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Due to the limited learning time allotted in most foot strike pattern modification studies, the 
reliability of pattern alterations may be jeopardized. The purpose of the current study was to 
investigate the reliability and validity of requested acute alteration of foot strike patterns 
performed by participants in a laboratory environment. Participants employed a high degree of 
consistency within foot strike pattern conditions and across the steps within a condition 
(average within subjects 95% confidence interval = 0.5° - 4°). On a group level, participants 
accurately performed all foot strike conditions with the exception of the midfoot strike pattern. 
Thus, even with the alteration of foot strike pattern, a generally reliable and valid foot strike 
angle performance is evidenced. 
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INTRODUCTION: Habitually shod and barefoot runners have been shown to employ 
different foot strike patterns while running (Lieberman et al., 2010). Associated with these 
foot strike patterns were significant differences in kinematically derived variables such as the 
mean rate of loading or the magnitude of the effective mass (Lieberman et al., 2010). The 
investigation of foot strike pattern alteration has thus been a popular topic in scientific 
research. However, several phases of learning may be necessary for the adoption of new 
motor skills (Luft & Buitrago, 2005). Thus, the consistency of foot strike pattern alterations 
within a group of participants may not be comparable to the habituated participants 
Lieberman and colleagues (2010) investigated. 
In some cases, the effects and modification of a runner’s foot strike pattern are investigated 
by facilitating a several-session to several-week training program with the goal of altering the 
degree of ankle dorsiflexion at landing (Cheung & Davis, 2011). In other methodology, a 
single session is used to investigate the influence of a foot strike pattern modification (Boyer 
& Derrick, 2015; Giandolini et al., 2013). In the latter studies, a trial performed outside of the 
requested foot strike pattern was repeated (Boyer & Derrick, 2015) or controlled a-priori 
using the ground reaction force profile (Giandolini et al., 2013). Cheung and Davis (2011) 
also reported that participants could not adhere with 100% accuracy to the altered foot strike 
pattern, even after eight weeks of specific training. This provides insight that the alteration of 
foot strike pattern may have limited reliability. 
The validity of the performance of altered foot strike patterns may also be affected by the 
neural plasticity and habituation of participants investigated. Nishida and colleagues (2017) 
concluded that different neural control mechanisms (timing, duration, and magnitude of 
muscular activity) were associated with rearfoot and forefoot strike patterns. From a motor 
learning perspective, new movement patterns appear to advance through stages (Luft & 
Buitrago, 2005). More complex movements require sufficient sensory feedback, as well as 
the “overwriting” of previously learned movement patterns (Luft & Buitrago, 2005). For this 
reason, the performance of requested foot strike patterns may not be performed to an 
accurate and reliable extent without a sufficient training phase. Thus, it is unknown whether 
the performance of consciously altered foot strike patterns is accurate due to the lack of 
knowledge regarding the internal consistency and accuracy of participant performance. The 
purposes of the current study were to investigate the (i) intra-subject and (ii) intra-condition 
reliability of laboratory-based running with imposed foot strike pattern modifications. 
Additionally, the validity of the foot strike condition performance (iii) was investigated. 
 
METHODS: Six over ground running conditions were performed in a laboratory setting by 30 
injury-free recreational male runners. Participants appeared for one testing occasion where 
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they ran loops with their natural running pattern (NA; no constraints), followed by extreme 
forefoot (EF), forefoot (FF), midfoot (MF), rear foot (HS), and extreme rear foot (EH) 
conditions in a randomized counterbalanced order. Participants were not given any 
condition-based feedback. For each loop, participants ran a straight distance (5 m) over a  
force platform (AMTI; Watertown, MA, USA;  BP6001200) located in the centre of the straight 
phase. Participants then quickly changed direction before running the same straight phase. 
Ground reaction forces were collected (100 Hz) to detect the instant of ground contact, which 
was determined via the threshold-based recommendations of Seiberl and colleagues (2018). 
For each participant, 20 non-consecutive left foot-fall instants were recorded per foot strike 
condition. 
Three-dimensional (3D) motion capture was recorded with a 13-camera Qualysis motion 
capture system (2019.3, Göteborg, Sweden) with a sampling rate of 100 Hz. Six 
retroreflective markers were secured to the shod left foot segment at the locations of the 
medial and lateral malleoli, the head of the 2nd metatarsal, the medial side of the 1st 
metatarsal, the lateral side of the 5th metatarsal, and the heel (at the same height as the 2nd 
metatarsal marker). Raw kinematic data were filtered using a 15 Hz low-pass filter and Visual 
3D x 64 Professional (V3D; v6.03.06; Germantown, MD, USA) was used to calculate the foot 
segment angle in relation to the laboratory coordinates with shoe-elicited angulation being 
negated (C-Motion, Inc., 2017). The angle observed at the ground contact instant was the 
primary outcome variable (foot strike angle) for reliability assessment.  
The purposes of the current study were investigated by assessing (i) intra-subject reliability, 
(ii) the intra-condition reliability (i.e. the steps within a condition) and (iii) the validity of the 
foot strike patterns performed. For the subsequent reliability analysis (i, ii) the twenty 
recorded steps within a condition were separated into two groups (steps 1-10 = S1-10, and 
steps 11-20 = S11-20) that were analysed separately. (i) For each participant, 12 (one per foot 
strike condition, per step group) 95% confidence intervals (CI) of the mean were calculated. 
This individualised calculation served as an indication of intra-subject reliability. The 95% CIs 
of each participant were then pooled into a sample descriptive mean for each condition and 
step group, henceforth referred to as the “within subjects confidence interval” (WSCI95). (ii) 
Paired-samples t-tests (α = 0.05) were run to subsequently assess whether there were 
differences between the WSCI95 of S1-10 and S11-20 within a condition. (iii) Finally, the mean 
foot strike angle and 95% CI were calculated for all samples within a condition (30 
participants x 20 steps = mean of 600 steps per condition). The resulting 95% CI ranges 
were compared to the foot strike pattern definitions by Altman & Davis (2012); FF < -1.6°, MF 
= -1.6 - 8.0°, HS > 8.0°. This served as an anecdotal assessment of validity. To determine if 
participants differentiated between conditions, a repeated measures ANOVA was performed 
to determine if there were any differences across the mean foot strike angles for each 
condition. Where applicable, a Greenhouse-Geisser correction factor was used, significance 
was assessed at α = 0.05, and partial eta squared (ηp

2) was calculated as a determinant of 
effect size. All statistics were performed using SPSS Statistics v.26. 
 
RESULTS: (i) The WSCI95 for each condition and step group is presented in Figure 1. (ii) 
Significant WSCI95 mean differences were found between S1-10 and S11-20 of the EF 
(p = 0.044; t = 2.12; df = 27) and NA (p = 0.005; t = 3.08; df = 28) conditions. The WSCI95 of 
the FF, MF, HS, and EH were not significantly different from one another (p > 0.05), though 
the WSCI95 of the EH condition were nearly statistically different (p = 0.058; t = 1.98; df = 28). 
(iii) The mean foot strike angle and 95% CI range for each condition are presented in Figure 
2 with respect to literature-based ranges (Altman & Davis, 2012).  All mean foot strike angles 
were significantly different from one another: F(3.71, 1674.59) = 4445.34 (ηp

2 = 0.908).  
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Figure 1. The 95% pooled within subjects confidence interval (WSCI95) and standard deviation (error 
bars) are presented for steps 1-10 (S1-10; solid circles) and 11-20 (S11-20; open circles) separately for 
six foot strike conditions: EF = extreme forefoot, FF = forefoot, MF = midfoot, HS = heel strike, EH = 
extreme heel strike, and NA = natural. *= Significant mean differences were observed between S1-10 
and S11-20 

 

 
DISCUSSION: The purposes of the current study were to investigate the intra-subject and 
intra-condition reliability of laboratory-based running with imposed foot strike pattern 
modifications. In addition, the performance of the condition was verified by comparing the 
measured foot strike angle to literature-based references. The standard deviation of the 
WSCI95 suggests that the majority of samples (95%) will have a mean that falls within 
approximately 0.5 - 4° of the currently reported mean, regardless of the foot strike pattern 
employed. Further, a trend for a reduced WSCI95 degree range in S11-20 can be seen across 
all foot strike conditions. In two of these conditions, NA and EF, this reduction was 
significantly different; mean difference (S1-10 - S11-20) = 0.41 and 0.29°, respectively. Because 
this difference occurred across the NA foot strike condition, it may indicate a familiarization 
with the laboratory testing environment. However, with only a minute reduction in mean 
WSCI95 in these two conditions, and a comparable WSCI95 across the rest, the collection of 
additional steps beyond 10 is not warranted for the reliability of the mean foot strike angle 
within the conditions performed. It is important to note that the participant’s footstrike pattern 
may adapt over the course of longer measurements (Luft & Buitrago, 2005). However, the 
current study supports that when testing on an acute level, the within subject and condition 
measurement of foot strike angle are generally stable.  
Importantly, the midfoot strike pattern had the largest WSCI95 mean (2-2.5°) and standard 
deviation range (approximately 4°) in both S1-10 and S11-20. This may reflect the limited 
constraints of the 8° range that defines the condition (Altman & Davis, 2012), but can also be 
supported by the current study’s evidence that on average, participants were not able to 

Figure 2. The foot strike angle mean and 95% CI (error bars) are presented for six running 
foot strike conditions (EF = extreme forefoot, FF = forefoot, MF = midfoot, HS = heel strike, 
EH = extreme heel strike, NA = natural). The two vertical bars represent the literature based 
cut-offs for the forefoot, midfoot, and rearfoot strike patterns (Altman & Davis, 2012). 

* * 
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employ a MF strike consistent with literature based ranges (Figure 2). Importantly, Lieberman 
and colleagues (2010) found that an entire sample of habitually shod athletes naturally 
employed a rearfoot strike pattern, which was comparable to the findings in the current study 
(NA = 20.4°, Figure 2). Thus, the near 9° reduction of foot strike angle that participants 
accomplished in the MF condition from their natural foot strike pattern may have been 
perceived as a midfoot ground contact. The inability of participants to differentiate a proper 
MF strike from an incorrect one may explain the high standard deviations seen in the WSCI95 

means. Cheung and Davis (2011) found that even after eight weeks of landing pattern 
modification training (toward a non-rearfoot strike), 10% of foot strikes recorded were still 
classified as rearfoot strikes. This may reflect the findings of Nishida and colleagues (2017) 
that differing neural synergies are learned with different foot strike patterns. Further, the 
learning of a MF strike pattern may be more difficult than the FF or HS conditions due to the 
less extreme sensory feedback, which is an important aspect of motor skill learning (Luft & 
Buitrago, 2005). Thus, the employment of a MF strike pattern may require a greater learning 
than the other strike conditions to ensure reliable performance of the condition.  
Finally, participants were able to differentiate between the conditions as evidenced by the 
significant differences found across foot strike conditions. With the exception of the MF 
condition, all other means were consistent with the range expected from the foot strike 
pattern requested (Figure 2; Altman & Davis, 2012). Although an additional level of 
inconsistency in the performance of these primary conditions may have occurred due to the 
non-ecological testing conditions of the laboratory environment, generally acceptable CI 
ranges and mean comparisons indicate the measurements in the current study were 
replicable and consistent across participants, steps, and foot strike conditions employed.   
 
CONCLUSION: Participants employed a high degree of consistency within foot strike pattern 
conditions. Researchers can use the reported range as a future comparative reference for 
the consistency of both altered and natural foot strike patterns. Further, researchers should 
be cognisant of the tendency of higher observed variability in the midfoot strike condition. 
Because little, if any, effects of familiarisation were observed, ten steps (compared to 20) are 
sufficient for future acute analyses. Finally, participants can perform valid rear and forefoot 
strike conditions outside of their natural footstrike pattern, but researchers should verify the 
performance of midfoot strike conditions instead of inferring condition adherence.  
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