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ABSTRACT

Recently, several strategies for transaction processing in partitioned distri-
buted database systems with replicated data have been proposed. We survey
these strategies in light of the goal of maintaining reliability. Extensions and
combinations are then discussed, and guidelines for the selection of a strategy for
a particular application are presented.
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INTRODUCTION

In distributed database systems, data is often replicated to achieve reliability. Although reliabil-
ity is difficult to define precisely, one aspect is availability: copies of data-items should remain
accessible even in the presence of failures. Another aspect of reliability is correctness: copies of
data-items must be mutually consistent, and the values of data-items must ‘“make sense.”
Correctness is normally defined by the concurrency control mechanism and integrity constraints

used by the system.

The most disruptive failures in a distributed database system are communication failures
that partition the system into subsets of nodes that can no longer communicate. Whenever such
failures occur, the correctness or consistency of the data is threatened. For example, suppose an
Airline Reservation System implemented by a distributed database splits into two groups P; and
P due to a failure in the communication network. If at the time of the failure all the nodes have
one seat remaining for PAN AM 537, and reservations are made in both P, and P,, correctness
has been violated: who should get the last seat? There should not be more seats reserved for a
flight than physically exist on the plane. (Some airlines do not implement this constraint and
allow overbookings.) Since data has been replicated to achieve reliability, there should be a stra-
tegy for maintaining consistency in the face of such failures. Furthermore, this strategy should be
part of the design process of the system rather than a concession to the inevitable once the system
is operating.

Not all partitionings are caused by failures in the communication network. Site failures can
partition many networks (e.g., the ARPANET), and slow responses from certain sites can cause
the network to appear partitioned even when it is not. In many cases the cause or extent of a
partitioning (or apparent partitioning) can not be discerned by the sites themselves, further com-
plicating the design of an appropriate processing strategy. Moreover, in some systems, partition-

ings are part of the normal operation of the system and can often be anticipated. Mobile nodes,
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such as airplanes and ships, may be able to communicate only during predictable intervals. In a
few cases partitioned operation is the default mode, and communication is established between

nodes only when necessary.

As far back as 1977, Rothnie and Goodman in their well-known survey paper [ROGO77]
identified partitioned operation as one of the important and challenging open issues in distributed
data management. Since then our understanding of the problem has increased dramatically, while
numerous and diverse solutions have been proposed. This paper surveys several of the more gen-

eral solutions, as well as discussing current research trends.

Section 1 discusses the goals and trade-offs involved in designing a strategy. Section 2
defines the database model. Sections 3 and 4 survey the current solutions for partitioned opera-
tion, and suggest extensions and combinations. Section 5 discusses the problem of partitioning
during the atomic commit phase of transaction processing. Guidelines for the selection of a stra-

tegy are presented in section 6, along with suggestions for future research.

Although our discussion is couched within a database context, most results have more gen-
eral applications. In fact, the only essential notion in many cases is that of a transaction. Hence,
these strategies are immediately applicable to mail systems, calendar systems, object-oriented
systems—applications using transactions as their underlying model of processing. Only a few

strategies use concepts indigenous to database systems.
1. BASICS

1.1. Issues

When designing a system which is reliable when partitioned, the two competing goals of
availability—the normal function of the system should be disrupted as iittle as possible—and
correctness—data must be correct when recovery is complete—must somehow be met. These

goals are not independent; hence, trade-offs are involved.

Correctness can be achieved simply by suspending operation in all but one of the partition

groups and forwarding updates at recovery; however availability has been severely compromised.
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In some applications, this is not acceptable. Typically in these applications either partitions occur
frequently or occur at critical moments when access to the data is imperative. For example, in
the Airline Reservation System it may be too expensive to have a high connectivity network and
partitions may occur periodically. Many transactions are executed each second (TWA's central-
ized reservations system [GISP84] estimates 170 transactions per second at peak time), and each
transaction that is not executed may represent the loss of a customer. In a military command
and control application, a partition can occur because of an enemy attack, and it is precisely at

this time that we do not want transaction processing halted.

On the other hand, availability can be achieved simply by allowing all nodes to process
tr;insactions “as usual” (note that transactions can only execute if the data they reference is
accessible). However, correctness may now be compromised. Transactions may produce
“incorrect” results (e.g. reserving more seats than physically available) and the databases in each
group may diverge. In some applications, such ‘‘incorrect’’ results are unacceptable. For exam-

ple, a transaction which effectively hands $1,000,000 to a customer may not be able to be undone.

Since it is clearly impossible to satisfy both goals simultaneously, one or both must be
relaxed to some extent depending on the application’s requirements. Relaxing availability is fairly
straightforward; one simply disallows certain transactions at certain sites. However, correctness
does not seem to be such a relative term; a database is either correct or incorrect. Relaxing the
definition of correctness has been addressed in unpartitioned systems in the interest of increasing

throughput; results here are applicable to the partitioned scenario.

1.2. Anomalies

What does correct processing mean in a distributed database system? Before defining the concept
formally, let us look at a couple of examples of anomalies caused by the concurrent execution of
transactions in different partitions. The database, which will serve as a source of examples
throughout the survey, contains a checking account and a savings account for a certain customer.
A copy of each account is stored at both Site A and Site B, and a communications failure has iso-

lated the two sites.
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Figure 1 shows the result of executing a checking withdrawal at A (for $100) and two check-

ing withdrawals at B (totaling $100).

SITE A SITE B
Checking: $100 Checking: $100
Savings: $200 Savings: $200

Checking := Checking — $25
Checking := Checking — $100
Checking := Checking — $75

Checking: $ © Checking: § 0
Savings: $200 Savings: $200

Fig. 1 An anomaly due to write-write conflicts.

Although the resulting copies of the checking account contain the same value, we know intui-
tively that the actions of the system are incorrect—the account owner extracted $200 from an
account containing only $100. The example illustrates a write-write conflict occurring between

transactions executing in different partitions.

An interesting aspect of this example is that the resulting database is mutually consistent in
the sense that all copies of the checking account have the same value. Mutual consistency is not
a sufficient condition for correctness in a database system, although it commonly used the correct-
ness criterium for replicated file systems. It is also not a necessary condition: consider the exam-
ple where A executes the $100 withdrawal while B does nothing. Although the resulting copies of
the checking account contain different values, the resulting database is correct if the system

recognizes that the value in A’s copy is the most recent one.

A different type of anomaly is illustrated in Figure 2, where the semantics of the checking
withdrawal allows the account to be overdrawn as allowed as long as the overdraft is covered by
funds in the savings account (i.e., checking + savings >0). In the execution illustrated, however,
these semantics are violated: $400 is withdrawn, whereas the accounts together contain only $300.

The anomaly was not caused by write-write conflicts (none existed since the transactions updated



SITE A SITEB
Checking: $100 Checking: $100
Savings: $200 Savings: $200
If checking+savings>$200 If checking+savings>$200
then checking := checking — $200 then savings := savings — $200
Checking: $-100 Checking: $100
Savings: $200 Savings: § 0

Fig. 2 An anomaly due to read-write conflicts.

different accounts), but instead by read-write conflicts resulting from one transaction reading the

account changed by the other.

Read-write conflicts and write-write conflicts are two potential sources of inconsistencies in a
partitioned system, but they are not the only sources—more will be identified in later sections.
Nor do they always cause inconsistencies. For example, if the savings withdrawal in Figure 2 is
changed to a deposit, the intended semantics of the database would not be violated. However,
the above examples are typical of the anomalies that can occur if conflicting transactions are exe-

cuted in different partitions.
2. BASIC CONCEPTS

2.1. Database Model

A database consists of a set of logical data items (hereinafter, just data items). The granu-
larity of these items is not important: the items could be files, records, or relations. The stafe of
the database is an assignment of values to these data items. A transaction is a program that
issues read and write operations on the data items. In addition, a transaction may have effects
that are external to the database, such as dispensing money or displaying results on a user’s ter-
minal. The items read by a transaction constitute its readset; the items written, its writeset. A

readonly transaction neither issues write requests nor has external effects.
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Transactions are assumed to be correct. More precisely, a transaction, when ezecuted alone,

transforms an initially consistent database state into another consistent state [TGGL82].

The database system is responsible for executing transactions so that they appear to users as
indivisible, isolated actions on the database. This property, referred to as atomic execution, is

achieved by guaranteeing the following properties:

(1) Each transaction is an “‘all or nothing’’ operation: either all of its writes and external opera-
tions are performed or none are performed. (In the former case the transaction is said to be

committed; in the latter case, aborted.) The property is known as atomic commitment.

(2) If several transactions execute concurrently, they affect the database as if they executed seri-

ally in some order. The execution is then said to be serializable.

The first property is established by the commit and recovery algorithms of the database system;

the second, by the concurrency control algorithm.

Given a serializable execution, an equivalent serial order of execution is called a serialization
order. This order defines the apparent or logical order of execution (which may differ from the

temporal order of execution). It need not be unique.

Two transactions conflict if and only if they operate on a common data item and at least
one of the operations is a write. The order of execution of the two transactions is significant (i.e.,
reflected in the database state) only if they conflict. If one reads and the other writes, it is a
read-write conflict; if they both write, a write-write conflict. (These definitions are the same as
the ones given in Section 1. Readers may recognize that the examples of that section illustrate

nonserializable executions.)

Atomic transaction execution together with the consistency-preserving assumption imply
that the execution of any set of transactions transforms a consistent initial database state into a
consistent state. (This follows from a simple induction argument on the number of transactions.)
As a correctness criteria, atomicity is appealing for its simplicity and generality: it is an opera-

tional constraint independent of the semantics of the data being stored and of the transactions
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manipulating it. It is also appealing because it corresponds to most users’ intuitive model of

processing—that of sequential processing.

Some systems allow additional correctness criteria to be expressed in the form of integrity
constraints. Unlike atomicity, these are semantic constraints. They may range from simple
constraints—e.g. the balance of checking account must be nonnegative—to elaborate ones that
relate the values of many data items. In systems enforcing integrity constraints, a transaction is

committed only if its execution is atomic and its results satisfy the integrity constraints.

In a distributed implementation of a database system, the data items are stored at multiple
processing sites connected by a communications network. Sites can communicate only through
the network—there is no shared memory. The distributed database is replicated if at least some
of the items are physically stored at more than one site. The stored representations of an item

are called its coptes.

A generally accepted philosophy is that the user’s’ view of the database should not depend
on the form of implementation—whether the database is centralized or distributed, nonreplicated
or replicated. Hiding distribution from the user is known as network transparency,; hiding replica-
tion, replication transparency. Replication transparency, in particular, is subtle to implement:
accesses to an itemm must be mapped into accesses on its copies so as to appear that a single copy
of the item is being manipulated (this is known as one-copy equivalence). Although there are
several techniques for maintaining one-copy equivalence, for purposes of exposition we will assume
the most intuitive: each write on an item is implemented as a write on all of its copies. Hence,
copies are always kept mutually consistent. (Other methods for one-copy equivalence are con-
tained in GIFF79, STON79, and GSCDFRS83. A good discussion of the requirements for main-

taining one-copy equivalence in the presence of failures can be found in BEGO83.)

lThc term “user” is used broadly, referring to either a human user or an application program making requests
on the database.

2As in the introduction, we interpret ‘“‘mutual consistency” to mean that the copies of an item contain the same
value. This is the narrowest interpretation of several uses of the term that appear in the literature. Some au-
thors use mutual consistency synonymously with one-copy equivalence.
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The literature on the model and problems discussed above is extensive. The transaction
concept was first introduced in EGLT76. A single-site recovery algorithm is presented in
GMBLLS81. Single-site concurrency control algorithms are too numerous to list, but two
influential proposals are two-phase locking |[EGLT76] and optimistic concurrency control
[KUROS81]. The seminal paper on serializability theory is PAPA79. BLAUS81 discusses the
enforcement of integrity constraints. GRAY78 contains an in-depth treatment of many issues in

the implementation of a database system.

For non-partitioned, distributed database systems, concurrency control algorithms are sur-
veyed in BEGO81 and KOHL81. Atomic commitment protocols are discussed in GRAY7S,

HASHS80, and SKEE82b.

2.2. Partitioned Operation

As mentioned in the introduction, we are interested in partitioned networks, where the com-
munication connectivity of the system is broken, by failures or by anticipated communication
shutdowns, dividing the network into isolated subnetworks. Each subnetwork is called a parti-
tion. We assume that any two sites in the same partition can communicate and any two sites in
different partitions can not. If the partitioning is due to failures, we assume that the failed com-
ponents have simply stopped. Not considered are Byzantine failures, where components can act
arbitrarily and even maliciously, or failures allowing one-way but not two-way communication

between sites (e.g., a site’s transmitter, but not its receiver, fails).

Network and replication transparency can not be maintained across partitions, but they can
be maintained within a partition to the extent that the data items accessible within the partition
appear to reside at a single site. (The algorithms accomplishing this are adapted from the ones
for an unpartitioned network.) Except for the property that it can further partition, we can view

a partition as a single site executing atomic transactions.

Among the problems introduced by processing transactions in multiple partitions, the sim-

plest is the loss of mutual consistency between copies in different partitions whenever updates are
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allowed in either partition. As we saw in the introduction, this is not necessarily bad. However,
it does introduce a problem: when two partitions are reconnected, updates made in one partition
must be propagated to the appropriate copies in the other partition. This is easily solved by

extra bookkeeping whenever the system partitions.

The best known and perhaps most interesting problem is that of maintaining serializability
across all partitions. (This is the problem addressed by most papers on partitioned networks.) As
illustrated by the last example of Section 1, nonserializable executions can occur even if each item
is updated in only one partition and within each partition processing is serializable. Unlike the
mutual consistency problem, there are no simple solutions or clearly superior approach. The
p;oblem of enforcing integrity constraints across partitions is similar to that of maintaining global
serializability. Inconsistency may arise if an update in one partition invalidates an integrity check

in another partition.

A problem of a different nature is the atomic commitment of transactions. The problem is
not with transactions that are submitted after the system has partitioned—they will be atomically
committed within one partition and their results propagated to other partitions after
reconnection—but with the transactions in execution when the partitioning occurs. Since the
commitment problem concerns only those transactions executing at the time of partitioning, the
number of transactions affected is not depéndent on the duration of the partitioning (unlike the
problems above). If the partitioning can be anticipated, this problem can be avoided altogether.

Note that it is present even if the database is not replicated (again, unlike the problems above).

Mutual consistency, serializability, integrity constraints, and atomic commitment are the
elements of partial correctness in the traditional model of a database system. Ensuring these four
properities then is the crux of the partitioned network problem. Our emphasis will be on serial-
izability and, to a lesser extent, integrity constraints and methods for ensuring them when tran-
sactions execute in different partitions. Establishing mutual consistency after partition reconnec-
tion is simple and will not be discussed further. The atomic commitment problem is discussed

briefly in a separate section.
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2.3. Classification of Strategles

Strategies for reconciling inconsistencies introduced by the parallel execution of transactions in

different partitions can be classified along two orthogonal dimensions.

The first dimension concerns the tradeoff between consistency and availability. At one
extreme lies the pessimistic strategies, which prevent inconsistencies by limiting availability.
(They operate under the pessimistic assumption that if an inconsistency can occur, it will occur.)
These strategies differ primarily in the policy used to restrict transaction processing. Since they
ensure consistency, it is straightforward to merge the results of individual partitions at reconnec-
tion time. The only activity required is the propagation of updates from copies in one partition

to their counterparts in the other partitions.

At the other extreme lie the optimistic strategies, which do not limit availability. Any tran-
saction may be executed in any partition containing copies of items in its readset and writeset.
Hence, inconsistencies may be introduced. (These strategies operate under the optimistic assump-
tion that inconsistencies, even if possible, rarely occur.) During reconnection, the system must first
detect inconsistencies and then resolve them by, for example, undoing the effects of certain tran-
sactions. Optimistic strategies differ in how they detect and resolve inconsistencies. Although
optimistic policies allow global inconsistencés, transaction processing within each partition is con-

sistent. Thus, no user staying within a single partition could detect an inconsistency.

The second dimension in the classification concerns the type of information used in deter-
mining correctness. Syntactic approaches use serializability as their sole correctness criteria and
check serializability by examining readsets and writesets of the executed transactions. Hence nei-
ther the semantics of the transactions (i.e. how the }ead items are used to generate the result) nor
the semantics of the data items are used in ascertaining correctness. Syntactic approaches are the
natural extensions of general-purpose concurrency control algorithms, such as two-phase locking

[EGLT76], which also use only syntactic information.

Semantic approaches use either the semantics of the transactions or the semantics of the

database in defining correctness. Although this is somewhat of a ‘‘catch-all”’ category, there are
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two discernible subcategories. The first uses serializability as the correctness criteria but also uses
the semantics of the transactions in testing serializability. The second abandons serializability
altogether and instead defines correctness in terms of the comtents of the database itself. Sup-
posedly, the correctness criteria captures the semantics of the data stored in the database. Such

semantic constraints fall outside of the traditional model discussed in the previous section.

3. SYNTACTIC APPROACHES

All approaches in this section use serializability as the correctness criteria and check serializability
by comparing transactions’ readsets and writesets. We assume that a correct concurrency control
mechanism coordinates transaction execution within a partition; hence, transaction execution
within a partition is serializable. We also assume that at the time of the partitioning all copies

are mutually consistent and there are no in-progress transactions.
3.1. Optimistic Strategies

Version Vectors [PPR81]

Version vectors, proposed for use in the distributed operating system LOCUS [POPES1], detect
write-write conflicts between copies of files. Each copy of a file f has associated with it a version
vector consisting of a sequence of n pairs, where n is the number of sites at which f is stored.
The i*® vector entry (S,:v,) counts the number v, of updates to f originating at site S,. Conflicts

are detected by comparing version vectors.

Vector v is said to dominate vector v/ if v and v’ are version vectors for the same file and
v,>v,' for i=1, - - - ,n. Intuitively, if v dominates v’, the copy with véctor v has seen a super-
set of the updates seen by the copy with vector v/. Two vectors are said to conflict if neither
dominates. In this case, the copies have seen different updates. For example, <A:3, B:4, C:2>
dominates <A:2, B:1, C:2> since 3>2, 4>1 and 2=2, but <A:3, B:1, C:2> and <A:2, B4,

C:2> conflict since 3>2 but 1<4.

When two sites discover that their version vectors for f conflict, an inconsistency has been
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detected. How to resolve the inconsistency is left up to the system administrator.

EXAMPLE: Consider the following partition graph for file f. Sites A, B and C initially
‘have the same version of f. The system then partitions into groups AB and C, and A up-
dates f twice. Hence both A and B have version vectors of <A:2, B:0, C:0>, while C is
<A:0, B:0, C:0>. Site B then splits off from site A and joins site C. Since C did not up-
date f and B has the current version, there is no conflict (<A:2, B:0, C:0> dominates
<A:0, B:0, C:0>), and B’s version (and vector) is adopted for the new group BC. During
this new partition failure, A updates its version of f once, making group A’s version vector
<A:3, B:0, C:0>, and C updates its version of f once, making group BC’s version vectors
<A:2, B:0, C:1>. When groups A and BC now combine, there is a conflict and neither of
<A:2, B:0, C:1> or <A:3, B:0, C:0> dominates the other.

ABC <A:0, B:0, C.0>

<A:2, B0, C:0> B

A <A:0, B0, C:0>
A updates f twice. l \
A

<A:3, B0, C:0> BC <A:2 B0 C1>
A updates { once. NO CONFLICT: B’s version adopted.
C updates f once.
ABC

CONFLICT: 3>2, 0=0, but 0<1.
Manual assistance required.

Version vectors detect write-write conflicts only. Read-write conflicts can not be detected
because the files read by a transaction are not recorded. Hence, the approach works well for tran-
sactions accessing a single file, which are typical in many file systems, but not for multi-file tran-

sactions, which are common in database systems.
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EXAMPLE: Constder applying version vectors to the banking example of Figure 1, where
communication between sites A and B fail. During the failure, the transaction executed at
A and updates the checking balance based on the value of saving balance; the transaction
executed at B, updates the savings balance based on checking balance. No conflict will be
detected, even though the above is clearly not serializable.

checking balance savings balance
AB <A:0, B:0> AB <A:0, B:0>
<A:l,B:0> A /B <A:0, B:0> <A:0,B:0> A B <A:0,B:1>
AN N/
AB AB
NO CONFLICT detected NO CONFLICT detected
A’s version adopted. B’s version adopted.
<A:1, B:0> <A:0, B:1>

To extend the version vectors algorithm so that read-write conflicts are detectable, readset
and writes of transactions must be logged. This leads to an algorithm very similar to the one

presented in the next section.’

The Optimistic Protocol [DAVI82]

The optimistic protocol detects inconsistencies by using a precedence graph, which models
the necessary ordering between transactions. Precedence graphs, which are used to checking seri-
alizability across partitions, are adapted from serialization graphs [PAPA79|, which are used to
check serializability within a site. In the following we assume that the readset of a transaction
contains its writeset. (The reason for this assumption is to avoid certain NP-complete problems

in checking serializability.)

In order to construct the precedence graph, each partition maintains a log, which records
the order of reads and writes on the data items. From this log, the readsets and writesets of the
transactions and a serialization order on the transactions can be deduced. (A serialization order
exists since, by assumption, transaction execution within a partition is serializable.) For partition

i,let T,,,T;o - - -, T;, be the set of transactions, in serialization order, executed in 1.

THist.orica.l note: such an extension was proposed in PARA82. Their conflict detection algonthm, however, is in-
correct: it does not detect all inconsistencies and falsely detects inconsistencies.
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The nodes of the precedence graph represent transactions; the edges, interactions between
transactions. The first step in the construction of the graph is to model interactions between

transactions in the same partition. Two types of edges (interactions) are identified:

(a) (Data) Dependency Edges® (T,;~~>T,): these edges represent the fact that one transac-
tion T,, read a value produced by another transaction T,, in the same partition

(WRITESET (T, )(\READSET (T,;)7#0, j <k)

(b) Precedence Edges (T,,——>T,): these edges represent the fact that one transaction T,

read a value that was later changed by another transaction 7,, in the same partition

(READSET(T,,)(WRITESET (T ;)#0, j <k)

A dependency edge from T, to T, indicates that the output of T, influenced the execution of
T,. The meaning of a precedence edge T,, from T, is more subtle: T,; does not influence T\,
only because T,, executed before it. In both cases, an edge from T,; to T, indicates that the
order of execution of the two transactions is reflected in the resulting database state. Note that
the graph constructed so far must be acyclic since the orientation of an edge is always consistent

with the serialization order.

To complete the precedence graph, conflicts between transactions in different partitions

must be represented. A new type of edge is defined for this purpose:

(c) Interference Edges (T,,— - Ty, i74k): these edges indicate that T, read an item that is

written by T4 in another partition (READSET (T, WRITESET (T, )#9, j <k).
g

The meaning of interference edge is the same as a precedence e(ige: an interference edge from T
to Ty indicates that T,, logically “‘executed before” Ty since it did not read the value written by
Ti. An interference edge signals a read-write conflict between the two transactions. (A write-
write conflict manifests as a pair of read-write since each transaction’s readset contains its wri-

teset.)

*In [DAVI82], these edges are called ripple edges.



-15-

EXAMPLE: Suppose the serial history of transactions executed in P, is
{T1, T2, Tis}, and that of Py is {T2, T}. The precedence graph for this execu-
tion is given below, where the readset of a transaction is given above the line and the
writeset below the line. (Thus, transaction T, reads b,c and writes c.)

PARTITION 1 PARTITION 2

a,b
Ty e

- @

Intuitively, cycles in the precedence graph are bad: if T and T' are in a cycle then the
database reflects the results of T executing before T' and of T' executing before T—a contrad-
iction. Conver§ely, the absence of cycles is good: the precedence graph for a set of partitions is
acyclic if and only if the resulting database state is consistent [DAVI82]. An acyclic precedence
graph indicates that the transactions from both groups can be represented by a single serial his-
tory, and the last updated copy of each data-item is the correct value. A serialization order for

the transactions can be obtained by topologically sorting the precedence graph.

Inconsistencies are resolved by rolling back (undoing) transactions until the resulting sub-
graph is acyclic. When a transaction is rolled back, transactions connected to it by dependency
edges must also be rolled back, since these transactions read the values produced by the selected
transaction. Hence rolling back one transaction may precipitate the rolling back of many, a prob-
lem known as cascading rollbacks. Transactions connected to a rolled back transaction by pre-
cedence edges are not rolled back since they did not read the results of the rolled-back transac-
tion. In the above example, if T, is selected, then T\, and T3 must also be selected. However,

simply selecting T3, T2, or T also breaks the cycle and involves only one transaction.
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EXAMPLE: Suppose the serial history of transactions executed in P; is
{Tw, Ti2 Tys}, and that of Py is {Ty, T2}. The precedence graph for this execu-
tion is given below, where the readset of a transaction is given above the line and the
writeset below the line. (Thus, transaction Ty, reads b,c and writes ¢.)

PARTITION 1 PARTITION 2

Intuitively, cycles in the precedence graph are bad: if T and T' are in a cycle then the
database reflects the results of T executing before T' and of T' executing before T—a contrad-
iction. Convers/ely, the absence of cycles is good: the precedence graph for a set of partitions is
acyclic if and only if the resulting database state is consistent [DAV182].. An acyclic precedence
graph indicates that the tramsactions from both groups can be represented by a single serial his-
tory, and the last updated copy of each data-item is the correct value. A serialization order for

the transactions can be obtained by topologically sorting the precedence graph.

Inconsistencies are resolved by rolling back (undoing) transactions until the resulting sub-
graph is acyclic. When a transaction is rolled back, transactions connected to it by dependency
edges must also be rolled back, since these transactions read the values produced by the selected
transaction. Hence rolling back one transaction may precipitate the rolling back of many, a prob-
lem known as cascading rollbacks. Transactions connected to a rolled back transaction by pre-
cedence edges are not rolled back since they did not read the results of the rolled-back tranmsac-
tion. In the above example, if Ty, is selected, then Ty, and T, must also be selected. However,

simply selecting T3, T, or Ty also breaks the cycle and involves only one transaction.
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A selection algorithm should strive to minimize some cost function, for example, the number
of rolled-back transactions, or the sum of the weights of the rolled-back transactions (where the
assignment of weights can be application dependent). Unfortunately minimizing either the
number of transactions or the sum of their weights is an NP-Complete problem [DAVI82]. Hence,

heuristics must be used.

The most promising heuristics use the following observation: breaking all two-cycles in a
precedence graph tends to break almost all cycles. Two cycles can be broken optimally using a
polynomial algorithm. After the two-cycles have been broken, the few remaining cycles can be
broken by a greedy algorithm, one that repetitively selects the lowest weight transaction involved
in‘ a cycle. Simulation studies have shown that such heuristics work very well, out-performing all

other strategies tested [DAVI82].

The performance of the optimistic protocol is studied in DAVI82. A probabilistic model is
developed that yields a formula for estimating rollback rate given the number of transactions, a
model of the average transaction, and the size of the database. Simulation results in the same
paper yield additional insight into rollback rates. These studies indicate that the optimistic pro-

tocol performs best when:
(1) a small percentage of items are updated during the partitioning, and
(2) few transaction have large writesets.

Whenever (1) holds, the probability that a given transaction will be rolled back depends more on
the size of its writeset than its readset. Regarding (2), not only is the occasional large transaction
more likely to conflict with another transaction, but in addition its rollback is likely to cause

other rollbacks. Consequently, the rollback rate is quite sensitive to variance in transaction size.

3.2. Pessimistic Approaches

The first group of pessimistic strategies, primary site (copy), tokens, and voting, were initially
proposed as distributed concurrency control mechanisms. However, they can also be used to

prevent conflicts between tramsactions when the network partitions. The last approach, designed
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specifically for partitioned networks, strives to increase availability by exploiting known charac-

teristics of the workload.

Primary Site, Copy [ALDAT6]
Originally presented as a resilient technique for sharing distributed resources, this approach sug-
gests that one copy of an item be designated the primary and as such be responsible for that
item’s activity. Other copies of the item are used as back-ups in case the primary fails, in which
case a new primary is elected. In a partitioned system, only the partition containing the primary
copy is allowed to access the item.

This approach works well only if site failures are distinguishable from network failures.
Whenever it is uncertain whether the primary failed or the network fa.iled,. the back-ups can not

safely process transactions.

Tokens [MIWI82

This approach is very similar to that above except that the primary copy of an item can
change for reasons other than site failure. Each item has a token associated with it, permitting
the bearer to access the item. In the event of a network partition, only the group containing the
token will be able to access the item.

The major weakness with this scheme is that accessibility is lost if the site with the token or

the communication medium fails.

Voting [GIFF79)
The first voting approach was the majority consensus algorithm described in THOM79.

What we now describe is the generalization of that algorithm proposed by Gifford [GIFF79).

In this approach, every copy of a replicated item is assigned some number of votes. Every
transaction must collect a read quorum of r votes to read an item, and a write quorum of w votes

to write an item. Quorums must satisfy two constraints:
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(1) r+ w exceeds the total number of votes v assigned to the item, and
v
2 —.
(2) w> 5

The first constraint ensures that there is a non-null intersection between every read quorum
and every write quorum. Any read quorum is therefore guaranteed to have a current copy of the
item. (Version numbers are used to identify the most recent copy.) In a partitioned system, this
constraint guarantees that an item can not be read in one partition and written in another.

Hence, read-write conflicts can not occur between partitions.

The second constraint ensures that two writes can not happen in parallel or, if the system is
partitioned, that writes can not occur in two different partitions. Hence, write-write conflicts can

not occur between partitions.

EXAMPLE: Suppose sites S;, S, and S5 all contain copies of items f and g, and that a par-
tition P, occurs, isolating S, and S, from S,. Initially, f=g=0, each site has 1 vote for
each of f and g, and r=w=2 for both f and g.

During the partitioning, transaction T, wishes to update g based on values read for f and g.
Although it cannot be executed at Sy, it is executed at §), and the new value g=1 is pro-
pagated to S,.

Now suppose P, is repaired, and a new failure P, isolates S; and S5 from S,. During this
new failure, transaction T, wishes to update f based on values read for f and g. It cannot
be executed at S, since it cannot obtain a read quorum for g, or read and write quorums for
f. However, it can be executed at S;. Using the most recent copy of g=1 (obtained by
reading copies at both S, and S3 and taking the latest version) T, computes the new value
f=1 and propagates the new value to S;.
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Notice that the above example reduces to a majority vote [THOM?78] since each copy has exactly

one vote and r and w are a simple majority

Varying the weight of a vote can be used to reflect the needed accessibility-level of an item.
For example, in a banking application, a customer may use certain branches more frequently than
other branches. Suppose there are 5 branches of the bank, and that the customer uses branches 1,
2, and 3 with equal frequency, but never goes to branches 4 or 5. Assigning r=w=2 and his

account at branches 1, 2 and 3 a vote of 1 but 0 elsewhere would reflect this usage pattern.

The quorum algorithm differs from those previously discussed in two important ways. First,
by choosing r <v /2, it is possible for an item to be read-accessible in more than one partition, in
which case it will be write-accessible in none. Read-accessibility can be given a high priority by
choosing r small. Second, the algorithm does not distinguish between communication failures,
site failures, or just slow response. A serious weakness of the previous schefnes is that availability

is severely compromised if a distinction can not be made.

A weakness of the quorum scheme is that reading an item is fairly expensive. A read

quorum of copies must be read in this scheme, whereas a single copy suffices for all other schemes.

Class Conflict Analysis [SKWR84]

The pessimistic strategies discussed so far enforce the following two constraints:
(1) Anitem can be updated in only one partition.
(2) No item can be written in one partition and read in another.

The first constraint ensures the absence of write-write conflicts between partitions, and the

second, read-write conflicts.

Any strategy enforcing the above constraints prevents inconsistencies. This can shown for-
mally by examining the precedence graphs (see section entitled ‘‘Optimistic Protocol”) of transac-
tion executions allowed under these constraints. The constraints ensure that no interference edges
are present in these graphs. The absence of interference edges implies acyclicity of the graph and

acyclicity implies serializability.
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The complete absence of interference edges suggests that these constraints are stronger than

necessary. This is indeed the case, as the next example illustrates.

EXAMPLE: Consider again the banking example in Figure 2 with an additional
transaction—a saving deposit that increments the savings account by a user-supplied
amount. Suppose sites A and B are partitioned and a checking withdrawal executes at A
and a savings deposit at B:

SITE A SITE B
Checking: $100 Checking: $100
Savings: $200 Savings: $200
If checking+savings>$200 Savings Deposit of $100

then checking := checking — $200

Checking: $-100 Checking: $100
Savings: $200 Savings: $300

Note: the result is serializable: the withdrawal precedes the deposit.

Even though the execution in the example is correct, it violates the second constraint; hence, it is

allowed in none of the above strategies.

The goal of Class Conflict Analysis is to constrain transaction processing less than previous
pessimistic approaches while tailoring the set of allowable transactions to the workload and to the
semantics of the data. High priority or high volume transactions should be allowed whenever pos-
sible. Semantics may preclude certain types of transactions, and this should be exploited. For
example, in an airline database, a transaction that reads the number of passengers and changes

the amount of fuel is to be expected, but not one that reads fuel and changes passengers.

The approach assumes that transactions are divided into classes as proposed in BSR80. A
class may be a well-defined transaction type, such as the savings withdrawal used in Figure 2, or
it may be syntactically defined, e.g., the class containing all transactions reading and writing a

subset of items a, b, and c.

Like transactions, classes are characterized by their readset and writesets. The readset

(resp. writeset) of a class is the union of the readsets (resp. writesets) of all of its member
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transactions. As before, it is assumed that a class’s readset contains its writeset, so that certain
NP-complete problems are avoided. Two classes conflict if one’s readset intersects the other’s
writeset. A class conflict indicates a potential read-write conflict between member transactions of
the classes. A conflict may not actually occur because the transactions’ readsets and writesets

may be proper subsets of the classes’ readsets and writesets.

The first step in the approach is the preliminary assignment of classes to partitions. This is
normally performed in parallel by each partition at the time of partitioning, using prespecified
assignment rules. A class is assigned to a partition whenever it is desirable to execute transac-
tions from that class in the given partition. Note that this assignment reflects only what is desir-
al;le not necessarily what is safe. Classes may be assigned to more than one partition, and there

may be conflicts between classes in different partitions.

The second step is to analyze the assignment and discover the class conflicts that can lead
to nonserializable executions. The analysis uses a graph model that is similar to the one used in
the optimistic protocol. Whereas the precedence graphs used in that protocol give the actual
orderings between conflicting transactions, class conflict graphs give all potential orderings
between conflicting classes. Defined below is a simplified version of the model presented in

SKWRS84.

A node of the class conflict graph represents the occurrence of a given class in a given parti-
tion. Edges are drawn between occurrences of conflicting classes according to the rules given

below. Let C, and C, be classes such that readset(C)(Mwriteset(C,;) is not empty.

(1) If C, and C, are in the same partition, then a pair of edges pointing in opposite direc-

tions connects them.
(2) If C, and C, are in different partitions, then a directed edge extends from C, to C,.

The direction of the edges indicate the possible logical orderings of transactions from conflicting
classes. If two conflicting classes belong to the same partition, then the concurrency control algo-
rithm will resolve conflicts between transactions from those classes. In doing so, the algorithm is

free to choose which of the two conflicting transactions to execute first. Hence, the edge pair in
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(1):means literally that the order is important but indeterminate a priori.

Between classes in different partitions the situation is different: The logical ordering between
conflicting tramsactions is determined not by the concurrency control algorithm but by the fact
that the values produced in one partition are not available for reading in another. In the case of
classes C, and C, above, the transactions of C; can not logically succeed those of C, because C,’s
transactions can not read the updates of C,’s transactions. The only order possible is that all
transactions of C; precede all transactions of C,, as indicated by the single directed edge.

EXAMPLE: A class conflict graph for two partitions. Boxes are classes: readsets are shown
above the line; writesets, below. Note that class C, appears in both partitions.

PARTITION 1 PARTITION 2
C,:
N
Cy: a,b,c Cy: aéd

c,: c,d

¢
C,: £ C.: <

e €

The third step in the analysis is to identify those assignments that could lead to nonserializ-
able executions. Cycles play a key role here; however, in contrast to prgvious graph models, not
all cycles are bad. Among class occurrences in the same partition, cycles are both common, since
in this case all edges are paired, and harmless, since the concurrency control algorithm operating

in the partition will prevent nonserializable executions.
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On the other hand, cycles spanning multiple (>1) partitions are not harmless, since there is
no mechanism preventing them in an execution. Hence, multipartition cycles indicate the potential
for nonserializable ezecutions. In the example above, if transactions from classes C,, Cy, and C,
execute in that order in partition 1 and a transaction from C; executes in partition 2, the result is
nonserializable. (This can be checked by constructing the precedence graph for the execution.)
Note that not all executions of these transaction are nonserializable; in fact, any other order of

execution of the transactions in partition 1 is serializable.

Whenever the preliminary class assignment yields a (multipartition) cyclic graph, further
constraints on transaction processing must be imposed. The most straightforward approach is to
délete classes from partitions until the class conflict graph is rendered multipartition acyclic. In
the above example, one occurrence of class C, must be deleted along with one of C,, C;, C,, or
C,;. Rendering a class conflict graph acyclic is similar to rendering a precedence graph acyclic,
except for one major difference: when deleting a class occurrence, adjacent classes in the graph
need never be deleted. Nonetheless, the problem of minimizing the weight of the set of deleted
classes is still NP-complete, and the heuristics used for the optimistic protocol can be adapted for

use here.

Although in this discussion we have assumed that the complete state of the network is
known to all partitions, this assumption is not required in applying class conflict analysis.
SKWRS84 discusses some modifications to the basic algorithm when network status information is
incomplete. In addition, the same paper discusses refinements that aﬂords more availability than

the the analysis presented here.

3.3. Integrity Constraint Checking

In the presentation of the above strategies, the problem of checking integrity constraints was
ignored. This checking can be incorporated into syntactical approaches in a simple manner. Sup-
pose that during the execution of transaction ¢ the constraint I must be checked. In order to ver-
ify I the system must read all items referenced in I; therefore, these items can be considered part

of the readset of {. In general, the readset of each transaction could be extended with all items
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referenced in the integrity constraints it must satisfy.

This solution, although simple, has a major weakness: it can greatly inflate the sizes of read-
sets. As a transaction’s readset size increases, the probability of the transaction being executable
in a partitioned system decreases. As an alternative, it may be desirable to curtail integrity
checking during a partition, suspending, in particular, the checking of constraints accessing many

items.
3.4. Discussion

Optimistic versus Pessimistic

One basis for comparing the two types of approaches is in terms of an appropriate cost
model. The model should include overhead, the cost of repairing inconsistencies, and the cost of
lost opportunities. In the following, costs common to all approaches, such as the propagation of

updated values, are omitted.

Optimistic policies have two sources of overhead. The first is the log, which must be main-
tained while the system is partitioned, recording the readset and writeset of each transaction in
order to construct the precedence graph and recording sufficient information to rollback transac-
tions. Many database systems already maintain a log, called an undo log, for rolling back transac-
tions in case of site failures or a transaction failures (e.g., deadlocks) [GMBLLS81]. This same log
can be used to roll back conflicting transactions in a partition;ed system. However, in order to
construct the graph, undo logs must be augmented with records of transactions’ readsets (which
are normally not recorded since they are not needed to roll back a transaction). This increases
the complexity of the logging algorithms, but it does not significantly increase the cost of logging

in most systems.

The second and most significant source of overhead is the conflict detection algorithm,
which constructs the graph, checks the graph for cycles, and then selects transactions to roll back.
Graph construction requires a single pass over the entire log, which can be quite expensive for a

partition of long duration. The selection algorithm can be made arbitrarily expensive, depending
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on the quality of heuristics used. The best heuristics require time O(N>®') where N is the

number of transactions. However, linear time heuristics often yield acceptable solutions.

The cost of repair in an optimistic approach is simply the rollback rate times the cost of rol-
ling back a tfansaction. We have already discussed rollback rate. The rollback cost is often a
significant fraction of the transaction’s execution cost, and may, in fact, exceed the execution cost
if the transaction has external side-effects (e.g., a customer may be entitled to compensation if her
reservation is canceled). Consequently, the rollback rate must be kept reasonable small (certainly

less than 20%) if optimistic approaches are to cost-effective.

The goal of optimistic approaches is to minimize lost opportunity, the cost associated with
néedlessly delaying a transaction. These costs can be substantial when user satisfaction is impor-
tant as, for example, in a banking application. Lost opportunities still occur in these approaches
because of the allocation of resources to transactions that are destined to be rolled back. Such
transactions may displace valid transactions during the partitioning, and rolling them back may
cause further delays after the partitions are reconnected. Still, for most applications, we speculate

that other costs dominate.

Pessimistic approaches have no repair costs and, except for conflict class analysis, almost no
overhead. Even in class conflict analysis, the overhead is likely to be substantially less than in an
optimistic strategy, because although conflict analysis and conflict detection are procedurally simi-
lar, the number of predeclared classes in conflict analysis is likely to be substantially less than the

number of transactions in conflict detection.

The major cost of a pessimistic approach is, of course, the cost of lost opportunities.
Included in this cost are not only opportunities lost to real partitioning but also opportunities lost
to “apparent’ partitionings, for example, site failures that are indistinguishable from real parti-
tionings. In many systems, apparent partitionings occur more frequently than real partitionings;

therefore they must be included in any cost analysis.

In summary, the cost of an optimistic strategy is the overhead of conflict detection plus the

repair cost, whereas the cost of a pessimistic strategy is the cost of opportunities lost to real and
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apparent partitionings. Unfortunately, except for repair costs, informed estimates for these costs
are not easily obtained. No one has measured the overhead associated with any of the strategies,
and the cost of lost opportunities is hard to quantify (although one component in a pessimistic

strategy is the cost of underutilization of processing resources).

Combining Strategies.

Instead of using one strategy during a partitioning, strategies can be combined vertically
over time. That is, the system could start out using one strategy and switch to another as cir-
cumstances dictate. For example, the rollback rate for the optimistic protocol increases linearly
with time. (This means that the number of transactions rolled back increases quadraticly with
time.) Since it is usually impossible to predict how long a partitioning will last, the database
administator could set a ceiling on the rollback rate (say 10%). The system could then start out
using the optimistic protocol and monitor the performance using the formula in [DAVI8Z] to esti-
mate rollback rates. If this ceiling is reached, the system could switch to a more pessimistic

approach, such as primary site, for the remainder of the failure.

Strategies can also be combined horizontally over time [SKEE82c]. One approach is to
assign items different levels of consistency. Items in level O (the highest level) are immutable dur-
ing a partitioning; items in level 1 are updated according to a pessimistic strategy; and items in
level 2 are updated according to a optimistic strategy. Updates to level 1 items are globally con-
sistent and guaranteed to persist, while updates to level 2 items are consistent within the partition
but may not be globally consistent and, hence, are subject to rollback. Although a transaction

may update items in only one level, it may read items of the same level and higher.

Another way to combine approaches horizontally is to divide transactions, instead of items,
into groups. For each partition, transactions are divided into two groups: high priority transac-
tions that can not be rolled back, and low priority transactions that can. Class conflict analysis is
used to determine a group of high priority transactions for each partition. The low priority group
for a partition consists of all transactions not writing an item read by a high priority transaction

in the same partition. (A low priority transaction, though, can write an item read by a high
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priority transaction in a different partition.) When partitions are reconnected, the optimistic pro-
tocol is used to construct a precedence graph containing all transactions executed; however, only

low priority transactions are liable to rollback. (An approach similar to this is used in APWI84.)

4. SEMANTIC APPROACHES

The first three approaches presented in this section illustrate three different ways of using seman-
tics to increase availability. The first approach, log transformations, uses the standard notion of
correctness, namely serializability, but uses the semantics of transactions in checking serializabil-
ity. The second approach relaxes slightly the standard notion of serializability in order to enrich
the set of tramsactions allowed in a partitioned system. The semantics of the application deter-
mine when serializability can be relaxed. The third approach, Data-Patch, abandons serializabil-
ity as a correctness criterion altogether, using instead an application-specific definition of correct-
pess. All three approaches are optimistic. As a matter of fact, to our knowledge, no one has sug-
gested a pessimistic, semantic strategy, probably because semantics are usually introduced to

increase availability, not to ensure correctness.

This section ends with a brief discussion of some other proposed ideas for increasing availa-

bility.

Log Transformations  BGRCK83]

This approach is similar to the optimistic protocol. During the partitioning, logs are kept of
which transactions were executed and in what order. After reconnection, a rerun log is con-
structed which indicates what should be reflected as having happened during the failure. To
achieve this, transactions in each group may have to be backed out and rerun. It differs in that
transactions are pre-defined, and semantic properties of pairs of transactions are declared to avoid
needlessly backing out and re-executing transactions. These properties can include commutativity
(T, T, = T, T,) and overwriting (T, T, = T,). There is also a notion of ‘‘absolute time” in each
group during the failure so that transactions can no longer be merged based merely on their read-

sets and writesets, but must follow some agreed upon time ordering.
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EXAMPLE: Suppose that during a partition, P, has executed T,,T,, T4 and that P, has
executed T',,T,, Ty where the subscripts indicate the absolute timing of the transactions.
The rerun log would be T, T, Ty, T4, T5,Te If we ignored any semantic properties of tran-
sactions, merging the database at P; would involve backing out transactions T,, T, T4 and
reexecuting the rerun log. If we assume that backing out tramsaction T can be achieved by
runping an inverse transaction 7}, then the entire merging operation at P; can be
represented by the backout (or rollback) log T¢!,T;!,T;! followed by the redo log. Simi-
larly, the merge operation at P, involves executing the backout log T5',T3',T;! followed
by the redo log. Let us call the combined backout, redo log the merge log.

If we know that T, commutes with T, then the merge log at P can be reduced to
Tﬁ-l ’ Td_l ’ Tl; T3; T47 TB’ TO

To see that the result of executing P,’s merge log is equivalent to the result of executing
T,T5,Ts, T4 Ts Te in order, consider the entire sequence of transactions executed by P,
(that is, the original execution followed by the merge log):

To,TyTe, T, Ti,T1,Ts,Ty,Ts, T
Since To,Ts* and T, T are equivalent to the null transaction, the above is equivalent to
T5,7,,T5,T4T5,Te.
And, by the commutativity of T, and T, this is equivalent to the desired sequence.

If in addition we know that T, and T3 commute with 7, and T4, and that T4
overwrites Tz, then the P, merge log can be further reduced to

TerS

(that is, after the partition we only have to run T,,Ts without backing out any transac-
tions). At P, this same semantic information only reduces the merge log to

Tgl 1T3-l ’ T2: T37 Tb TG.
The process of reducing in size the merge log is called log transformation. The process can
be automated with the aid of a graph formalism presented in BGRCKS83. With it, merge logs are

represented as graphs, and each log transformation is represented as a graph transformation.

One advantage of the log transformation approach is that the merge processes at the sites
are independent of each other. That is, as each site finds out about transactions that executed
elsewhere, it can proceed to integrate them locally, regardless of what the other sites are doiﬂg.
Thus, this approach may be useful in an environment where failures are common and communica-

tions unreliable.

Weak Consistency [GAWES2)

Garcia and Weiderhold argue in GAWERS2 that conventional correctness criteria—in particular,

serializability—may be stronger than needed for many readonly transactions. Since such transac-
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tions do not change the database state, their execution under a weaker correctness criterion can
not generate an inconsistent state. Relaxing the serializability constraint is especially attractive
for partitioned systems since it would allow a richer mix of readonly transactions. (The original
motivation for a weaker correctness criterion was to speed up the processing of readonly transac-
tions in a distributed system.) Since readonly transactions occur frequently in most systems,
allowing a richer mix of them often substantially increases the number of transactions executed

while partitioned.

In GAWES2, readonly transactions are divided into two classes: those requiring strong con-
sistency and those requiring weak consistency. A strongly consistent transaction is processed in
th‘e normal fashion: its execution must be serializable with respect to update transactions and
other strongly consistent transactions. A weakly cons}stent transaction must see a consistent
database state (the result of a serializable execution of update transactions), but its execution
need not be serializable with respect to other readonly transactions. The following example illus-

trates.
EXAMPLE: Consider again the banking database of the first section with Sites A and B par-
titioned. The following sequence of transactions occur:

SITE A SITE B
C: checking deposit of $50 D: savings deposit of $100
As:  read checking and Apg: read checking and
savings accounts savings accounts

Notice that the two update transactions, considered alone, are serializable. In fact, since
they access different items, both C;D and D;C are valid serialization orders. However,
when the accounting transactions A4, and Apg are included, the execution is not serializable.
The database state read by A, is possible only if C executes before D, while the state read
by Ap is possible only if D executes before C'. (Both A4 and Ap see a valid serialization
order of the updates; the problem is that they see different orders.)

If A, and Ap required only weak consistency, the above execution would be
““correct’’: the update transactions alone are serializable and each weakly consistent transac-
tion sees the result of a serializable execution of update transactions.

The use of different consistency levels can be integrated with any of the syntactic
approaches discussed in the previous section. In a pessimistic strategy a transaction requiring

only weak consistency can be executed at any time in any partition, as long as the partition con-
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tains coples of items read by the transaction. The transaction will always see a consistent data-
base state since all update transactions are guaranteed to be (globally) consistent. In an optimis-
tic strategy, such a transaction sees a consistent state only if it does not read the result of an

update transaction that is eventually rolled back.

The choice of a consistency level for a readonly transaction depends on how the information
returned by the transaction is used. An accounting transaction reporting cash flow within a bank
probably requires strong consistency. Inventory reporting and transactions computing summary

statistics often need only weak consistency.

Fischer and Michael give an important application of weak serializability in their algorithms
for directory systems[FIMI82]. A directory supports only three types of transactions: insert a
unique item, list all items, and delete an item. Mail systems, calendar systems, and other familiar
applications can be cast as directories. Exploiting the property that the list operation requires
only weak consistency, they give an algorithm allowing unrestricted transaction processing in the

presence of communication failures, including but not limited to failures partitioning the system.

Data-Patch [GABCR82]

Data-Patch is a tool which aids the database administrator in the development of a program to
automatically integrate divergent databases. As in the previous optimistic strategies, transactions
are executed ‘‘normally’ during the failure. At reconnection, the final database state is con-
structed according to an integration program. Serializability is no longer the correctness criterion;
rather, the integration program defines the ‘‘correct’’ final database. This is based on the premise
that users may already have observed the effects of a non-serializable execution, thus restoring the
database to a serializable state may not be the most sensible thing to do. For example, in an Air-
line Reservation System, if a flight becomes overbooked it may not be desirable to cancel reserva-
tions since a promise has been made to customers and normal passenger cancellations could take

care of the problem.

The major design principle involved is identifying image and plan relations. Image relations
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are observable entities or relationships, and must reflect that in the final database. For example,
in a database for Girard bank, the relation GIRARD(BRANCH, CASH, ...) might be used to
record the amount of cash at each branch. The value of CASH in each tuple at recovery should
reflect the actual amount of cash at that branch. This might be obtained as the latest value for
CASH in each partition group. Plan relations do not represent observable entities and the DBA
can therefore have more freedom in selecting the final values. In the next example, ACCOUNT is

a plan relation.

EXAMPLE:
ACCOUNT (CUSTOMER, BALANCE, ...
DEPOSIT (CUSTOMER, AMOUNT, DATE, ...)
WITHDRAWAL(CUSTOMER, AMOUNT, DATE, ...)

DEPOSIT and WITHDRAWAL are records of account activity. If during a partition a
customer overdraws his account according to the records from each group, he may be
assessed a penalty charge. Thus BALANCE would reflect the sum of withdrawals and
deposits to the account, plus the penalty charge. If, on the other hand, a customer is
mistakenly assessed a penalty charge because a DEPOSIT did not appear during a
failure, the penalty charge may be dropped.

The above example shows that not only must a final database state be chosen, but correc-
tive actions must be specified. That is, if integrity constraints are violated after the image and
plan relations have been constructed, some sort of compensating or corrective action must be

issued (e.g. penalty for overdraft, as above).

The Datapatch integration program is defined thr‘ough a set of rules that specify how the
integrated database can be obtained from two databases that exist after a partition. Some rules
specify how differing facts are to be combined. For example, consider a field that represents the
location of a ship. In this case, the DBA can select a ‘“latest value” rule: if the field has a
diﬁerent value in each partition, in the integrated database use the value with the latest times-
tamp. If the field represents the number of reservations for a flight, the “‘arithmetic rule’’ can be
used: the integrated value is the sum of the two partitioned values minus the value that existed
when the p partition started. Other rules specify the corrective actions to be taken. For

instance, a rule might specify that if the withdrawals exceed the deposits to an account (after the
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integrated database has been obtained), then a dunning letter should be sent to the customer.

Other 1deas.

Numerous ad-hoc techniques for exploiting the semantics of an application to increase availability

have been proposed. Many of these can best be illustrated by examples.

The first example illustrates the idea of splitting a data item. In an Airline Reservation Sys-
tem [HASHS80], let SEATS represent the number of seats available on a particular flight. When a
partition occurs, P, creates SEATS, containing 40% of the value of SEATS, and P, creates
SEATS, containing 60% of the value of SEA TS (or other percentages reflecting the relative book-

ing rates for that flight). At recovery,

SEATS= SEATS,+ SEATS,

would restore SEATS to its correct value. Splitting can be used whenever the value of the data
item represents a partial summation and each term in the summation is not dependent on the

current value of the data item.

The second example comes from Incomplete Information Systems [DAVI82, LIPS79]. Sup-
pose we have a tuple representing John Doe’s age as less than 30. During a partition, P, gathers
more information and concludes that his age is between 20 and 30, while P, concludes it to be
between 15 and 25. At recovery, the intersection of these ranges, 20 to 25, may be taken as John

Doe’s age.

The last example illustrates the use of failure-mode integrity constraints. Recall the banking
example of Figure 2, where overdrafts on the checking account were allowed as long as checking
bal'an‘ce+ saving balance>0. That example described a scenario where this constraint was
violated during a partitioning. This anomaly could have been avoided by enforcing a failure-

mode integrity constraint disallowing checking account overdrafts when the system is partitioned.

These ideas can be used with a pessimistic approach such as primary copy to allow more
transactions to be executed: a portion of SEATS would be available in each group, although the

actual or current value for SEATS could not be obtained due to possible bookings in the other
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group. However, the flight would never be overbooked if neither group sold more than their allot-
ment of seats. It can also be used with more liberal approaches such as the Optimistic Protocol
and Data-Patch to avoid conflict and possible tramsaction backouts. In the Optimistic Protocol,
conflicts are mainly caused by updates to the same data-item. By splitting data-items and recom-
bining at recovery, this can be avoided. In Data-Patch, integration becomes easier since the value

for SEATS can simply be computed without canceling reservations.

5. ATOMIC COMMITMENT

A transaction on a distributed database typically executes at several sites. In order to ensure the
“all or nothing” property of the transaction, the executing sites must unanimously agree to com-
mit or to abort the transaction. Until now we have assumed that this agreement, known as
atomic commitment, can be achieved in a partitioned system. Let us now examine how reason-

able this assumption is.

Viewed abstractly, in a commitment protocol each participant first votes to ‘‘accept” or
“‘reject” the tramsaction based on its ability to process the transaction and then decides whether
to commit or abort based on the voting. Commitment normally requires unanimous a.cceptance3

Of course, all decisions must agree.

The two-phase commit protocol [GRAY78] is a straightforward implementation of the above.
In thg first phase, a designated participant, the coordinator, solicits the votes from its cohorts. In
thf; second phase, it decides based on the votes and then sends the decision to all participants. In
the course of the protocol, each participant voting “accept’’ goes though three distinct states: an
uncommitted state where it has not voted, an in-doubt state where it has voted but does not know
the result of the voting, and a decision state where it knows the commit/abort decision. (A parti-

cipant voting ‘‘reject’”’ does not occupy the in-doubt state since it knows the eventual outcome.)

Consider the consequences of a partitioning occurring during the execution of the two-phase

commit protocol. In each partition the participants, acting together, will attempt to decide the

3Some protocols for fully replicated databases require only acceptance by a majority.
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outcome based on their states. If the partition contains the coordinator, a decided participant, or
an uncommitted participant, a consistent decision can be reached (in the case of an uncommitted
participant, abort will be chosen). However, a partition containing only in-doubt participants and
lacking the coordinator can not safely decide: the participants can not commit since they do not
know the outcome of the voting, and they can not abort since they may contradict the decision of
the coordinator. Hence, these sites must wait until reconnection before deciding, and the protocol

(2nd associated transaction) is said to be blocked at those sites.

Given that the two-phase commit protocol occasionally blocks, the interesting question then
is: are there any nonblocking protocols for partitionings? The answer is no: even under the most
fa;'orable, realistic partitioning assumptions, there exists no nonblocking protocols [SKEE82b].
The situation is even worse if sites can fail during a partitioning; in this case there is no protocol

that guarantees that even a single site will be able to decide.

Since it is impossible to eliminate blocking, it is desirable to minimize it. Several protocols
have been proposed that, under appropriate partitioning assumptions, block less than the two-
phase commit protocol. One protocol, the decentralized two-phase commit protocol, reduces the
likelihood of blocking by decreasing the time a site spends in the in-doubt state [SKEE82c]. This
is écéomplished by having the participants send their votes directly to each other, bypassing the
coordinator. Another protocol, the guorum commit protocol, reduces the probability that a large
partition (one consisting of many participants) will be blocked in the event of a partitioning, by
introducing extra phases [SKEE82a, SKEE82b]. Its principal advantage is that it is also resilient
to site failures and (nonpartitioning) communication failures. However, both protocols have draw-
backs. Although the decentralized protocol decreases the probability that a partitioning will
occur while sites are in the in-doubt state, it increases the expected number of blocked sites if a
partitioning should occur. The quorum protocol actually increases the chance that some site will
be blocked in the event of a partitioning (although the expected number of blocked sites

decreases).

How the partition strategies of the previous two sections treat blocked transactions depends
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on whether the strategy is pessimistic or optimistic. In a pessimistic strategy, the data items at
undecided sites must be rendered inaccessible until reconnection. In an optimistic strategy more
flexibility is possible. A partition can tentatively commit or abort a blocked transaction. If its
decision is inconsistent with other decisions, it can resolve in the same way that it resolves other
inconsistencies, by rolling back the offending transaction and all dependent transactions. Since
rolling back is fairly expensive, a tentative decision should be made only if it has a high probabil-

ity of being correct.
8. DISCUSSION

6.1. Guidelines for the Selection of a Strategy.

Given an application, how should one choose a partition strategy? Caution should be used in
answering this question. A criticism that has been levied at research in the distributed database
area in general [MOHAS8O] is that solutions are commonly viewed in isolation from other prob-
lems. In fact, different mechanisms may be so highly intertwined that changes proposed in one
area affect many other parts of the system. In particular, with partition strategies one must pay
attention to the concurrency control mechanism being used. For example, the use of a voting or
token-passing concurrency control algorithm may dictate a corresponding partition algorithm
unless one worries about restructuring the vote or reassigning tokens (see also DAVI82 for a dis-
cussion of the relationship between the optimistic protocol and common forms of concurrency con-
trol). In addition, very little attention has been given to the performance of proposed mechan-
isms. In some cases this is because it is difficult to construct an appropriate model; in others it is

because the mechanism is highly application dependent.

With these cautions in mind, we group the factors that influence the choice of a strategy
into three areas:

Environment. Included here are the properties of the network and the nature of the parti-

tionings. An important consideration is whether partitionings are caused by failures or are the

result of anticipated events. In the latter case, complete information about the characteristics of
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the partitioning, including duration and network topology, may be known, and this can be

exploited in some strategies (in particular, class conflict analysis).

However, most systems partition because of failures, and in this case the robustness of the
strategy may be an important factor. For example, a primary site strategy would be a poor
choice if sites failures can not be distinguished from communication failures. Also, class conflict
analysis (as presented) can not be used if communication failures do not always result in clearly

delineated partitions.

Regardless of the cause of a partitioning, its duration is an important factor in choosing

between optimistic and pessimistic strategies.

Workload. Two important workload characteristics are average transaction length and tran-

saction variance. Optimistic policies work better when transactions are short and variance small.

Another important workload factor is locality of reference: Do updates to given data-items
tend to occur at a certain site? If so, a primary site strategy will not prohibit many transactions
and availability will still be good. The backout rate in the optimistic protocol will also be

reduced, but the transactions will still have to be tested for conflict.

Application Specific. These factors fall into two groups. The first are requirements placed

by the application on transaction processing. Two important questions are:

(1) Can transaction processing be temporarily halted for recovery purposes? If not, a pessimis-
tic approach should be adopted which merely requires the forwarding of updates to merge

the databases.

(2) Can transaction processing be limited in parts of the database, or is availability a premium?
If the latter, a more optimistic approach should be used.

The second group include semantic considerations. Relevant questions here are:

(1) Can transactions be backed out? That is, do they have an inverse? If the latter, either
conflict should be avoided totally, or the divergent databases should be patched up using

compensating actions if necessary to achieve correctness.
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(2) Is serializability a concern, or is a more procedural definition of “correctness” in the final

database state acceptable? If not, a Data-Patch approach can be used.

(3) Should a partitioned system be expected to behave exactly as an unpartitioned system? For
example, even if serializability is the ‘“‘normal” correctness criterion, under extenuating cir-

cumstances (such as partition failures) a more lenient definition could be used.

68.2. Future Directions

Partitioned operation is still very much an active research area. We comment briefly on three

interesting research directions.

One obvious deficiency in our current knowledge of partition strategies is the lack of any
performance data on how well they work. Few strategies have been implemented and none tested
on a representative application. Clearly, more experience with the proposed strategies is needed

before we can understand the performance tradeoffs between them.

Another important area of research is the adaptation of these strategies to accommodate
more general processing models, in particular, nested transactions (and the related concept of
multilevel atomicity [LYNCHS83]). Nested transactions arise in general purpose distributed pro-

gramming environments such as ARGUS [LISK83].

Finally, the use of semantics in partitioned strategies has been only scantily explored. One
interesting direction is to assume that data items are instances of abstract data types and transac-
tions are instances of operations on those types. Type-specific partition strategies can be derived
from the formal properties of the types. (This is an extension of the notion of type-specific con-

currency control proposed in [SCSP83].)
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