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Rennes, 35000, France Madrid, Spain

{houssem-eddine.chihoub, shadi.ibrahim, gabriel.antoniu}@inria.fr mperez@fi.upm.es

Abstract—With the emergence of cloud computing, many
organizations have moved their data to the cloud in order
to provide scalable, reliable and highly available services. To
meet ever growing user needs, these services mainly rely on
geographically-distributed data replication to guarantee good
performance and high availability. However, with replication,
consistency comes into question.

Service providers in the cloud have the freedom to select the
level of consistency according to the access patterns exhibited
by the applications. Most optimizations efforts then concentrate
on how to provide adequate trade-offs between consistency
guarantees and performance. However, as the monetary cost
completely relies on the service providers, in this paper we
argue that monetary cost should be taken into consideration
when evaluating or selecting a consistency level in the cloud.
Accordingly, we define a new metric called consistency-cost
efficiency. Based on this metric, we present a simple, yet
efficient economical consistency model, called Bismar, that
adaptively tunes the consistency level at run-time in order to
reduce the monetary cost while simultaneously maintaining
a low fraction of stale reads. Experimental evaluations with
the Cassandra cloud storage on a Grid’5000 testbed show the
validity of the metric and demonstrate the effectiveness of the

proposed consistency model.

Keywords-Cloud storage; geographical replications; consis-
tency; Monetary cost; efficiency;

I. INTRODUCTION

Cloud computing has recently emerged as a popular

paradigm for harnessing a large number of commodity

machines. In such a paradigm, users acquire computational

and storage resources with respect to a pricing scheme

similar to the economic exchanges in the utility market

place: users can lease the resources they need in a Pay-

As-You-Go manner [1]. For example, the Amazon Elastic

Compute Cloud (EC2) is using a pricing scheme based on

virtual machine (VM) hours: Amazon currently charges per

small instance hour at $0.065 [2].
With data growing rapidly and applications becoming

more data-intensive, many organizations have moved their

data to the cloud aiming at providing scalable, reliable

and highly available services. Cloud providers allow service

providers to deploy and customize their environment in

multiple physically separate data centers to meet the ever-

growing user needs. Services therefore can replicate their

state across geographically diverse sites and direct users to

the closest or least loaded site.

DC(A1)

R2R1

...

Region(A)

DC(B1)

R3

User(m+1) User(k)

..

Region(B)

DC(C1)

R5

User(k+1) User(n)

...

Region(C)

DC(Bx)

R4 .....

(2)User(1) User(m)

Figure 1. Leveraging Geographically-distributed data Replicas in the
Cloud: Having replications in different datacenters results with fast access

(Users1 located at Region (A) and therefore directed to R1 and Users(m+1)
located at Region(B) and therefore directed R3); Under heavy load — when

multiple replicas coexists — the load will be shared by these replicas and

therefore improve the performance (The heavy load distributed between R1

and R2 in Region ); In case of failure, the load will be directed to the
closest replica within the same datacenter if possible or on remote one

(the replicas within DC(B1) and DC(C1) fails and the load is directed to

DC(Bx))

Replication has become an essential feature in storage

systems and is extensively leveraged in cloud environments

[3][4][5]. It is the main reason behind several features such

as fast accesses, enhanced performance, and high availabil-

ity.(as shown in Figure 1).

For fast access users’ requests can be directed to the closest

data center in order to avoid communications’ delays and

thus insure fast response time and low latency.

For enhanced performance users’ requests can be re-

directed to other replicas within the same data center (but

different racks) in order to avoid overloading one single copy

of the data and thus improve the performance under heavy

load.

For high availability failure and network partitions are

common in large-scale distributed systems; by replicating

we can avoid single points of failure.

A particularly challenging issue that arises in the con-

text of storage systems with geographically-distributed data

replication is how to ensure a consistent state of all the repli-

cas. Insuring strong consistency by means of synchronous

replication introduces an important performance overhead

due to the high latencies of networks across data centers
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(the average round trip latency in Amazon sites varies

from 0.3ms in the same site to 380ms in different sites

[6]). These high latencies may generate significant financial

losses for service providers that use such storage systems.

For instance, the cost of a single hour of downtime for

a system doing credit card sales authorizations has been

estimated to be between 2.2M$-3.1M$ [7]. Consequently,

many Internet services tend to rely on storage systems with

eventual consistency. Eventual consistency allows the system

to return some stale data at some points in time, but ensures

that all data will eventually become consistent.

Recently many cloud storage systems have been devel-

oped, such as Dynamo [8], Cassandra [9], BigTable [4],

Yahoo! PNUTS [10], and HBase [11]. These solutions are

practical to use as cloud and web service storage backends.

They allow many web services to scale up their systems in

an extreme way, while maintaining performance with very

high availability. For example, Facebook uses Cassandra to

scale up to host data for more than 800 million active users

[12]. However, the undoubted availability and performance

of such solutions prove to be too costly in terms of inconsis-

tency. As shown in [13], under heavy reads and writes some

of these systems may return up to 66.61% stale reads. This

is an alarming rate, as it means that most probably two out

of three reads are useless. This in turn adversary impacts

the financial profit of the services providers: it generates

significant costs as it violates the SLAs of services users.

Consistency-performance and consistency-availability

trade-offs have long been investigated in literature: many

consistency optimization solutions have been devoted to

improving the application’s throughput and/or latency while

preserving acceptable stale reads rate.However, in the area

of cloud computing, the economical cost of using the rented

resources is very important and should be considered when

choosing the consistency policy.

To address these issues, this paper makes the following

three contributions:

1) Service/bill details. To our knowledge, this is the

first study to provide in-depth understanding of the

monetary cost of cloud services with respect to their

adopted consistency models. We discuss the different

resources contributed to a service and the cost of

these resources. This paper introduces an accurate

decomposition of the total bill of the services into three

parts with respect to the contributed resources:

• Instances cost: the cost of leasing the virtual

machines’ instances during the running time of

the service.

• Storage cost: the cost of the storage space attached

to the virtual machine and the cost of the requests

as well.

• Network cost: the cost of the network traffic

including the inter- and intra-datacenter commu-

nications.

To complement our analysis, a series of experiments

are conducted to measure the monetary cost of differ-

ent consistency levels in the Cassandra system [9] on

Grid’5000 [14] and Amazon EC2 [2]. Such a study

is important, as a big-picture understanding of the

consistency in geo-replicated systems must take into

account the monetary cost within the cloud.

2) Novel metric. We define a new metric called

consistency-cost efficiency to evaluate consistency in

the cloud.

3) Equitable consistency and low cost. Based on our

metric, we introduce a simple yet efficient approach

named Bismar, which adaptively tunes the consistency

level at run-time in order to reduce the monetary

cost while simultaneously maintaining a low frac-

tion of stale reads. Bismar relies on a consistency

probabilistic model that estimates the stale reads and

the relative costs of the application according to the

current read/write rates and network latency.

We have implemented Bismar with intensive evaluations

on the Cassandra cloud storage system on Grid’5000 [14].

We use the Yahoo! Cloud Serving Benchmark (YCSB) [15]

to mimic a real cloud serving environment with elastic

access pattern workloads. We show that Bismar can lead

to efficient costs without exceeding the tolerated number of

stale reads on the applications.

Our paper is the first to provide a thorough analysis of

the consistency cost in cloud storage systems. We view our

paper as a necessary step for bridging the gap between the

business model of the cloud and the research community in

distributed systems aiming at designing and building more

efficient and economical-oriented consistency models for

cloud services.

This paper is organized as follows. Section II briefly

discusses the eventual consistency model in the cloud and

focuses on the billing details when adopting this model

in the cloud. Section III discusses the different resources

contributed to service and the cost of these resources, and

reports on our empirical study on the monetary cost of

consistency models. Then section IV describes the new cost

efficiency metric for consistency in the cloud. In section V

we describe the Bismar implementation and present detailed

results of experimental evaluations. Section VI discusses

related work. Finally, section VII presents our conclusions

and future work.

II. BACKGROUND AND MOTIVATION

A. Eventual Consistency in the Cloud

The way consistency is handled has a big impact on

the performance. Traditional synchronous replication (strong

consistency) dictates that an update must be propagated to

all the replicas before returning success. In cloud services

h
a
l-
0
0
7
5
6
3
1
4
, 
v
e
rs

io
n
 2

 -
 1

9
 D

e
c
 2

0
1
2



where data updates occur often, it is difficult to keep the

consistency among replicas across the entire cloud storage

system. To solve this problem, eventual consistency with

an asynchronous quorum replication has been introduced.

Here the consistency level is chosen on a per-operation

basis and is represented by the number of replicas in the

quorum (a subset of all the replicas). Data accesses and

updates are performed to all replicas in the quorum. Thus,

using this level for both read operations and write operations

guarantees that the intersection of replicas involved in both

operations contains at least one replica with the last update.

Many cloud storage systems such as Dynamo [8], Cassan-

dra [16], Voledemort [17], and Riak [18] adopt asynchronous

quorum replication [19][20]. This gives the application

writer more flexibility when selecting the type of consistency

that is appropriate for each operation.

B. Service’s Bill Decomposition

Since cloud computing is an economically-driven dis-

tributed system paradigm, deploying and running services

and applications in the cloud comes with monthly bill. In

general, services require a set of linked servers (distributed

in multi-sites) to run the web-services’ applications; these

servers are attached to a group of storage devices which store

the services’ data. With respect to cloud resources’ offers,

a basic service bill will include charges for the following

resources1:

Computing resources. Virtual machines equipped with a

certain amount of CPU and memory resources. Cloud IaaS

providers offer different VM instances — varying in the re-

source’s capacity and accordingly the prices — and typically

charged for the incurred virtual machine hours. For example,

Amazon EC2 [2] offers a set of instances with different

configurations and prices: while the cheapest instance (small

instance, equivalent to a server with a CPU capacity of

a 1.0-1.2GHz and memory size of 1.7GiB) comes at cost

of 0.065$ per Hour, the most expensive instance (High I/O

Quadruple Extra Large Instance, equivalent to a server with

CPU capacity of 35 × 1.0 − 1.2GHz and memory size of

60.5GiB) comes at cost of 3.100$ per Hour.

Storage resources. Cloud IaaS providers offer two types

of storage services that are different in their pricing and

usability. Taking Amazon Web Services as an illustrating

example, there are two representative storage services: Ama-

zon Simple Storage Service (Amazon S3) and Amazon

Elastic Block Store (Amazon EBS). The storage services

are typically billed according to the used GBs per month

and number of requests to the stored data. Taking into

account the tremendous amount of data that current services

need to manage and maintain, and the need to reduce the

1The pricing of some cloud services (computing and storage services)
may vary at different providers or at different provider-sites. As the goal
of our study is to explore the consistency cost variation, we assume that
the computing and storage pricing is the same at different sites

latency of data movement when processing data, Amazon

EBS becomes the customer’s first choice to achieve not only

highly scalable and high performance services but highly

reliable and predictable ones as well. This is despite the fact

that Amazon EBS can be attached to any running Amazon

EC2 instance and can be exposed as a device within the

instance. Consequently, in this study we adapted the Amazon

EBS pricing scheme.

Network resources. Cloud IaaS providers equip their in-

frastructure with high speed networks not only within data

centers but also across geographically distributed centers.

This comes at a monetary cost, although services don’t

currently reflect the network usage and cost. The network

cost is usually embedded within the cost of other services

(computational service and storage services), and it varies in

accordance to the service type and within/across sites (e.g.,

the cost of data transfer between Amazon EC2 instances is

zero if they are located in the same availability zone).

C. Monetary Cost of consistency: Why it does matter?

With data growing rapidly and applications becoming

more data-intensive, a large class of organizations have

migrated their data along with their storage backends into the

cloud as to provide efficient services in terms of scalability,

reliability, and availability : Cloud providers allow service

providers to deploy and customize their environment in

multiple physically separated data centers to meet the ever-

growing users’ needs. Services therefore can replicate their

date across geographically diverse sites and direct users to an

appropriate site based on the locality of access and site load.

Thus, replication has become a necessity in these services.

However, with replication, consistency comes into question.

We observe that stronger consistency by the means of

synchronous replications may introduce high latencies due

to the cross-sites communication and therefore will signifi-

cantly increase the monetary cost of the services:

1) High latency causes high monetary cost. Obviously be-

cause the cost of leasing a VM-instance is proportional

to the latency (run-time), in addition to the increased

cost of both the storage (e.g., number of requests to

the copies) and the communication cost (e.g., number

of cross-sites communication) due to the synchronous

cross-site replication.

2) High latency causes significant financial losses for

service providers that use such storage systems. For

instance, the cost of a single hour of downtime for a

system doing credit card sales authorizations has been

estimated to be between 2.2M$-3.1M$ [21].

On the other hand, we observe that eventual consistency

or weaker consistency may reduce the monetary cost with

respect to a lower maintained latency and therefore lower

instance costs, but this comes at the risk of increasing the

rate of stale data (e.g., [13] demonstrated that under heavy

reads and writes some of these systems may return up to
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66.61% stale reads). This in turn adversarily impacts the

financial profit of the service providers: it generates signifi-

cant financial losses as it violates the SLAs of services users.

This makes eventual consistency a two-edged sword. While

the eventual consistency has been exploited extensively in

literature and commercial products, its monetary cost and

negative impacts on the stale reads rate have been largely

ignored.

The aforementioned observations, combined with the ur-

gent need to address the consistency-cost efficiency and

stale reads problems associated with quorum replications,

motivate us to an in-depth study of the monetary cost of the

different consistency levels in the cloud and — as a result

— to propose our cost efficient optimization.

III. MICROSCOPIC OF CONSISTENCY COST

In section 2.2, we gave a big-picture understanding of

the cost of services deployed in the cloud by describing the

different resources contributed to obtain a certain level of

consistency in geo-replicated storage systems. In this section

we complement our macroscopic analysis with a detailed

analysis of the consistency cost in the cloud, using a widely

used open source geo-replicated storage system that supports

multi-level consistency as an illustrated example, namely

Cassandra [9].

Ideally, we would like to get a deep idea of why different

consistency levels may result in different costs, how the

resources accordingly contribute to the total cost, and how

background operations such as read repair can impact the

overall cost.

The choice of consistency level cl affects all of these

three costs. When higher consistency levels are required

more replicas are involved in the requests. That affects both

operations latency and throughput, which leads to higher

runtime. Similarly, network traffic grows higher with higher

consistency levels, which leads to a higher networking

bill. Moreover, higher consistency levels generate a higher

number of requests from storage devices, directly affecting

storage cost.

Formula 1 presents the overall cost for geo-replicated

based services for a given consistency level cl. Essentially,

this cost is the combination of the VM instances cost

Costin(cl), the backend storage cost Costst(cl), and network

cost Costtr (cl).

Costall(cl) = Costin(cl) + Costtr(cl) + Costst(cl) (1)

A. Computing unit: Instances cost

A common pricing scheme used by recent cloud providers

is primarily based on virtual machine (VM) hours. Formula

2 presents the cost of leasing nbInstances VM-instances for

a certain time runtime.

Costin(cl) = nbInstances × price × ⌈
runtime

timeUnit
⌉ (2)

Here the price is the dollar cost per timeUnit2 (e.g., In

Amazon EC2 small instance the price is 0.065 per hour).

In order to generalize our pricing model and avoid inaccu-

rate pricing due to unexpected network behavior (especially

that we are studying the consistency cost in geo-distributed

sites), we present the runtime in the form of number of op-

erations nbOps in the workload while fixing the throughput

of a specific consistency level.

runtime =
nbOps

throughput
(3)

The throughput varies from one consistency level to another

according to the size of the internal traffic between sites.

B. Storage cost

As mentioned earlier the storage cost includes the cost

of leased storage volume (GB per month) and the cost

of I/O requests to/from this attached storage volume. In

Amazon EC2 for instance, this would be the cost of attaching

Amazon EBS to VM-instances in order to increase the

storage capacity using a highly durable and reliable way.

The total storage cost is accordingly given by Formula 4:

Costst(cl) = costPhysicalHosting + costIORequests (4)

Based on the size of hosted data ( including all data

replications) nbNodes × dataSize where dataSize is the

average data size per volume attached to VM-instance (

locality and load balancing are important features in current

data centers), we calculate the costPhysicalHosting in

Formula 5.

costPhysicalHosting = nbNodes × ⌈
dataSize

sizeUnit
⌉ × price (5)

where the price is the dollar cost per sizeUnit (e.g., In

Amazon EBS the price is 0.10 per GB −month).

We further estimate costIORequests in Formula 6.

costIORequests =
cl × nbOps + readRepairIO

nbRequestsUnit
× price (6)

where nbOps is the number of operation with respect to the

consistency level cl (it varies according to the number of

replications involved in an operation). The read repair in

a background operation is mostly triggered when inconsis-

tency is detected. It generates requests to the storage devices

and therefore it is important to include the read repair

operations in our formula readRepairIO (more details about

the read repair function will be provided in next section 3.1).

2We use the ceiling function because most providers charge each partial
instance-hour as a full hour.
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C. Network cost

Network cost varies in accordance to the service type

of the source and destination (e.g., computational service

and storage services) and whether the data transfer is within

or across sites. In general, inter-datacenter communications

is more expensive than intra-datacenter communications.

Formula 7 shows the total cost of network communications

as the sum of inter- and intra-data center communications
3(trafficInterDC and trafficIntraDC).

Costtr (cl) = price(interDC) × ⌈
trafficInterDC

sizeUnit
⌉

+price(intraDC) × ⌈
trafficIntraDC

sizeUnit
⌉

(7)

where price(interDC) and price(intraDC) are the dollar cost

per sizeUnit.

Hereafter we illustrate how to estimate both the inter- and

intra-datacenter traffic.

Formula 8 shows our model of the inter datacen-

ter, trafficInterDC, given the replicas communication

interDcRep, the request routing requestrouting, and the

internal mechanisms traffic IMechTraffic.

trafficInterDC = interDcRep + requestRouting

+IMechTraffic
(8)

The inter-site traffic generated by the replicas communica-

tions strongly depends on the consistency level and the dis-

tribution of replication among datacenters (i.e., the number

of replicas involved in a request to other datacenters which

can be estimated as ⌊(nbDc - 1)× cl
nbDc

⌋4 where nbDc is the

number of datacenters). Formula 9 shows our estimation of

the inter traffic generated by the replicas communications.

InterDcRep = ⌊(nbDc - 1) ×
cl

nbDc
⌋

×AvgDataSize × nbOps
(9)

where avgDataSize is the average data size needed to be

propagated to other replicas for one operation.

The traffic generated by the request routing and internal

mechanisms depends essentially on the storage system de-

sign and implementation. Since our approach is destined to

run on Cassandra storage, hereafter we illustrate such values

with respect to this particular storage system. In Cassandra,

all nodes (peers) have equal ranges of data and thus have

an equal number of keys: this implies that each node is

responsible for 1
number of nodes

fraction of the keys.

3For simplicity, we consider only two geographical areas within which
the prices differ. Some cloud providers may have more geographically-
oriented prices: within availably zone, within regions, between regions.
However, our pricing model can be easily extended to any number of
geographical-oriented pricing options.

4For example if the (nbDC=3) and number of replicas involved in an
operation (cl=4), the estimated number of replicas involved in a request on
other dataceters is ⌊2 × 4

3
⌋ = ⌊ 8

3
⌋ = 2 where ⌊ ⌋ is a floor function.

Giving the number of nodes as nbNodes and the average

number of nodes per datacenter avgNodesDc, the average

number of request routing for an operation can be estimated

as nbNodes−avgNodesDc
nbNodes

. The size of inter traffic generated

by request routing for a number of operations nbOps is

therefore denoted as Formula 10.

requestRouting(interDC) =
nbNodes − avgNodesDc

nbNodes
×nbOps × avgDataSize

(10)

In Cassandra storage, the main internal traffic is generated

by the gossip traffic and read repair mechanism as shown

in Formula 11. The gossip traffic — used to share the

state of nodes in the ring — is relatively small since it is

just transmitting the state of one node which is negligible

compared to data transfer.

IMechTraffic = gossip(interDc)

+readRepair(interDc)
(11)

On the other hand, the read repair is used to propagate data

to out of date (stale) replicas. The read repair function is

triggered in two cases:

1) At random times for some requests: defined by the

system administrator.

2) Whenever inconsistency is detected.

Formula 12 shows that read repair traffic depends on the

probability or chance of triggering the mechanism rrChance

which is defined by the storage administrator, as well as

the chance of detecting mismatching replicas’ timestamps

mmChance = rf−cl
rf

× nbWrites
nbReads+nbWrites

, where rf is the

replication factor, nbWrites and nbReads are the number of

write and reads.

readRepair(interDC) = nbOps × avgDataSize

×(rrChance × ⌊
rf

nbDc
⌋+ mmChance × ⌊

rf − cl

nbDc
⌋)

(12)

Computing the intra datacenter traffic size is very similar

to the one of inter datacenter traffic. However, the intra traffic

size of request routing is given by Formula 15.

requestRouting(intraDC) =

avgNodesDc − 1

nbNodes
× nbOps × avgDataSize

(13)

Similarly, we only consider the traffic in-between replicas

within the same datacenter: Accordingly, the intra-site traffic

generated by the replicas communications is denoted as in

Formula14 and the read repair traffic is given by Formula

15

intraDcRep = (⌈
cl

nbDc
⌉ − 1)× avgDataSize × nbOps (14)
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readRepair(intraDC) = nbOps × avgDataSize

×(rrChance × (rf − ⌊
rf

nbDc
⌋)

+
rf − cl

rf
× ((rf − cl)− ⌊

rf − cl

nbDc
⌋))

(15)

D. Practical View of Consistency Cost in Cassandra

As we mentioned, our goal is to investigate the mone-

tary cost variation of geo-replicated storage systems when

adopting different consistency levels. Consequently we com-

plement and benefit our earlier analyze, by evaluating the

monetary cost in Cassandra.

1) Experimental setup: We run our experiments on

Grid’5000 [14] and Amazon Elastic Compute Cloud (EC2).

On Grid’5000, we deployed Cassandra on two datacenters

(sites): with 30 nodes on the Sophia site and 20 nodes

on the Nancy site as shown in Figure 2(a). All the nodes

in Sophia are equipped with a 250GB hard disk, 4GB of

Memory, and 4-cores AMD Opteron. The nodes in Nancy

are equipped with disks of 320GB space, 16GB of Memory,

and 8-cores Intel Xeon. The network connection between

the two sites is provided by RENATER (The French national

telecommunication network for technology, education, and

research). It consists of a standard architecture of 10Gbit/s

dark fibers. The network route between the two sites is the

following: Nancy-Paris-Lyon-Marseille-Sophia: the average

round trip latency is on average 0.230ms within the same

site and 18.2ms in-between the two sites. On Amazon EC2,

we also deployed Cassandra on 18 large instances (m1.large)

on two availability zones: 10 instances on us-east-1a and 8

instances on us-east-1d. The average round trip latency is

on average 0.284ms within the same site and 0.813ms in-

between the two availability zones.

We used Cassandra-1.0.2 with a replication factor of 5

replicas: 2 replicas are allocated in Nancy and 3 replicas

in Sophia (The same replication factor is used in Amazon

EC2: 2 replicas in us-east-1d and 3 replicas in us-east-1a).

Our replication strategy uses NetworkTopologyStrategy to

enforce replication across multiple datacenters. We adopt

the pricing schemes from Amazon web services as shown

in Table 15. We study the cost variation by evaluating

different consistency levels (e.g., eventual consistency: one,

two, Quorum: three, and strong consistency: All).

2) Micro Benchmark: We aim at a micro benchmark

representing typical workloads in current services hosted in

clouds. Based on case studies [10][22], we have selected

the Yahoo! Cloud Serving Benchmark (YCSB) framework

[15]. YCSB is used to benchmark Yahoo! cloud storage

system “PNUTS” [10]. It is extended to be used with a

5The price of Amazon EC2 large instance was $0.32 at the time of
writing this paper and it is now $0.26. However, as this price is applied to
all consistency levels the difference in the pricing therefore doesn’t affect
our results and findings.

Table I
PRICING SCHEMES USED IN OUR EVALUATION

Computing unit
Large instance

Storage
unit

Storage
Requests

Intra
comm

Inter
Comm

0.32$ per hour 0.10$ per
GB/month

0.10$ per 1 mil-
lion Requests

0.00$
per GB

0.01$
per GB

variety of open-source data stores such as mongoDB [23] ,

Hadoop HBase [11] and Cassandra [16]. YCSB provides the

features of a real cloud serving environment such as scale-

out, elasticity and high availability. For this purpose, several

workloads have already been proposed in order to apply a

heavy read load, heavy update load, and read latest load,

among other workloads. Also, the benchmark is designed to

make the integration of new workloads very easy.

We use YCSB-0.1.3 and we run WorkloadA which is

a heavy read-update workload (read/update ratio: 60/40).

In both environments, our workload consists of 10 million

operations on 5 million rows with a total of 23.84GB of data

after replication.

3) Results on Grid’5000: As shown in Figure 2(b), the

total monetary cost decreases when degrading the consis-

tency level: the cost reduces from $138.76 — when the

consistency level is set to ALL — to $71.72 when the

consistency level is ONE (i.e., weak consistency reduces

the cost by almost 48%). This result was expected as lower

consistency levels involve fewer replicas in the operations,

and thus maintaining low latency, less I/O requests to the

storage devices, and less network traffic in general (the run-

time of WorkloadA varies from 4 hours to 7 hours according

the consistency level). This cost reduction, however, comes

at the cost of a significant increase in the stale reads rate: as

shown in Figure 2(b) 79% of the reads are stale reads — only

21% of the reads are fresh reads — when the consistency

level is set to ONE.

Furthermore, it is obvious that degrading the consistency

level for Quorum (here the number of replicas involved in

an operation is 3 replicas) reduces the total cost by 13%

while maintaining a zero stale reads rate as shown in Figure

2(b). This is because the storage system answers the read

requests with the most up-to-date replica (fresh reads), which

is always in the replicas quorum. Moreover, degrading the

consistency level to TWO reduces the total monetary cost by

almost 36%, but it adversary impacts the system consistency:

only 61% of the reads where fresh reads.

Observation 1: The total cost of geo-replicated services

strongly depends on the consistency level adopted: stronger

consistency has higher cost but higher rate of fresh reads

and vice versa. However, as services differ in their tolerable

stale reads and their access pattern (within the same service:

there is a significant diurnal variation in the access patten

and the load levels). There is a need to define new metric

to define the consistency level of an application.

Figure 2(c) shows the breakdown of the total cost accord-
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Figure 2. Experiments setup and results on Grid’5000 and Amazon EC2

ing to the contributed resources. In general, the instances

cost has the higher cost amongst other resources (storage

and network): it contributes to almost 90% of the service bill

while the storage and network contribute on average to only

9% and 0.4%, respectively. This is due to our experiments’

scale — number of operations — and the cheap prices of

resources (as shown in Table I the intra communication is

free of charges).

As shown in Figure 2(c), storage cost has a relatively lower

contribution to the total cost for stronger consistency (ALL

and Quorum) compared to weaker consistency (ONE and

TWO): it contributes on average to 7.2% for the stronger

one and 9% for the smaller one. The ALL consistency

level requires higher nbOps compared to Quorum while both

have zero/low readRepairIO and thus according to Formula

(6) ALL has a relatively higher storage cost contribution

in contrast to Quorum (e.g., it is 7% for Quorum and

7.5% for ALL). Moreover, although the nbOps is smaller

for (ONE and TWO) compared to (ALL and Quorum)

but the increasing number of readRepairIO increases the

storage cost. Furthermore, as the cost of readRepairIO is

proportional to the rate of stale reads, ONE has higher

storage cost contribution in contrast to TWO.

In summary, the read repair function — ensuring that

all outdated replicas become up to date —plays a very

important role in determining the cost of storage with

different consistency levels.

Network cost has also relatively a lower contribution to the

total cost for stronger consistency (ALL and Quorum) com-

pared to weaker consistency (ONE and TWO): it contributes

on average to 0.175% for the stronger one and 0.275%

for the smaller one. The ALL consistency level requires

higher interDcRep compared to Quorum (higher number of

involved replicas as well as Quorum always tends to answer

the requests by involving the most close replicas “within

the same data center if possible”) while both have zero/low

IMechTraffic and thus according to Formula 11 ALL has

a relatively higher network cost contribution in contrast to

Quorum. Moreover, although the interDcRep is smaller in

for (ONE and TWO) compared to (ALL and Quorum) but

the increasing size of IMechTraffic — due to the high rate

of stale reads — increases the network cost. Furthermore, as

the cost of IMechTraffic is proportional to the rate of stale

reads, ONE has higher storage cost contribution in contrast

to TWO.

Observation 2: Higher consistency causes a higher contribu-

tion to instances cost due to the high latency, and it causes a

relatively lower contribution to both the storage and network

cost as it avoids the extra cost caused by the read repair

function.

4) Results on AmazonEC2: Figures 2(d) and 2(e) support

our earlier findings and observations with Grid’5000. The

total cost variation in Amazon is lower than in Grid’5000,

because of the more powerful machines and the lower cross-
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sites latency.

As shown in Figure 2(d), the total monetary cost decreases

when degrading the consistency level: the cost reduces from

$32.39 — when the consistency level is set to ALL —

to $23.23 when the consistency level is ONE (i.e., weak

consistency reduces the cost by almost 28%). This result was

expected as lower consistency level involves fewer replicas

in the operations, and thus maintaining low latency, less I/O

requests to the storage devices, and less network traffic in

general (the run-time of WorkloadA varies from 2 hours

to 3 hours and 33 minutes according to the consistency

level). This cost reduction, however, comes at the cost of

a significant increase in the stale reads rate: as shown in

Figure 2(d) 79% of the reads are stale reads — only 21%

of the reads are fresh reads — when the consistency level

is set to ONE.

Moreover, the costs of the ONE and TWO levels are

the same, although there were significant variations in the

running time (2hours and 1minutes for ONE and 2hours and

33minutes for TWO) and also significant variations in the

network traffic and storage requests. This is because of the

coarse-grained pricing units (per instance hour and per GB

storage and per 1 million operations, etc).

Figure 2(e) shows the breakdown of the total cost accord-

ing to the contributed resources. The instances cost has the

higher cost amongst other resources (storage and network):

it contributes to almost 74% of the service bill while the

storage and network contribute on average to only 25.2% and

0.8%, respectively. This is due to our experiments’ scale —

number of operations — and the cheap prices of resources

(as shown in Table I the intra communication is free of

charges). Moreover, the ratio of the cost of the instances,

storage and network to the total cost in Amazon EC2 is

different from Grid’5000, because the shorter running time

(the high throughput and the powerful machines) which in

turn makes the instances cost smaller compared to other

resources.

As shown in Figure 2(e), ALL has a relatively higher

storage cost contribution in contrast to Quorum (e.g., it is

28% for ALL and 22% for Quorum). This is because the

ALL consistency level requires higher nbOps compared to

Quorum while both have zero/low readRepairIO. Moreover,

although the nbOps is smaller for (ONE and TWO) com-

pared to (ALL and Quorum) but the increasing number

of readRepairIO increases the storage cost. Furthermore,

as the cost of readRepairIO is proportional to the rate of

stale reads, ONE has higher storage cost contribution in

contrast to TWO. The Network cost has also relatively a

lower contribution to the total cost for stronger consistency

(ALL and Quorum) compared to weaker consistency (ONE

and TWO): it contributes on average to 0.7% for the stronger

one and 0.9% for the smaller one. This cost varies from

one consistency level to another according to the number of

involved replicas for the stronger consistencies and number

of stale reads for the weaker ones.

IV. CONSISTENCY-COST EFFICIENCY METRIC

As discussed in earlier, data consistency can strongly im-

pact the financial cost of a certain service (i.e., while stronger

consistency with high latency implies higher monetary cost

of operation as demonstrated in section 4, the weaker

consistency with high throughput causes higher operational

cost because of the high rate of stale rate). Consequently,

monetary cost should be considered when evaluating the

consistency in the cloud [24].

As cloud computing is an economy-driven distributed

system where monetary cost is explicate and measurable

metric [25], we argue that the consistency-cost trade-off can

be easily exposed in the cloud. Therefore in this paper, we

define a new metric — consistency-cost efficiency — that

exposes the tight relation between the degree of achieved

consistency for a given monetary cost. Our goal is to

define general yet accurate metric to evaluate consistency

and thus using this metric as an optimization metric for

cloud systems. Accordingly we define the consistency-cost

efficiency as the ratio of consistency, measured by the rate

of fresh reads, to the relative consistency cost as shown in

Formula 16.

Consistency-Cost Efficiency =
Consistency(cl)

Costrel(cl)
(16)

Where Consistency(cl) = 1− stalereadsrate and Costrel
is the relative consistency cost with respect to the strong

consistency and given by Formula 17.

Costrel(cl) =
Cost(cl)

Cost(cl all)
(17)

It is important to mention that our metric is designed

and can only be applied when strong consistency is not

required by an application: we can consider our metric as

system optimization for eventual consistency (i.e., tune the

consistency to reduce the monetary cost without violating

the application’s requirements of fresh read rate).

V. ECONOMICAL CONSISTENCY APPROACH

A. Design

We design and implement our approach with the following

goals:

Extendable consistency-cost efficiency. Our solution aims

at providing consistency guarantees while reducing the mon-

etary cost. Therefore, we propose to use the consistency-cost

efficiency (described in section IV) as an optimization met-

ric: simply by selecting the consistency level with maximum

consistency-cost efficiency. Moreover, to meet the diversity

of applications requirements (e.g., cost constraint and fresh

reads rate constraint), our solution can be easily extended to

enable consistency-cost efficiency while favoring either cost

or consistency.
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Figure 3. Situation that leads to a stale read

Self-adaptive. With the ever growing diversity in the access

patterns of cloud applications along with the unpredictable

diurnal/monthly changes in services loads, it is important

to provide a self-adaptive approach that transparently scales

the consistency level up/down at runtime without any human

interaction. Our approach, therefore, embraces an estima-

tion model for consistency-cost efficiency that could be

achieved with different consistency levels: at runtime, the

application’s access pattern and network latency are fed

to the consistency probabilistic estimation model (we have

extended the model in [26] as will be explained later in this

section) in order to estimate the rate of stale data that could

be read in the storage system. Furthermore, these data along

with information about pricing units in the targeted cloud

platform are used to compute the monetary cost.

Pricing independent. Our solution targets public cloud and

is not limited to any cloud provider in terms of provided

services or pricing schemes. The fine-grained monetary cost

analysis that is used for cost estimation (introduced in

Section III) can be easily adopted to different services and

pricing.

cloud storage systems independent. Since our solution is

implemented as a separate layer at the top of the cloud

storage system, it does not impose any modifications to the

cloud system code. Our approach, therefore, can be applied

to different cloud storage systems that are featured with

flexible consistency rules.

1) Consistency Probabilistic Estimation: In our previous

work [26], we propose an estimation of the stale read rate

in the system by means of probabilistic computations. We

define the situation that leads to a stale read in Figure 3.

The read may be stale if its starting time Xw is in the time

interval between the starting time of the last write and the

end of the propagation time of data to the other replicas. This

situation is repeatable for any write dates that may occur in

the system. Tp in Figure 3 is the time necessary for the

propagation of a write or an update to all the replicas. It is

computed based on the network latency Ln and the average

write size avgw and should be represented as Tp(Ln, avgw),
but in order to simplify the representation, it will be denoted

as Tp in the rest of the paper.

Transactions arrivals are generally considered as a Poisson

process as it is the common way to model them in literature

[13][27]. We assume that the writes and the reads arrivals

follow the Poisson distribution of parameter λ−1
w (we chose

λ−1
w instead of λw in order to simplify subsequent formulas

where the parameter will be inverted) and λr respectively.

These parameters values change dynamically at run time

following the read and write requests arrivals monitored in

the storage system. Since the distribution of waiting time

between two Poisson arrivals is an exponential process, the

stochastic variables Xw and Xr of a write time and read

time follow an exponential distribution of parameters λ−1
w

and λr respectively. The probability of the next read being

stale corresponding to the aforementioned situation is given

by formula (18) with N being the replication factor in

the system and X being the number of replicas involved

in the read operation. Here Xn =1 for the basic eventual

consistency.

Pr(stale read) =
∞∑
i=0

(
N − (Xn = 1)

N
Pr(X i

w < Xr

< X i
w + T + Tp) +

Xn = 1

N
Pr(X i

w < Xr < X i
w + T ))

(18)

Having all the writes times (that may occur in the system)

following the exponential distribution, the sum of X i
w all the

writes follows a Gamma distribution of parameters i and

λw. Hence, the probability in formula (18) becomes:

Pr(stale read) =

∞∑
i=0

(
N − 1

N

∫
∞

0

f i
w(t)(Fr(t+ T + Tp)

−Fr(t))dt+
1

N

∫
∞

0

f i
w(t)(Fr(t+ T )− Fr(t))dt)

(19)

The time T to write in the local memory is negligible

in comparison to TP and therefore, we can consider it

as equal to 0. A simple replacement of the probability

mass function of Poisson distribution and the cumulative

distribution function of Gamma distribution results in the

following probability:

Pr(stale read) =

∞∑
i=0

N − 1

N

∫
∞

0

ti−1 e−
t

λw

γ(i)λi
w

(e−λrt − e−λr(t+Tp))dt

(20)

After simplifying formula (20), it becomes:

Pr(stale read) =
∞∑
i=0

(N − 1)(1− e−λrTP )

N(1 + λrλw)i

∫
∞

0

ti−1 e
1+λrλw

λw
t

γ(i)( λw

1+λrλw
)i
dt

(21)
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The right part of the function in (21) is the the cumula-

tive distribution function of a Gamma law of parameters
1+λrλw

λw
and i, its value is equal to 1. Moreover, if we

consider that:

∞∑
i=0

(
1

1 + λrλw

)i =
1

λrλw

+ 1 (22)

The final value of the probability of next read to be stale,

after simplification, is given by:

Pr(stale read) =
(N − 1)(1− e−λrTp)(1 + λrλw)

Nλrλw

(23)

Given that when the storage system supports multiple

consistency levels, the consistency level for read and write

operations (clr and clw respectively) may vary with time.

Accordingly, we extend the probability model in Formula ??

to consider all the consistency levels for write operations that

are smaller or equal to the Quorum level, where a quorum

is computed as: ⌊ replicationfactor

2 + 1⌋. This probability is

given in Formula 24.

Pr(stale read) =

(N − (clw + clr − 1))(1 − e−λrTp)(1 + λrλw)

Nλrλw

(24)

This estimation model requires basic knowledge of the

application access pattern and of the storage system network

latency. Network latency in this case is of high importance,

since it is the determinant of the updates propagation time to

other replicas. The access pattern, which includes read rates

and write rates is a key factor to determine consistency re-

quirements in the storage system. For instance, it is obvious

that a heavy read-write access pattern would produce higher

stale reads when adopting eventual consistency.

2) Efficiency-aware algorithm : Many applications do not

strictly require strong consistency: a consistency optimiza-

tion solution, therefore, can be introduced to improve system

throughput, latency and monetary cost. To achieve this goal

we consider our metric as an optimization metric as shown

in the following algorithm.

while True do

for cl ∈ CLs do

Compute Costrel(cl)

Compute Consistency(cl)

Compute Consistency(cl)/Costrel(cl)

end for

Choose cl ∈ CLs for Max[Consistency(cl)/Cost(cl)]

end while

At run-time, our system feeds the efficiency-aware al-

gorithm with data related to the system read/write rates

along with the network latency. These data are used by the

consistency probabilistic estimation model to compute the

expected achieved fresh reads when using different consis-

tency levels. The relative monetary cost is also computed

according to the system configuration and the stale read

estimation. So the algorithm selects the consistency level

that offers the most equitable consistency, cost trade-off (the

maximum consistency-cost efficiency value).

B. Implementation

We have built our approach as a separate layer on top

of Apache Cassandra-1.0.2 [16]. Cassandra gives the user

flexible usage of consistency levels in a per-operation man-

ner. In addition, Cassandra is proven to be very scalable,

providing very good performance, and being widely used

with large scale applications such as Facebook and Twitter.

Our approach is introduced as an extra layer on Cassandra

that aims to provide the most cost-efficient level of consis-

tency for reading data. The core of this layer consists of two

modules. Both modules were implemented in Python 2.7.

The monitoring module collects relevant metrics needed

for our approach of the storage system’s information. The

Cassandra nodetool was used to collect the number of reads

and writes in Cassandra storage, and we used the ping tool

to collect network latencies in the storage system network

(the network latency and the average data size is used

to compute the propagation time Tp which later used in

Formula 24). The monitoring module was designed in a

multithreaded manner in order to make it time-efficient and

to reduce the monitoring time. Each thread collects data

from a set of nodes and at the end an aggregation process

is applied. The monitoring time is measured and taken into

account when computing the read rates and write rates. This

data is further communicated to the dynamic consistency

module. This module is the heart of our implementation. An

estimation of cost-efficiency is computed — according to the

estimated stale read rate and the monetary cost (instance,

storage and network cost)— and then compared in order in

to provide an adequate cost efficient consistency level (select

the consistency level with the highest cost-efficiency ratio)

for the running application at that point of time.

VI. EVALUATION

In this section, we present our detailed evaluation of

our the consistency-cost efficiency metric and the Bismar

prototype using Cassandra on Grid’5000 testbed (We used

the same testbed described in Section 3.2.). Our experiments

evaluate two aspects: (a) validate the effectiveness of the

consistency-cost efficiency metric as a representative metric

for measuring; (b) overall monetary cost reduction achieved

by Bismar (c) the tolerable fresh reads rates with Bismar and

(d) the distribution of monetary cost amongst the different

used resources when using Bismar.

Micro Benchmark. We use YCSB and we run Work-

loadA which is a heavy read-update workload (read/update

ratio: 60/40). Our workload consists of 10 million operations
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Figure 4. Effectiveness of the Consistency-cost efficiency

on 5 million rows with total of 23.84 GB of data after

replication. In order to present the dynamicity of the system

(i.e., the variation of throughput and the read/write rate

during the run-time), we ran the workload, varying the

number of threads starting with 1 thread, then, 50, 20, 7

and finally, 30 threads.

A. Effectiveness of the Consistency-cost efficiency

In order to validate our metric, we collect samples when

running the same workload with different access patterns

and different consistency levels. Figure 4 shows the results

where each point shape represents a different access pattern:

Higher consistency-cost efficiency values represents high

rate of fresh reads for all samples when the fresh reads rate

is lower or equal to 80%. This indicates the effectiveness of

our metric: it is designed to achieve the best price without

violating the consistency (we consider the 80% fresh reads

as acceptable consistency).

B. Monetary Cost and Performance improvement

Figure 5(a) shows the monetary costs of running the

workload with the three static consistencies (ONE, TWO

and Quorum) and with our dynamic adaptive approach. As

expected, ONE exhibits the lowest monetary cost but at

the cost of fresh reads. Our experiments also show some

interesting results: Bismar achieves lower cost in contrast

to the consistency level TWO. Since Bismar always selects

the consistency level with the highest consistency-cost effi-

ciency to adapt to workload dynamicity, Bismar adopts the

consistency level ONE for almost 70% of its running time

while it adopts the consistency level Quorum for 30% of

it is running time as shown in Figure 5(b). As a result the

cost reduction when running with ONE overcomes the cost

increase when running with Quorum.

Since Bismar targets applications that do not require

strong consistency, we consider Bismar as an eventual

consistency optimization for cloud. Therefore, improves the

monetary cost of services while maintaining acceptable rate

of fresh reads. Accordingly, we compare the cost monetary

reduction and performance improvement by Bismar in con-

trast to the Quorum consistency level. As shown in Figure

5(a) and Figure 5(c), Bismar reduces the monetary cost by

almost 31.5% in contrast to Quorum level (From $456 to

$312). The cost reduction is mainly due to the performance

improvements (Bismar improves the overall response time

by almost 32.2%).However more detailed analysis on the

impact of Bismar of the different resources’ costs will be

presented later.

C. Staleness evaluation

Figure 5(d) shows the stale reads rates caused by different

consistency approaches. It is clear that static levels ONE and

TWO produce higher stale reads rate: 61% of the reads where

on stale data with ONE and 36% with TWO. Moreover,

the Quorum consistency level returns always up-to-date data

(i.e., stale reads rate is 0%) because at least one replica with

the freshest data should be in the Quorum. Bismar however,

returns very small portion of stale reads (only 3%), but

with very important money saving (31.55% money reduction

compared to Quorum). The 3% stale reads is considerably

reasonable for many applications.

D. Zoom on resources cost in Bismar

Figure 5(e) shows the breakdown of the total cost ac-

cording to the contributed resources for different consistency

levels and Bismar. As shown and discussed earlier in Section

2.4, the instance portion of the total cost increases with up-

grading consistency while the portion of both the storage and

network costs increase with degrading the consistency level.

However, the aforementioned observation is also applied on

Bismar: comparing Bismar against Quorum, we notice that

portion instance cost in Bismar is lower than in Quorum,

furthermore, we observe that the portion of both the storage

and network costs in Bismar is higher than in Quorum.

This can explain why the cost reduction was only 31.5%

while the performance improvement was 32.2%: because

the adversary impacts of the storage and network costs in

Bismar.
Moreover, we observe that the portion of both the storage

and network costs in Bismar is higher than in all static con-

sistencies, because Bismar combines both the high number

of requests when adopting a higher consistency level and

also read repair cost in the case of mismatched replicas’

versions detection when Bismar adopts lower consistency

level.

VII. RELATED WORK

With the explosive growth of data size and availabil-

ity requirements of services in the cloud along with the
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Figure 5. Cost, Staleness, and Efficiency on Grid’5000

tremendous increase in users accessing theses services, ge-

ographically distributed replication has become a necessity

in the cloud storage [3][4][28]. At such scale, the strong

consistency suffers of high latency and thus violating both

the performance and availability requirements. Cloud storage

is therefore evolving towards eventual consistency. Eventual

consistency has been extensively exploited in literature and

commercial products such as Dynamo [8] in Amazon S3

[29] and Amazon DynamoDB [30], Cassandra [16] in Face-

book [12] and PNUTS [10] in Yahoo!. While the most of the

work in literature have been dedicated to either measuring

the actual provided consistency in cloud storage platforms

[13][21][31], or on adaptive consistency tuning in cloud

storage systems [32] [33] [34] [26] [6] in order to meet

the consistency requirements of applications and reduce the

consistency violation. Despite our work being focused on

the monetary cost, a key difference between our work and

their work is that we are seeking an adaptive consistency

approach which is at the same time cost efficient and does

not violate the applications needs.

A closely related work on improving the monetary cost of

consistency in the cloud is [24]. Kraska et al. [24] propose

consistency rationing: an automatic approach that adapts the

level of consistency at run-time considering the performance

and monetary cost. The authors define consistency levels

at data level (i.e., categorizes the data into three types and

provides a different consistency treatment for each category).

Consistency rationing at data level may incur additional meta

data management overhead when the data size is large, our

work therefore is at a transaction level: our adaptive tuning

approach chooses the number of replications involved in an

operation considering the best trade-off between the consis-

tency level and monetary cost. The results discussed in our

paper complement Kraskas work: monetary cost-oriented

consistency approach at transaction levels to complement

their work at data level.

With respect to monetary cost in cloud systems, a num-

ber of studies [35][36] have been dedicated to measure

the cost of adopting the pay-as-you-go cloud in terms of

monetary cost, performance, and availability. Some studies

[25][37][38] have reported on the cost variations and fairness

in the cloud. Many recent studies concentrate on monetary

cost improvements of cloud services through reducing the

virtualization interference [39], using spot instance or lev-

ering the public cloud using free resources such as desktop

grid [40][41]. In contrast, this paper investigates the interplay

between economic issues and the consistency design and

implementation.

VIII. CONCLUSION

With the pay-as-you-go charging, the public cloud has

become an economic market for both cloud users and

providers. Accordingly, many services have been deployed

in the cloud in order to benefit from its low cost and

its geographically distributed infrastructure: cloud allows
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these services to replicate their data and thus satisfy the

ever growing users’ needs and ensure availability. However,

ensuring data consistency between these geographically dis-

tributed replicas calls for empirical evaluations and technical

innovations.
In this study, we investigate the monetary cost of con-

sistency in the cloud. Our detailed analysis and study re-

vealed a noticeable monetary cost variation when different

consistency levels are used. As a first step to understand

the impacts of the different consistency on the monetary

cost and fresh reads in the cloud, we define the consistency-

cost efficiency metric. Based on our metric, we introduce a

simple, yet efficient approach, named Bismar, that adaptively

tunes the consistency level at run-time in order to reduce

the monetary cost while simultaneously maintaining a low

fraction of stale reads. Bismar relies on a consistency prob-

abilistic model that estimates the stale reads and the relative

costs of the application according to the current read/write

rate and network latency. We have implemented Bismar with

intensive evaluations on Cassandra cloud storage system on

Grid’5000. We show that Bismar can lead to efficient cost

without exceeding the tolerated number of stale reads on the

applications.
Regarding future work, we intend to perform more de-

tailed theoretical and empirical analysis of the consistency-

cost efficiency metric. Also we are interested in building

an efficient mechanism for dynamic resource provisioning

based on our cost function.
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