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ABSTRACT 
During all phases of the design process there is a need to 

build models. Hierarchical models are very important tools for 
complex activities such as engineering design. In engineering 
of high performance products, mathematical modeling and 
simulation, i.e. experimenting with computer-based models, is 
an increasingly important technique for solving problems, 
evaluating solutions and making decisions. However, large 
design models may contain thousands of model elements. 
Designers easily get overwhelmed maintaining the correctness 
of such design models over time. Not only is it hard to detect 
new errors when the model changes but it is also hard to keep 
track of known errors. In the software engineering community 
this problem is known as a consistency problem and errors in 
models are known as inconsistencies. This paper presents an 
approach for consistency checking of mechatronic design 
models. 

 
1. INTRODUCTION 
 
1.1 Motivation 

Today Time-to-Market and Rapid Development are very 
important aspects of the product development process. The 
evolution of the corresponding market requirements during the 
last years has deeply transformed the designer’s way of 
thinking and acting during all stages of product development. 

In fact, at present, time-to-market, quality standards, 
environmental impact, safety, and cost effectiveness have 
become essential demands which affect the whole life cycle of 
the product development. In order to improve the performance 
of new products, the different fields of mechatronics and their 
interactions are increasingly exploited which has led to higher 

product complexity. Today, the design activities take place in a 
multidisciplinary environment, which often involves engineers 
of different backgrounds working on a common product. 
Additionally, the enlarged use of computer aided tools and their 
continuous enhancement lead to more complexity of the 
product design process itself.  

Hence, a new approach in Design and Engineering of 
products can be considered a key point for optimizing the 
design process. These methodologies are being used 
extensively to assist in decision-making during the product 
design process which starts with conceptual design and is 
followed by basic and detailed design. Conceptual design plays 
a central role in ensuring design quality and product innovation 
because many success-critical decisions are made during this 
phase. 

 

 
 
Figure 1. Viewpoint of product models and data 
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In the design process of mechatronic systems we have to 
analyze product models and data from different viewpoints –
representing the different disciplines involved. Figure 1 lists 
several dimensions of viewpoints which include: 
 objects and models from different disciplines, which are 

involved in the development process of a mechatronic 
system 

 model granularity (which differs across disciplines), 
denoting the extent to which on object or model is broken 
down into smaller parts (e.g., sub-models with higher 
degree of detailing and lower level of abstraction, 
respectively) 

 design phases: The development/design process can be 
structured into four phases, namely problem definition, 
conceptual design, preliminary design and detailed design. 
 
Furthermore, there is also the need for consistency because 

if objects and models are independently created and maintained 
by the various disciplines then correctness is no longer 
guaranteed. The same is true for objects or models that are 
transferred from one discipline to another, from one abstraction 
level to another and from one design phase to the next one – if 
such objects or models are subsequently modified on both ends 
just as proposed in simultaneous engineering. This problem, of 
course, becomes increasingly pronounced with system size and 
complexity because likely more people and disciplines are 
involved. A proven strategy to handle this increasing 
complexity is to divide up the work as it is done in concurrent 
engineering. However, it is rarely possible to divide up a 
problem such that two people can work fully independently 
from one another and then, at the end, expect that the results of 
their work fit together without conflicts. Through good 
modularization, it is possible to achieve some degree of 
independence; however, it is never possible to avoid 
dependencies. The role of consistency is to characterize such 
dependencies – to identify the conditions that have to be met 
for objects and models to fit together. 

 
1.2 Illustration and Problem 

Consistency rules are simply conditions on a model which 
evaluate to true or false – depending on whether the rule is 
satisfied by the model or not. There are typically many such 
consistency rules and these rules need to be re-evaluated 
whenever the model changes. This re-evaluation is 
computationally expensive if done exhaustively with every 
model change. During a rule’s evaluation, a consistency rule 
investigates a model - typically a portion of the model only. We 
define the accessed portion of a model as the scope of a rule. 
For example, we want to analyze different design models 
during the development process of a gripper. Figure 2 shows 
different simplified models from different design stages. A 
more detailed description of the application is outlined in 
chapter 4. 

The function structure is used to describe product 
functionality because in engineering design, the final goal is the 

creation of an artifact, product, system, or process that 
performs a function or functions under certain constraints to 
fulfill customer need(s). The conceptual design model is used 
to select, define and fix the main parameters of the gripper. In 
detailed design we have a CAD-model which describes the 
geometry (and other properties) of the gripper.  

 

 
 

Figure 2. Consistency rules between different models 
 
Consistency rules are written for a context element (a type 

of model element, e.g. a function) from where its evaluation 
starts. For consistency rule 1 (Fig. 2), the context element is a 
function and the interaction between the function structure and 
the conceptual design model is described as “applies to <fix 
workpiece> requires(this).contains(<pneumatic cylinder>)”. 
This means that for the function “fix workpiece” a drive like a 
“pneumatic cylinder” is required. In the second rule the 
interaction between the model parameter “distance piston” and 
the geometric representation in the CAD-model is defined as 
equal. In the same way rule 3 is defined.  

If we imagine that the different models in Figure 2 are 
created and maintained by different people – perhaps even 
people of different disciplines – then the benefit of consistency 
checking is the ability to identify conflicts that arise out of the 
independent work of these people or disciplines. From a 
implementation point of view, several mechanisms are 
necessary to automate this:  
 integration of models and tools if separated so that they 

can be reasoned about uniformly 
 online/offline mode if models, tools, people are distributed 

in time and space 
 mechanisms for detecting and tracking constraints 

The model/tool integration is not so much a research 
challenge but a standardization problem where tool vendors 
need to integrate their tools better. The distribution problem 
could be avoided by having one central server where all models 
are available. The third point on detection and tracking, 
however, has received the least attention. So while all three 
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points are important, this paper deals solely with the third point 
and assumes that models are integrated and available in a 
central repository (not distributed) for simplicity.  

 
2. BACKGROUND 

 
2.1 Special Characteristics of Mechatronic Design 

Mechatronics may be defined as an interdisciplinary field 
of engineering, which characterizes the interconnections 
between mechanical engineering, electrical engineering and 
computer science such that these interconnections are the basis 
for designing successful products [1, 2, 3]. 

Mechatronic systems are multidisciplinary products, 
therefore the knowledge required for developing such 
products/systems is broad. Currently, there is a lack of 
integrated development methodologies and tools for 
mechatronic product development. Traditionally, mechanical 
engineers develop their design with strong emphasis on the 
geometric domain, the electrical components are engineered 
separately in an electrical domain. These steps result in a given 
equipment for automation and control of the system which is 
usually developed in an automation department represented 
more or less by software engineers. All these persons have 
different views on the same mechatronic products.  

When designing a mechatronic system, it is possible to 
design the mechanical equipment, before any of the control 
system design has been initiated. An obvious drawback of this 
sequential approach is the (predictable) lack of compatibility 
between the subsystems which results in additional efforts and 
(non conformance) costs to meet the specifications of the total 
(overall) system. Another drawback of this approach is that 
during the design process decisions have to be made about 
whether to use a mechatronical or just a mechanical solution 
concept. Designers have to navigate and coordinate between 
mechanical and electronic solutions. 

 

 
 

Figure 3. Integration in Mechatronic Design 
 
Without coordination between the different disciplines it is 

difficult to find a superior solution. Not only the selection of 
materials and the knowledge about (process) constraints (e.g. 
with respect to the possible geometric properties of a part) play 

a role, but also the selection of completely different solution 
principles from different domains. It is clear that engineers 
need help for their increasingly complex and multidisciplinary 
design tasks. It is necessary to support the designers to rapidly 
review and evaluate alternative solutions during the design 
process and to identify the correct (i.e. optimum) 
implementation choice. 

One of the key issues in the development of modern 
mechatronic systems is the strict integration of mechanical, 
control, electrical and electronic as well as software aspects 
from the beginning of the earliest design phases on, as it can be 
seen from Figure 3. 

 
2.2 Consistency Checking of Models 

Large design models contain thousands of model elements. 
Designers easily get overwhelmed maintaining the correctness 
of such design models over time. Not only is it hard to detect 
new errors when the model changes but it is also hard to keep 
track of known errors. In the software engineering community, 
this problem is known as the consistency problem and errors in 
models are known as inconsistencies.  

Inconsistencies are detected through reasoning processes 
that require the existence of rules that describe correctness. 
Such consistency rules describe conditions that a model must 
satisfy for it to be considered a valid model (e.g., syntactic 
well-formedness, coherence between different diagrams, and 
even coherence between different models). Such consistency 
rules obviously vary for different models. That is, what is 
considered valid (correct) and invalid depends on the modeling 
notation (language) and its semantics. However, for many 
mainstream modeling languages (e.g., SysML, UML) such 
semantics are well-defined and engineers have been able to 
identify consistency rules. However, this paper will 
demonstrate that such rules should also be customizable for a 
domain or even application.  

As with any error, the sooner it is detected the easier and 
cheaper it is to fix. Instant error feedback of any kind is thus a 
fundamental best practice in the engineering process. To date, 
many approaches exist that help designers detect inconsist-
encies but most of them are only capable of checking the 
consistency of design models as a whole (i.e., exhaustively in a 
batch process) where all consistency rules are evaluated on the 
entire model. Unfortunately, batch consistency checking does 
not scale because the checking of larger models takes hours to 
complete. Instant consistency checking requires an 
understanding when, where, and how the model changes. For 
this purpose, our approach, called the Model/Analyzer 
Approach [4, 5, 6], logs how the engineer uses the modeling 
tool. Figure 4 shows the architecture of our approach. It depicts 
the modeling tool on the lower-right corner. The modeling tool 
needs to be wrapped such that we can observe user activities – 
changes to the design model which is embedded inside the 
modeling tool. The Consistency Checker (top-left) evaluates 
the model and while doing so the Model Profiler (middle) 
monitors what model elements the Consistency Checker 
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accesses. In particular, the profiler logs the accessed model 
elements in a database together with the knowledge what 
consistency rules accessed these model elements. We refer to 
this mapping between accessed model elements and 
consistency rules as a scope. The rule detector instructs the 
consistency checker on what rule to evaluate, when a model 
element changes. It determines this by observing model 
changes and looking up what rules previously accessed the 
changed model elements (scope).  

The Model/Analyzer approach fully automatically, 
correctly, and efficiently decides which subset of consistency 
rules has to be evaluated when the model changes. The 
approach was also demonstrated to keep up with an engineer’s 
rate of model changes (even on very large industrial models).  

 

ScopeScope

 
Figure 4. Architecture of Model/Analyzer 

 
Even though our approach (or any approach) is not 

guaranteed to be instant for every consistency rule, we were 
able to show that it is easily able to keep up with an engineer’s 
rate of model changes for several software and systems 
modeling languages including the UML, a subset of 
Matlab/Stateflow, and a domain specific steel manufacturing 
product line model. Our empirical data showed, for example on 
the UML models, that the evaluation of a model after changes 
averaged to less than 1.4 ms - even on the largest industrial 
models we had available. This benefit comes at the expense of 
a linearly increasing memory cost to store the observed 
behavior of consistency rules.  

 
3. MECHATRONIC DESIGN MODELS 

 
3.1 Product Models 

A model is the conceptual description of ideas, facts and 
processes that together represent the model of a design product 
[7]. A design object may be an assembly, a sub-assembly or a 
single part represented by the according product structure 
model. Mechatronic models are very important tools for 
complex activities such as engineering design [8, 9]. For high 
performance of the engineering of design tasks, mathematical 
modeling and simulation, i.e. experimenting with computer-
based models, are increasingly important problem solving 
techniques.  

In general, a model is devoted to the task of mapping 
reality onto a significant representation of reality in order to 
make valid predictions and conclusions for reality. It should 
include the relevant phenomena/effects of interest (“views of 
the object”, [10]) such as geometry, dynamics, stability, 
materials, electrodynamics, controllability, cycle time, 
maintenance, etc. 

During all phases of the design process there is a need to 
establish models. If these models are simplified representations 
of the product to be built then we speak of product models. The 
purpose of these models changes depending on the phases of 
the product development. During the conceptual design phase, 
physical principles, functions, structures, etc have to be 
modeled and evaluated. In most cases, analytical 
(mathematical) and virtual models are less expensive and less 
time-consuming than physical prototypes. Virtual models can 
be implemented and used to simulate and evaluate (significant 
representations of) reality with the help of computers. 

A principal role of engineers in each stage of product 
development is to make decisions [11, 12]. However, if the 
engineers have no overall overview of the multidisciplinary 
system under consideration, consultations with experts of the 
other fields are necessary. Decisions help to bridge the gap 
between an idea and reality. In general, decisions are controlled 
by information from many sources (and disciplines). As a rule, 
we have to accept that in most cases dealing with design not all 
of the information is available required to arrive at a fully 
correct decision. Some of the information may be “hard”, that 
is, based on well founded scientific principles and some 
information may be “soft”, that is, based on the designer's 
personal judgment, experience and instinct. Design is the 
process of converting information that characterizes the needs 
and requirements of a system into knowledge about the system 
itself [12]. It is clear that the decisions influence the number of 
iterations in the design process. The information flow in 
product development is controlled by the decision-makers in 
the organization of the product development process.  

 
3.2 Hierarchical Mechatronic Conceptual Design 
Models 

From the engineering design process viewpoint, models 
are containers of knowledge gained in the project, and 
simulations are activities producing information that may 
improve product knowledge and potentially also the quality of 
many analyses and decisions made in the design process [13]. 
The aim of a behavioral model, i.e. a model of the (physical) 
behavior of a system, is to serve as a tool to find an answer to a 
design question, i.e. models are unique and have a specific 
purpose. The modeling challenge may be addressed with a 
modular or an integrative model design. A modular subsystem 
has interfaces that are well defined and shared with only a few 
other subsystems. An integrative system has interfaces which 
may be more complex and are shared mainly inside the 
subsystem. 
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Design models are used for the evaluation of different 
solutions during the design process. At least for this step, 
quantitative models are indispensable, their parameters being 
the decisive elements providing an adequate quantification of 
design models and representing the properties of the original 
under consideration. The number of parameters increases from 
conceptual over preliminary to detailed design. According to 
the increasing degree of detailing during the design process, the 
granularity of the describing models becomes finer and finer, 
leading to a hierarchy of models as well as their describing 
parameters. For modeling and evaluation of solutions during all 
phases of the design process, we postulate models with 
different degrees of detailing (granularity of models) in 
correspondence with their describing parameters. The 
correspondence between models and parameters implies that 
the meaning of a parameter is well defined only via its related 
model. 

Hierarchical models are very important tools for complex 
activities such as engineering design. Especially during the 
conceptual design phase there exists a high demand for models 
to describe the design concept with respect to the given 
requirements. The following section demonstrates the above 
experiences from an industrial case study. 

We may define model conformance as the property, how 
well a model implements its intended objectives. Typical model 
conformance characteristics are its validity area, accuracy, 
speed and flexibility. In the modeling process, these character-
istics must be judged in context of the model purpose. Non-
routine simulations, which have a tendency to be more explor-
ative than routine simulations, should be facilitated by flexible 
models, i.e. models which can be easily configured and adapted 
to slightly different purposes. Hence, a new approach in Life 
Cycle Design and Engineering of mechatronic products can be 
considered as a key point to optimize the design process (see 
Figure 5). 

 
Figure 5. Conceptual Design in Product Development 

3.3 Definition of a Mechatronic Module 
According to our definition [13, 14], a mechatronic 

module utilizes several (at least more than one) different 
domains (disciplines) of mechatronics (e.g. mechanics, 
automatic control etc.) merging the respective domain-specific 
components. This means that a mechatronic module can only 
be decomposed into domain-specific (non-mechatronic) 
components, but not into other mechatronic modules or 
mechatronic system components. A mechatronic module 
therefore designates the “smallest” indivisible mechatronic 
subsystem within the set of mechatronic sub-systems. 
 

 
Figure 6. Mechatronic Module 

 
Each pillar in Figure 6 characterizes the model of a 

domain-specific component, which is structured into several 
hierarchical levels corresponding to the proceeding degree of 
detailing. For example, the pillar “Control System” includes 
information about the structure of the controlled system as well 
as the control laws and their implementation. Only the first 
(highest) level has an interface to the other pillars (compare to 
object oriented programming) via the mechatronic coupling 
level. All couplings between the model pillars (e.g. design 
parameters and requirement parameters, which affect multiple 
disciplines) are captured and described at the mechatronic 
coupling level. The model structure has to be adapted if 
additional couplings between domain-specific components are 
detected during a design iteration (design, analysis, integration, 
performance check etc.). This is also true if new or additional 
domains (pillars in the model) come into consideration. If we 
consider the interaction between the different disciplines and 
models designed by different engineering teams, consistency 
checking is necessary to avoid conflicts in models, 
interpretation of parameters etc. 

 
4. APPLICATION 

 
4.1 Overall Mechatronic System 

In Figure 7 the example of a hierarchical decomposition of 
an overall mechatronic system (mechatronic product) is 
sketched. The hierarchical structuring allows to recognize and 
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to describe internal interactions and also the integration of all 
systems involved throughout the mechatronic coupling levels. 
In this way, all relevant interactions, interdependencies and 
interfaces are made transparent. 
 

Car Body Production Line

Handling Station 1

Overall Mechatronic System

Mechatronic System Component

Mechatronic Module

Handling Station 2

Clamping Unit 1

Gripper 1

Dimensioning
material, geometry

kinematics

Clamping Jaws

Fixing on 
clamping frame

Techn ical
 rea lization

Supp ly u nit s Electronic
circuits

Positioning
 sensors

MeasurementDrives

Mechanics

F

Robot System 1 Robot System 2

Mechatronic Module

Mechatronic Module

Mechatronic System Component

Mechatronic 
System 
Component

 
 

Figure 7. Hierarchical Structure of a complex 
Mechatronic System 

 
4.2 Manipulator with Gripper Unit 

Typical applications for robots are pick and place 
operations, screw driving, welding etc. A robot may consist of 
two main parts, a positioning system, which locates the 
functional part, sometimes called “end effector”. A manipulator 
with prismatic joints is known as a cartesian manipulator, for 
which the joint variables are the cartesian coordinates of the 
end-effector with respect to the base. As might be expected, the 
kinematic description of this manipulator is the simplest of all 
manipulators. Cartesian manipulators are useful for table-top 
assembly applications and for transfer of material. The system 
can be decomposed into several sub-modules, which are to be 
designed simultaneously. The main mechatronic modules are 
 a Main Drive for the movement from the start to the end 

position 
 Robot Arms for the exact positioning of the parts 

(positioning unit) 
 Grippers to establish the connection between the robot 

arms and the parts 
Figure 8 represents the hierarchical model of one possible 

design concept. In the following, different solution concepts for 
the end-effector (gripper) are considered. 

 
4.3 Mechatronic Ontology 

When most of the knowledge has been acquired, it is still 
unstructured and needs to be organized and structured by using 
representations that both computers and humans can under-

stand. Such representations are named “knowledge 
worksheets” [15, 16]. For the mechatronic ontology of the 
example above, six so-called “concepts”, namely “mechatronic 
device”, “environment”, “material”, “property”, “function” and 
“manufacturing process” are defined. In general, these 
“concepts” are connected among one another through 
relationships. 

For instance, a mechatronic device concept (e.g., Gripper) 
is related to the environment concept (e.g. connection to robot). 
The name of the relation is “interaction-with”. The used 
definitions of the relationships are “has-part”, “interaction-
with”, “has-material”, “has-function”, “has-process”. The 
concepts and relationships among them describe the relevant 
knowledge of a new design concept. 

When designing a mechatronic system, an experienced 
design engineer implicitly applies his aggregated knowledge to 
the new concept. Without being directly aware of, the design 
engineer considers design rules, functional requirements, 
economic and legal restrictions. Existing computer aided 
design tools (e.g. CAD systems) give only little support to this 
creative conceptual design stage. Whereas computer support 
and product models are well established for the process of 
embodiment design, the early phases of product development, 
such as conceptual design, even nowadays often are carried out 
isolatedly from the subsequent phases. Based on the presented 
method described in the previous section, a first prototype for 
such a computer aided semantic design tool for mechatronic 
systems was created by using the software tool OntoStudio™. 

 

Main Drive
Unit

Positioning
 and

 Gripping

Positioning
Unit

Gripper
Modules

different Solution Concepts

Handling Robot

Gripper 1 Gripper 2 Mechatronic
Module

Mechatronic
System

Component

 
 

Figure 8. Hierarchical Model of a Handling Robot 
 

Figure 9 shows the concept of mechatronic ontology by means 
of the above example. The arrangement and configuration of 
fixing devices used in various machines or stations of a 
production line for car bodies is an open question from the 
automotive engineering domain. Clamping devices are 
dedicated to fix different sheet metal parts quickly to one 
another at an exact position and with a pre-defined clamping 
force. After the parts are fixed, they are joined together e.g. by 
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welding. The main design requirements for such fixing units 
are e.g. precision, closing speed, compact size, reliability, etc. 
 

 
 

Figure 9. Mechatronic Ontology of the Gripper 
 
4.4 Model Consistency 

It is necessary to define rules for checking the consistency 
of the models. This is done with the help of the 
Model/Analyzer approach discussed in 2.2. Some examples 
are: 
Consistency rule 1a: applies to <electrical drive> 

requires(this).contains(<power electronics>) 
Consistency rule 1b: applies to <pneumatic cylinder> 

requires(this).contains(<air supply>) 
Consistency rule 2: applies to <gripper> 

has-part(this).exists(part | part.name=“electrical drive”) xor 
has-part(this).exists(part | part.name=“pneumatic 
cylinder”) 

For example, consistency rule 1a defines that an electrical drive 
requires a power electronics. The rule applies to any such 
electrical drive as there could be many. Hence, the rule applies 
to all instances (occurrences) of electrical drive. The “this” 
keyword refers to the given electrical drive and “requires(this)” 
refers to the ontological relation of this electrical drive as was 
discussed in Figure 9. The rule ensures then that one such 
required element is a power electronics by checking whether a 
power electronic is contained in the list of required elements. 
Rule 1b is largely analogous to Rule 1a and ensures that a 
pneumatic cylinder requires an air supply. Rule 2 is more 
complex. It makes use of quantifiers, such as “exists”. The rule 
ensures that for a given “gripper” there exists one “has-part” 
relation (see Figure 9) whose name either equals “electrical 
drive” or “pneumatic cylinder” (with an exclusive or in 
between). If both exist or none exists then the condition returns 
false (i.e., an inconsistency). 

The syntax of these rules closely follows predicate logic 
because a consistency rule is either satisfied or it is not 
(Boolean result). Many languages for describing consistency 
rules exist in the computer science domain (e.g [17]). These 
languages are often quite similar. The consistency rules can be 
written manually or, in certain cases, could be derived 
automatically (i.e., as in this case where the consistency rules 
are derivable from the above system). In large models, with 
tens of thousands of model elements, it is hard to detect new 
inconsistencies while the model changes and it is also hard to 
keep track of known inconsistencies. Our approach identifies 
inconsistencies instantly with design changes and it keeps track 
of all inconsistencies over time. It does not require consistency 
rules with special annotations. Instead, it treats consistency 
rules as black-box entities and observes their behavior during 
their evaluation. We demonstrated empirically [4], that our 
approach is capable of detecting and tracking inconsistencies 
quickly for many kinds of consistency rules. 

To support the fast, incremental checking of design 
changes, the tool identifies all model elements that affect the 
truth value of any given consistency rule. A consistency rule 
needs to be re-evaluated if and only if one of these model 
elements changes. For example, if there are multiple “gripper” 
then the consistency rule 2 must be evaluated for each one of 
them separately. We thus instantiate consistency rule 2 for as 
many times as there are “grippers” in the model. Each 
instantiation would access different parts of the model. When 
the model changes then only those consistency rule instances 
are re-evaluated that accessed one of the changed model 
elements. According to the procedure pointed out in section 
2.2, in this application the consistency rules have to be re-
evaluated, if the variant electrical drive is modified to a 
pneumatic cylinder. We distinguish between instance, domain, 
and meta-domain consistency rules. Consistency rules 1 and 2 
are domain rules which apply to specific elements of a certain 
domain. 

 
Consistency rule 3: applies to an instance of <Mechatronic 
Device>  

if (has-part(this) is empty) then not(has-material(this) is 
empty) 
has-part(<Mechatronic Device>) = forall (device: 
<Mechatronic Device> | 
device.outgoingDependencies(“has-part”)->client) 
 
Consistency rule 3 applies to the meta-domain. For 

example, we define that mechanical devices need to be built out 
of a material, so every mechanical device should have a “has-
material” relationship to a Material – or it should be composed 
out of parts that should have materials. Rather than writing this 
rule separately for every instance of a Mechatronic Device, we 
defined it once for any Mechatronic Device. This rule should 
then be instantiated – once for every instance of Mechatronic 
Device: gripper, jaw, electrical drive and power electronics. In 
the example in Figure 9, an inconsistency would be detected 
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because, for example, electrical drive does not have a material, 
nor is it composed of parts that have materials.  

The more generic a consistency rule (i.e., the more 
generally applicable), the more likely is a model error the cause 
for an inconsistency. Consistency rules 1-2, however, are less 
generic (domain and/or applicable dependent). Here, 
inconsistencies could also be the result of incorrect consistency 
rules. This assessment, on whether to trust the model or the rule 
is left to the engineer. Our approach does support both model 
and rule changes. Furthermore, the granularity of modeling 
information does affect the writing of consistency rules. It 
appears to be generally easier to write consistency rules for 
elements at the same level of granularity (level of abstraction). 
This aspect will be explored further in future work. 

5. CONCLUSION AND OUTLOOK 
In this paper, we discussed how to ensure consistency 

during the modeling of multi-disciplinary, mechatronical 
systems. We propose an approach for a mechatronic ontology, 
which allows the design engineer to describe different design 
concepts and their structure. During all phases of the design 
process there is a need to establish models which may be seen 
as simplified representations of the real world. However, since 
design models can be large and complex and since their 
creation and maintenance is often distributed among multiple 
designers and even disciplines, it is hard to ensure the 
correctness of such design models. There is the need for 
automatically checking the consistency of such distributed 
design models and this paper demonstrated how one such 
approach to consistency checking, developed in the software 
engineering domain, could be used to address the larger 
challenge of consistency checking among mechatronical design 
models. 
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