
The Distributed Computing Column

by

Panagiota Fatourou

Department of Computer Science, University of Crete

P.O. Box 2208 GR-714 09 Heraklion, Crete, Greece

and

Institute of Computer Science (ICS)

Foundation for Research and Technology (FORTH)

N. Plastira 100. Vassilika Vouton

GR-700 13 Heraklion, Crete, Greece

faturu@csd.uoc.gr

Consistency for TransactionalMemory
Computing

Dmytro Dziuma
FORTH-ICS, Greece

dixond@acm.lviv.ua

Panagiota Fatourou∗

FORTH-ICS & University of Crete, Greece

faturu@csd.uoc.gr

Eleni Kanellou
IRISA, Université de Rennes, France & FORTH-ICS, Greece

eleni.kanellou@irisa.fr

Abstract

This paper provides formal definitions for a comprehensive collection
of consistency conditions for transactional memory (TM) computing. We
express all conditions in a uniform way using a formal framework that we
present.

For each of the conditions, we provide two versions: one that allows a
transaction T to read the value of a data item written by another transac-
tion T ′ that can be live and not yet commit-pending provided that T ′ will
eventually commit, and a version which allows transactions to read values
written only by transactions that have either commited before T starts or
are commit-pending. Deriving the first versions was not an easy task but
it has some benefits: (1) this version of each condition is weaker than the
second one and so it results to a wider universe of algorithms which there
is no reason to exclude from being considered correct, and (2) some defini-
tions work, as is, for universal constructions contributing towards unifying
the two models.

The formalism for the presented consistency conditions does not base on
any unrealistic assumptions, such as that transactional operations are exe-
cuted atomically or that write operations write distinct values for data items.
Making such assumptions facilitates the task of formally expressing the con-
sistency conditions significantly, but results to formal presentations of them
that are unrealistic, i.e. that cannot be used to characterize the correctness of
most of the executions produced by any reasonable TM algorithm.

∗Currently with École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, as an Eco-
Cloud visiting professor.

1 Introduction
Transactional memory (TM) [19, 27] is a promising parallel programming paradigm
that aims at simplifying parallel programming by using the notion of a transaction.
A transaction is a piece of code containing accesses to pieces of data, known as
data items, which are accessed simultaneously by several processes in a concur-
rent setting. A transaction may either commit and then its updates are effectuated
or abort and then its updates are discarded. By using transactions, the naive pro-
grammer need only enhance its sequential code with invocations of special rou-
tines such as ReadDI and WriteDI (which we will call transactional operations)
to indicate reads or writes for data items, respectively.

The TM algorithm provides a shared representation for each data item and im-
plementations for ReadDI and WriteDI using the base objects supported by the
system, so that all synchronization problems that may arise during the concurrent
execution of transactional operations are addressed. When a transaction executes
all its transactional operations it calls a routine called TryCommit in order to com-
mit. TryCommitmay return TRUE in which case the transaction commits or FALSE
in which case the transaction aborts. We say that a transaction is commit-pending
at some point in time if it has invoked TryCommit but it has not yet received a re-
sponse. The implementation details of the TM algorithm are hidden by the naive
programmer whose programming task is therefore highly simplified. TM has been
given special attention in the last ten years with hundreds or even thousands of pa-
pers addressing different problems arising in TM computing (see e.g. [17, 16] for
books addressing different aspects of TM computing).

One of the most fundamental problems of TM computing is safety. Most TM
consistency conditions [3, 15, 16, 21, 12, 6, 7] originate from existing shared
memory or database consistency models. However, in contrast to what happens in
shared memory models where safety is defined in terms of read and write opera-
tions in memory, safety in TM computing is defined in terms of transactions, each
of which may contain more than one read or write operations on data items. Com-
paring now to database transactions, the main difficulty when defining safety in
TM computing is that transactional operations are executed by invoking ReadDI
or WriteDI and therefore the execution of a transactional operation has duration
and is usually overlapping with the execution of other transactional operations,
whereas in database transactions read and write operations are considered to be
atomic. For these reasons, existing safety definitions for these two settings (shared
memory and database concurrent transactions) cannot be applied verbatim to TM
algorithms. Formalizing safety definitions for TM computing requires more effort.

This article presents a comprehensive collection of consistency conditions for
TM computing. All conditions are expressed in a uniform way using a formal
framework that we present in Section 2. This article can therefore serve as a

survey of consistency conditions for TM computing. However, it aspires to be
much more than this.

For all known TM consistency conditions we provide a new version, called
live, in which a transaction T is allowed to read the value of a data item written by
another transaction T ′ that can be live and not yet commit-pending provided that
T ′ will eventually commit (or that T ′ will commit if T commitss). All TM consis-
tency conditions [3, 15, 16, 21, 6, 7] presented thus far (with TMS1 [12] being the
only exception) allowed for transactions to read values that have been written by
transactions that either have commited or are commit-pending when T strarts its
execution. The live version of a definition is weaker than the later thus resulting
to a wider universe of algorithms which should not be excluded from being con-
sidered correct. For instance, consider an algorithm which produces executions in
which a transaction T is allowed to read a value for a data item x writtten by some
transaction T ′ which has neither committed nor is commit-pending when T starts
its execution. However, suppose that the algorithm has been designed in such a
way that when this occurs, the algorithm ensures that T ′ will commit. Then, there
is no reason for executions of the algorithm in which this behaviour is met not to
be considered correct, i.e. such executions are correct. However, current consis-
tency conditions, as they are formally expressed, exclude such executions from
the set of executions they allow. The live version of a consistency condition we
present here solves this problem.

A universal construction [18] is a mechanism for automatically executing
pieces of sequential code in a concurrent environment. A universal construc-
tion supports a single operation Perform which takes as a parameter a pointer
to a routine containing the piece of sequential code to execute concurrently and
returns TRUE if this is done successfully. Similarly to TM, the sequential code
must be enhanced so that accesses to data items are identified by calling routines
ReadDI and WriteDI. Aparently, universal constructions and TM algorithms are
closely related since they both aim at simplifying parallel programming. There are
however two basic differences between these two paradigms: (1) the application
code must be programmed differently; specifically, in a universal construction,
the piece of (the enhanced) sequential code must be included in a routine and a
pointer to this routine must then be passed as a parameter to Perform, whereas in
a TM setting, the code may contain direct invocations of ReadDI and WriteDI,
and (2) a TM algorithm allows the external environment to choose the action to
be performed when a transaction aborts, whereas a call to Perform returns only
when the simulated code has been successfully applied to the simulated state, i.e.
after commit1.

1 We remark that the common behaviour for the external environment in a TM setting is to
restart an aborted transaction until it eventually commits, so the difference is not essential.

A second benefit of the live versions of the consistency conditions presented
here is that some of them work, as are, for universal constructions, by having a call
to Perform to play the role of a transaction2. This contributes towards unifying
the two models. It is remarkable that deriving the live version of consistency
conditions was not an easy task so we consider their presentation as a significant
contribution of this report.

For the derivation of the presented consistency conditions, we do not make any
restrictive assumptions, such as that transactional operations are executed atom-
ically or that write operations write distinct values for data items. Making such
an assumption is unrealistically restrictive since all TM algorithms produce exe-
cutions that do not satisfy these assumptions. Thus, a consistency condition that
has been expressed making such an assumption cannot be used to characterize
such executions, and thus fail to also characterize whether the TM algorithm it-
self satisfies the condition. We remark that making such assumptions significantly
facilitates the task of formally expressing a consistency condition but the formal
presentation that results is extremely restricitve since it cannot be used to charac-
terize the correctness of most of the executions produced by any reasonable TM
algorithm.
Related Work. Among the consistency conditions met in TM computing papers
are the following: strict serializability [23], serializability [23], opacity [15, 16],
virtual world consistency [21], TMS1 [12] (and TMS2 [12]), and snapshot iso-
lation [2, 10, 25, 6, 7]. Weaker consistency conditions like processor consis-
tency [7], causal serializability [6, 7] and weak consistency [7] have also been
considered in the TM context when proving impossibility results.

Strict serializability, as well as serializability, are usually presented in an infor-
mal way in TM papers which cite the original paper [23] where these conditions
have first appeared in the context of database research. Thus, the differences that
exist between database and TM transactions have been neglected in TM research.
We present formal definitions of these consistency conditions here. Additional
consistency conditions originating from the database research are presented in [3].
To present their formalism, the authors of [3] make the restrictive assumption that
transactional operations are atomic. The presentation of most of the other consis-
tency conditions (e.g. opacity [15, 16], virtual world consistency [21], snapshot
isolation [2, 10, 25, 6, 7] and weaker variants of them [6, 7]) is based on the as-
sumption that a read for a data item by a transaction T can read a value written
by either transaction that has commited or is commit-pending when T starts its
execution. Finally, virtual world consistency [21] has been presented in a rather
informal way and its definition is based on the assumption that each instance of

2 This is not achieved by employing the second version of the definitions since the notion of
pieces of code that are "commit-pending" is not defined for universal constructions.

WriteDI writes a distinct value for the data item it accesses (or that the transac-
tional operations are executed atomically).

2 TM Model
In this section, we describe a model for transactional memory (TM) computing.

2.1 Transactions and histories
Transactional memory (TM) is a parallel programing paradigm which employs
transactions to synchronize the execution of threads. A transaction is a piece
of code which accesses pieces of data, called data items. A data item may be
accessed by several threads simultaneously in a concurrent environment. A TM
algorithm uses base objects to store the state of each data item and ensures syn-
chronization between threads accessing the same data items. A base object has
a state and supports a set of operations, called primitives, to access or update its
state. Base objects are usually simple objects that are provided by the hardware.

In order to read or write a data item, the transaction’s code must call specific
routines, called ReadDI and WriteDI, respectively. The TM algorithm provides
implementations for these routines from the base objects. A transaction may com-
mit or abort. If it commits, all its updates to data items are realized, whereas if
it aborts, all its updates are discarded. The TM algorithm provides implementa-
tions for two routines, called Abort and TryCommit, which are called to try to
commit or to abort a transaction, respectively. We refer to all these routines as
transactional operations. Whenever it is clear from the context, we use the term
operation to refer to a transactional operation.

A transactional operation starts its execution when the thread executing it is-
sues an invocation for it; the operation completes its execution when the thread
executing it returns a response. The response for an instance of TryCommit ex-
ecuted by some transaction T can be either CT which identifies that T has com-
mitted, or AT which identifies that T has aborted. The response for an instance of
Abort executed by T is always AT . The response for ReadDI can be either a value
or AT ; finally, the response for WriteDI can be either an acknowledgment or AT .
We say that a response res matches an invocation inv in some history H, if they
are both by the same thread p, res follows inv in H, and there is no other response
by p between inv and res in H. A transactional operation is complete, if there is a
response for it; otherwise, the operation is pending.

An event is either an invocation or a response of a transactional operation. A
history is a finite sequence of events. Thus, in a history H, there are two events
for every completed operation op, an invocation inv(op) and a matching response

res(op). H contains only the invocation of each pending operation in it. For each
data item x, we denote by H | x the subsequence of H containing the invocations
and responses of all transactional operations that access x. For each thread pi, we
denote by H | pi the subsequence of H containing all invocations and responses
of transactional operations executed by pi. For each event e in H, we denote by
H ↑ e the longest prefix of H that does not include e.

Consider any history H. We say that a transaction T (executed by a thread pi)
is in H or H contains T , if there are events in H issued by pi when executing T .
The transaction subhistory of H for T , denoted by H | T , is the subsequence of
all events in H issued by pi when executing T . Each transaction T in H for which
H | T contains at least one invocation of WriteDI is called an update transaction.
A transaction in H is called read-only, if it is not an update transaction.

A history H is said to be well-formed if, for each transaction T in H, H | T is
an alternating sequence of invocations and responses, starting with an invocation,
such that:

• no events in H | T follow CT or AT ;

• if T ′ is any transaction in H executed by the same thread that executes T ,
either the last event of H | T precedes in H the first event of H | T ′ or the
last event of H | T ′ precedes in H the first event of H | T .

From now on we focus on well-formed histories. Let H be any such history. A
transaction T is committed in H, if H | T includes CT ; a transaction T is aborted in
H, if H | T includes AT . A transaction is completed in H, if it is either committed
or aborted, otherwise it is live. The execution interval of a completed transaction
T in α is the subsequence of consecutive steps of α starting with the first step
executed by any of the operations invoked by T and ending with the last such
step. The execution interval of a transaction T that does not complete in α is the
suffix of α starting with the first step executed by any of the operations invoked
by T .

A transaction is commit-pending in H if it is live in H and H | T includes an
invocation to TryCommit for T . We denote by comm(H) the subsequence of all
events in H issued and received by committed transactions. Two histories H and
H′ are said to be equivalent if each thread p executed the same transactions, in the
same order, in H and H′, and for every transaction T in H, H | T = H′ | T , i.e. for
each transaction the same transactional operations are invoked and each of these
operations has the same response in both histories.

Consider any history H. We denote by Complete(H) a set of histories that
extend H. Specifically, a history H′ is in Complete(H) if and only if, all of the
following hold:

1. H′ is well-formed, H is a prefix of H′, and H and H′ contain the same set
of transactions;

2. for every live transaction3 T in H:

(a) if H | T ends with an invocation of TryCommit, H′ contains either CT

or AT ;

(b) if H | T ends with an invocation other than TryCommit, H′ contains
AT ;

(c) if H | T ends with a response, H′ contains AbortT and AT .

Roughly speaking, each history in Complete(H) is an extension of H where
some of the commit-pending transactions in H appear as committed and all other
live transactions appear as aborted.

A configuration is a vector consisting of the state of each thread and the state of
each base object. In an initial configuration, threads and base objects are in initial
states. A step of a thread consists of applying a single primitive on some base
object, the response to that primitive, and zero or more local operations that are
performed after the access and which may cause the internal state of the thread to
change. As a step, we also consider the invocation of a transactional operation or
the response to such an invocation; notice that a step of this kind does not change
the state of any base object. Each step is executed atomically. An execution α
is a sequence of steps. An execution is legal starting from a configuration C if
the sequence of steps performed by each thread follows the algorithm for that
thread (starting from its state in C) and, for each base object, the responses to the
operations performed on the object are in accordance with its specification (and
the state of the object at configuration C). Given an execution α, the history of α,
denoted by Hα, is the subsequence of α consisting of just the invocations and the
responses of transactional operations.

2.2 Relations and Partial Orders
Consider a well-formed history H. We define a partial order, called real time order
and denoted <H, on the set of transactions in H as follows:

• for any two transactions T1 and T2 in H, if T1 is completed in H and the last
event of H | T1 precedes the first event of H | T2 in H, then T1 <H T2.

Transactions T1 and T2 are concurrent in H, if neither T1 <H T2 nor T2 <H T1.
H is sequential if no two transactions in H are concurrent.

3We remark that the order in which the live transactions of H are inspected to form H′ is
immaterial, i.e. all histories that result from any possible such order are added in Complete(H).

We also define a partial order, called operational real-time order and denoted
by <op

H , on the set of transactional operations in H as follows:

• for any two transactional operations op1 and op2 in H, if H contains a re-
sponse for op1 which precedes the invocation of op2, then op1 <

op
H op2.

Operations op1 and op2 are concurrent in H, if neither op1 <
op
H op2 nor

op2 <
op
H op1. H is operational-wise sequential if no two operations in H are

concurrent.
Let S op be an operational-wise sequential history equivalent to H. We say that

S op respects some relation < on the set of transactions in H if the following holds:
for any two transactions T1 and T2 in S , if T1 < T2, then T1 <S T2. We say that
S op respects some relation <op on the set of transactional operations in H if the
following holds: for any two operations op1 and op2 in S op, if op1 <

op op2, then
op1 <

op
S op

op2. Notice that a partial order is a relation, so these definitions hold for
partial orders as well.

Consider any operational-wise sequential history S op that is equivalent to H
and respects <H. We define a binary relation (with respect to S op), called reads-
from and denoted by <r

H, between transactions in H such that, for any two trans-
actions T1,T2 in H, T1 <

r
H T2 only if:

• T2 executes a ReadDI operation op that reads some data item x and returns
a value v for it,

• T1 is the transaction in S op which executes the last WriteDI operation that
writes v for x and precedes op.

Notice that each operational-wise sequential history S op that is equivalent to
H, induces a reads-from relation. We denote by RH the set of all reads-from
relations that can be induced for H.

For each <r
H in RH , we define the causal relation for <r

H on transactions in H
to be the transitive closure of

⋃
i

(
<H|pi

)
∪ <r

H. We define CH to be the set of all
causal relations in H.

2.3 Legality
A set S of sequences is prefix-closed if, whenever H is in S, every prefix of H
is also in S. A history H is a single data-item history for some data item x, if
H | x = H. A sequential specification for a data item is a prefix-closed set of
single data-item sequential histories for that data item. A sequential history H is
legal if, for each data item x, H | x belongs to the sequential specification for x.

Consider a sequential history S and a transaction T in S . We say that T is legal
in S , if for every invocation inv of ReadDI on each data item x that T performs
whose response is not AT the following hold:

1. if there is an invocation of WriteDI for x by T that precedes inv in S then v
is the argument of the last such invocation,

2. otherwise, if there are no committed transactions preceding T in S which
invoke WriteDI for x, then v is the initial value for x,

3. otherwise, v is the argument of the last invocation of WriteDI of any com-
mitted transaction that precedes T in S .

A complete sequential history S is legal if every transaction in S is legal.

3 TM Consistency

3.1 Strict Serializability
Strict serializability was first introduced in [23] as a (strong) consistency condition
for executions of concurrent transactions in database systems. In TM computing,
it can be expressed in several different flavors, two of which are discussed below.
We start with live strict serializability (or `-strict serializability for short).

Definition 1 (Live Strict Serializability or L-Strict Serializability). We say that an
execution α is `-strictly serializable if it is possible to do all of the following:

• If A is the set of all complete transactions in α that are not aborted, for each
transaction T ∈ A, to insert a serialization point ∗T somewhere between
T’s first invocation of a transactional operation and T’s last response for a
transactional operation in α.

• To choose a subset B of the live transactions in α and, for each transaction
T ∈ B, insert a serialization point ∗T somewhere after T’s first invocation
of a transactional operation in α.

These serialization points should be inserted, so that, in the sequential execution
σ that we get by serially executing each transaction T ∈ A ∪ B at the point that
its serialization point has been inserted, the following hold:

• for each transaction T ∈ A, the same transactional operations, as in α, are
invoked by T in σ and the response of each such operation in σ is the same
as that in α, and

• for each transaction T ∈ B, a prefix of the operations4 invoked by T in σ are
the same as the sequence of operations invoked by T in α and the response
of each such operation in σ is the same as that in α.

4Notice that since σ is a sequential execution, each transaction T ∈ B commits in σ.

We continue to provide a stronger version of `-strict serializability in Defi-
nition 2 called commit-oriented strict serializability (or c-strict serializability for
short) which is based on the definition of Complete.

Definition 2 (C-Strict Serializability). A history H is c-strictly serializable, if there
exist a history H′ ∈ Complete(H) and a history S equivalent to comm(H′) such
that:

• S is a legal sequential history, and

• S respects <comm(H′).

We remark that Definition 1 provides a weaker version of strict serializability
than Definition 2, since it allows a transaction to read a value for a data item
written by another transaction that is not committed or commit-pending in H.
This is allowed only if eventually, all complete transactions that are not aborted,
and some of those that are still live can be "serialized" within their execution
intervals. For instance, let’s consider the history H and its prefix H1 both shown
on Figure 1. H is both `-strictly serializable and c-strictly serializable, whereas H1

is just `-strictly serializable. Notice that since `-strict serializability is weaker than
c-strict serializability, the universe of algorithms that are `-strictly serializable is
larger than that of the algorithms that are c-strictly serializable.

We remark that c-strict serializability is not a prefix-closed property. On the
contrary, `-strict serializability is a prefix-closed property. We remark that prefix-
closure can be imposed to c-strict serializability in an explicit way, i.e. by directly
stating in Definition 2 that each prefix Hp of H must also satisfy the conditions
imposed by the definition (as it is done in Definition 5 in Section 3.3). However,
this would make Definition 2 even stronger, and therefore the resulted universe of
c-strictly serializable TM algorithms even smaller.

T1

T2

W (x)1

R(x)1 Commit

Commit

H1 H

Figure 1: Example showing that strict serializability is not a prefix-closed property.

3.2 Serializability
As with strict serializability, serializability was first introduced in [23] as a con-
sistency condition for executions of concurrent transactions in database systems.

Below we discuss two different flavors of serializability in a way similar to that
for strict serializability.

Definition 3 (L-Serializability). We say that an execution α is `-serializable if it
is possible to do all of the following:

• If A is the set of all complete transactions in α that are not aborted, for each
transaction T ∈ A, to insert a serialization point ∗T in α.

• To choose a subset B of the live transactions in α and, for each transaction
T ∈ B, insert a serialization point ∗T in α.

These serialization points should be inserted, so that, in the sequential execution
σ that we get by serially executing each transaction T ∈ A ∪ B at the point that
its serialization point has been inserted, the following hold:

• for each transaction T ∈ A, the same transactional operations, as in α, are
invoked by T in σ and the response of each such operation in σ is the same
as that in α, and

• for each transaction T ∈ B, a prefix of the operations invoked by T in σ are
the same as the sequence of operations invoked by T in α and the response
of each such operation in σ is the same as that in α.

We continue to provide a stronger version of serializability in Definition 4,
called commit-oriented serializability (or c-serializability for short), which is based
on the definition of Complete.

Definition 4 (C-Serializability). A history H is c-serializable, if there exist a his-
tory H′ ∈ Complete(H) and a history S equivalent to comm(H′) such that:

• S is a legal sequential history.

Notice that S in Definition 4 respects the program order of transactional op-
erations executed by the same process in H. This is implied by the definition of
equivalent histories.

We remark that, similarly to the corresponding definitions of strict serializabil-
ity, Definition 3 provides a weaker version of serializability than Definition 4.

The difference between serializability and strict serializability is that strict
serializability additionally ensures that the real-time order of transactions is re-
spected by the sequential history defined by the serialization points. Thus, every
history/execution that is strict serializable is also serializable but not vice versa.

It is worth-pointing out that `-serializability and c-serializability are not prefix-
closed properties. This is so, since it is easy to design a history H which is `-
serializable (as well as c-serializable) in which a committed transaction T (exe-
cuted by some process p) reads for some data item x a value v written by some

T1

T2

W (x)1

R(x)1 Commit

Commit

H1 H

Figure 2: Example showing that serializability is not a prefix-closed property.

other committed (or commit-pending) transaction T ′ such that T ′ is executed by
some process p′ , p in H and T ′’s execution has started after T has been com-
pleted. Aparently, the prefix of H up until CT is neither `-serializable, nor c-
serializable.

We remark that prefix-closure can be imposed to `-serializability (as well as to
c-serializability) in an explicit way, as discussed for c-strict serializability above.
It is not clear if the versions that would then result will be weaker than the cor-
responding versions of strict serializability. Imposing prefix closure to the con-
sistency conditions presented in Sections 3.4.1-3.5 may be too restrictive as well.
Thus, we present the non-prefix-closed versions of them given that it is straight-
forward to derive their prefix-closed versions, in an explicit way.

Several impossibility results [4, 8, 13] and lower bounds [4] in TM computing
have been proved for strict serializability or serializability. Most TM algorithms
in the literature (see e.g. [9, 28, 11, 26] for some examples) satisfy some form of
serializability.

3.3 Opacity
Opacity was first introduced in [15]. In [16], a prefix-closed version of it was
formally stated. Here, we will present the later version which we will call c-
opacity (to be coherent with definitions in previous sections).

Definition 5 (C-Opacity [16]). A history H is c-opaque if, for each prefix Hp of H,
there exists a sequential history S p equivalent to some history H′p ∈ Complete(Hp)
such that:

• S p respects <H′p , and

• every transaction Ti in S p is legal in S p.

C-opacity is stronger than c-strict serializability. Figure 3 shows an example
of a history that is not c-opaque but is c-strictly serializable. This history is not
c-opaque because it violates the last condition of Definition 5; specifically, trans-
action T2 cannot be legal.

T1

T2

W (x)1 Commit

R(x)2

Figure 3: A strict serializable history which is not opaque.

Strict serializability (independently of the variant we consider) doesn’t impose
any restrictions on non-committed (or not commit-pending) transactions, whereas
c-opacity requires that all reads of each transaction T (independently of whether
the transaction is committed, aborted or live in the considered history) read val-
ues written by previously commited transactions (or by T itself). This additional
property is required in order to avoid undesired situations where a transaction may
cause an exception or enter into an infinite loop after reading a value for a data
item written by a live transaction that may eventually abort.

It is remarkable that the first of these undesired situations (i.e. the production
of an exception or an error code) can be avoided even by TM system that en-
sure only strict serializability if we make the following simple assumptions in our
model. An exception (or an error code) that has been resulted by the execution
of a transactional operation op is considered as a response for op. A transaction
that has experienced an exception or has received an error code as a response, to
one of its operations, is considered to be completed (but not aborted). Then, a
(`- or c-) strictly serializable TM implementation will never produce such excep-
tions (or error codes). Notice that the second undesirable situation, namely having
some transaction enter an infinite loop, will not appear in TM systems that ensure
standard progress properties, like lock-freedom, starvation-freedom, etc.

We continue to present live opacity (`-opacity). Consider any history H and
a transaction T in H. An instance op of ReadDI for some data item x executed
by T is global if T has not invoked WriteDI on x in H before invoking op. Let
T |read be the longest subsequence of H|T consisting only of the invocations of
ReadDI (and their responses if they exist), excluding the pair of the last such
invocation and its response if the response is AT . Let T |readg be the subsequence
of T |read consisting only of the invocations of the global instances of ReadDI
(and their responses if they exist). Let λ be the empty sequence. We denote by
Tr a transaction that invokes the same transactional operations as those invoked in
T |read · TryCommitTr if T |read , λ, or Tr = λ otherwise. Similarly, denote by
Tgr a transaction that invokes the same transactional operations as those invoked
T |readg · commitTgr if T |readg , λ, or Tgr = λ otherwise. For each ReadDI
operation op on any data item x that is in Tr but not in Tgr, we say that the response
for op (if it exists) is legal, if it is the value written by the last WriteDI for x

performed by T before the invocation of op.

Definition 6 (L-Opacity). We say that an execution α is `-opaque if there exists
some sequential execution σ which justifies that α is strictly serializable, and all
of the following hold:

1. We can extend the history Hσ of σ to get a sequential history H′σ such that:

• for each transaction T in α that is not in σ, H′σ contains Tgr

• if < is the partial order which is induced by the real time order <Hα
in

such a way that for each transaction T in α that is not in σ, we replace
each instance of T in the set of pairs of <Hα

with transaction Tgr, then
H′σ respects <

• H′σ is legal

2. for each transaction T in α that is not in σ, and for each transactional
operation op in Tr that is not in Tgr, the response for op is legal.

We remark that most TM algorithms presented in the literature are opaque.

3.4 Causality-Related Consistency Conditions

3.4.1 Causal Consistency

Causal consistency was informally introduced as a shared memory consistency
condition in [20], and it was formally defined in [1]. As in the previous sections,
we provide two formal definitions of causal consistency for TM computing using
the framework of Section 2.

Definition 7 (L-Causal Consistency). Consider an execution α and let A be the
set of all complete transactions in α that are not aborted. We say that α is `-
causally-consistent if there exists a subset B of live transactions in α and a causal
relation <c in CH′α where H′α is the subsequence of Hα containing just the events
of transactions in A ∪ B, such that, for each process pi, it is possible to do the
following:
For each transaction T ∈ A ∪ B, to insert a serialization point ∗T in α so that, if
σi is the sequential execution that we get by serially executing each transaction
T ∈ A ∪ B at the point that its serialization point has been inserted, then the
following hold:

• Hσi respects <c,

• for each transaction T ∈ A, the same transactional operations, as in α, are
invoked by T in σi and the response of each such operation in σi is the same
as that in α, and

• for each transaction T ∈ B, a prefix of the operations invoked by T in σi are
the same as the sequence of operations invoked by T in α, the response of
each such operation in σi is the same as that in α.

Definition 8 (C-Causal Consistency). A history H is c-causally consistent if there
exists a history H′ ∈ Complete(H) and a causal relation <c in Ccomm(H′) such that,
for each process pi, there exist a sequential history S i such that:

• S i is equivalent to comm(H′),

• S i respects the causality order <c, and

• every transaction executed by pi in S i is legal.

T1

T2

T3

T4

R(y)0

R(y)0

W (x)1

W (x)2

Commit

Commit

R(x)1 W (y)1

R(x)2 W (y)1 Commit

Commit

Figure 4: A causally consistent history which is not serializable.

L-causal consistency and c-causal consistency are weaker properties than `-
serializability and c-serializability. For instance, Figure 4 shows an example of a
history which is (`- and c-) causally consistent but not (`- or c-) serializable. In
this history both transactions T1 and T2 should be serialized before transactions
T3 and T4, because both T1 and T2 read 0 from data item y which is written by T3

and T4. Regardless of how the serialization points for T1 and T2 are ordered, both
T3 and T4 should read the same value for data item x. Thus, this history is not
serializable. However, it is causally consistent because processes running T3 and
T4 may see writes executed by processes running T1 and T2 in a different order.

3.4.2 Causal Serializability

Causal serializability was introduced in [24] as a consistency condition which
is stronger than causal consistency but weaker than serializability. Informally, in

addition to the constraints imposed by causal consistency, the following constraint
must also be satisfied: all transactions that update the same data item must be
perceived in the same order by all processes.

Definition 9 (L-Causal Serializability). Consider an execution α and let A be
the set of all complete transactions in α that are not aborted. We say that α is
`-causally serializable if there exists a subset B of live transactions in α and a
causal relation <c in CH′α where H′α is the subsequence of Hα containing just the
events of transactions in A ∪ B, such that, for each process pi, it is possible to do
the following:
For each transaction T ∈ A ∪ B, to insert a serialization point ∗T in α so that, if
σi is the sequential execution that we get by serially executing each transaction
T ∈ A ∪ B at the point that its serialization point has been inserted, then the
following hold:

• Hσi respects <c,

• for each transaction T ∈ A, the same transactional operations, as in α, are
invoked by T in σi and the response of each such operation in σi is the same
as that in α,

• for each transaction T ∈ B, a prefix of the operations invoked by T in σi are
the same as the sequence of operations invoked by T in α, the response of
each such operation in σi is the same as that in α.

• for each pair of transactions T1,T2 ∈ A∪B that write to the same data item,
if T1 <Hσi

T2, then for each j ∈ {1, . . . , n}, it holds that T1 <Hσ j
T2.

Definition 10 (C-Causal Serializability). A history H is c-causally serializable if
there exists a history H′ ∈ Complete(H) and a causal relation <c in Ccomm(H′) such
that, for each process pi, there exist a sequential history S i for which the following
hold:

• S i is equivalent to comm(H′),

• S i respects the causality order <c,

• every transaction executed by pi in S i is legal, and

• for each pair of transactions T1 and T2 in comm(H′) that write to the same
data item, if T1 <S i T2, then for each j ∈ {1, . . . , n}, it holds that T1 <S j T2.

Obviously, every causally serializable history satisfies the properties of causal
consistency, but the oposite is not true. For instance, the history shown in Figure 4

T1

T2

T3

T4

W (x)1

W (y)1

Commit

Commit

R(x)1 R(y)0 Commit

R(x)0 R(y)1 Commit

Figure 5: A causally serializable history which is not serializable.

is not causally serializable, since processes executing transactions T3 and T4 do
not see writes from T1 and T2 to data item x in the same order.

Figure 5 shows an example of a history which is causally serializable but not
serializable. Here, if transaction T1 is serialized before T2 (the opposite case is
symmetrical), then it is not possible to serialize transaction T4. However, by def-
inition of causal serializability, sequential histories constructed for processes p3

and p4 may include transactions T1 and T2 in different orders.
In the context of TM research, causal consistency, as well as causal serializ-

ability, are interesting in the context of proving impossibility results [6, 7] and
lower bounds. We remark that when proving such results, considering a weak
consistency condition makes the result stronger. It is therefore an interesting open
problem to see whether some of the TM impossibility results (e.g. [4, 8, 13]) that
have been proved assuming some strong consistency condition, like opacity, strict
serializability or serializability, can be extended to hold for weaker consistency
conditions like those formulated in this or later sections. For instance in this av-
enue, the impossibility result proved in [14] assuming serializability is extended
in [6, 7] to hold for a much weaker consistency condition.

3.4.3 Virtual World Consistency

Virtual World Consistency (VWC) was defined in [21] as a family of consistency
conditions. Informally, VWC ensures serializability or strict serializability for the
committed (and some of the commit-pending) transactions but a weaker condition
than that imposed by opacity for the rest of the transactions.

For each transaction T in history H and each causal relation <c
H in CH, we

define the causal past of T denoted by pastT (H, <c
H) as the subsequence of all

events produced either by transaction T in H itself or by any transaction Ti in H
such that Ti <

c
H T .

Definition 11 (C-Virtual World Consistency). A history H is c-virtual world con-
sistent if there exists a history H′ ∈ Complete(H) and a causal relation <c in CH′

such that:

• there exists a legal sequential history S which is equivalent to comm(H′),
and

• for each transaction Ti in H′ that is not in S , there exists a legal sequential
history S i which is equivalent to pastTi(H

′, <c) and respects the restriction
of <c to those pairs whose components are transactions in pastTi(H

′, <c).

Definition 12 (C-Strong Virtual World Consistency). A history H is c-strong vir-
tual world consistent if there exists a history H′ ∈ Complete(H) and a causal
relation <c in CH′ such that:

• there exists a legal sequential history S which is equivalent to comm(H′)
and respects the real-time order of H′, and

• for each non-committed transaction Ti in H′, there exists a legal sequential
history S i which is equivalent to pastTi(H

′, <c
H′) and respects the restriction

of <c to those pairs whose components are transactions in pastTi(H
′, <c).

T1

T2

T3

T4

W (x)1

W (x)2

Commit

Commit

R(x)1

R(x)2

Figure 6: A virtual world consistent history which is not opaque.

Clearly, virtual world consistency is a stronger consistency condition than se-
rializability. Similarly, strong virtual world consistency is stronger than strict seri-
alizability. Still, strong virtual world consistency (and therefore also virtual world
consistency) is weaker than opacity. The history shown in Figure 6 is strong vir-
tual world consistent but not opaque: regardless of the order of the serialization
points of transactions T1 and T2, it is not possible to derive a sequential history
where both transaction T3 and T4 are legal.

The history shown in Figure 7 is a slightly modified version of the history
shown in Figure 6. This history is virtual world consistent but not strong virtual
world consistent. In this history, transactions T1 and T2 are not concurrent, and

T1

T2

T3

T4

W (x)1 Commit

W (x)2 Commit

R(x)1

R(x)2

Figure 7: A virtual world consistent history which is not strong virtual world consistent.

since strong virtual world consistency respects the real-time order of transactions,
there is only one way that the serialization points of these two transactions can be
ordered in any equivalent sequential history.

We continue to present the live versions of virtual world consistency and
strong virtual world consistency.

Definition 13 (L-Virtual World Consistency and L-Strong Virtual World Consis-
tency). We say that an execution α is `-virtual world consistent (`-strong virtual
world consistent) if there exists some sequential execution σ which justifies that α
is serializable (strictly serializable, respectively), and the following holds:

1. for each transaction Ti in α that is not in σ there exists a legal sequential
history S i which is equivalent to pastTi(H

′, <c) and respects the restriction
of <c to those pairs whose components are transactions in pastTi(H

′, <c).

Strict consistency conditions such as opacity ensure the safe execution of non-
commited transactions by imposing on them the same safety demands as those
that committed transactions are required to obey. This has been criticized in [21]
to result in TM algorithms that produce histories in which live transactions are
forced to abort in order to preserve the safety of other transactions that are deemed
to also abort. Virtual world consistency relaxes the correctness criteria used for
non-committed transactions in order to avoid such scenarios when possible, and
by consequence, allow for more live transactions to commit, than a TM algorithm
that implements a stricter criterion would.

3.5 Snapshot Isolation
Snapshot isolation was originally introduced as a safety property in the database
world [5, 22]. Snapshot isolation is an appealing property for TM computing [2,
10, 25] since it provides the potential to increase throughput for workloads with

long transactions [25]. The first formal definitions for TM snapshot isolation was
given in [6, 7].

Consider a history H and let T be a transaction that either commits or is
commit-pending in H. Recall that we have already defined the sequences T |read,
T |readg, as well as transactions Tr and Tgr in Section 3.3. Let T |other be the sub-
sequence H|T − T |readg, i.e. T |other consists of all invocations performed by T
(and any matching responses) other than those comprising T |readg. Let To be a
transaction that invokes the same transactional operations (and in the same order)
as those invoked in T |other · commitTo if T |other , λ, and To = λ otherwise.

Definition 14 (C-Snapshot isolation [7]). An execution α satisfies c-snapshot iso-
lation, if there exists a set D consisting of all committed and some of the commit-
pending transactions in α for which the following holds: for each transaction
T ∈ D, it is possible to insert (in α) a global read point ∗T,gr and a write point
∗T,w, so that if δα is the sequence defined by these serialization points, the follow-
ing hold:

1. ∗T,gr precedes ∗T,w in δα,

2. both ∗T,gr and ∗T,w are inserted within the execution interval of T ,

3. if Hδα is the history we get by replacing each ∗T,gr with Tgr and each ∗T,w

with To in δα, then Hδα is legal.

We finally present live snapshot isolation. Consider a legal execution α and
let C(α) be the set of all legal executions such that each execution α′ ∈ C(α) is
an extension of α such that the same transactions are executed in α and α′ and no
transaction is live in α′.

Definition 15 (L-Snapshot Isolation). Consider an execution α. We say that α
satisfies `-snapshot isolation, if there exists an execution α′ ∈ C(α) for which the
following holds: if A is the set of transactions that commit in α′ then for each
transaction T ∈ A, it is possible to insert a global read point ∗T,gr and a write
point ∗T,w, so that:

1. both ∗T,gr and ∗T,w are inserted within the execution interval of T in α

2. ∗T,gr precedes ∗T,w, and

3. if σ is the sequential execution that we get when for each transaction T ∈
A, we serially execute transactions Tgr and To at the points that ∗T,gr and
∗T,w have been inserted, respectively, then for each transaction T ∈ A, the
response of each transactional operation invoked by Tgr and To in σ is the
same as that of the corresponding transactional operation in T |readg and
T |other (as defined based on α′), respectively.

4 Acknowledgements
This work has been supported by the European Commission under the 7th Frame-
work Program through the TransForm (FP7-MC-ITN-238639) project and by the
ARISTEIA Action of the Operational Programme Education and Lifelong Learn-
ing which is co-funded by the European Social Fund (ESF) and National Re-
sources through the GreenVM project.

We would like to thank Victor Bushkov for his valuable comments in a prelim-
inary version of this paper and Eleftherios Kosmas for several useful discussions
that motivated this work. Many thanks also to Hagit Attiya for her comments on
a previous version of this article.

References
[1] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto. Causal mem-

ory: definitions, implementation, and programming. Distributed Computing,
9(1):37–49, 1995.

[2] M. S. Ardekani, P. Sutra, and M. Shapiro. The impossibility of ensuring
snapshot isolation in genuine replicated stms. In The 3rd edition of the Work-
shop on the Theory of Transactional Memory, WTTM2011, 2011.

[3] H. Attiya and S. Hans. Transactions are Back-but How Different They Are?
In TRANSACT, feb 2012.

[4] H. Attiya, E. Hillel, and A. Milani. Inherent limitations on disjoint-access
parallel implementations of transactional memory. In Proceedings of the
twenty-first annual symposium on Parallelism in algorithms and architec-
tures, SPAA ’09, pages 69–78, New York, NY, USA, 2009. ACM.

[5] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A
critique of ansi sql isolation levels. SIGMOD Rec., 24(2):1–10, may 1995.

[6] V. Bushkov, D. Dziuma, P. Fatourou, and R. Guerraoui. Snapshot isolation
does not scale either. Technical Report TR-437, Foundation of Research and
Technology – Hellas (FORTH), 2013.

[7] V. Bushkov, D. Dziuma, P. Fatourou, and R. Guerraoui. The pcl theorem
- transactions cannot be parallel, consistent and live. In Proceedings of the
4th Annual ACM symposium on Parallelism in Algorithms and Architectures
(SPAA 14). ACM Press, jul 2014.

[8] V. Bushkov, R. Guerraoui, and M. Kapałka. On the liveness of transactional
memory. In Proceedings of the 2012 ACM symposium on Principles of dis-
tributed computing, PODC ’12, pages 9–18, New York, NY, USA, 2012.
ACM.

[9] L. Dalessandro, M. F. Spear, and M. L. Scott. Norec: streamlining stm by
abolishing ownership records. In Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’10,
pages 67–78, New York, NY, USA, 2010. ACM.

[10] R. J. Dias, J. Seco, and J. M. Lourenço. Snapshot isolation anomalies de-
tection in software transactional memory. In Proceedings of InForum 2010,
2010.

[11] D. Dice and N. Shavit. What really makes transactions faster? In Proc. of
the 1st TRANSACT 2006 workshop, 2006. Electronic, no. page numbers.

[12] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally spec-
ifying and verifying transactional memory. Formal Aspects of Computing,
pages 1–31, mar 2012.

[13] F. Ellen, P. Fatourou, E. Kosmas, A. Milani, and C. Travers. Universal con-
structions that ensure disjoint-access parallelism and wait-freedom. In Pro-
ceedings of the 2012 ACM symposium on Principles of distributed comput-
ing, PODC ’12, pages 115–124, New York, NY, USA, 2012. ACM.

[14] R. Guerraoui and M. Kapalka. On obstruction-free transactions. In Proceed-
ings of the Twentieth Annual Symposium on Parallelism in Algorithms and
Architectures, SPAA ’08, pages 304–313, New York, NY, USA, 2008. ACM.

[15] R. Guerraoui and M. Kapalka. On the correctness of transactional memory.
In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
practice of parallel programming, PPoPP ’08, pages 175–184, New York,
NY, USA, 2008. ACM.

[16] R. Guerraoui and M. Kapalka. Principles of Transactional Memory (Syn-
thesis Lectures on Distributed Computing Theory). Morgan and Claypool
Publishers, 2010.

[17] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2Nd Edition.
Morgan and Claypool Publishers, 2nd edition, 2010.

[18] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):124–149, Jan. 1991.

[19] M. Herlihy and J. E. B. Moss. Transactional memory: architectural support
for lock-free data structures. SIGARCH Comput. Archit. News, 21(2):289–
300, May 1993.

[20] P. Hutto and M. Ahamad. Slow memory: weakening consistency to enhance
concurrency in distributed shared memories. In Distributed Computing Sys-
tems, 1990. Proceedings., 10th International Conference on, pages 302–309,
1990.

[21] D. Imbs and M. Raynal. Virtual world consistency: A condition for STM
systems (with a versatile protocol with invisible read operations). Theoreti-
cal Computer Science, 444(0):113 – 127, 2012. Structural Information and
Communication Complexity ï£¡ SIROCCO 2009.

[22] R. Normann and L. T. Østby. A theoretical study of ’snapshot isolation’.
In Proceedings of the 13th International Conference on Database Theory,
ICDT ’10, pages 44–49, New York, NY, USA, 2010. ACM.

[23] C. H. Papadimitriou. The serializability of concurrent database updates.
Journal of the ACM, 26(4):631–653, oct 1979.

[24] M. Raynal, G. Thia-Kime, and M. Ahamad. From serializable to causal
transactions for collaborative applications. In EUROMICRO 97. New Fron-
tiers of Information Technology., Proceedings of the 23rd EUROMICRO
Conference, pages 314–321, 1997.

[25] T. Riegel, C. Fetzer, and P. Felber. Snapshot isolation for software transac-
tional memory. In In Proceedings of the First ACM SIGPLAN Workshop on
Languages, Compilers, and Hardware Support for Transactional Comput-
ing, TRANSACT’06, 2006.

[26] T. Riegel, C. Fetzer, and P. Felber. Time-based transactional memory with
scalable time bases. In Proceedings of the Nineteenth Annual ACM Sympo-
sium on Parallel Algorithms and Architectures, SPAA ’07, pages 221–228,
New York, NY, USA, 2007. ACM.

[27] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of
the Fourteenth Annual ACM Symposium on Principles of Distributed Com-
puting, PODC ’95, pages 204–213, New York, NY, USA, 1995. ACM.

[28] M. F. Spear, M. M. Michael, and C. von Praun. Ringstm: scalable transac-
tions with a single atomic instruction. In Proceedings of the twentieth annual
symposium on Parallelism in algorithms and architectures, SPAA ’08, pages
275–284, New York, NY, USA, 2008. ACM.

	Introduction
	TM Model
	Transactions and histories
	Relations and Partial Orders
	Legality

	TM Consistency
	Strict Serializability
	Serializability
	Opacity
	Causality-Related Consistency Conditions
	Causal Consistency
	Causal Serializability
	Virtual World Consistency

	Snapshot Isolation

	Acknowledgements

