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Abstract 

More and more studies had used connectivity profiles to predict functions of the brain. 

However, whether anatomical connectivity can predict functions consistently with functional 

connectivity in various functional domains and whether the connectivity-function relationship 

is universal across the whole cortex are unknown. Using a linear model, we discovered that 

anatomical connectivity was comparative to functional connectivity in explaining the variance 

of functions in most cortical regions, with the exception that anatomical connectivity had poor 

explaining abilities in brain areas which had high individual task variations. In addition, 

anatomical connectivity were not that good at capturing individual functional differences and 

had less inter-subject variation than functional connectivity, however anatomical connectivity 

could be regarded as more stable in the perspective of parcellation. The current results 

provided the first comprehensive picture of the relationships between functions and 

connectivity in the whole human cortex at a fine-grained brain atlas. 

Keywords 

Functional connectivity; Anatomical connectivity; Functions; fMRI; DTI 
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Introduction 

Functions of the brain are thought to be constrained by its connectivity profile and one of the 

major challenges in neuroscience is to establish comprehensive and quantitative 

connectivity-function relationship across the brain. One critical connectivity profile of a brain 

region is the extrinsic anatomical connection, known as the region’s connectional fingerprint
1
, 

and is regarded to be the basis of functional localization in the cortex. Another critical 

connectivity profile is the functional connectivity at rest and had been corroborated to have 

the same patterns of functions at task
2, 3

. 

The connectivity-function relationship had been studied before and there had already 

been evidences for a close relationship between connectivity and function. In fact, the 

boundaries of distinct regions characterized by anatomical connectivity profiles had been 

found to coincide with boundaries of functionally distinct regions
4, 5, 6, 7

 and anatomical 

connectivity characterized by fiber bundles had been used to predict functional cortical 

regions of interests
8
, corroborating that brain regions with different connectivity features 

should also be functionally distinct. In addition, it had also been further suggested that 

variations in the connectivity profile should explain functional differentiation
1, 9

 and 

connectivity features could be used to predict functions. On the one hand, Saygin et al.
10

 used 

anatomical connectivity determined via diffusion tensor imaging (DTI) to predict functional 

activation to faces in the fusiform gyrus. Then, Osher et al.
11

 extended it to multiple visual 

categories across the whole cortex. The close relationship between connectivity and function 

was demonstrated in the study of Saygin et al.
12

, which showed that anatomical connectivity 

arose early in development and instructed subsequent functional development of the visual 
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word form area. On the other hand, Tavor et al.
13

 pointed out that it was possible to use 

functional connectivity at rest to predict individual differences in functional response during 

tasks.  

However, the investigation of the relationship between functions and anatomical 

connectivity had only been limited to a few visual contrasts in Saygin et al.
10

 and Osher et 

al.
11

, and it is unknown whether both anatomical and functional connectivity profiles have 

consistent relationships with functions in various functional domains. Moreover, it remains to 

address whether the relationship between anatomical connectivity and functions is universal 

across the whole cortex, especially some high-level regions that are highly variable across 

individuals. 

The current study aims at addressing the above two questions by using a linear 

regression model and the Brainnetome Atlas
14

 to investigate the connectivity-function 

relationship at a voxel-wise scale in each cortical region of the Brainnetome atlas across 

seven tasks from the Human Connectome Project (HCP). Specifically, the linear model was 

formalized as: Y � Xβ � E, where Y represented the functional activation of voxels in a 

region, X represented voxels’ connectivity profile and E represented the functional portion 

that could not be explained by connectivity profile. Anatomical connectivity was 

characterized by probabilistic tractography from DTI data and functional connectivity was 

characterized by the correlation of two resting state functional magnetic resonance imaging 

(fMRI) time series. A portion of E can be controlled by the functional activation level since 

high-activation voxels have more meaningful information compared to random noises. To 

prevent over fitting, we divided the subjects into two groups, the training group was used to 
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learn the relationship between the function and connectivity, and the testing group was used to 

assess the generalization of the learned relationship by evaluating the similarity between the 

predicted activation and the actual activation. We did permutation test on the linear model by 

shuffling the parings between Y and X to generate random models. We assessed the 

individual task variation of each region in a task by averaging the similarities between all 

pairs of subjects and then subtracted from one. 
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Results 

Original model against random models 

If a subject’s predicted accuracy from the original model was greater than the 95th 

percentile of that subject’s random predictions, we regarded it as a better predictor than 

random. For each contrast and each region, we calculated a permutation indicator as the 

percentage of test subjects that had connectivity models that performed better than random. 

For each contrast, we plotted the permutation indicator for each region against that region’s 

averaged prediction accuracy. We selected some representative contrasts in Fig. S1A for the 

functional connectivity and Fig. S1B to show the anatomical connectivity. We found that the 

permutation indicator was highly correlated with the prediction accuracy. Not all the regions’ 

prediction accuracies were significantly better than the random results; only models that had 

high accuracies were likely to be better than the random models. Which regions had models 

with a high accuracy depended on the contrast. Of all the cortical regions across all the test 

subjects, only a few contrasts’ predictions, such as the PUNISH-REWARD contrast for 

GAMBLING, were not better than random because these contrasts had a very low activation 

level throughout the whole cortex.  

Prediction results visualized on the cortex 

We selected two representative contrasts and visualized the actual activation and 

predicted activation of a single subject in Fig. 1 and Figs. S2, the overall patterns of both 

predicted activation were similar to the actual activation. To analyze the prediction results 

quantitatively, we presented the each region’s activation profile and individual task variation 

in Fig. 2 and Fig. S3. The activation profile of a region was characterized as the averaged 
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activation of all the voxels within that region across all the training subjects. The lateral 

pre-frontal regions such as the inferior frontal junction (IFJ) and inferior frontal sulcus (IFS), 

and a few visual cortices such as the caudal lingual gyrus (cLinG) and middle occipital gyrus 

(mOccG) showed high individual task variations across all tasks. We also presented the 

averaged prediction accuracies made by both connectivity profiles in Fig. 3 and Fig. S4. 

Overall, the patterns of both prediction accuracies were very similar and both connectivity 

profiles had good prediction results in most activated regions shown in Fig. 2. However, 

anatomical connectivity had poor prediction results compared to functional connectivity in 

some pre-frontal and visual cortices which had relatively high individual task variation. The 

precise descriptions of these results were presented below. 

Activation profile and model performance 

The model performance of a region was related to that region’s activation profile. We 

correlated the activation profile of each region with the averaged model prediction accuracy 

of the same region, and the results were provided in Figs. S5A and S5B. The prediction 

accuracy was highly correlated with the absolute activation level, indicating that both 

connectivity profiles could only have good prediction results in activated regions, since 

random noises had more impacts on the model in less activated regions. However, anatomical 

connectivity had bad prediction results in a few regions consistently across different tasks, 

even though these regions had relatively high activation in the tasks. Those regions included a 

few pre-frontal regions such as the IFJ and IFS, and a few visual cortices such as the cLinG 

and mOccG. 

Model performance comparison between anatomical and functional connectivity 
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For each contrast, we plotted each cortical region’s prediction accuracy made using 

anatomical connectivity against that cortical region’s prediction accuracy made using 

functional connectivity, as seen in Fig. 4. We did paired-t test to find the regions that had big 

differences of prediction accuracies between these two connectivity profiles. After a strictly 

family wise error correction with p < 1e-4, only a few pre-frontal and visual cortices survived 

the correction consistently across different tasks. Overall, the prediction accuracies made by 

anatomical connectivity were very comparative to those made by functional connectivity, 

indicating that anatomical connectivity had good explaining ability to task activation in most 

regions across a wide task domains. However, anatomical connectivity had very low 

prediction accuracies compared to functional connectivity in a few regions such as the IFJ, 

IFS, cLinG and mOccG across many task domains, even though those regions had relatively 

high activation. The particular properties of these regions were discussed below. 

Model performance and individual task variation 

 We plotted each region’s individual task variation against that region’s prediction 

accuracy made using anatomical or functional connectivity in Fig. 5 and Figs. S6. Most 

regions that had more individual task variation were less activated and random noises had 

more effects in these regions. However, the few pre-frontal and visual cortices mentioned 

previously had relatively high activation as well as high individual task variation that must be 

related to other factors beyond random noises. In these regions with relatively high activation 

as well as high individual task variation, anatomical connectivity had poor explaining ability 

of the task activation but functional connectivity still made good predictions.  

Individual variation of functions and connectivity features 
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For each of the 210 cortical regions, we calculated that region’s inter-subject variation for 

both connectivity features (see Figs. 6A and 6B). We did a paired t-test and found that the 

functional connectivity’s indicator for the inter-subject variation was very significantly 

smaller (p < 1e-6) than that for the anatomical connectivity, a finding which meant that 

functional connectivity was more variable than the anatomical connectivity across the 

subjects. The patterns of between-subject variation of functional connectivity but not 

anatomical connectivity were similar to the patterns of individual task variation in Fig. 2, with 

motor areas had relatively low between-subject variation and pre-frontal regions had 

relatively high between-subject variation. We tested how the individual variation of 

connectivity features were related to the individual variation of functional activation. Since 

the random noises was a potential confounding factor, we also used the activation level as an 

explaining factor for the individual variation of function. We concatenated each region’s 

individual variation of task activation and activation level across all contrasts and regressed 

out the factor of activation level from individual variation of task activation. We found that 

the correlation between individual variation of task activation and individual variation of 

functional connectivity was 0.25 (p < 1e-10), but the correlation between individual variation 

of task activation and individual variation of anatomical connectivity was 0.03 (p = 0.005), 

meaning that the individual variation of task activation could not be related to the individual 

variation of anatomical connectivity.  

Prediction of individual functional difference 

We concatenated the prediction for each region to calculate the between-subjects 

cross-correlation matrices for the whole cortex. We tested whether the between-subjects 
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cross-correlation matrices were diagonal-dominant by calculating the diagonal-dominant 

indicator as the percentage of test subjects that had predictions that best matched the subject’s 

own actual response. The between-subjects cross-correlation matrices for the whole cortex for 

some of the contrasts are presented in Fig. 7. The between-subjects cross-correlation matrices 

made using functional connectivity are more diagonally dominant than those made using 

anatomical connectivity, a finding which indicated that anatomical connectivity could not 

capture as much of the individual functional differences as functional connectivity could and 

corresponded with the previous result that individual task variations were less correlated with 

anatomical connectivity profile. 
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Discussion 

To investigate the precise relationship between connectivity profile and function, we 

examined whether both connectivity profiles could be used in a linear regression model to 

predict functional activation in the whole human cortex across a wide range of task domains. 

We found that for each contrast, the connectivity profile could only have good predictions of 

functional activations in cortical regions that were the most task relevant. Task relevant 

regions are those regions that exhibit high activations during a task. The prediction accuracies 

of the non-task relevant regions were comparatively much lower and unlikely to be better 

than random permutation results. Thus, testing the connectivity-function relationship in 

task-relevant regions is necessary. That is also the reason why we adopted the HCP dataset, 

which contains a wide range of functional domains. By examining the connectivity-function 

relationship at a fine-grained brainnetome atlas across seven tasks, we demonstrated that 

anatomical connectivity had a close relationship with function as well as functional 

connectivity in most of cortical regions, however in a few regions which had high individual 

task variation such as the pre-frontal cortices IFJ and IFS, anatomical connectivity made poor 

predictions compared to functional connectivity. Although anatomical connectivity could 

have comparative prediction accuracies in most regions, it could not capture individual 

functional differences as well as functional connectivity.  

The results that anatomical connectivity were comparative to functional connectivity in 

predicting the functions in most cortical regions validated the close relationship between 

functions of the human brain and its underlying structural substrates. Numerous studies had 

demonstrated that the wiring of neurons were essential in determining their functions in 
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non-human animals. For example, Briggman et al.
15

 indicated that the structural wiring 

asymmetry contributes to the direction selectivity of the retina. And Glickfeld et al.
16

 also 

showed that cortical-cortical projections were critical in the transmission of specific 

information to downstream targets, demonstrated that specific connectivity patterns were 

important for areal specialization, where neighboring neurons were functional diverse. 

Therefore, the connections of neurons or regions determined their information input and 

output flow, and were critical for defining their functional properties, which were the 

fundamental underlying reasons that we found a close relationship between connectivity and 

functions in the human brain at the neuroimaging level. 

A plausible explanation of why functional connectivity could reflect individual functional 

differences better than anatomical connectivity is the close relationship of functional networks 

during rest and tasks. As others have showed, brain regions that interact with each other 

during tasks are also continuously interacting with each other during rest with the same 

functional hierarchy, and the functional network architecture during tasks is shaped primarily 

by an intrinsic network architecture that is also present during rest
2, 3

. Mennes et al.
17

 found 

out that a region’s intrinsic activity as measured during rest predicted that same region’s 

activity induced by a Flanker task and Tavor et al.
13

 also pointed out that resting state 

connectivity profile can be used to capture the individual differences of task activation in a 

wide task domains.  

Of course, functional networks reflected the underlying structural networks
18

. 

Measurements of spontaneous activity revealed functional connectivity patterns that were 

similar to anatomical connectivity, suggesting that functional connectivity was highly 
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constrained by anatomical connectivity
19, 20

. Simulation studies had also been done to predict 

human resting-state functional connectivity from anatomical connectivity
21

. However, 

although structural networks underlie functional networks, the relationship between structural 

and functional connections is far more complex. As Honey et al.
21

 pointed out, strong 

functional connections commonly existed between regions with no direct structural 

connection, and indirect connections and interregional distance accounted for some of the 

variability in functional connectivity that was unexplained by direct anatomical connectivity. 

Therefore, functional connections reflect a combination of numerous dynamic influences 

traveling through the network along many paths, some of which are indirect and take multiple 

intermediate steps
22

. In this view, using only the structural connections of a cortical region 

may not capture these indirect and dynamic influences as well as functional connections do. 

In addition, the results that anatomical connectivity was less variable across subjects than 

functional connectivity and reflected less individual functional differences could also be 

interpreted from another perspective. Individual variations are seen in all task domains, 

however, the individual differences in task activations are often related to volatile factors and 

are removed through averaging. Therefore, even though anatomical connectivity could not 

reflect individual functional differences as well as functional connectivity due to the close 

relationship between the functional networks during tasks and at rest, anatomical connectivity 

could be regarded as more stable than functional connectivity and would have advantages in 

other perspectives, such as parcellation of the brain, which demand the borders of the 

parcellation to be smooth and less variable. 

Further, there were also some limitations in characterizing anatomical connectivity and 
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functions in this research. The anatomical connectivity derived from diffusion MRI 

tractography in this research. However, Thomas et al.
23

 compared tract-tracer and diffusion 

MRI tractography and observed limited accuracy of tractography, and Reveley et al.
24

 further 

validated that tractography methods were biased in their identification of long-range 

projections toward cortical gyri, much of which could be ascribed to the superficial white 

matter. Maier-Hein et al.
25

 also showed that the reliability of fiber tracking algorithm was 

limited based on orientation information alone and this need to be considered when 

interpreting tractography and connectivity results. Besides, we used connection propabilities 

to characterize anatomical connectivity strength and the accurate defining of the connectivity 

strength also remained open. The functions at task state and functional connectivity at resting 

state were both characterized by blood oxygen-level dependent (BOLD) signal. The BOLD 

signal reflected the underlying neural connectivity indirectly by assessing the changes in 

deoxyhemoglobin, and its signal source can be complex and is also dependent on imaging 

parameters and techniques
26

. The extent to which that BOLD signal could reflect the actual 

underlying neuronal functions was also obscured
27

. Therefore, these limitations must be 

considered when interpreting the results. 

Even though resting state functional connectivity and functional activation both derived 

from BOLD signal, we demonstrated that extrinsic anatomical connections could as well 

consistently predicted the functions of most cortical regions across a wide range of behavioral 

domains. The inconsistency exhibited in a few pre-frontal and visual cortices with high 

individual variations and these high individual variations could not be explained by 

anatomical connectivity. Future works could also explore the origins of these high 
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inter-subject variations and build more complex models which incorporate indirect anatomical 

connections to reflect the dynamic influences of functional networks. 
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Methods 

Human Connectome Project data 

We used the minimally pre-processed data
28

 provided by the HCP. In total, a group of 40 

subjects were used in our analyses. Acquisition parameters and processing are described in 

detail in several publications
29, 30, 31, 32

.  

Briefly, DTI data were acquired using single-shot 2D spin-echo multiband echo planar 

imaging on a Siemens 3 Tesla Skyra system
31

. These consist of 3 shells (b-values=1000, 2000, 

and 3000 s/mm2) with 270 diffusion directions isotropically distributed among the shells, and 

six b=0 acquisitions within each shell, with a spatial resolution of 1.25 mm isotropic voxels. 

Each subject’s diffusion data had already been registered to his or her own native structural 

space
28

. 

Resting and task fMRI scans were acquired at 2 mm isotropic resolution, with a fast TR 

sampling rate at 0.72 s using multiband pulse sequences
32

. Both sets of functional data had 

already been registered to MNI space
28

. Each subject had four 15-minute resting fMRI runs, 

with a total of 1,200 time points per run. The resting fMRI data were further pre-processed by 

FIX to automatically remove the effect of structured artefacts
33, 34

. The task fMRI contained 

86 contrasts from seven task domains, labeled as EMOTION, GAMBLING, LANGUAGE, 

MOTOR, RELATIONAL, SOCIAL, and WM (working memory). The details of the tasks are 

described in Barch et al.
29

. Because most of the contrast maps were paired with a related 

negative contrast, which is redundant for the purpose of regression modeling, we excluded 

those redundant contrasts and kept 47 contrasts for further regression analysis. 

Connectivity profile  
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We calculated two kinds of connectivity profiles using a brain atlas
14

 containing 210 

cortical regions and 36 sub-cortical regions in our analyses. We tested the 

connectivity-function relationship on each of the 210 cortical regions individually using 

regression analysis. Each of the 210 cortical regions was used as a seed region. For every seed 

region, therefore, there were 209 target cortical regions and 36 target sub-cortical regions. All 

the voxels within the seed region were characterized by two kinds of connectivity features of 

245 dimensions, representing the connectivity of each voxel in the seed region to the 

remaining 245 target regions. Even though we tested the connectivity-function relationship 

only on the cortical regions, the connectivity profiles also included sub-cortical features. 

The functional connectivity was calculated from resting fMRI data. The four runs of 

individual resting state time series data were concatenated after being demeaned and 

variance normalized. The voxel time series for every voxel in the seed region was 

correlated with the averaged time series for each of the remaining 245 target regions. 

The anatomical connectivity was determined via probabilistic diffusion tractography. 

Fiber orientations were estimated per voxel, and probabilistic diffusion tractography was 

performed using FSL-FDT
35

 with 5000 streamline samples in each seed voxel to create a 

connectivity distribution to each of the remaining 245 target regions, while avoiding a mask 

consisting of the ventricles. The probabilistic tractography was performed on each subject’s 

native space, but the atlas and functional data were in MNI space. The nonlinear volume 

registration between MNI and native space is described in Glasser et al.
28

. 

Model training 

To avoid over fitting, we separated the 40 subjects into two groups of 20 subjects. One 
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group was used to train the regression model; the other was used to test the regression model 

and assess the connectivity-function relationship. For each of the total 47 contrasts, we 

performed a regression analysis on each of the 210 cortical regions using both connectivities. 

The regression analysis was modeled as: Y � Xβ � E, where Y is the t-statistical value of the 

contrast maps; X represents either functional connectivity or anatomical connectivity; β is 

the regression coefficient to be estimated from the regression model. To train the regression 

model on the ith cortical region, we concatenated all the voxels of each training subject’s ith 

cortical region into a column. Assuming the ith cortical region has 	�  voxels, Y is a single 

column vector of length �� � 20 � 	�  representing the functional response of all the seed 

voxels, X is a matrix of �� columns and 246 rows representing the connectivity features of 

all the seed voxels plus an intercept term, β is a single column vector of length 246 

representing how each connectivity feature contributes to predicting a seed region’s functional 

response. Similarly, we also obtained a connectivity matrix of �� columns and 246 rows 

from the testing group. After estimating the regression model’s coefficients from the training 

group, we applied these coefficients to the testing group’s connectivity matrix to get the 

predictive functional response of the subjects in the testing group. To get the predictive 

functional response of the entire cortex, we repeated the same procedure for every cortical 

region and then concatenated every region’s prediction.  

Model assessments 

We correlated the predicted response of every subject in the testing group with the actual 

functional response of the same subject to evaluate the accuracy of the predictions. We used 

the correlation coefficients ��� to assess the prediction instead of the mean squared error 
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(MSE) or mean absolute error (MAE) because, unlike MSE and MAE, which are not 

standardized and un-bounded, � is standardized and bounded between 0 and 1. In addition, 

under the least square conditions of the regression model, � squared equals ��, which is the 

goodness of fit of the model and represents the proportion of the variance in the fMRI 

response that can be explained by the connectivity features.  

To evaluate whether the model could capture individual fMRI response differences, we 

correlated each testing subject’s predicted response with each testing subject’s actual response 

to form between-subjects cross-correlation matrices. Theses matrices are row- and column- 

normalized, which accounts for the fact that the actual responses are more variable than the 

predicted responses and removes the global mean correlation, as stated in Tavor et al.
13

. If the 

matrix is diagonally dominant, which indicates that each subject’s predictive response best 

matches that subject’s actual response, then the connectivity profile can capture individual 

specificities in fMRI activations.  

We also compared the inter-subject variation of these two connectivity features for each 

of the 210 cortical regions. For each region, we transformed each subject’s connectivity 

matrix into a column vector and concatenated all the training subjects’ connectivity features 

for that region across the column to get the across-subjects’ connectivity matrix. We 

calculated the indicator of the inter-subject variation as the percentage of the greatest singular 

value of the across-subjects’ connectivity matrix against the sum of all the singular values of 

the across-subjects’ connectivity matrix. If the connectivity feature has low inter-subject 

variation, the across-subjects’ connectivity matrix should be highly degenerate and the 

indicator will be close to one. If the connectivity feature has high inter-subject variation, the 
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across-subjects’ connectivity matrix should be less degenerate and the indicator will be close 

to zero. 

Permutation test 

Also, we did 1000 random permutations to test the connectivity model. We trained the 

models in the same manner, but the pairings between each voxel’s connectivity feature and its 

functional response were shuffled. We then tested how these random models performed on the 

testing group. To test whether the performance of the original model was statistically 

meaningful, we compared the performance of the original model with the performance of the 

random models. For each test subject, we got one prediction accuracy from the original model 

and 1000 prediction accuracies from the random models and calculated whether each 

subject’s prediction accuracy from the original model was higher than the 95th percentile of 

that subject’s random predictions. One thing to notice here is that we only shuffled the data in 

the training group, but not in the testing group. Since we trained the regression model one 

region at a time, we shuffled the pairings within the seed region, but not across the whole 

cortex.  
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Figure legends  

 

Figure 1. A single subject’s prediction result visualized on the cortex. We selected two contrasts and 

visualized the actual and predicted activation of a single subject on the cortex. More examples were 

shown in Fig. S2. AC represents the activation made by anatomical connectivity and FC represents the 

activation made by functional connectivity. The overall patterns of predicted activation by both 

connectivity profiles were very similar to the actual activation. The quantitative analyses of the 

prediction results were presented in the following. 

 

Figure 2. Activation profile and individual task variation. (A) Each region’s mean activation profile 

were calculated by first averaging each voxel’s activation level within a subject and then averaging 

each subject’s mean activation. The threshold values were determined by one sample t-test to find 

regions that had mean activation significantly different from zero (p < 0.05) across subjects. (B) The 

individual task variation of region’s that had mean activation level above the threshold were shown. 

The pre-frontal regions such as the IFJ and IFS, and a few visual cortices such as the cLinG and 

mOccG showed high individual task variations across all tasks. 

 

Figure 3. Averaged prediction accuracies visualized on the cortex. We selected some representative 

contrasts and visualized the the prediction accuracies made by both connectivity profiles on the cortex. 

Both connectivity profiles had similar prediction accuracies in most regions, however, in a few 

pre-frontal and visual cortices that had relatively high activation as well as high individual task 

variation as shown in Fig. 2, anatomical connectivity had poor prediction acuuracies compared to 

functional connectivity. 

 

Figure 4. Model performance comparison between two kinds of connectivity features. Each region’s 

prediction accuracy obtained using anatomical connectivity is plotted against that region’s prediction 

accuracy obtained by functional connectivity. Each region is also color coded by its absolute activation 

level. The antidiagonal indicates that the prediction accuracies made by both connectivities are equal. 

Overall, the prediction accuracies made by these two kinds of connectivity are very similar, but there 

are also some regions that fall far from the antidiagonal, indicating that the differences between the 

prediction accuracies of these two connectivity features are great. 

 

Figure 5. Individual task variation and prediction accuracies. Each region’s individual task variation is 

highly correlated to that region’s predition accuracy made using connectivity profiles. Most regions 

that have high individual functional variation also have low activation. A few pre-frontal and visual 

cortices have high activation as well as high individual functional variation. Anotomical connectivity 

has poor prediction accuracies compared to functional connectivity in those pre-frontal and visual 

cortices. 

 

Figure 6. The inter-subject variation of both connectivity features. (A) Each of the 210 cortical region’s 

indicator of inter-subject variation is plotted in the boxplot. We did a paired t-test and found that the 

functional connectivity’s indicator of inter-subject variation was very significantly smaller (p < 1e-6) 

than that for anatomical connectivity, meaning that functional connectivity was more variable across 
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subjects than anatomical connectivity. (B) Each region’s inter-subject variation of connectivity features 

is mapped onto the cortex. Functional connectivity has less individual variation in motor areas and 

more variation in pre-frontal areas. However, the individual variation pattern of anatomical 

connectivity is not similar to that of functional connectivity. 

 

Figure 7. Between-subjects cross-correlation matrices for the whole cortex. The cross-correlation 

matrices made using functional connectivity are more diagonally dominant than those made using 

anatomical connectivity. Almost all the subjects’ predictions made using functional connectivity best 

matched their own actual functional responses, but the predictions made using anatomical connectivity 

did not capture as many individual differences as functional connectivity. 
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Figure 1. A single subject’s prediction result visualized on the cortex 
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Figure 2. Activation profile and individual task variation 
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Figure 3. Averaged prediction accuracies visualized on the cortex 
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Figure 4. Model performance comparison between two connectivity features 
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Figure 5. Individual task variation and prediction accuracies. 
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Figure 6. The inter-subject variation of connectivity features 
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Figure 7. Between-subjects cross-correlation matrices 
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