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ABSTRACT: Projections of human-induced climate change impacts arising
from the emission of atmospheric chemical constituents such as carbon dioxide
typically utilize multiple integrations (or ensembles) of numerous numerical
climate change models to arrive at multimodel ensembles from which mean and
median values and probabilities can be inferred about the response of various
components of the observed climate system. Some responses are considered
reliable in as much as the simulated responses show consistency within en-
sembles and across models. Other responses—particularly at regional levels
and for certain parameters such as precipitation—show little intermodel con-
sistency even in the sign of the projected climate changes. The authors’ results
show that in these regions the consistency in the sign of projected precipitation
variations is greater for intramodel runs (e.g., runs from the same model) than
intermodel runs (e.g., runs from different models), indicating that knowledge of
the internal ‘‘dynamics’’ of the climate system can provide additional skill in
making projections of climate change. Given the consistency provided by the
governing dynamics of the model, the authors test whether persistence from an
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individual model trajectory serves as a good predictor for its own behavior by
the end of the twenty-first century. Results indicate that, in certain regions
where intermodel consistency is low, the short-term trends of individual model
trajectories do provide additional skill in making projections of long-term climate
change. The climate forcing for which this forecast skill becomes relatively large
(e.g., correct in 75% of the individual model runs) is equivalent to the anthro-
pogenic climate forcing imposed over the past century, suggesting that observed
changes in precipitation in these regions can provide guidance about the direction
of future precipitation changes over the course of the next century.

KEYWORDS: Regional climate change; Climate models; Anthropogenic
forcing

1. Introduction
Understanding the future response of the global climate system to human

emissions of radiatively active gases such as CO2 and methane [termed greenhouse
gases (GHGs)] has become a timely and compelling concern. This interest is
particularly acute at the regional level, which is where impacts upon natural and
socioeconomic systems will be realized (Parry et al. 2007). At these scales, it is
well known that climate forecasts based upon the use of multiple simulations—or
ensembles—of model predictions, which are then averaged to produce ensemble
means, provide better forecast skill than any one individual forecast (e.g., Tebaldi
and Knutti 2007); the same holds true for multimodel ensemble means generated
using multiple simulations from multiple models. However, in certain regions, the
(in)consistency between individual model forecasts for the end of the twenty-first
century limits the utility of multimodel ensemble-mean forecasts because the
uncertainty in the mean value of the forecast (as determined from the spread of the
individual model forecasts) does not discount the possibility of no change or even a
change of opposite sign (Giorgi and Francisco 2000; Räisänen 2001; Covey et al.
2003; DelSole 2004; Neelin et al. 2006; Räisänen 2007). Effectively, this problem
arises because the individual model realizations of climate change for these regions
are considered equally plausible outcomes, and differences between these out-
comes are large. This problem is particularly evident for estimates of how the
regional hydrologic cycle may vary with global-scale climate change over the
course of the twenty-first century (Allen and Ingram 2002; Murphy et al. 2004;
Held and Soden 2006; Sun et al. 2007; Solomon et al. 2007).

At the same time, the actual climate system is one realization of its own ‘‘internal’’
model system; that is, there is an underlying (albeit unobtainable) model system that
is appropriate for the actual climate evolution. For this reason, previous researchers
have used statistical methods to identify which models best represent the actual
climate system; through various weightings based upon the agreement between
historical observations and simulations (Krishnamurti et al. 2000; Giorgi and Mearns
2002; Robertson et al. 2004; Shukla et al. 2006), the aim has been to improve the
consistency in forecasts by statistically identifying the ‘‘correct’’ model system.
Unfortunately, given finite historical and future observed measures of the actual
climate system, it may be extremely difficult to identify which numerical modeling
system best captures the internal behavior of the actual climate system (Judd and
Smith 2004). However, we can still quantify the internal consistency within a given
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model system, and across model systems, to determine how strongly the evolution of
individual realizations from a given model is constrained by the internal dynamics of
the model itself, and by extension how strongly the observed climate system may
also be constrained by its own internal dynamics (Räisänen 2001).

If we do find that the individual realizations of a given model system are con-
strained by the internal dynamics of the underlying model (e.g., there is internal
consistency between the forecasts from a given model system), we can then de-
termine whether this constrained behavior is self-contained within the evolution of
the individual realizations themselves. In particular, we can test whether model
persistence from an individual model trajectory—which by definition is governed by
the same model dynamics throughout its evolution—serves as a good predictor for
its own behavior by the end of the twenty-first century. While we may not know the
true model system, much less the single realization, that the actual climate system is
following, we can still test whether information from a single realization of the
climate system (simulated or observed) can be used to predict its own behavior
based upon how each of the individual realizations from the various model systems
performs in predicting its own behavior. In this sense, we are interested in testing if
persistence is a good predictor for the long-term behavior of the model systems,
under the assumption that the evolution of the observed climate system—which is
effectively a single realization governed by its own internal dynamics—has similar
persistence as that found in the numerical modeling systems.

Model long-memory persistence studies have previously been performed for re-
gional historical temperature (e.g., Syroka and Toumi 2001) and precipitation (e.g.,
Tomsett and Toumi 2001). Here we expand upon these to examine projections of
regional precipitation variations using model-generated climate simulations forced
by anthropogenic emissions of radiatively active chemical constituents. Because the
spread of the individual model forecasts of regional precipitation tend to be large, we
follow the lead of the Solomon et al. (Solomon et al. 2007) consistency analyses and
focus on the sign of these projected precipitation changes, not necessarily the
magnitude. Section 2 describes the model systems and datasets used in this study
while section 3 discusses the skill metric used throughout this paper. Section 4
examines how the skill of regional precipitation projections changes as a function of
location, time, and predictor. Section 5 summarizes the results of this study.

2. Data
For this study, we use coupled atmosphere–ocean–land surface model output

produced from seven different numerical coupled-climate model systems, forced by
projected changes in greenhouse gas concentrations and anthropogenic aerosols
over the next 100 years (2000–2100) that stabilize at an (equivalent) CO2 concen-
tration of 720 ppm (parts per million) by the year 2100. These seven models are
chosen because they each have three or more individual simulations—or ensemble
members—forced by the projected changes in greenhouse gas concentrations and
anthropogenic aerosols. Generally, for a given model system, a long-run (multi-
century) control simulation of the coupled-climate model is performed in which the
radiatively active chemical constituents (including CO2 and other greenhouse gas
concentrations, sulfate aerosols, and volcanic particulates) and solar activity are
fixed at their preindustrial levels (generally designated as 1860). Then multiple
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integrations of the same coupled-climate model are initialized using different time
periods taken from the control simulation and forced by the same historical, twen-
tieth-century (generally 1860–2000) changes in atmospheric chemical constituents
and solar activity. (The time periods chosen from the control simulations to initialize
the twentieth-century simulations differ for each model system; for instance, some
models use time periods that are 20 years apart while others use time periods that are
100 years apart.) The individual twentieth-century simulation output at year 2000 is
then used to initialize an individual simulation (using the same coupled-climate
model) forced by projected changes in greenhouse gas concentrations and anthro-
pogenic aerosols over the next 100 years (2000–2100). We will be using model data
in which the future changes in radiatively active chemical constituents follows the
A1B emissions projection—termed an emissions scenario—from the Intergovern-
mental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios
(SRES; Naki�cenovi�c et al. 2000), which as mentioned corresponds to a stabilization
of CO2 concentrations at 720 ppm by the year 2100.

The models used in this study include the Canadian Centre for Climate Mod-
elling and Analysis’s T47-resolution Coupled General Circulation Model, version
3 (CGCM3; 5 ensemble members); the Meteorological Research Institute’s
Coupled General Circulation Model version 2 (CGCM2; 5 ensemble members);
the Parallel Climate Model version 1 (PCM1; 4 ensemble members); the Com-
munity Climate System Model, version 3 (CCSM3; 4 ensemble members);
ECHAM (4 ensemble members); the Goddard Institute for Space Studies Model E/
Hybrid Coordinate Ocean Model (HYCOM) (GISS-EH; 3 ensemble members);
and the Model for Interdisciplinary Research on Climate 3, medium-resolution
version [MIROC(medres); 3 ensemble members] (Solomon et al. 2007). All data
from the model runs are taken from the Program for Climate Model Diagnosis
and Intercomparison (PCMDI) and are made available through the World Climate
Research Programme’s (WCRP’s) Coupled Model Intercomparison Project
(CMIP3) multimodel dataset. Details about each model are provided online (http://
www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php)
and summarized in Table 1. For this investigation, we will be examining annual-
and seasonal-mean precipitation values and their long-term variations. Hence, we
first compute the annual and 3-month means for each field at each grid point. We
then apply a 20-year running mean to each field at each grid point. All figures are
based upon these 20-year running mean gridpoint values unless noted otherwise. In
addition, in order to compare across model systems, we interpolate all gridpoint
values to the highest-resolution model grid (CCSM3), which has a T85 (approxi-
mately 1.48) resolution.

Table 1. Name and characteristics of model simulations used in this analysis.

Name No. in ensemble Horizontal resolution (atmosphere only) Vertical levels

CGCM3 5 T47 (about 3.758) 31

CGCM2 5 T42 (about 2.88) 30

CCSM3 4 T85 (about 1.48) 26

PCM1 4 T42 (about 2.88) 26

ECHAM 4 T63 (about 1.8758) 31

GISS-EH 3 Lat–lon: 48 3 58 20

MIROC(medres) 3 T42 (about 2.88) 20
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3. Methods
Throughout this paper, skill of model forecasts—whether concurrently or

lagged—are based upon a modified version of the Hanssen–Kuipers skill score
(Hanssen and Kuipers 1965). This measure of skill is based upon a two-dimensional
contingency table of binomial outcomes between predicted and observed events.
In its traditional formulation, it gives the difference between the number of ‘‘hits’’
(i.e., forecasted events that occurred) and ‘‘false alarms’’ (i.e., forecasted events
that did not occur). It does not account for the number of observed nonevents that
were correctly predicted or the number of observed events that were missed. For our
study, however, we consider below-normal precipitation amounts (i.e., negative
precipitation trends) to be an equally valid forecast as above-normal precipitation
amounts (i.e., positive precipitation trends). Hence, we determine the consistency
between model forecasts based upon the total number of correct predictions (either
of positive or negative precipitation trends) minus the total number of incorrect
predictions (again, either of positive or negative precipitation trends). For a tradi-
tional contingency table, this calculation would be equivalent to taking the total
number of ‘‘hits’’H and ‘‘correct nonevents’’ N then subtracting off the total number
of ‘‘false alarms’’ F and ‘‘misses’’M and normalizing by the number of predictions:

Skill5
(H1N)� (F1M)

H1N1F1M
: (1)

This measure of skill can range from 21 to 1, with numbers above 0 representing
fractional improvement upon chance. Numerically, the skill score for a given
number (n) of forecasts and observations can be calculated as

Skill5

P

n

i5 1

sign(Fi) 3 sign(Oi)

� �

n
, (2)

where Fi and Oi are the ith pair of forecasted and observed values, respectively, and
sign( ) indicates the sign of the operand (e.g., ‘‘1’’ for positive values and ‘‘21’’ for
negative values).

In addition, because we are dealing with finite numbers of predictions—in some
cases as small as 28—it is necessary to devise a method for testing for significance
of the results. To do this, we construct a stochastic model in which 28 pairs of
values are randomly selected from a normal distribution centered on zero, one
representing the ‘‘forecasted’’ value and the other representing the ‘‘observed’’
value. The test-statistic skill score is calculated for these 28 pairs as

Skillrand 5

P

28

i5 1

sign(Frand
i

) 3 sign(Orand
i

)

� �

28
, (3)

where Fi
rand and Oi

rand are the ith pair of randomly selected ‘‘forecasted’’ and
‘‘observed’’ values, and sign( ) is the same as above. A similar estimate is made
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for 10 000 different sets of pairs. The probability distribution function of skill scores
from these sets of 28 ‘‘forecasts’’ and ‘‘observations’’ is then calculated to determine
the likelihood certain skill scores could arise by chance. From these calculations, we
find that skill scores above 0.3 are significantly different from those expected by
chance at the 95% confidence level. Similarly, if we randomly select 28 ‘‘forecast’’
values and use them to ‘‘predict’’ a single (random) ‘‘observed’’ value, we also find
that that skill scores above 0.3 are significantly different from those expected
by chance at the 95% confidence level. Hence, for all gridpoint estimates of skill
(in which only 28 sets of ensemble members are available), the minimum significant
skill score is set to 0.3, although values above 0 are shown as well.

To test the difference in skill scores between two predictors, a similar metho-
dology is used except that two randomly distributed ‘‘forecast’’ values are used as
separate predictors for the same randomly distributed ‘‘observed’’ value. The skill
score for the two separate sets of 28 ‘‘forecasts’’–‘‘observation’’ pairs is calculated
and then we find the difference; as above we repeat the analysis for 10 000 different
sets. We find that differences in skill scores above60.25 are significantly different
from those expected by chance at the 95% confidence level; those above60.21 are
significant at the 90% level. Hence, for gridpoint estimates the minimum signifi-
cant (absolute) skill-score difference is set to 0.25, although values above 0.20 are
shown as well.

4. Results

4.1. Intermodel and intramodel projections of precipitation trends

Previous studies have investigated coupled global climate models’ ability to
simulate historical regional precipitation variations (Zhang et al. 2007) and found
that observed historical trends along certain latitudinal bands can be reproduced by
multimodel ensemble-mean estimates generated from 10 different models (5 of
which are included in this study). Other studies have compared simulated trends
with observations across different regions and time periods, some of which appear
reproducible (Bhend and von Storch 2008; Barnett et al. 2008) while others are not
(Lambert et al. 2005; Allan and Soden 2007). While this ability (or inability) of
models to simulate past regional precipitation variations can hamper the direct use
of these same models to project future changes, below we argue that we can still
obtain information from the simulated output about the possible future behavior of
the observed climate system, even if the simulations show large disparities in their
projections of historical (and future) precipitation changes at regional scales (Allen
and Ingram 2002).

To start, Figure 1 shows the projected changes in ensemble mean (EM) gridpoint
precipitation values between the periods 2080–2100 and 2000–20, as found in the
seven different model simulations, as well as in the multimodel ensemble mean
(MMEM). These trends are qualitatively consistent with those found in other
MMEM projections (Murphy et al. 2004; Zhang et al. 2007; Sun et al. 2007;
Solomon et al. 2007) including decreasing trends across most of the subtropics in
the Northern and Southern Hemispheres and increasing trends over the mid-
and high latitudes of both hemispheres. In addition, there are overall increases in
the equatorial and tropical regions of most models. At the same time, there are
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Figure 1. Projected changes in ensemble mean annual precipitation under the A1B
emissions scenario for the (a) CGCM3.1, (b) ECHAM, (c) CGCM2.1, (d)
CCSM3, (e) MIROC(medres), (f) GISS-EH, and (g) PCM1.0 model systems,
plotted on their native grid. (h) Also shown is the multimodel ensemble
mean, plotted on a common T128 resolution grid. Changes are calculated
as the difference between the ensemble-mean precipitation amounts
averaged from 2080 to 2100 and from 2000 to 2020. Values are presented
as a fraction of the interannual standard deviation of the 20-year running
mean gridpoint values for the full period (2000–2100). Stippled regions
in (h) represent grid points in which 6 of 7 (85%) of the models show
the same sign change in 2080–2100 precipitation. The box represents
area-averaging domain used in Figure 2.
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model-based differences in the sign of projected precipitation trends in many
regions—such as much of Africa, Australia, the Amazon, and the eastern United
States—again in agreement with MMEM estimates of consistency between model
predictions (Murphy et al. 2004; Sun et al. 2007; Solomon et al. 2007).

To highlight the difficulty in predicting the long-term trends in precipitation for
these regions, Figure 2 shows the evolution of the area-average precipitation
amounts over central Africa (see Figure 1 for area-averaging region) from the
seven different model systems. While three of the EM area-average precipitation
amounts are positive [CCSM3, MIROC(medres), and PCM1], two show only small

Figure 2. Time evolution of projected changes in area-average annual precipitation
for central Africa under the A1B emissions scenario for the (a) CGCM3.1,
(b) ECHAM, (c) CGCM2.1, (d) CCSM3, (e) MIROC(medres), (f) GISS-EH, and
(g) PCM1.0 model systems. See Figure 1 for location of area-averaging
region; only land-based grid points are considered. Colored lines repre-
sent individual ensemble members from the given model system; thick
black lines represent ensemble mean for the given model system. Units
are kg m22 s21. Values represent 20-year running means centered on the
given date; all lines shifted such that initial values start at 0. (h) Time evo-
lution of ensemble-mean area-average annual precipitation for central
Africa under the A1B emissions scenario. Colored lines represent ensem-
ble means from individual model systems (equivalent to thick, black lines
in previous panels); the thick black line represents multimodel ensemble
mean for all model systems.
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changes (CGCM2 and GISS-EH) and another two indicate decreasing precipitation
amounts (CGCM2 and ECHAM) over this region. In addition, of 28 separate
forecasts (from all seven model systems), only 16 (57%) have the same sign as the
MMEM value. In all, it is apparent that the MMEM projections of precipitation
changes across this region are of little value when considering the range of plau-
sible scenarios as provided by the different model systems.

At the same time, four of the model systems show high intraensemble consis-
tency [CGCM3, CCSM3, MIROC(medres), and PCM1], with all ensemble
members showing the same sign change in precipitation by the 2080–2100 period;
in addition, three of the four ensemble members from the ECHAM model system
show the same sign change in precipitation. To better quantify whether a similar
improvement in consistency holds in other regions, we estimate the gridpoint
consistency of 2080–2100 precipitation variations using the modified skill score
described in section 3. Here, we consider each of the model realizations at each
grid point to be one equally plausible outcome of anthropogenic forcing of climate
change; from these we get estimates of what the possible ‘‘observed value’’ of
gridpoint precipitation changes for the 2080–2100 period may be (Räisänen and
Palmer 2001). We then calculate the MMEM projection of 2080–2100 precipita-
tion changes at each grid point and use this as the ‘‘forecast’’ value. We can
then estimate how large the forecasted value skill is, given the range of plausible
realizations of the climate system:

SkillMMEM5

P

28

i5 1

sign(Oi) 3 sign(FMMEM)

� �

28
, (4)

where Oi is the ‘‘observed’’ 2080–2100 value provided by the ith individual model
realization (at a given grid point), FMMEM is the forecasted 2080–2100 value
provided by the MMEM value (at the same grid point), and sign( ) is as above.
Because the forecast value is the same for each of the forecast/observation com-
parisons, the skill score is a measure of how much the ‘‘observations,’’ that is, the
plausible realizations of future climate change, differ from one another.

Figure 3a shows the results of this comparison. In many regions, particularly the
high latitudes of the Northern Hemisphere, along with most of northern Eurasia, the
skill score is 1.0, indicating that every model realization (out of 28) is producing
the same sign change in precipitation for the period 2080–2100. In other regions, the
skill score falls below the 95% confidence interval (skill, 0.3) and actually becomes
negative. The first implication of these results is that using the MMEM forecast is a
poor predictor for determining the sign of precipitation trends, given the range of
plausible realizations drawn from the individual model runs. Again, this lack of skill
arises solely from the lack of consistency in the individual realizations (since the
‘‘forecast’’ is the same for each of these forecast/observation comparisons).

We see that consistency is low along the storm-track regions of the North and
South Atlantic and Pacific Ocean basins, as well as at the boundaries between the
tropics (subtropics) where the expansion (contraction) of the ITCZ (subtropical
highs) can produce differing trends in precipitation across models (Neelin et al.
2006; Allan and Soden 2007). In addition, there are regions of low consistency over
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much of the tropical landmasses, including the Amazon in South America, the
Sahel in Africa, and across Indonesia. There is also low consistency over southern
Africa and Australia. Qualitatively, regions of low consistency, as determined by
the low skill scores in Figure 3a, match those derived from the MMEM projections
(Figure 1h; also Figure 2 from Murphy et al. 2004; Figure 9c from Sun et al. 2007;
Figure 10.12 from Solomon et al. 2007).

As mentioned, in these regions the low skill score between the MMEM pro-
jection of precipitation trends and the range of plausible realizations of these trends
(as found in the individual model runs) suggest that the MMEM projection of
precipitation is of little value. However, the MMEM projection is not the only
projection available. In Figure 3b, we compare the EM precipitation trends from
each model with its own individual model realizations. We then calculate the
overall skill score for the ‘‘intraensemble’’ predictions/observations:

SkillEM5

P

7

j5 1

P

nj

i5 1

sign(O
j
i ) 3 sign(FEM

j )

" #

28
, (5)

where Oi
j is the ‘‘observed’’ 2080–2100 value provided by the ith individual model

realization from the jth model (at a given grid point), Fj
EM is the forecasted 2080–2100

value provided by the EM value from the jth model (at the same grid point), nj is
the number of individual realizations provided by the jth model, and sign( ) is as
above. In this case, there are still 28 individual realizations of the climate system, but
now the projections for each realization are not the same but are based upon a priori

Figure 3. (a) The skill of using the sign of the 2080–2100 multimodel ensemble-mean
precipitation anomalies to predict the sign of the 2080–2100 precipitation
anomalies in the 28 individualmodel realizations; anomalies calculated as
deviations from the 2000–20 values. Skill based upon a modified Hanssen–
Kuipers skill score (see text for details). Only values greater than 0 shown
here; skill scores that are significantly different from chance at the 95%
level are shaded in color. (b) Same as in (a), except when using the 2080–
2100 ensemble-mean precipitation anomalies from a given model system
to predict the sign of the 2080–2100 precipitation anomalies in the indi-
vidual model realizations from that model system only.
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knowledge of the model system generating a given realization, hence there are seven
different ‘‘forecast’’ values (one from each model system). Here we are testing
whether, given the right model system, there is consistency in the relation between
EM model projections and the individual realizations of the given model system.

As is evident in Figure 3a, the skill improves markedly across the globe and is
significant (at the 95% confidence interval) everywhere. In addition, in many re-
gions where the MMEM projection had little skill in forecasting any given reali-
zation of the climate system—for instance over the Amazon or southern
Africa—the intraensemble model skill is significantly greater. In these regions,
then, there is little consistency in projections of future climate change between
model systems; however, there is much greater consistency of these projections
within the individual model systems.

To quantify the improvement in consistency that can be gained by using the
‘‘correct’’ model system to estimate changes of climate for a given realization, as
opposed to using the MMEM projection, Figure 4 shows the difference in skill
between the skill scores in Figures 3b and 3a. As mentioned, there is significant
improvement (.0.25) in skill over the 1) Amazon basin in South America, over 2)
central and 3) southern Africa, and over the 4) island states of Indonesia. There is
also improvement over many ocean regions, such as the storm track of the North
Atlantic and the subtropical regions of the Pacific. Our focus here, however, will be
upon the four regions mentioned previously.

Figure 5 shows the evolution of the EM area-average precipitation amounts for
these four regions, taken from the seven different model systems; in each case we

Figure 4. Difference in the skill of using the sign of the 2080–2100 ensemble-mean
precipitation anomalies from a given model system to predict the sign of
the 2080–2100 precipitation anomalies in the individual model realizations
from that model system only, compared with the skill of using the sign of
the 2080–2100 multimodel ensemble-mean precipitation anomalies. Skill
is based upon amodified Hanssen–Kuipers skill score (see text for details).
Only values greater than 0.2 (90% confidence level) are shown here;
values in color are significant at 95% confidence level (>0.25). The boxes
indicate regions that are analyzed further.
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only use land-based grid points, except for Indonesia where all grid points within
the box are included in the area average. In all four regions there is a significant
spread in both the magnitude and sign of the projected changes across the model
systems (with the exception of central Africa, where only one model projects
a decrease in area-average precipitation). At the same time, it appears that many of
the model systems follow a quasi-monotonic evolution through time such that the
signs of the initial trends in the evolution of the system match the signs of the final
trends. While this generalization does not hold for all models and all regions [see
the ECHAM projections over the Amazon for instance or the MIROC(medres)
projections over central and southern Africa], it does suggest that it is possible to use

Figure 5. Time evolution of projected changes in area-average ensemble-mean
annual precipitation for (a) Amazon basin, (b) central Africa, (c) South
Africa, and (d) Indonesia under the A1B emissions scenario. See Figure 4
for location of area-averaging regions. For all regions except Indonesia,
only land-based grid points are considered. Colored lines represent in-
dividual model system ensemble means; the thick black lines represent
multimodel ensemble mean. Units are kg m22 s21. Values represent 20-
year running means centered on the given date; all lines shifted such that
initial values start at 0.
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the intervening trends in the evolution of the climate system to project the sign of
the longer-term trends, as represented by the state of the system during 2080–2100.

To test this hypothesis, we take each of the EM gridpoint model estimates at a
given time and use the sign of the precipitation anomaly (compared with the initial
state) as a prediction for the 2080–2100 gridpoint precipitation anomaly for each
realization of that model system:

SkillEMj (t)5

P

nj

i5 1

sign O
j
i (2080� 2100)

� �

3 sign OEM
j (t)

h i

� �

nj
, (6)

where Oi
j(2080–2100) is the ‘‘observed’’ 2080–2100 value provided by the ith

individual model realization from the jth model (at a given grid point), Oj
EM(t) is the

EM value from the jth model at time t, nj is the number of individual realizations
provided by the jth model, and sign( ) is as above. To calculate the skill of this
prediction system for a given region, all gridpoint prediction/observation pairs within
the region are included in the ‘‘hits’’/‘‘misses’’ statistics, hence there are significantly
more predictions included in these estimates (generally nj is on the order of 3–5
predictions at 300–600 separate grid points). In this sense, we are determining
whether persistence of short-term EM gridpoint precipitation trends serve as good
predictors for the individual long-term realizations of the given model system.We can
also test the skill of the predictions if no a priori knowledge is available regarding
which model system produced the given realization; in this case theMMEMgridpoint
precipitation anomaly is used as the predictor for each of the model realizations:

SkillMMEM(t)5
P

7

j5 1

P

nj

i5 1

sign O
j
i (2080� 2100)

� �

3 signOMMEM(t)½ �

( )

P

7

j5 1

nj

, (7)

where all variables are the same as in Equation (6) except for OMMEM(t), which is
the MMEM value at time t (at the given grid point).

Figure 6 indicates that, in the four regions considered here, short-term trends do
have significant predictive skill for determining the sign of long-term trends of the
various plausible realizations of precipitation, but only if it is known what model
system to use as the predictor; without this a priori knowledge, the MMEM values
at intervening periods show only slight improvement (above chance) in predicting
the plausible long-term trends in precipitation given by the individual ensemble
members. This result highlights that a priori information about the appropriate
model system (or the observed climate system) can improve the forecast capa-
bilities for these regions. It is also important to highlight that the improvement in
model forecast capability is not the same across models. For instance, the CGCM2
EM does only about as well as the MMEM at predicting the end state of its own
ensemble members over central Africa. This result does not indicate that the
CGCM2 is a worse-performing model but instead simply indicates that the internal
consistency among ensemble members is lower than for other models.
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4.2. Individual model projections of precipitation trends

We note that, in each of the cases shown in Figure 6, the forecast estimate was
derived from an ensemble of model realizations. However, in the actual climate
system, the observed evolution only represents one realization of its own internal

Figure 6. Skill of using the persistence of the sign of intervening gridpoint precipi-
tation anomalies at the given time as predictors for the sign of the 2080–
2100 gridpoint precipitation anomalies. Thin, colored lines represent the
skill of the ensemble-mean values from a given model system in pre-
dicting the sign of the 2080–2100 values of individual model realizations
from that model system only. Line colors are the same as in Figure 5.
The thick black lines represent the average of all the model systems’
ensemble-mean skills. The thick red lines represent the skill of the multi-
model ensemble-mean values in predicting the sign of the 2080–2100
values of individual model realizations from all model systems. Skill
calculated separately for (a) Amazon basin, (b) central Africa, (c) South
Africa, and (d) Indonesia. See Figure 4 for location of area-averaging
regions. For all regions except Indonesia, only land-based grid points
are considered. Predictor values represent the difference between the
20-year mean value centered on the given date and the initial 20-year
mean value; by construction all lines start at 0.
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‘‘dynamics.’’ Determining which model climate system the actual climate system
maps onto may be extraordinarily difficult (and may actually change from region to
region). In addition, as results show, different model systems can have differing
internal consistency in the behavior of their individual realizations.

At the same time, it would be of interest to determine whether the short-term
evolution of individual realizations of the climate system can be used as predictors
for their own evolution. In this sense, the a priori knowledge of the governing
model system is self-contained within the evolution of the individual model real-
ization itself. To test for this ability, for each model system we take each of the
gridpoint anomalies from an individual model realization at a given time and use
the sign of the precipitation anomaly (compared with the initial state) as a pre-
diction for its own 2080–2100 gridpoint precipitation anomaly:

Skillindivj (t)5

P

nj

i5 1

sign O
j
i (2080� 2100)

� �

3 sign O
j
i (t)

� �

� �

nj
, (8)

where Oi
j(2080–2100) is the ‘‘observed’’ 2080–2100 value provided by the ith in-

dividual model realization from the jth model (at a given grid point),Oi
j(t) is the value

from the ith individual model realization from the jth model at time t, nj is the number
of individual realizations provided by the jth model, and sign( ) is as above. As before,
the skill is calculated using all grid points within a given region, so nj is much larger
than 28. Results are shown in Figure 7. As before, the evolution of individual model
realizations, and their consistency in use as predictors for the final state of the model
realization, depends upon the underlying model system. As an extreme example,
individual realizations of gridpoint precipitation over Indonesia from the ECHAM
model system appear to be very poor predictors of their final states. Again, this does
not indicate that the ECHAM model is a poor one, simply that the short-term model
trends in this region do not necessarily serve as good predictors for the final end state.

However, if we calculate the average skill score for all model realizations, we find
that in all four regions it lies above 0.5 by 2050 and in some regions (the Amazon,
southern Africa, and Indonesia once the ECHAM model is removed) it is above 0.5
by 2040. Because these time series are plotted at the center of the 20-year averaging
period, these results suggest that short-term trends (e.g., during the 2030–50 period)
can be used as predictors for the sign of the trend in these regions during 2080–2100.

While these results do not sound promising, it should be noted that during the
2030–50 period, the greenhouse gas concentrations, as represented by the con-
centrations of CO2 in the A1B scenario, are expected to be about 90 ppm higher
than the initial 2000–20 period (e.g., an increase from 390 to 484 ppm). This
increase of 90 ppm is nearly equivalent to the observed increase in CO2 concen-
trations during the period 1900–2000 (i.e., from 280 to 370 ppm). In this sense,
these results suggest that the observed trends in precipitation over the last 100 years
may serve as predictors for the sign of future climate change over the next 100
years. However, to confirm this hypothesis it will be necessary to compare his-
torical realizations of the climate system with future realizations to see whether
similar increases in skill are found, a study that is beyond the scope of this paper
(but is presently being carried out).
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Next, we perform a similar analysis for all grid points in order to determine what
regions of the globe show consistency in their short-term and long-term trends of
precipitation. To do so requires selecting a specific time period upon which to base
the predictions, at which point it is possible to determine the skill of these pre-
dictions. Based upon Figure 7, we select the 2030–50 period as the prediction
period. We then use the sign of the MMEM gridpoint estimates during the 2030–50

Figure 7. Skill of using the persistence of the sign of intervening gridpoint precipi-
tation anomalies from individual model realizations at the given time as
predictors for the sign of 2080–2100 gridpoint precipitation anomalies from
the same realization. Colored lines represent the skill averaged over each
realization from a given model system; line colors are the same as in
Figure 5. The thick black lines represent themean of all themodel systems’
skills. Skill is calculated separately for (a) Amazon basin, (b) central Af-
rica, (c) South Africa, and (d) Indonesia. See Figure 4 for location of area-
averaging regions. For all regions except Indonesia, only land-based grid
points are considered. The thick red line in (d) represents the mean of all
the model systems’ skills after removing the ECHAM model. Predictor
values represent the difference between the 20-year mean value cen-
tered on the given date and the initial 20-year mean value; by con-
struction all lines start at 0 and end at 1.
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period as the same predictor for the 2080–2100 gridpoint precipitation anomalies
taken from the individual realizations of all the model systems (Figure 8a). For
comparison, we also use the EM gridpoint model estimates during the 2030–50
period as a prediction for the 2080–2100 gridpoint precipitation anomalies taken
from the individual realizations of the given model system (Figure 8b). Finally, we
use the individual model realization gridpoint anomaly estimates during the 2030–
50 period as a prediction for their own 2080–2100 gridpoint precipitation anom-
alies (Figure 8c).

As expected, in the regions we have been studying short-term trends from the
MMEM gridpoint estimates serve as poor predictors for the long-term trend of
precipitation, given the range of plausible individual realizations of the long-term
climate evolution. In other regions, however, the skill is significant and matches that
of the actual MMEM gridpoint predictions from 2080 to 2100 (see Figure 3a). In
comparison, the skill provided by the short-term EM anomalies in predicting the
individual model realizations of its own ensemble members is greater than the
MMEM predictions almost everywhere. In particular the improvement is large over
the regions of interest here, namely, the Amazon basin, central and southern Africa,
and Indonesia. As before, these results suggest that if a priori knowledge is available
regarding which model system to use as the predictor for a given realization, the
short-term trends in the EM precipitation for these regions can serve as significant
predictors for the longer-term evolution of individual ensemble members.

As before, there is only one observed evolution of the actual climate system
itself. However, based upon Figure 8c, it appears that, for many regions, short-term
individual realizations of climate change can be used as predictors for their own
long-term evolutions. Even in regions where fully coupled model predictions of
trends in precipitation show little intermodel consistency, the short-term evolution
of a single realization appears to provide additional information about its future
state. While not perfect, by construction the skill associated with these predictions
averages about 0.5 in the regions examined earlier; that is, about 75% of the model
predictions capture the correct sign of future trends in precipitation. In addition,
even outside regions examined here there appears to be skill found in the short-term
evolution of the climate system, which provides information about its long-term
behavior. For example, over Australia, western India, and the western United
States—regions in which MMEM climate projections indicate inconsistency in the
overall trend of precipitation—short-term trends can provide some guidance re-
garding the longer-term evolution.

Figure 9 shows the difference in skill provided by the sign of the 2030–50
precipitation anomalies from individual model realizations in predicting their own
end state, as compared with the skill provided by the sign of the 2030–50 pre-
cipitation anomalies from the MMEM values. As mentioned, short-term trends
in individual model realizations appear to provide enhanced skill over much of
Africa, the Amazon basin, Australia, and the western United States. At the same
time, it is apparent that in certain regions—particularly the high-latitude regions of
North America and Eurasia—the MMEM provides a much better estimate of the
long-term behavior of the climate system than that afforded by any one model
realization. Hence, in many regions care must be placed in projecting observed
short-term trends into the future, particularly in the presence of nonlinear and/or
nonstationary behavior (DelSole 2005).
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4.3. Projections of seasonal-mean precipitation trends

Given that the signs of future anthropogenic-induced climate changes can vary
between seasons (Solomon et al. 2007), it is of interest to see how seasonally based
results may differ. Generally, the skill of the MMEM precipitation anomalies from

Figure 8. Skill of using the sign of the 2030–50 precipitation anomalies to predict the
sign of the 2080–2100 precipitation anomalies in the 28 individual model
realizations; anomalies calculated as deviations from the 2000–20 values.
Sign of 2030–50 gridpoint precipitation anomalies determined from (a)
multimodel ensemble-mean gridpoint value, (b) ensemble-mean grid-
point value from the model system that generated the individual model
realization, and (c) the individual model realization itself. Skill is based
upon a modified Hanssen–Kuipers skill score (see text for details). Only
values greater than 0 shown here; skill scores that are significantly different
from chance at the 95% level are shaded in color. The boxes indicate
regions that are analyzed in previous figures.
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the 2080–2100 period in predicting the sign of any one of the individual model
realizations is worse for seasonal-mean values [here December–February (DJF),
March–May (MAM), June–August (JJA), and September–November (SON)] than
for the annual means (not shown). In addition, the MMEM skill (and hence in-
termodel consistency) seems to decrease the most over high-latitude regions during
hemispheric summer, including over most of Eurasia and North America during
June–August and southern Africa and Australia during December–February. This
discrepancy most likely arises because of differences in convective schemes and in
the strength of land–atmosphere coupling in the various model systems.

If we compare the intermodel consistency with the intramodel consistency
—derived by using the EM precipitation anomalies from the 2080–2100 period as
the predictor for the individual ensemble members themselves—we find that the skill
improves if a priori knowledge of the appropriate model system is incorporated
into the prediction. This is particularly true over North America, the Sahel, and
southwestern Asia (including northern India, Pakistan, and Afghanistan) during the
June–August period; southern Africa and Australia during the December–February
period; the Amazon basin during the March–May and September–November
periods; and Indonesia and northern Australia during all four seasons. In addition, we
find that the intramodel consistency of 2080–2100 precipitation trends is significant
at all grid points, regardless of season (not shown).

Finally, we can determine whether the persistence of using short-term trends
from individual model realizations provides additional skill in forecasting the sign
of long-term trends in seasonal-mean precipitation as compared with using the

Figure 9. Difference in the skill of using the sign of the 2030–50 precipitation
anomalies from individual model realizations to predict the sign of the
2080–2100 precipitation anomalies from the same realization, compared
with the skill of using the sign of the 2030–50 multimodel ensemble-mean
precipitation anomalies; anomalies calculated as deviations from the
2000–20 values. Skill is based upon a modified Hanssen–Kuipers skill
score (see text for details). Only values greater than 60.2 (90% confi-
dence level) are shown here; values in color are significant at 95%
confidence level (60.25).
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MMEM estimates (Figure 10). As before the short-term trends are derived from the
various predictor fields during the 2030–50 time period.While the short-term trends
from the individual realizations do not provide as much skill in predicting their own
long-term seasonal-mean evolution as compared with the skill found in annual-
mean precipitation (not shown), they do provide better skill than the MMEM values
over many regions, particularly over the tropics and subtropics. In addition, the
improvement in skill tends to follow the seasonal cycle in precipitation. For in-
stance, there is added skill in forecasting December–February precipitation changes
over the southern portions of Africa, when precipitation tends to be greatest;
similarly, over central Africa, there is added skill during June–August, again when
the seasonal cycle of precipitation peaks in this region. Over the Amazon, improved
skill is found during the onset (September–November) and retreat (March–May) of
the monsoon rains. Over the southern portions of North America and Europe, skill
appears to increase most during summer (June–August) and into fall (September–
November). As before, results indicate that the MMEM estimates from 2030 to
2050 still serve as the best predictors for precipitation in the high-latitude regions of
North America and Eurasia, particularly during March–May. However, in other

Figure 10. (a) Difference in the skill of using the sign of the 2030–50 DJF precipitation
anomalies from individual model realizations to predict the sign of
the 2080–2100 DJF precipitation anomalies from the same realization,
compared with the skill of using the sign of the 2030–50 DJF multimodel
ensemble-mean precipitation anomalies; anomalies are calculated
as deviations from the 2000–20 values. Skill is based upon a modified
Hanssen–Kuipers skill score (see text for details). Only values greater than
60.2 (90% confidence level) are shown here; values in color are signifi-
cant at 95% confidence level (60.25). (b)–(d) Same as in (a), except for
MAM, JJA, and SON precipitation anomalies.
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regions it appears that these MMEM forecasts can be augmented, or constrained, by
historical and future observations of short-term trends.

5. Summary
Here we have analyzed the consistency in global climate change model pre-

dictions of regional precipitation trends. Results indicate that, while certain regions
show high inter- and intramodel consistency in projections of regional precipitation
responses to anthropogenic-induced climate change, other regions show little
consistency in even the sign of these changes. In these regions, the large spread of
individual model realizations, each of which is considered an equally plausible
evolution of the actual climate system, precludes the use of multimodel ensemble
means to make predictions of the response of the climate system to anthropogenic
emissions of radiatively active chemical constituents. However, given a priori
knowledge of the underlying (model) climate system, the skill of the projections is
markedly improved, indicating that intramodel consistency is robust, even if
intermodel consistency is not. This result suggests that the evolution of the system
is constrained by the internal dynamics of the model itself; this result also suggests
that the time-dependent behavior of a single realization of the climate system,
which by definition is governed by the same model dynamics throughout its evo-
lution, may be able to provide information about its own long-term time evolution.

To test this hypothesis we examine four specific regions—the Amazon basin in
South America, the central and southern portions of Africa, and Indonesia—where
intramodel consistency between ensemble members significantly improves com-
pared with intermodel consistency. First, we quantify the skill of using the sign of
the gridpoint precipitation anomalies derived from the ensemble-mean value of a
given model system at some intervening time as the predictor for the sign of the
precipitation anomalies at the end of the simulation period (e.g., 2080–2100) from
individual realizations of the same model. We find this skill is significantly im-
proved compared with the skill of using intervening gridpoint precipitation
anomalies derived from the multimodel ensemble-mean value. In addition, short-
term trends of individual model realizations also provide improved skill in pre-
dicting their own state by the end of the simulation period—in the four regions
considered here, approximately 75% of the individual model gridpoint trends
during the 2030–50 period correctly predict the sign of their own gridpoint trends
during the final 20 years of the simulation period. While these results suggest that
only after 501 years of climate forcing does the short-term trend consistently
match the long-term trend in these regions, the climate forcing associated with this
50-year period (captured by an approximate 100-ppm increase in carbon dioxide
concentrations) is similar to that imposed over the last 100 years (1900–2000).
These results suggest that precipitation trends during this historical period may
provide guidance regarding the sign of future precipitation trends over the next 100
years; however, care must be taken in using short-term precipitation trends as
predictors for longer-term trends because results are sensitive to the model system,
geographic location, and time of year. At the same time, they do suggest that the
actual evolution of the climate system, vis-à-vis precipitation changes, does in-
herently contain information about its own future evolution that can be used to
augment model-based climate change projections.

Earth Interactions d Volume 13 (2009) d Paper No. 9 d Page 21



Acknowledgments. Dr. Anderson’s research was supported by a Visiting Scientist

appointment to the Grantham Institute for Climate Change, administered by Imperial

College of Science, Technology, and Medicine. We acknowledge the modeling groups, the

Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s

Working Group on Coupled Modeling (WGCM), for their roles in making available the

WCRP CMIP3 multimodel dataset. Support of this dataset is provided by the Office of

Science, U.S. Department of Energy.

References

Allan, R., and B. Soden, 2007: Large discrepancy between observed and simulated precipitation

trends in the ascending and descending branches of the tropical circulation. Geophys. Res.

Lett., 34, L18705, doi:10.1029/2007GL031460.

Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic

cycle. Nature, 419, 224–232.

Barnett, T. P., and Coauthors, 2008: Human-induced changes in the hydrology of the western

United States. Science, 319, 1080–1083.

Bhend, J., and H. von Storch, 2008: Consistency of observed winter precipitation trends in northern

Europe with regional climate change projections. Climate Dyn., 31, 17–28.

Covey, C., K. M. AchutaRao, U. Cubasch, P. Jones, S. J. Lambert, M. E. Mann, T. J. Phillips, and

K. E. Taylor, 2003: An overview of results from the Coupled Model Intercomparison

Project. Global Planet. Change, 37, 103–133.

DelSole, T., 2004: Predictability and information theory. Part I: Measures of predictability.

J. Atmos. Sci., 61, 2425–2440.

——, 2005: Predictability and information theory. Part II: Imperfect forecasts. J. Atmos. Sci., 62,

3368–3381.

Giorgi, F., and R. Francisco, 2000: Evaluating uncertainties in the prediction of regional climate

change. Geophys. Res. Lett., 27, 1295–1298.

——, and L. O. Mearns, 2002: Calculation of average, uncertainty range, and reliability of regional

climate changes from AOGCM simulations via the ‘‘reliability ensemble averaging’’ (REA)

method. J. Climate, 15, 1141–1158.

Hanssen, A. W., and W. J. A. Kuipers, 1965: On the relationship between the frequency of rain and

various meteorological parameters. Meded. Verh., 81, 2–15.

Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming.

J. Climate, 19, 5686–5699.

Judd, K., and L. A. Smith, 2004: Indistinguishable states II: The imperfect model scenario. Physica

A, 196, 224–242.

Krishnamurti, T. N., C. M. Kishtawal, Z. Zhang, T. LaRow, D. Bachiochi, E. Williford, S. Gadgil,

and S. Surendran, 2000: Multimodel ensemble forecasts for weather and seasonal climate.

J. Climate, 13, 4196–4216.

Lambert, F. H., N. P. Gillett, D. A. Stone, and C. Huntingford, 2005: Attribution studies of observed

land precipitation changes with nine coupled models. Geophys. Res. Lett., 32, L18704,

doi:10.1029/2005GL023654.

Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A.

Stainforth, 2004: Quantification of modeling uncertainties in a large ensemble of climate

change simulations. Nature, 430, 768–772.

Naki�cenovi�c, N., and Coauthors, 2000: Special Report on Emissions Scenarios. Cambridge Uni-

versity Press, 570 pp.
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