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SUMMAR Y

Curvedbeams in civilengineering applications call for out-of-plane bending and torsion under the action of

out-of-plane transverse shear loads. The design of a quadratic displacement curved beam element capable of

representing shear defo~m~tion as in the Tir:nos~enko ?eam theory requ!res special attention to the manner
in which the shear stram IS represented. Field-mconsistent representatIOns of the out-of-plane transverse

shear strain will result in a loss of efficiency and introduce spurious oscillations in tht;; bending moment,

torsional moment and shear force. The optimal field-consistent assumed strain interpolation for shear is

derivedand it is demonstrated to posses very high accuracy which is free from spurious force and moment
oscillations.

INTRODUCTION

Moststudies1-4 on the formulationof curvedbeam elementsrelate to in-planebendingand
describemainly the field-consistencyrequirements for membranestrains and shear strains and
howmembrane and shear locking and various combinations of violent stress oscillations

originateif these conditions are violated.The application oftheconsistencyparadigm to redesign
theassumed strain fieldscorrectly such that these deficienciesvanish is straightforward.

In this paper, westudy the extensionof theseconcepts to the consistency requirements called
forwhenthe quadraticcurved beamelement isdesigned to beapplied in situationswhere it must

undergoout-of-plane bending and torsion under the action of shear forces.The curved beam

elementchosen forstudy here has three nodes,allowinga quadraticisoparametric representation

1

- andificludessheardeformationaccordingto theTimoshenkobeamtheory.Althoughtheexactly
integratedform of this element does not have severe lockingproblems, it does have a loss of

accuracyand spurious force and moment oscillations if the transverse shear strain field is not

modelledin a consistentfashion. The issues involvedin the formulation of thisquadratic curved
beamelementarecriticallyexaminedto showthattwoconsistencyconditionsmustbe assuredin
describingthe constrained out-of-planetransverseshear strainfield and the term describing the
curvedcentroidal axis appearing in the denominator of all the strain terms.

DESCRIPTION OF ELEMENT GEOMETRY

Geometry

Figure1showsthegeometry ofthe general beamelement. In order to describethe out-of-plane

behaviourclearly, it is necessary to distinguish four sets of co-ordinate systems. The global
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Figure L Geometry of the general curved beam element

Cartesian system(X, Y,Z and degrees offreedom V, V,W,Ox,°Y' Oz)is the principal one in which
the nodal co-ordinates and the global deformation aredescribed. Theelement strains have to be

determined ina local runningCartesian co-ordinate system(x', y', z' anddegreesoffreedomv',8'x,
O~)in whichx' is assumed to be both normal to the element cross-sectionand tangent to the

element centroidal axis, the plane x'-z' describes the planeof curvature, and y' is orthogonal to

X'_Z'and is the direction of the out-of-planeaction. It isassumed for simplicityof illustratingtheI whe

consistency concepts that the y'-and z'-axes coincide with the principal axes of inertia. It is also

necessary to introduce an element plane fixedCartesian co-ordinate system(x, y, z)as shownin

Figure 1 so that the curvature transformation terms can be projected between the (x, y, z) and

(x', y', z') systemsinitially,as this gives a better insight into how the consistencyrequirementsof
I

:or
the crucial strain terms emerge.The fourthsystem is thenatural curvilinearparameter ~running mto
along the elementcentroidal axis, and the isoparametricdescription is made in termsof this co-
ordinate.

Global to elementplane transformation

The nodal co-ordinates are input in the global Cartesiansystem (X, Y, Z). The element plane

fixedCartesian system (x,y, z) is oriented as shown in Figure 1 so that the x-axis liesthrough the

nodes 1 and 3and the x-z plane is fixedso that all threenodes lie on thisplane. The y-axiswillbe
orthogonal to the x-z plane.It is very simplenow to determine the orthogonal transformation
matrix fromthe (X, Y, Z) systemto the (x,y, z) systemand vice versa,and also to determine the

co-ordinates (Xl'zd, (X2,Z2)and (X3'Z3)of the three nodes in the element plane system. For

further simplicity,it is assumed that the node 2 is exactly midway along the centroidal axis

between the two end nodes so that X2= 0,5 (Xl + X3) and also that Z1 = Z3 = O.This permitsa
very simpledescription ofthe element geometryand considerablysimplifiesour studyof the role

the curved geometry plays in the consistencyaspects.
If Iii represents the direction cosine vectors in the three orthogonal directions shown in

Figure 2, the direction cosinematrix is
Figur

[Jt] = [Ill Jt2 Jt3]
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I SOthat the transformation from global to element plane rxed system is

{

X

} {

X

) {

OX

}

f
X)

: = [I'r 1 ;, ; ~ [P] 1 : J

(1)

Elementplanefixed to running local system

Thetransformationbetweentherunning localCartesiansystemand theelementplane fixed
Cartesiansystem is derived fromthe fac~that x' is normal to the element cross-sectionand also

tangentialto the curvedcentroidalaxisand that y' iscoincidentwithy. Thus, ifAiare the direction
cosinevectors shown in Figure 2, we can easily show that

{

X,.;

}(A,) ~ fi z~,
{Az} = {Jlz}

fi { -~:}

(2a)

(2b)

{A.3}= (2c)

where D = (x:.; + z:.;).

DESCRIPTION OF ELEMENT STRAIN FIELDS

Fora curved beam designed to represent out-of-planeaction, threestrain fieldshave to be taken
intoaccount:

out-oC-plane flexure i=~,x' (3a)

~3

z

...

y '()

L
x

Figure2 Orthogonal transformation schemes from global Cartesian to element plane Cartesian (P) and from element
plane Cartesian to local running Cartesian (J.)
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torsion w' = O~,x'

out-of-plane transverse shear l' = {J~- V:x' (3c)

The displacement fields are assumed to be interpolated using a quadratic representation
describedfor furtherconveniencein terms of Legendre polynomialsas

v = ao+ al~ - all3 (1 - ~l) (4a)

Ox= bo+bi~- bl/3 (1- 3e) (4b)

Oz= Co+ CI~ - cl/3(1- 3~1) (4c)

wherecoefficientssuch as ai,bi and Cican be related to nodal values of v, Oxand Ozas ao:::

(VI + 4Vl + V3)/6, al = (V3- vl)/2 and a1 = (VI - 2Vl + v3)/2, etc. Using these displacement
fieldsin (3a) to (3c)we get the three strain fieldsexpanded in the Legendrepolynomial formas
follows.

Out-of-plane bendingstrain

x' = ~ [2H ~(b1 + 2bl~) + L(CI + 2Cl~)]D

Torsional strain

, 1
w = - [L(bi + 2b1~)- 2H~(CI+ 2Cl~)JD

Out-of-plane transverse shear strain

, 1

Y = ji5( - v.~ + 2H ~Ox+ LOz)

1

= m{[ - a1 + 2H/3 b1+ Lco]vD

+ ~[ - 2al + 2H(bo+ 4/15 b1)+ Lc1]

~ 1/3(1- 3~l)[2H b1 + LC1]

- 1/5(3~- 5C)[2H bl/2]}

Of the above strain fields,the transverse shear is the only constrained one requiringthe
correspondingstrainenergy to vanish inthe 'thin' plate regimes.Hence,it is this strain fieldwhich
needs the 'field-consistency'requirementsto be met.

FIELD-CONSISTENCY ASPECTS

Weshall proceednow to a study of the consistency requirementsdemanded by the shear strain

fielddescribed above to determinehow an assumed strain fieldinterpolation can be set up inan

optimally consistent way and also examinethe performance if it includes various degreesof
inconsistency.

In the expressionfor the transverseshearstrain fieldinequation (7),consistencyisnowsough!

between terms such as v.~,H~Oxand LOz,and these are expanded carefully in terms of the
Legendrepolynomialsas shown.It shouldbe noted here that, since the Legendre polynomialis
speciallydesignedto be 'orthogonal' in thedomain of Gaussianquadrature, the coefficientsofthe
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(3b)

(3c)

Legendrepolynomials directlyemerge as the constraints:

- al + 2H/3 bi + Lco~O

- 2a2 + 2H(bo + 4/15 b2)+ LCI ~O

(8a)

(8b)

(8c)

(8d)
(4a)

(4b)

(4c)

2H bI + Lc2 ~ 0

2H b2 ~O

(5)

inthe 'thin' plate limits (sincethe associatedshear strain energy isconstrained to vanish).For a

straightbeam,with H = 0,there willbeonly three constraints and the third constraint as seen in

equation(8c)is of the identical form seen for the in-plane transverseshear term in a straight

quadraticbeam element. For a curved beam, the out-of-plane shear strain consistency terms
includetwo spurious constraints, representedby equations (8c)and (8d).

Now, the correct way of deriving the field-consistent shear strain field is to drop the

'inconsistent'Legendre terms. This procedure automatically satisfies the orthogonality or

variationalcorrectness condition discoveredon seekingthe equivalenceof this assumed strain

approachto the minimum total potential energy principle to the mixed variational approach
usingprinciple~like Hellinger-Reissneror Hu-Washizu theorems.5We shall thereforeexamine
thethree possiblevariations that can be studied:

LV= 0, in which all inconsistenciesare retained;

LV= 1, in which the two true constraints and the quadratic inconsistencyis retained;
and

LV= 2, withthe assumedout-of-planetransverse shearstrain havingonly the trueconstraints
and correct to a linear interpolation.

(6)

(7) Infact, LV = 2 represents the variationallycorrect and field-consistentversion of the element.

Consistency of definition of D

We see from the various strain definitions such as equation (7) for the shear strain and

equations(5)and (6)abovefor the flexuraland torsionalstrains that the geometry term D or ji5
appears in the denominator. It therefore plays a contributory role to the discretized strain

interpolation.We can illustratethe ideaby examiningthe case ofthe shear strain in equation (7).
Notethat, whenthe numerator is madefield-consistent(i.e. LV = 2),it can senseonly a linear

interpolation of the terms derived from the nodal degrees of freedom. However, D in the

denominatordefinesa quadratic variationin ~.Thus,a conflict ariseswhereby strainsare derived
from the nodal degrees of freedom up to a linear accuracy and these are modified by a

quadraticallyvaryingterm representinggeometry.Weshall see laterthat it is more reasonable to

restrictD alsoto linear accuracywhen theconstrainedstrain fieldsarebeing computed.We find it
convenientto use in this instance

D' = £2 + 4H2/3

bynotingthat D = (L2 + 4H2/3)- 4H2/3(1 - 3(2)and arguingthat a representationup to
linear accuracy is obtained by omitting the quadratic Legendre polynomial and the term
associatedwithit. To examinethese distinctionsclearlyin the sectionon numerical experiments

later,we shall consider twolevels of geometrydescription:

LG = 0 whereD is used;and
LG = 1 whereD' is usedfor all strain fields.
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ELEMENT STIFFNESS MATRICES AT VARIOUS LEVELS the

aie
The constitutiveequations relating the generalizedstresses,shear forceQ,torsion momentTand

bending momentM to thestrains describedabove can be written in termsof the cross-sectional
propertiesandthe materialconstants.Thesedetailsand the generaiderivationof theelement
stiffnessmatricesare omittedhere as theyare well understood.5

We shall, however,examinecarefully the various levelsof assumed shear strain fieldand also

the correct order of numericalintegration to be used to ensurethat thesevarious levelsareexactiy
integrated. Weuse the numberingsystemCB3.vg to represent the elementwith assumedstrain
options corresponding to the use of versionsLV, to ensureconsistencyof the constrained shear

strain field and the use of option LG to maintain a 'linear' interpolation form for D in the

denominator ofthe strain fieldsto understand the importanceof usinga geometry representation
that is compatiblewith thestrain approximations. Thus, the principalformsthat needveryclose
investigationare

tha
Th
dis

Pr<

C2;

rer

qu;
r

COI

wil

element CB3.21is the optimalelement (with LV = 2 and LG = I) as we shall see later,
elements CB3.11and CB3.01shows howthiselement behavesif the transverse shear strainsare
inconsistent (LV= I, 0 and LG = 1),

element CB3.20shows thedifferencesifgeometryrepresentation forDisnot compatible withthe
strain definitions(LV =2 and LG = 0).

We see that, for option LV= 0, the shearstrain fieldhas a descriptionup to cubic order anda

4-point Gaussianintegrationis mandatory to integrate thisenergy termcompletely.Wetherefore
adopt a 3-pointrule for allother energy terms and a 4-point rule for the transverse shear strain
energy.

We

m,

sm

cu:

A PRIORI QUALITATIVE ERROR PROJECTIONS

Earlier studies 1-5,7-9 have shown that in many cases it is possible to proceed from the

consistencyparadigm withan operational procedure described.as thefunctional re-constitution

process to obtain usefulestimates for the manner in which locking will take place, errors will

propagate as the penalty multipliers increase and how various strain/stress oscillations are
inducc:dand how their severitycan be related to the penalty parameters etc. However,in this

problem, we find that the parameters describing the strain interpolations are so intricately
coupled that it is not easyto isolate the influencesof eachinconsistencyand use it to determinein

a precise quantitative way,the additional stiffeninglOinvolved. However,it will stillbe worth.
while to identifyin a qualitative way how the inconsistenciesdisturb the unconstrained strain
fields and cause poorer preformance and stress oscillations in the CB3.11 and the CB3.01
elements.

To see the inter-relationshipsmore dearly, it will be usefulto expandthe strain fieldsin tenus

of the Legendrepolynomialas follows

1
x' = - {[Lei+ 4H/3b2] +~2[Hb1+Le2] - (1 - 3~2)[4H/3b2]}D

ro'= ~ {[Lb - 4H/3c2] + ~2[Lb2 - HCl]- (1 - 3~2)[4H/3c2]}
D

(9a)

(9b)

From equations(7)and (8c),weobserve that the spuriousconstraint generatedby theshear strain
field at the quadratic levelinvolves the constants b1 and C2'It is this inconsistency that initiates
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thequadratic osciIIatipn in the shear strain predictions from a quadratic beam element.3.4,9We
afenOWinterested to see if any additional features appear due to this. It is seen in equation (9a)

thai the linearly varying part of the bendingstrain fieldis determined by these sameconstants.
Thus, we can argue that, in an inconsistent formulation (i.e. in the CB3.11 element), the

Aisturbancein the constants bi and C2willbe reflected as an additional spurious linear oscillation.

Proceeding next to the torsional strain fieldin equation (9b),we notice that the constants bl and

C2appear in both the constant part and the quadratic part. Thus, there will be errors in both the

representation of the constant part of the torsional strain field and an additional spurious

quadratic osciHation.
The CB3.01 element has a cubic inconsistency as well, but this will playa very insignificant role

compared to the inconsistency already excited at the quadratic level and therefore this element

willproduce results that are very nearly identical to that produced by the CB3.11 element.

NUMERICAL EXPERIMENTS

Weshall investigate only those versions of the element needed to confirm the predictions we ha ve

made in the previous section. To bring out these aspects lucidly it is necessary to construct

suitable example problems such as the 'nearly straight' cantilever beam under torsion and the

curvedbeam under shear force.The convergence of displacements and rotations when the CB3.21

z

x

(9a)

(9b)

Figure 3. Geometry of nearly straight cantilever beam
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elementswere usedwas extremelygood and willnot be Jreportedhere. The CB3.11 and CBlOl
elementsyielded lessaccurate displacementand rotation predictionsand thesecan be attributed

to the lack of consistencyin the shear strain definitions.We shalltherefore concentrate attention
on the stress predictions from the various elementversions.

Single element models of 'nearly straight' cantilever under tip torsional moment

A beamof length2L = 100isgiven a smallcurvature corresponding to a radius R = 1000(see

Figure 3). A torsional moment T = 1 is appliedat the tip as shown.Theelastic and section
propertieschosen areE = 107,G= 0,5 X 107,1= 0,083333andJ = 0.166667.The entire beamis
modelledusing a single3-node element.

Fromthe statics ofequilibrium,one can obtainan estimate forthe bendingmoment M~andthe
torsional moment M~at a cross-section~ for the single elementmodel of the cantilever as

M~ = sin[(1 + ~)/20]

M~ = cos[(1 + ~)/20]

(lOa)

(lOb)
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Figure 4. Nearly straight beam under torsion-torsional moments along beam
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Figure4 showsthe torsionalmomentscomputed fromequation (lOb)and comparesit withthe

predictionsfromthe CB3.21,CB3.1l and CB3.01 idealizations.It isseen that the CB121 element
givespracticallythe exactanswers. However,the two inconsistentelements gaveanswers which
are considerably at variancefrom the correct answers.A verycloseexamination of the results

revealedthat the inconsistencyin theshearstrain fieldexciteddisturbancesin theconstant part of
the torsional strain fieldand introduced an additional spurious quadratic oscillationso that the

differencescan be describedfor the results shown on Figure 4 as

M~(CB3_11)= M~(CB3_21)- 1/600 - 1/600(1 - 3e)

These changesare exactlyas we had anticipated earlier in our error projections.

Figure 5 shows the out-of-plane bending moments M~- Again,the CB3.21 model performs
correctly.The field-inconsistentversionsshow a largelinear oscillationthat completelyreverses
the correct trend of bending moment distribution. These observations again confirm the

predictionsmade earlier.
Figure 6 describes the quadratic oscillations in the shear forceobtained from the CB3.11 and

the CB10l models. The additional cubic oscillations expected in the latter model are too

insignificantto be representedhere,showingthat the predominant inconsistencyis the quadratic
one.
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Figure 5. Nearly straight beam under torsion-out-of-plane bending moments along beam
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Figure 6. Nearly straight beam under torsion-shear force along beam

Curvedbeamundershearforce

Figure 7 showsa curved beamforming thequadrant of a circle.The radiusof arc of thecircleis

5'0 and the elastic and section properties remain exactly as for the example above. An out-of-
plane transverse shear force P is applied at the free end.

Figure 8 shows the bending moments obtained from a one and two element idealization of the

curved beam. The convergence is very good for the CB3.21 models. Also shown is the poor
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Figure 7. Curved cantilever beam with out-of-plane transverse shear force
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Figure 8. Curved cantilever beam under out-or-plane transverse shear load-bending moment

behaviourseen withthe inconsistentelement. There is a noticeableshift in the predicted bending
momentsdue to the disturbance in the linear component.

Figure9 showsthepredictionsoftorsionalmoment.TheCB3.21modelsconvergerapidlyto
the correct answers.In this case, the inconsistentelements alsoyieldcorrect answers(not shown

here).

Figure 10 demonstrates the importance of introducing a consistent representation of D as far
thedenominatorofthestrain fieldsareconcerned.The shearforcesfrom a CB3.21and a CB3.20

modelshow that the former recoversthe constant value of shearforce correctly while the latter
introduces'a 'quadratic' type variationthat can betraced to theD term in the strain field.Thus,it

ismoreappropriate to use the smoothedrepresentation of Dto interpret the strains derived from

the nodal displacements and rotations when the stresses are reported. Also shown for com-

pletenessare the actual quadratic shear force oscillations triggeredoff by the field-inconsistency
in the CB3.11 and the CB3.01 elements.

CONCLUSIONS

In this paper, wehave examined the consistency requirements demanded by the out-of-plane

transverse shear strain definition for a curved beam bending and twisting under out-of-plane

loads.The force oscillations that result if inconsistenciesare not removed are predicted and are
confirmed using numerical experimentation. The optimal form of representation of the shear

strain field is derivedand is shownto have superior accuracy and convergencein its ability to
recoverthe correct force fields.

- .n.- .--. .. ' "--"'-

"0

.

08
EI 0 0

I
0,6



442 B. P. NAGANARA Y ANA AND G. PRA THAP

THEORY

x I C83.21 ELEMENT

. 2 CB321 ELEMENT

0,8

x

0

0 45 90

Figure 9. Curved cantilever beam under out-of-plane transverse shearload-torsional moment

4>

Q.
.......

0

- I CB3. 21 ELEMENT

2.0 _. - I CB3.20ELEMENT

1.0

I
- - - I CB3'1I ELEMENT I

I

I

I

\ I

\ I

\ I
\ I

\ '-'-'-'-'
\ -' - . J.

./\ "'.
./ \ I '.

I ......
\ /
, /'
, /'" '"

"""'...--'

\

\

\
\

0

-I 0

Figure 10. Curved cantilever beam under out-of-plane transverse shear load-shear forces

t

0,6

a:::
Q.

.......
0-4"

r-

0.2



OUT-OF-PLANE BENDING, TORSION AND SHEAR 443

ACKNOWLEDGEMENTS

The authors gratefullyacknowledge the constant encouragement and support received from

ProfessorR. Narasimha, Director, National Aeronautical Laboratory and Dr K. N. Raju, Head,
StructuresDivision.

REFERENCES

1. G. Prathap, 'The curved beam/deep arch/finite ring element re-visited', Int.j. numer. methods eng.,21, 389-407 (1985).
2. C. Ramesh Babu and G. Prathap, 'A linear thick curved beam element', Int. j. numer. methods eng., 23, 1313-l328

(1986).

3. G. Prathap and C. Ramesh Babu, 'An isoparametric quadratic thick curved beam element', Int.j. numer. methodseng.,
23, 1583-1600 (1986).

4. G. Prathap and C. Ramesh Babu, 'Field-consistency and violent stress oscillations in the finiteelement method', Int.j.
numer.methods eng.,24,2017-2033 (1987).

5. G. Prathap and B. P. Naganarayana, 'Analysis of locking and stress oscillations in a general curved beam element',
Int.j. numer. methods eng., 30, 177-200 (1990).

6. 1. Jirousek, 'A familyof variable section curved beam and thick shell or membrane stiffening isoparametric elements',
Int.j. numer. methods eng., 17, 171-186 (1981).

7. G. Prathap, 'Field-consistency- Toward a science of constrained multi-strain-field finite element formulations',
SADHANA, 9, 345-353 (1986).

8, G. Prathap and G. R. Bhashyam, 'Reduced integration and the shear flexiblebeam element', Int. j. numer. methods
eng., 18, 195-210 (1982).

9. G. Prathap and C. Ramesh Babu, 'Field-consistent strain interpolations for the quadratic shear flexible beam
element', Int. j. numer.methods eng., 23, 1973-1984 (1986).

10. G. Prathap, 'An additional stiffening parameter measure of error of the second kind in the finite element method', Int.

j. numer.methods eng.,21, l001-1O12 (1985).


