,| < 1and |p| > 1,

Hence T3 i 0,72,7 =1, ---, k, by Lemma 5.
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It follows that the r.v. in (60) is bounded in probability. To complete the
proof of the lemma, it remains to consider the case 7 < j. Then, a rearrangement
shows,

Moy
8(n) (=

(61) A n j—s
J—1 1 J—i—r
= Xgi—i X1,0- — —itr .
P S(n)z—;p a.t—j X1, + (n)t=ZJ-I- q,tJ;P Ut—j+
The first term on the right of (61) is the same as that in (60) with 7 = j and
hence is bounded in probability. The second term, becausg |mg| < 1, % 0, since
it has mean zero and variance — 0. (Compare with s(n)Sx of (59).)
Lemma 18: If |mg| < 1, then s(n)Q:; is a r.v., bounded in probability, where

n k

= 1
Qij = Z Z A Ay Xc,t—i Xq’.t—J‘ .

83(N) t=[s1+1 —1
(q=q’= ot llowed)

X1 Xgj

Proor: Only the case k = 2 is needed below, and it will be considered.

A1z 2
=2 . CIPD. CP X, X i
s(n) ¢=[;}+1 (X 2.0 + Xo L)

s(n)Q;; =
(62) 2 n
Az

— Xo i Xoys.
$(n) s—fSHa TR

Since |m,| < 1, the first term on the right of (62) is bounded in probability
by Lemma 17. The second term is easily seen to converge stochastically to zero,
q.ed.

In proving the consistency of the estimators of the regression coefficients a
simplification of the following expression, given as the final lemma, is all-im-
portant.

Lemma 19: If |mq| < 1 < lp| then s*(n) (Qn - Zple + 0°Qu)/n converges
in probability to [2Ahee® + Nso®(1 — 2pms + p°)/(1 — md)].

Proor: From the definition of Q,; (cf. (41)), for k = 2, it is seen that

n

Qi = s7(n) [M M 2 (KXo + Xows Xiy)
(63) '

+ )\3 Z X2,z—i X2,z—j] = Q;; + bij, say.

t=[4,71+1
Thus, from (63),
(Qu + P°Qx — 20Qx) = (an + paz — 2paxn) + (bu + p'be — 2pby).

All the simplifications depend on the fact that |m,| < 1 < |p|. If u, were as-
sumed to have four moments, then the results of Mann and Wald ([8], p. 182)



212 M. M. RAO

imply that s*(n)bij/n 5 lim,,e E(s’(n)b;;/n) = M < «, where M is given
in (64) below.

n

$(n)bs/n = (A\3/n) Z X4 iXoj, fori = j, since b;; = b;:,
n t—1 t—j .
= (\/n) > (Z mi )(Z mé_’_'u,) .
t=i+1 r=]

Hence E(s*(n)b;;/n) = (\3/n)ms %a® D rips 2 it mﬁ(t_"_'), so that
(64) lim E(s’(n)bij/n) = Nm3 %6®/(1 — m}) =

n-»00

However, this result can be obtained with the assumption of only two moments
for the u; , as assumed in this paper. This will be proved here (¢ = 7,7, = 1,2).
Consider

)\2 Z X2 t—1 X2 J$—3

n t—1+1
1 t—J5
t—i— t—j—
(65) Z Xo o [mz Y mT e, Y, my 'ur]
N t=it1 ro=] re=f—¢41
MN_iiw 2 R o
1—2 1
=_ M Z Xogi +— Z Xos Z me i Ut—igr ) -

n t=i4-1 N te=itl ra=1

The last term on the right drops out for ¢ = 5, and if ¢ = 2, 7 = 1, it becomes,
(1/n) D otmiss eaXa e 2> 0, since it has mean zero, and variance of the order
1/n, as |me} < 1.

Consider 4;; = % my 'Y ri1 X3, . Comparing A,; with A of (44), one

n—i e 2 1 -
(; ms ,) i Ri:l;

where R; is given in (66’). But the first term in (66), on the right, is non-nega-
tive and has a mean that tends to zero since |m,| < 1. Hence, it converges in
probability to zero. Consequently, A;; £ m3 (1 — mi)™»'R;, and

obtains, on identifying m, with p,

(66) A‘iii = -:-Lm;_jl:

n—1i n—i—1
(66') Ri=2 ul+2 [m2 D Ut oo+ mE Ty un_,:l.

r=1 o

Notice that the terms in square brackets of R, have means zero, and the variance
of the r.v. in [ ] is bounded by a constant times n since |ms| < 1. Hence

n—i—1
(67) nt l:mz > U Uy o+ mE Ty u,,_,] 0.

r=1

On the other hand, by the strong law of large numbers,

n—1

(68) w7t Y wl > El) = ¢ >0, with probability one.
r=1
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Therefore, (65) simplifies to (64). From this it follows that
(69) (sz(n)/n)(bn + P2b22 — 2pba) N [)\2:12/(1 - mi)][l + o — 2pmal.

The following algebraic identity may be verified. (Details can be found in
[10], p. 89.)

2
g (n) (an + p2022 - 2pa21)
(70) n—1 ( ) n
= 2)\1 A2 [n—l Z uf + % Z Upg—1 Xz,t_z] .
re=1 =3

The second term on the right has mean zero, variance of the order (n™), so
that this r.v. £> 0. On the other hand, n~* > iy u? — o° with probability one.
Hence,

(71) (sz(n)/n) (au + p2(122 b Zpaﬂ)‘ i) 2)\1)\20'2.
Combining (71) with (69), one obtains
§'(n)

n (Qn + PZQ—22 - 2PQ21) 5 D\g 02/(1 - mg)][l + P2 - Zp’mz] + 2M N .

9. Consistency of the Estimators &;. The previous lemmas enable the presen-
tation of the main problem of this part. The complete statement of the theorem
is given for convenience. The details are given for the second order stochastic
difference equation and hence the statement is given only for that case.

Turorem II1: Let a process { X, , t = 1} satisfy the following conditions:

ConpITiON 1: For each t, X; = onXy 1 + oXss + u:, where ay, os are finite
real constants to be estimated, and the u, (i positive) are independent, identically
distributed (with a continuous distribution) having mean zero, and a finite posttive
variance, o .

CoNp1TION 2: The roots my , ms of the characteristic equation m* — aym — ay =
are simple (i.e., my % my), with one root, say p = my, satisfying |p| > 1 > |ms|.

ConvprTioN 3: Fort < 0, u; = 0.

Then, it follows that the L.8S. estimators é&; of a; (see eq. (32)) are consistent, 1.e.,
plim (&; — a;) = 0.

Proor: For convenience C;; and A; will be written instead of C7;, and 4; .
Then the “normal equations” for &; given by (33), can be written explicitly as

022 A1 - 012 Ag
Cll C22 - 021,2 ’

Cll A2 - Cl2 Al
CuCyp — C -~

It suffices to consider one of these equations, say (72). Then (72) may be
written as

(72) (g — ) =

(73) (62 — @) =
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where, as usual, the normalizing factor s(n) = Aip|"/(s° — 1). From equation
(39),

(75) Ay/s(n) = a0 U, iVa — o7 VBY + Bi,a = p/ls),

where U, ;, V., B} and B; are defined i 1n, respectlvely, Lemma 14, equations
(38) and (36), and it was shown that B} £ 0 and B; = 0.

Similarly from (56), for ¢ = j,
(76) s(n)Cy = p “TPVL — R + Sii + Qi;,

the quantities RB., Si;, and @;; are defined in (46), (53) and (41).

The numerator and denominator of (74) will be considered separately. Call
them N, and D, . It will be shown in the following that (s(n)/2)N, 2> 0, and
(s(n)/n)Ds 5> to a positive r.v. The theorem follows by an application of
Lemma 1 (for ratios). The detailed steps follow:

1. Noting that Ci2 = Cy

_ Cw A Cu Ay
" #m) s(n)  &(n) s(n)’

(77) =0a"p " Vas ValUsy — Uns) + p° Ve (By — pB: — Bi + B;)
— (B: — Qu) (a" U1 Vo — Bi + B3)
+ (pR2 — 81 — Qu) (@" p ' Unn Vo — p ' B; + By).
II. From the definition of U, ;,

(78) Unr = (0" — 1) " Puy + U,

Hence, from (77),

(79) " (Uny — Un2)VaVis = a"ViVau(o — 1)ip " Py,
From (79), it follows that

(80) (s(n)/n)a™(Uns — Unz)VaVas 5 0.

IIL. Consider s(n)(By — Qu)(a"Un,V,. — BY + B,). Here the fact that
|ms| < 1 will be used. Thus from Lemmas 15 and 18 it follows that s(n) (R, — Q)
is bounded in probablhty, and U 1V, is also bounded in probability (from the
definition), while Bf %> 0 and B, % 0 (cf. eq. (75)). Consequently, by Lemma 1,

(81) (s(n)/n)(Rz — Q22)(a UpiVa — Bl -+ Bl) = 0.

IV. Consider s(n)(pR: — Su — @Qu)(a"p ‘U, V, — By + B;). Since
|ma| < 1, as in step 111, by Lemmas 15 and 18, it follows that (because the r.v.
in IV is bounded in probability)

(82)  (s(n)/n)(pR2 — Qu — 8u)(a"p ' UnaVa — p'B; + B2) 5 0.

V. Finally consider s(n)p V2 _o(B; — pB, — Bi + Bj). The following alge-
braic identity may be verified. (See [10], Appendix 1, for details.)



STOCHASTIC DIFFERENCE EQUATIONS 216

2 _ n—1 2 3
(83) B — B = o ’l_pz_l oY [Z Uy Upy1 — (pzp_ 1) Us V,.].

r=1

Notice that s(n) (B: - Br) is not necessarily bounded in probability. But,
n—1 2 N
n's(n)(By — BY) = M\ [n*l > Ulyr — T UV — 1)*,)‘1].
r=1

Clearly n 'uzV, 5 0, and watyyy , 7 = 1, 2, ---, are independent identically
distributed r.v.’s with means zero. Thus, n™" 3 72 %u, 4y — its mean (= 0)

with probability one. Hence
(84) (s(r)/n)(B; — BY) 0.

Also notice that s(n)B; = Ay D rmip1 e Xo.0ms, E(s(n)B;) = 0,and since |mq| < 1,
E(s(n)Bi/n)’ = 0(n"), i = 1,2, so that (s(n)B./n) 2 0, implying

(85) n's(n) (B — pBy) 5 0.
From (84) and (85), it is seen that
(86) (s(n)/n)p*Va2(Bi ~ pB: — By + B;) 5 0.
Consequently, from (77), (80)—(82) and (86), (s(rn)N./n) 5 0, if
Imo| <1 < |p|.

VI. Next consider the denominator D, ,
_ Cu Con (Cu 2] _ 3
Do = st [ o 5~ () | = o0, s
It will be shown that (s’(n)/n)D. > positive r.v. Consider (Co = Cia),

= _ Cu Cp (021
s*(n)

T8 $n)

2
) = (Vi — Bt Gu) (57V2 s — B + Q)

- (p'Vi_, - ol + S + Qu)’,

from (75). Now adding and subtracting V% _,(R, — @) suitably, one gets,
after rearrangement,

Dn = p—2Vi—2[((Vi_1 - Vi—2) - (Rl - p2R2 + 2P'§21))
(87) + (Q-n - 2PQ_21 + pZQ-n)] - (Vi—l - Vi—z)(Rz - sz)
+ (Rl - Qu)(R2 - sz) - (pRz - 521 - Q-21)2-

VIL. It is not difficult to see that the following identity obtains (see [10],
Appendix II, for details) :

n—1

(88) s—'(—n@ [(Vi—l - Vi—z) - (Rl - P2R2 + 2P'§21)] = )\i Z uf/n

r=1

Since the u’ are independent identically distributed with means o, it follows
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that
n-1
(89) A > ul/n—2e® > 0, with probability one.
VIII. It was shown in Lemma 19 that
2 2
(90) s(’” (@ = 260 + 5 Gal 5 e o® + 220 (L4 5 = 2mp).

Thus the term in square brackets on the right side of (87 ), multiplied by s*(n)/n,
converges in probability to the following limit.

)\2 o
2 (P - ""2)2;
2

2
(91) Al +2und + (1+p — 2mp) = o ti

since Ay + A2 = 1. Note that this constant is strictly positive.
IX. The following statements are immediate consequences of Lemmas 16 and
18.

(92) n g (n) (Vaa — Vi) (Be — Qu)] 50,
(93) (8(n)/n)(By — Qu)(R: — Q=) 50,
(94) (82(’”)/7&)(R2 - Szl —_ Q-zl)2£)0.

Summarizing the work in steps VI-IX it can be inferred that (on noting
p Vi _s — 572V* (3£0) with probability one, cf., Lemma 8),

2
(95) g (:) D, %oV [02 + 1)\2 o 5 (p — ma) ]

which is a positive r.v.

Hence, by Lemma 1 (for ratios) it follows that & — a1 = N./D, 550, if
|me| < 1 < |p|, qe.d.

10. Remarks on Theorem III.

1. The assumption that the other root |ms| < 1 is used to get the required
bounds in probability for the r.v.’s B; and Q;; when multiplied by s(n)/» and
§’(n)/n. This is only a sufficient condition. It is probably true that the con-
sistency of &; holds without any restriction on the other roots (i.e., other than
the maximum), but due to the computational difficulties these relaxations were
not attempted.

2. The long route followed in the proof was necessitated by the fact that the

numerator as well as the denominator 2> 0. The usual assumption, that the matriz
(s72(n)Cs;) s non-singular in the limit, is not tenable here, and the classical pro-

cedure ts not applicable.
Proor oF 2: Let M, = (C%;) and s(n) = M |p|”/(0° — 1), as usual.

8_ (n)M" = (S_z(n)Cij £ (p—('+7_2)Vi—msx(i,j)), by Lemma 15,
E (pm YV, by Lemma 8.
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But the right side is a singular matrix of rank one. Note that only |p| > |m;|
and |p| > 1 are used here.

3. From this theorem the following important coneclusion obtains. The non-
singularity of the matrix (s(n)Cy;), for all n, is not a necessary condition for
the consistency of the estimators &; of the regression coefficients «; .

4. If |p|, |lm| > 1 (i.e., all roots are greater than one in absolute value), then
T. W. Anderson’s results [1] imply the consistency of &;. Theorem IIT and
Anderson’s results [1], taken together, exhaust all cases for the second order
difference equations if the roots have distinct moduli. But the question is still
open in higher order cases (k = 3).

5. It is apparent that the assumption |p| > 1 > |m,| implies that the terms
involving m. are bounded in probability, while those involving p “disturb the
stability” of the process. For the same reason, it is clear that the condition
lo| > 1> |mj|,j =2, ---, k, with an arbitrary but finite (known) k, is sufficient
to state the results of Theorem IIT for higher order difference equations. In

other words, (& — ;) 50,4 =1, -+, k,if [po| > 1> |m;|,5 =2, -+, k.
6. If the difference equation is of second or higher order, k, and the maximal
root p is greater than one in absolute value, and |m;] = 1 foranyj = 2, --- | k,

then no result is available on the consistency of &; . Also nothing is known about
the estimators of the a; of an explosive linear stochastic difference equation if
there is a constant term. The following table summarizes the available results.

Table of the Available Results

kth order Roots (p, me, <+, mz) Results [(i) = consistency, (ii) =
efficiency and (iii) = limit dis-
tribution]

k=1 ol >, =, <1 (i) Rubin [13], Mann-Wald [8)

(i), (ii) Theorem 4:A of [10]
(iii) White [14], T. W. Anderson
[1], and Mann-Wald [8]

k=2 lo| > 1> |my (i) Theorems I and III for 5, and &
(iii) Theorem II for p,
lo|, |me| > 1 (i), (iii) T. W. Anderson [1]
ol < 1 (i), (iii) Mann-Wald [8]
lpo| = 1or|mg =1 no result available
k=3 ol > 1> |mj| (iii) Theorem II for p,
(i) Theorem IIT and remark 5, for &;
lo| > |myl, |o] > 1 (i) Theorem I for p, , no result for é&;
lo|, |m;| > 1 (i), (iii) T. W. Anderson [1] for &;
ol < 1 (1), (iii) Mann-Wald [8]
le| < 1, u; Gaussian (i1) Rubin [12]

(1), (ii) Theorem 3:C of [10]

Table continues on next page
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lo| = 1 or |m,|

=1or
lol > [me| > 1> |m;

[ no result available.
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