
 1 Copyright © 2010 by ASME

Proceedings of the ASME 2010 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2010
August 15-18, 2010, Montreal, Quebec, Canada

IDTEC2010/28615

CONSISTENCY CHECKING OF MECHATRONIC DESIGN MODELS

Peter Hehenberger
Institute for Computer-Aided

Methods in Mechanical
Engineering

Johannes Kepler University
Linz, Austria

peter.hehenberger@jku.at

Alexander Egyed
Institute for Systems

Engineering and Automation
Johannes Kepler University

Linz, Austria
alexander.egyed@jku.at

Klaus Zeman
Institute for Computer-Aided

Methods in Mechanical
Engineering

Johannes Kepler University
Linz, Austria

klaus.zeman@jku.at

ABSTRACT
During all phases of the design process there is a need to

build models. Hierarchical models are very important tools for
complex activities such as engineering design. In engineering
of high performance products, mathematical modeling and
simulation, i.e. experimenting with computer-based models, is
an increasingly important technique for solving problems,
evaluating solutions and making decisions. However, large
design models may contain thousands of model elements.
Designers easily get overwhelmed maintaining the correctness
of such design models over time. Not only is it hard to detect
new errors when the model changes but it is also hard to keep
track of known errors. In the software engineering community
this problem is known as a consistency problem and errors in
models are known as inconsistencies. This paper presents an
approach for consistency checking of mechatronic design
models.

1. INTRODUCTION

1.1 Motivation

Today Time-to-Market and Rapid Development are very
important aspects of the product development process. The
evolution of the corresponding market requirements during the
last years has deeply transformed the designer’s way of
thinking and acting during all stages of product development.

In fact, at present, time-to-market, quality standards,
environmental impact, safety, and cost effectiveness have
become essential demands which affect the whole life cycle of
the product development. In order to improve the performance
of new products, the different fields of mechatronics and their
interactions are increasingly exploited which has led to higher

product complexity. Today, the design activities take place in a
multidisciplinary environment, which often involves engineers
of different backgrounds working on a common product.
Additionally, the enlarged use of computer aided tools and their
continuous enhancement lead to more complexity of the
product design process itself.

Hence, a new approach in Design and Engineering of
products can be considered a key point for optimizing the
design process. These methodologies are being used
extensively to assist in decision-making during the product
design process which starts with conceptual design and is
followed by basic and detailed design. Conceptual design plays
a central role in ensuring design quality and product innovation
because many success-critical decisions are made during this
phase.

Figure 1. Viewpoint of product models and data

 2 Copyright © 2010 by ASME

In the design process of mechatronic systems we have to
analyze product models and data from different viewpoints –
representing the different disciplines involved. Figure 1 lists
several dimensions of viewpoints which include:
 objects and models from different disciplines, which are

involved in the development process of a mechatronic
system

 model granularity (which differs across disciplines),
denoting the extent to which on object or model is broken
down into smaller parts (e.g., sub-models with higher
degree of detailing and lower level of abstraction,
respectively)

 design phases: The development/design process can be
structured into four phases, namely problem definition,
conceptual design, preliminary design and detailed design.

Furthermore, there is also the need for consistency because

if objects and models are independently created and maintained
by the various disciplines then correctness is no longer
guaranteed. The same is true for objects or models that are
transferred from one discipline to another, from one abstraction
level to another and from one design phase to the next one – if
such objects or models are subsequently modified on both ends
just as proposed in simultaneous engineering. This problem, of
course, becomes increasingly pronounced with system size and
complexity because likely more people and disciplines are
involved. A proven strategy to handle this increasing
complexity is to divide up the work as it is done in concurrent
engineering. However, it is rarely possible to divide up a
problem such that two people can work fully independently
from one another and then, at the end, expect that the results of
their work fit together without conflicts. Through good
modularization, it is possible to achieve some degree of
independence; however, it is never possible to avoid
dependencies. The role of consistency is to characterize such
dependencies – to identify the conditions that have to be met
for objects and models to fit together.

1.2 Illustration and Problem

Consistency rules are simply conditions on a model which
evaluate to true or false – depending on whether the rule is
satisfied by the model or not. There are typically many such
consistency rules and these rules need to be re-evaluated
whenever the model changes. This re-evaluation is
computationally expensive if done exhaustively with every
model change. During a rule’s evaluation, a consistency rule
investigates a model - typically a portion of the model only. We
define the accessed portion of a model as the scope of a rule.
For example, we want to analyze different design models
during the development process of a gripper. Figure 2 shows
different simplified models from different design stages. A
more detailed description of the application is outlined in
chapter 4.

The function structure is used to describe product
functionality because in engineering design, the final goal is the

creation of an artifact, product, system, or process that
performs a function or functions under certain constraints to
fulfill customer need(s). The conceptual design model is used
to select, define and fix the main parameters of the gripper. In
detailed design we have a CAD-model which describes the
geometry (and other properties) of the gripper.

Figure 2. Consistency rules between different models

Consistency rules are written for a context element (a type

of model element, e.g. a function) from where its evaluation
starts. For consistency rule 1 (Fig. 2), the context element is a
function and the interaction between the function structure and
the conceptual design model is described as “applies to <fix
workpiece> requires(this).contains(<pneumatic cylinder>)”.
This means that for the function “fix workpiece” a drive like a
“pneumatic cylinder” is required. In the second rule the
interaction between the model parameter “distance piston” and
the geometric representation in the CAD-model is defined as
equal. In the same way rule 3 is defined.

If we imagine that the different models in Figure 2 are
created and maintained by different people – perhaps even
people of different disciplines – then the benefit of consistency
checking is the ability to identify conflicts that arise out of the
independent work of these people or disciplines. From a
implementation point of view, several mechanisms are
necessary to automate this:
 integration of models and tools if separated so that they

can be reasoned about uniformly
 online/offline mode if models, tools, people are distributed

in time and space
 mechanisms for detecting and tracking constraints

The model/tool integration is not so much a research
challenge but a standardization problem where tool vendors
need to integrate their tools better. The distribution problem
could be avoided by having one central server where all models
are available. The third point on detection and tracking,
however, has received the least attention. So while all three

 3 Copyright © 2010 by ASME

points are important, this paper deals solely with the third point
and assumes that models are integrated and available in a
central repository (not distributed) for simplicity.

2. BACKGROUND

2.1 Special Characteristics of Mechatronic Design

Mechatronics may be defined as an interdisciplinary field
of engineering, which characterizes the interconnections
between mechanical engineering, electrical engineering and
computer science such that these interconnections are the basis
for designing successful products [1, 2, 3].

Mechatronic systems are multidisciplinary products,
therefore the knowledge required for developing such
products/systems is broad. Currently, there is a lack of
integrated development methodologies and tools for
mechatronic product development. Traditionally, mechanical
engineers develop their design with strong emphasis on the
geometric domain, the electrical components are engineered
separately in an electrical domain. These steps result in a given
equipment for automation and control of the system which is
usually developed in an automation department represented
more or less by software engineers. All these persons have
different views on the same mechatronic products.

When designing a mechatronic system, it is possible to
design the mechanical equipment, before any of the control
system design has been initiated. An obvious drawback of this
sequential approach is the (predictable) lack of compatibility
between the subsystems which results in additional efforts and
(non conformance) costs to meet the specifications of the total
(overall) system. Another drawback of this approach is that
during the design process decisions have to be made about
whether to use a mechatronical or just a mechanical solution
concept. Designers have to navigate and coordinate between
mechanical and electronic solutions.

Figure 3. Integration in Mechatronic Design

Without coordination between the different disciplines it is

difficult to find a superior solution. Not only the selection of
materials and the knowledge about (process) constraints (e.g.
with respect to the possible geometric properties of a part) play

a role, but also the selection of completely different solution
principles from different domains. It is clear that engineers
need help for their increasingly complex and multidisciplinary
design tasks. It is necessary to support the designers to rapidly
review and evaluate alternative solutions during the design
process and to identify the correct (i.e. optimum)
implementation choice.

One of the key issues in the development of modern
mechatronic systems is the strict integration of mechanical,
control, electrical and electronic as well as software aspects
from the beginning of the earliest design phases on, as it can be
seen from Figure 3.

2.2 Consistency Checking of Models

Large design models contain thousands of model elements.
Designers easily get overwhelmed maintaining the correctness
of such design models over time. Not only is it hard to detect
new errors when the model changes but it is also hard to keep
track of known errors. In the software engineering community,
this problem is known as the consistency problem and errors in
models are known as inconsistencies.

Inconsistencies are detected through reasoning processes
that require the existence of rules that describe correctness.
Such consistency rules describe conditions that a model must
satisfy for it to be considered a valid model (e.g., syntactic
well-formedness, coherence between different diagrams, and
even coherence between different models). Such consistency
rules obviously vary for different models. That is, what is
considered valid (correct) and invalid depends on the modeling
notation (language) and its semantics. However, for many
mainstream modeling languages (e.g., SysML, UML) such
semantics are well-defined and engineers have been able to
identify consistency rules. However, this paper will
demonstrate that such rules should also be customizable for a
domain or even application.

As with any error, the sooner it is detected the easier and
cheaper it is to fix. Instant error feedback of any kind is thus a
fundamental best practice in the engineering process. To date,
many approaches exist that help designers detect inconsist-
encies but most of them are only capable of checking the
consistency of design models as a whole (i.e., exhaustively in a
batch process) where all consistency rules are evaluated on the
entire model. Unfortunately, batch consistency checking does
not scale because the checking of larger models takes hours to
complete. Instant consistency checking requires an
understanding when, where, and how the model changes. For
this purpose, our approach, called the Model/Analyzer
Approach [4, 5, 6], logs how the engineer uses the modeling
tool. Figure 4 shows the architecture of our approach. It depicts
the modeling tool on the lower-right corner. The modeling tool
needs to be wrapped such that we can observe user activities –
changes to the design model which is embedded inside the
modeling tool. The Consistency Checker (top-left) evaluates
the model and while doing so the Model Profiler (middle)
monitors what model elements the Consistency Checker

 4 Copyright © 2010 by ASME

accesses. In particular, the profiler logs the accessed model
elements in a database together with the knowledge what
consistency rules accessed these model elements. We refer to
this mapping between accessed model elements and
consistency rules as a scope. The rule detector instructs the
consistency checker on what rule to evaluate, when a model
element changes. It determines this by observing model
changes and looking up what rules previously accessed the
changed model elements (scope).

The Model/Analyzer approach fully automatically,
correctly, and efficiently decides which subset of consistency
rules has to be evaluated when the model changes. The
approach was also demonstrated to keep up with an engineer’s
rate of model changes (even on very large industrial models).

ScopeScope

Figure 4. Architecture of Model/Analyzer

Even though our approach (or any approach) is not

guaranteed to be instant for every consistency rule, we were
able to show that it is easily able to keep up with an engineer’s
rate of model changes for several software and systems
modeling languages including the UML, a subset of
Matlab/Stateflow, and a domain specific steel manufacturing
product line model. Our empirical data showed, for example on
the UML models, that the evaluation of a model after changes
averaged to less than 1.4 ms - even on the largest industrial
models we had available. This benefit comes at the expense of
a linearly increasing memory cost to store the observed
behavior of consistency rules.

3. MECHATRONIC DESIGN MODELS

3.1 Product Models

A model is the conceptual description of ideas, facts and
processes that together represent the model of a design product
[7]. A design object may be an assembly, a sub-assembly or a
single part represented by the according product structure
model. Mechatronic models are very important tools for
complex activities such as engineering design [8, 9]. For high
performance of the engineering of design tasks, mathematical
modeling and simulation, i.e. experimenting with computer-
based models, are increasingly important problem solving
techniques.

In general, a model is devoted to the task of mapping
reality onto a significant representation of reality in order to
make valid predictions and conclusions for reality. It should
include the relevant phenomena/effects of interest (“views of
the object”, [10]) such as geometry, dynamics, stability,
materials, electrodynamics, controllability, cycle time,
maintenance, etc.

During all phases of the design process there is a need to
establish models. If these models are simplified representations
of the product to be built then we speak of product models. The
purpose of these models changes depending on the phases of
the product development. During the conceptual design phase,
physical principles, functions, structures, etc have to be
modeled and evaluated. In most cases, analytical
(mathematical) and virtual models are less expensive and less
time-consuming than physical prototypes. Virtual models can
be implemented and used to simulate and evaluate (significant
representations of) reality with the help of computers.

A principal role of engineers in each stage of product
development is to make decisions [11, 12]. However, if the
engineers have no overall overview of the multidisciplinary
system under consideration, consultations with experts of the
other fields are necessary. Decisions help to bridge the gap
between an idea and reality. In general, decisions are controlled
by information from many sources (and disciplines). As a rule,
we have to accept that in most cases dealing with design not all
of the information is available required to arrive at a fully
correct decision. Some of the information may be “hard”, that
is, based on well founded scientific principles and some
information may be “soft”, that is, based on the designer's
personal judgment, experience and instinct. Design is the
process of converting information that characterizes the needs
and requirements of a system into knowledge about the system
itself [12]. It is clear that the decisions influence the number of
iterations in the design process. The information flow in
product development is controlled by the decision-makers in
the organization of the product development process.

3.2 Hierarchical Mechatronic Conceptual Design
Models

From the engineering design process viewpoint, models
are containers of knowledge gained in the project, and
simulations are activities producing information that may
improve product knowledge and potentially also the quality of
many analyses and decisions made in the design process [13].
The aim of a behavioral model, i.e. a model of the (physical)
behavior of a system, is to serve as a tool to find an answer to a
design question, i.e. models are unique and have a specific
purpose. The modeling challenge may be addressed with a
modular or an integrative model design. A modular subsystem
has interfaces that are well defined and shared with only a few
other subsystems. An integrative system has interfaces which
may be more complex and are shared mainly inside the
subsystem.

 5 Copyright © 2010 by ASME

Design models are used for the evaluation of different
solutions during the design process. At least for this step,
quantitative models are indispensable, their parameters being
the decisive elements providing an adequate quantification of
design models and representing the properties of the original
under consideration. The number of parameters increases from
conceptual over preliminary to detailed design. According to
the increasing degree of detailing during the design process, the
granularity of the describing models becomes finer and finer,
leading to a hierarchy of models as well as their describing
parameters. For modeling and evaluation of solutions during all
phases of the design process, we postulate models with
different degrees of detailing (granularity of models) in
correspondence with their describing parameters. The
correspondence between models and parameters implies that
the meaning of a parameter is well defined only via its related
model.

Hierarchical models are very important tools for complex
activities such as engineering design. Especially during the
conceptual design phase there exists a high demand for models
to describe the design concept with respect to the given
requirements. The following section demonstrates the above
experiences from an industrial case study.

We may define model conformance as the property, how
well a model implements its intended objectives. Typical model
conformance characteristics are its validity area, accuracy,
speed and flexibility. In the modeling process, these character-
istics must be judged in context of the model purpose. Non-
routine simulations, which have a tendency to be more explor-
ative than routine simulations, should be facilitated by flexible
models, i.e. models which can be easily configured and adapted
to slightly different purposes. Hence, a new approach in Life
Cycle Design and Engineering of mechatronic products can be
considered as a key point to optimize the design process (see
Figure 5).

Figure 5. Conceptual Design in Product Development

3.3 Definition of a Mechatronic Module
According to our definition [13, 14], a mechatronic

module utilizes several (at least more than one) different
domains (disciplines) of mechatronics (e.g. mechanics,
automatic control etc.) merging the respective domain-specific
components. This means that a mechatronic module can only
be decomposed into domain-specific (non-mechatronic)
components, but not into other mechatronic modules or
mechatronic system components. A mechatronic module
therefore designates the “smallest” indivisible mechatronic
subsystem within the set of mechatronic sub-systems.

Figure 6. Mechatronic Module

Each pillar in Figure 6 characterizes the model of a

domain-specific component, which is structured into several
hierarchical levels corresponding to the proceeding degree of
detailing. For example, the pillar “Control System” includes
information about the structure of the controlled system as well
as the control laws and their implementation. Only the first
(highest) level has an interface to the other pillars (compare to
object oriented programming) via the mechatronic coupling
level. All couplings between the model pillars (e.g. design
parameters and requirement parameters, which affect multiple
disciplines) are captured and described at the mechatronic
coupling level. The model structure has to be adapted if
additional couplings between domain-specific components are
detected during a design iteration (design, analysis, integration,
performance check etc.). This is also true if new or additional
domains (pillars in the model) come into consideration. If we
consider the interaction between the different disciplines and
models designed by different engineering teams, consistency
checking is necessary to avoid conflicts in models,
interpretation of parameters etc.

4. APPLICATION

4.1 Overall Mechatronic System

In Figure 7 the example of a hierarchical decomposition of
an overall mechatronic system (mechatronic product) is
sketched. The hierarchical structuring allows to recognize and

 6 Copyright © 2010 by ASME

to describe internal interactions and also the integration of all
systems involved throughout the mechatronic coupling levels.
In this way, all relevant interactions, interdependencies and
interfaces are made transparent.

Car Body Production Line

Handling Station 1

Overall Mechatronic System

Mechatronic System Component

Mechatronic Module

Handling Station 2

Clamping Unit 1

Gripper 1

Dimensioning
material, geometry

kinematics

Clamping Jaws

Fixing on
clamping frame

Techn ical
 rea lization

Supp ly u nit s Electronic
circuits

Positioning
 sensors

MeasurementDrives

Mechanics

F

Robot System 1 Robot System 2

Mechatronic Module

Mechatronic Module

Mechatronic System Component

Mechatronic
System
Component

Figure 7. Hierarchical Structure of a complex
Mechatronic System

4.2 Manipulator with Gripper Unit

Typical applications for robots are pick and place
operations, screw driving, welding etc. A robot may consist of
two main parts, a positioning system, which locates the
functional part, sometimes called “end effector”. A manipulator
with prismatic joints is known as a cartesian manipulator, for
which the joint variables are the cartesian coordinates of the
end-effector with respect to the base. As might be expected, the
kinematic description of this manipulator is the simplest of all
manipulators. Cartesian manipulators are useful for table-top
assembly applications and for transfer of material. The system
can be decomposed into several sub-modules, which are to be
designed simultaneously. The main mechatronic modules are
 a Main Drive for the movement from the start to the end

position
 Robot Arms for the exact positioning of the parts

(positioning unit)
 Grippers to establish the connection between the robot

arms and the parts
Figure 8 represents the hierarchical model of one possible

design concept. In the following, different solution concepts for
the end-effector (gripper) are considered.

4.3 Mechatronic Ontology

When most of the knowledge has been acquired, it is still
unstructured and needs to be organized and structured by using
representations that both computers and humans can under-

stand. Such representations are named “knowledge
worksheets” [15, 16]. For the mechatronic ontology of the
example above, six so-called “concepts”, namely “mechatronic
device”, “environment”, “material”, “property”, “function” and
“manufacturing process” are defined. In general, these
“concepts” are connected among one another through
relationships.

For instance, a mechatronic device concept (e.g., Gripper)
is related to the environment concept (e.g. connection to robot).
The name of the relation is “interaction-with”. The used
definitions of the relationships are “has-part”, “interaction-
with”, “has-material”, “has-function”, “has-process”. The
concepts and relationships among them describe the relevant
knowledge of a new design concept.

When designing a mechatronic system, an experienced
design engineer implicitly applies his aggregated knowledge to
the new concept. Without being directly aware of, the design
engineer considers design rules, functional requirements,
economic and legal restrictions. Existing computer aided
design tools (e.g. CAD systems) give only little support to this
creative conceptual design stage. Whereas computer support
and product models are well established for the process of
embodiment design, the early phases of product development,
such as conceptual design, even nowadays often are carried out
isolatedly from the subsequent phases. Based on the presented
method described in the previous section, a first prototype for
such a computer aided semantic design tool for mechatronic
systems was created by using the software tool OntoStudio™.

Main Drive
Unit

Positioning
 and

 Gripping

Positioning
Unit

Gripper
Modules

different Solution Concepts

Handling Robot

Gripper 1 Gripper 2 Mechatronic
Module

Mechatronic
System

Component

Figure 8. Hierarchical Model of a Handling Robot

Figure 9 shows the concept of mechatronic ontology by means
of the above example. The arrangement and configuration of
fixing devices used in various machines or stations of a
production line for car bodies is an open question from the
automotive engineering domain. Clamping devices are
dedicated to fix different sheet metal parts quickly to one
another at an exact position and with a pre-defined clamping
force. After the parts are fixed, they are joined together e.g. by

 7 Copyright © 2010 by ASME

welding. The main design requirements for such fixing units
are e.g. precision, closing speed, compact size, reliability, etc.

Figure 9. Mechatronic Ontology of the Gripper

4.4 Model Consistency

It is necessary to define rules for checking the consistency
of the models. This is done with the help of the
Model/Analyzer approach discussed in 2.2. Some examples
are:
Consistency rule 1a: applies to <electrical drive>

requires(this).contains(<power electronics>)
Consistency rule 1b: applies to <pneumatic cylinder>

requires(this).contains(<air supply>)
Consistency rule 2: applies to <gripper>

has-part(this).exists(part | part.name=“electrical drive”) xor
has-part(this).exists(part | part.name=“pneumatic
cylinder”)

For example, consistency rule 1a defines that an electrical drive
requires a power electronics. The rule applies to any such
electrical drive as there could be many. Hence, the rule applies
to all instances (occurrences) of electrical drive. The “this”
keyword refers to the given electrical drive and “requires(this)”
refers to the ontological relation of this electrical drive as was
discussed in Figure 9. The rule ensures then that one such
required element is a power electronics by checking whether a
power electronic is contained in the list of required elements.
Rule 1b is largely analogous to Rule 1a and ensures that a
pneumatic cylinder requires an air supply. Rule 2 is more
complex. It makes use of quantifiers, such as “exists”. The rule
ensures that for a given “gripper” there exists one “has-part”
relation (see Figure 9) whose name either equals “electrical
drive” or “pneumatic cylinder” (with an exclusive or in
between). If both exist or none exists then the condition returns
false (i.e., an inconsistency).

The syntax of these rules closely follows predicate logic
because a consistency rule is either satisfied or it is not
(Boolean result). Many languages for describing consistency
rules exist in the computer science domain (e.g [17]). These
languages are often quite similar. The consistency rules can be
written manually or, in certain cases, could be derived
automatically (i.e., as in this case where the consistency rules
are derivable from the above system). In large models, with
tens of thousands of model elements, it is hard to detect new
inconsistencies while the model changes and it is also hard to
keep track of known inconsistencies. Our approach identifies
inconsistencies instantly with design changes and it keeps track
of all inconsistencies over time. It does not require consistency
rules with special annotations. Instead, it treats consistency
rules as black-box entities and observes their behavior during
their evaluation. We demonstrated empirically [4], that our
approach is capable of detecting and tracking inconsistencies
quickly for many kinds of consistency rules.

To support the fast, incremental checking of design
changes, the tool identifies all model elements that affect the
truth value of any given consistency rule. A consistency rule
needs to be re-evaluated if and only if one of these model
elements changes. For example, if there are multiple “gripper”
then the consistency rule 2 must be evaluated for each one of
them separately. We thus instantiate consistency rule 2 for as
many times as there are “grippers” in the model. Each
instantiation would access different parts of the model. When
the model changes then only those consistency rule instances
are re-evaluated that accessed one of the changed model
elements. According to the procedure pointed out in section
2.2, in this application the consistency rules have to be re-
evaluated, if the variant electrical drive is modified to a
pneumatic cylinder. We distinguish between instance, domain,
and meta-domain consistency rules. Consistency rules 1 and 2
are domain rules which apply to specific elements of a certain
domain.

Consistency rule 3: applies to an instance of <Mechatronic
Device>

if (has-part(this) is empty) then not(has-material(this) is
empty)
has-part(<Mechatronic Device>) = forall (device:
<Mechatronic Device> |
device.outgoingDependencies(“has-part”)->client)

Consistency rule 3 applies to the meta-domain. For

example, we define that mechanical devices need to be built out
of a material, so every mechanical device should have a “has-
material” relationship to a Material – or it should be composed
out of parts that should have materials. Rather than writing this
rule separately for every instance of a Mechatronic Device, we
defined it once for any Mechatronic Device. This rule should
then be instantiated – once for every instance of Mechatronic
Device: gripper, jaw, electrical drive and power electronics. In
the example in Figure 9, an inconsistency would be detected

 8 Copyright © 2010 by ASME

because, for example, electrical drive does not have a material,
nor is it composed of parts that have materials.

The more generic a consistency rule (i.e., the more
generally applicable), the more likely is a model error the cause
for an inconsistency. Consistency rules 1-2, however, are less
generic (domain and/or applicable dependent). Here,
inconsistencies could also be the result of incorrect consistency
rules. This assessment, on whether to trust the model or the rule
is left to the engineer. Our approach does support both model
and rule changes. Furthermore, the granularity of modeling
information does affect the writing of consistency rules. It
appears to be generally easier to write consistency rules for
elements at the same level of granularity (level of abstraction).
This aspect will be explored further in future work.

5. CONCLUSION AND OUTLOOK
In this paper, we discussed how to ensure consistency

during the modeling of multi-disciplinary, mechatronical
systems. We propose an approach for a mechatronic ontology,
which allows the design engineer to describe different design
concepts and their structure. During all phases of the design
process there is a need to establish models which may be seen
as simplified representations of the real world. However, since
design models can be large and complex and since their
creation and maintenance is often distributed among multiple
designers and even disciplines, it is hard to ensure the
correctness of such design models. There is the need for
automatically checking the consistency of such distributed
design models and this paper demonstrated how one such
approach to consistency checking, developed in the software
engineering domain, could be used to address the larger
challenge of consistency checking among mechatronical design
models.

ACKNOWLEDGMENT
We gratefully acknowledge that this work was supported in

part by the Austrian Center of Competence in Mechatronics
(ACCM), a K2-Center of the COMET/K2 program, which is
aided by funds of the Austrian Republic and the Provincial
Government of Upper Austria and in part by the Austrian FWF
grant P21321-N15.

REFERENCES
[1] Tomizuka, M., 2000. “Mechatronics: From the 20th to 21st

century”, In Proceedings of 1. IFAC Conference on
Mechatronic Systems, Darmstadt, Germany.

[2] De Silva, C.W., 2005. Mechatronics – an integrated
approach, CRC Press Boca Raton, London, New York,
Washington DC.

[3] Isermann, R., 2005. Mechatronic Systems. Fundamentals,
Springer Publishing Group, Berlin Heidelberg, Germany.

[4] Egyed, A., 2010. “Automatically Detecting and Tracking
Inconsistencies in Software Design Models, IEEE
Transactions on Software Engineering (TSE), to appear

[5] Egyed, A., 2007. “UML/Analyzer: A Tool for the Instant
Consistency Checking of UML Models,” Tool
Demonstration, In Proceedings of the 29th International
Conference on Software Engineering (ICSE), Minneapolis,
MN, May 2007, pp. 793-796 (12 papers accepted out of 56
submitted).

[6] Balzer, R., 1991. “Tolerating Inconsistency”, In
Proceedings of 13th International Conference on Software
Engineering (ICSE), 1991, pp. 158-165.

[7] Avgoustinov, N., 2007. Modelling in mechanical
engineering and mechatronics, Springer Publishing Group,
London, UK.

[8] Pahl, G. and Beitz, W., 1999. Engineering design – a
systematic approach. Springer Publishing Group, London,
UK.

[9] Bishop, R.H., 2007. Mechatronic Fundamentals and
Modelling, The Mechatronics Handbook. CRC Press Boca
Raton, London, New York, Washington DC.

[10] Vajna, S., Weber, C., Bley, H., Zeman, K. and
Hehenberger, P., 2009. CAx für Ingenieure: Eine
praxisbezogene Einführung, Springer Publishing Group,
Berlin Heidelberg, Germany.

[11] Herrmann, J.W. and Schmidt, L.C., 2002. “Viewing
Product Development as a Decision Productions System“,
In Proceedings of the ASME 2002 International Design
Engineering Technical Conferences, Montreal, Canada.

[12] Wassenaar, H.J. and Wei, C., 2002. “An Approach to
Decision-Based Design with Discrete Choice Analysis for
Demand Modeling”, Journal of Mechanical Design, Vol.
125, pp. 490-497.

[13] Hehenberger, P. and Zeman, K., 2007. “Design Activities
in the Development Process of Mechatronic Systems”, In
Proceedings of AIM 2007, IEEE/ASME International
Conference on Advanced Intelligent Mechatronics, Zürich,
Switzerland.

[14] Hehenberger, P. and Zeman, K., 2008. “The role of
hierarchical design models in the mechatronic product
development process”, In: Proceedings of TMCE
International Symposium Series on Tools and Methods of
Competitive Engineering, Izmir, Turkey.

[15] Li, Z., Raskin, V. and Ramani, K., 2007. “A Methodology
of Engineering Ontology Development for Information
Retrieval“, In Proceedings of International Conference on
Engineering Design, Paris, France.

[16] Ahmed, S., Kim, S. and Wallace, K., 2005. “A
Methodology for creating Ontologies for Engineering
Design”, In Proceedings of IDETC/CIE 2005, ASME 2005
International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference,
Long Beach, California USA.

[17] Warmer, J., Kleppe, A., 2003. The Object Constraint
Language: Getting Your Models Ready for MDA. 2nd
Edition, Addison-Wesley Professional,

