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Abstract— Massively Multiuser Virtual Environments
(MMVEs) require a seamless and consistent execution.
To provide this, the MMVE must include a sophisticated
consistency management. This management must adapt its
behavior to different activities carried out in the MMVE as well
as different system loads. As an example, a movement activity
must be handled differently to picking up an object. During
times of high system load, a lower level of consistency might be
acceptable if this enables the MMVE to continue operating with
low network delay. Developing such a consistency management
is a complex and time consuming effort. To support MMVE
developers with this task, we propose the creation of a dedicated
consistency management infrastructure. This infrastructure can
be configured by developers for their specific MMVE and makes
it easier to maintain a consistent MMVE state.

I. INTRODUCTION

A Massively Multiuser Virtual Environment (MMVE) al-
lows thousands of users worldwide to interact with each other
in a common environment in real-time. A crucial requirement
for such systems is consistency [1]. As an example, if multiple
users try to pick up the same object at the same time, the
system has to guarantee that only one user actually receives the
object. Otherwise, the users may become irritated by unusual
effects in the environment’s behavior.

At the same time, MMVEs must be highly responsive and
progress seamlessly. Users expect the system to react promptly
to their input and to progress without sudden state changes or
rollbacks. To fulfill these conflicting goals, MMVE developers
have to provide a complex consistency management which al-
lows the MMVE to balance dynamically between consistency,
responsiveness, and seamlessness. This is even more difficult
to achieve in peer-to-peer (P2P) based MMVEs. In such
systems, the MMVE is executed cooperatively on the hosts
of its users and requires no central server. Therefore, there
is no central entity to synchronize the participating entities
and guarantee a consistent environment. To help reduce the
development effort for such MMVEs, we propose the devel-
opment of a novel consistency management infrastructure for
P2P-based MMVEs. This infrastructure allows the application
(i.e. the MMVE using our system) to choose between different
consistency models at runtime.

Our work is executed in the context of the peers@play

project [2]. The goal of the this project is the development of
a comprehensive communication middleware for P2P-based
MMVEs, including support for scalable update propagation,
security, and consistency. In this paper we present the main
design decisions and the architecture of our consistency man-
agement infrastructure. We present its main concepts and show
how they can be used by developers.

The paper is structured as follows. First, we present our
system model and discuss requirements for our consistency
management infrastructure. We provide an overview of related
work and present our approach. Finally, we offer a short
conclusion as well as an outlook on future work.

II. SYSTEM MODEL

Our system model consists of a number of users that want
to use an MMVE, their devices, a communication network
and the MMVE software. Users may be located at any place
in the world. The number of users is a priori undetermined
and can change dynamically. Each user owns a computing
device, which executes the MMVE software and is connected
to a common communication network, e.g., the Internet. We
call such a device a peer. Each user is represented in the
MMVE by a special character, called avatar. To interact with
the MMVE, the user instructs his avatar to perform different
activities, e.g., moving around or picking up an object. In
addition, activities can be initiated by so-called non-player
characters (NPCs). The state of the MMVE is distributed on
the participating peers. If the user executes an activity, the
system creates update events describing the resulting state
changes. It sends these events to all other peers that hold a
copy of this state. We assume the presence of a suitable P2P-
based communication middleware to do so. The middleware
determines the peers to which an event must be sent and
provides all necessary communication services. In the context
of the peers@play project, this functionality is provided by
the peers@play middleware.

III. REQUIREMENTS

A consistency management infrastructure in P2P-based
MMVEs faces a number of requirements not encountered in



traditional client/server-systems. In the following we analyze
these requirements in more detail.

1) Flexibility: Users perform a multitude of different activ-
ities in an MMVE, e.g. moving their avatar around, picking
up objects, and interacting with other users or NPCs. The cor-
responding consistency requirements vary widely, depending
on the activity’s type and situation. As an example, the exact
location of a user’s avatar may not be crucial for nearby users,
as long as they do not interact with it. However, once an
interaction between users is initiated, position updates must be
tightly synchronized. On the other hand, users are often willing
to accept different delays for different activities. When a user
picks up an object, he might tolerate several seconds delay.
However, the same user will most likely not tolerate such a
high delay each time he moves his avatar. In summary, both the
required consistency and the maximum acceptable delay vary
between different activities and situations. The consistency
management must be flexible enough to allow the application
to balance both these factors with each other.

2) Adaptability: As the MMVE is executed in a peer-
to-peer system, the available devices and network resources
can vary widely and without warning. If the user decides to
log out of the system and turn off his computer, the system
has to adapt dynamically to loosing this peer. In addition,
user population in a given environment can vary. Thus, the
system has to handle different situations concerning resource
availability and system load. The consistency management
must provide MMVE developers with means to react to high
load situations to make sure that the MMVE maintains a satis-
factory performance. As an example, the system might decide
to lower the consistency requirements for certain activities in
case of a high system load to maintain highest possible system
responsiveness.

3) Extensibility: Different MMVEs may require different
consistency models. To allow the consistency management
infrastructure to stay independent of any specific MMVE, the
infrastructure must enable MMVE developers to extend it with
their own consistency models. As an example, an MMVE
could include the possibility to buy objects from other users
using real currency. To support such trading activities, the
developer wants to include a consistency model that guarantees
transactional properties, such as atomicity. In addition, it
should be robust against attacks from other peers. On the other
hand, a game-themed MMVE requires consistency models that
are optimized towards latency.

IV. RELATED WORK

In the past, a number of different approaches for consistency
in MMVEs have been designed. These approaches can be
divided into two classes, conservative and optimistic. Conser-
vative approaches (e.g. [3],[4]) delay the processing of events
until they have confirmed that it is safe to do so. Using this
approach, if a peer receives an update event, it delays applying
it to its local state until it can guarantee that it will never
receive another update event that should have been applied
previously. Conservative approaches are able to provide a high

level of consistency, e.g. sequential or strong consistency. The
ordering of events will always be the same on each peer. In
addition, the user can be sure, that an activity will never be
undone once it has been executed. However, a consistency
model based on a conservative event synchronization approach
might lead to high latencies, as faster peers could be required
to wait for slower ones. In contrast, optimistic approaches
(e.g. [5],[6]) process the events immediately, and try to correct
possible inconsistencies through techniques such as rollbacks.
They can be used to realize weaker consistency models, e.g.
weak consistency. For the user, this means that an activity
is executed instantly but that he can never be sure if it will
be undone in the future. Hence, consistency models based on
an optimistic event synchronization approach are specifically
well suited for highly interactive activities that can be reversed
without irritating the user too much. None of these isolated
approaches are able to provide the necessary flexibility to
support all different kinds of activities that are experienced
in an MMVE.

For client/server-based MMVEs, several consistency infras-
tructures exist. Lu et al. [7] propose a consistency control
mechanism that allows the application to select between two
different levels of consistency, depending on, e.g., system load.
The FITGap framework [8] allows states in an MMVE to
be associated with different replication models, depending on
their consistency requirements. In contrast to these centralized
approaches, we provide a decentralized P2P infrastructure.
A hybrid architecture was proposed by Pellegrino et al. [9].
It uses a central server to enforce a consistent game state
using an optimistic synchronization protocol with rollbacks,
while all other information is distributed via a P2P approach.
Finally, OpenPING [10] is a middleware for networked games
that includes different consistency models and offers dynamic
adaptation through reflection. However, the supported consis-
tency models are hard coded into the system and cannot be
extended with additional models.

V. OUR APPROACH

Our goal is to provide a consistency management infras-
tructure for P2P-based MMVEs. Our infrastructure should
fulfill the requirements given before, namely: 1. flexibility, 2.
adaptability, and 3. extensibility. In this section we discuss the
main concepts and design decisions underlying our approach.
Subsequently, we describe the architecture of the proposed in-
frastructure and illustrate how the different subsystems interact
with each other using an example activity.

A. Design Rationale

Our system is based on a number of concepts that we
discuss in the following. The main idea is to push application
knowledge about the current situation of the MMVE and
the performed activities into the consistency management to
allow the latter to optimize system operation and minimize
the latency experienced by users. In addition, the application
is enabled to access information about the current situation in



the underlying P2P system in order to adapt its requirements
to this situation.

1) Selectable Consistency Model: As discussed before, it
can be insufficient to rely on a single consistency model. In-
stead, different situations and activity types should be handled
with different consistency models. It may be acceptable in
many situations to have loosely synchronized MMVE states
between users that do not interact with each other. A user
passing by another user’s avatar does not need to have a per-
fectly synchronized view of the other user’s current location.
However, once both users interact with each other, e.g., by
picking up the same object, a higher level of consistency is
necessary. To facilitate this, two main approaches are possible.
First, the system can provide a single integrated consistency
model that provides different behaviors for different situations.
Clearly, such a model would be complex and hard to maintain.
The second possibility is to provide multiple independent
consistency models and select the best model at runtime for
each activity. We choose the second approach.

The MMVE can specify for each event which consistency
model is required. This allows it to select the best consistency
model for a given activity in a certain situation. Thus, if no
strong consistency is required, the system can provide higher
interactivity. For events for which strong consistency is manda-
tory, interactivity can be traded for consistency. Choosing
the best model for a given situation requires MMVE-specific
knowledge. Thus, to make consistency models reusable for
different MMVEs, this decision should be separated from the
models and pushed into the MMVE implementation. This
approach fulfills the first requirement (flexibility).

2) Reflection Application Programming Interface (API):
Allowing the application to select a consistency model enables
the application developer to choose the best model for each
activity. However, as described before, this selection should
also depend on the current system load. If the system load is
high, the application should be made aware of this and could
react, e.g., by choosing a more resource efficient model. To
enable this, we propose to offer a reflection API. Using this
API, the application can query the consistency management on
its current state. More precisely, the consistency management
provides information about the currently expected delay for
a given consistency model in a specified part of the MMVE.
This delay depends, e.g., on the current system load in the
corresponding P2P network. Clearly, the API could offer
more detailed low level information, e.g., about the bandwidth
currently available between specific peers. However, to use this
information for selecting a suitable consistency, the applica-
tion would require knowledge about the consistency model’s
implementation, e.g. what messages will be sent to whom. The
reflection API fulfills the second requirement (adaptability).

We deliberately chose to push the decision how to react
to a high system load into the application. Alternatively, this
could be done by the consistency management internally. We
argue, however, that only the application knows if selecting
another consistency model is acceptable for a given activity.
Furthermore, the application has to know which model is used

to appropriately present the result of an activity to the user.
As an example, consider an object that needs be removed
from the user’s inventory due to a rollback. To warn the user,
the application could highlight this object in the graphical
interface.

3) Consistency Plugins: So far, we have addressed the first
two requirements, flexibility and adaptability. Still missing
is to enable MMVE developers to extend the system with
MMVE-specific consistency models – fulfilling the third re-
quirement (extensibility). To do so, we propose to extract the
implementations of consistency models from the infrastructure
and place them into so-called consistency plug-ins. A consis-
tency plug-in encapsulates a protocol implementing a specified
consistency model. If an MMVE developer wants to add an
additional consistency model, he can do so by implementing a
consistency plug-in. He can also select the consistency models
that are suitable for his MMVE and include only the plug-ins
implementing them in the final product. Generic consistency
models can be reused for multiple MMVEs, making devel-
opment more efficient. Note that in contrast to other plug-
in models, our plug-ins are selected at development time.
At runtime, no new plug-ins are added. While offering this
would allow updating the MMVE more easily, the ability to
update code dynamically should be provided for the whole
MMVE software and not for plug-ins, only. Therefore, we
omit dynamic adding and removal of plug-ins to gain better
system performance.

4) Consistency Sessions: All three requirements have now
been addressed by the concepts discussed so far. To help the
consistency management further optimize the MMVE exe-
cution, we provide an additional concept, called consistency
sessions. Consistency sessions allow the application to group
a number of events into a common context. As an example,
the application can group events that are causally dependent
on each other into a session. Thus it is possible to efficiently
perform a partial rollback of these events. In our example of
a user picking up an object, assume that the application uses
a consistency plug-in with optimistic synchronization. Some
time later, the application discovers that it must undo the
pick up event. Normally, this would require to rollback the
entire state of the MMVE. Alternatively, the MMVE could
analyze all causal dependencies between this event and later
ones to select the events to undo. If the application opens a
new session before picking up the object, it can add all events
that depend on the first one into it, and can easily determine
the set of events to undo if necessary.

Note that placing an event into a consistency session does
not mean that it will be delivered only to other members of the
session. Reusing our example of a user fighting an NPC, both
entities share a common session for the fight and movement
events are tightly synchronized between them. If another user
watches the fight, his peer should receive these events, too.
However, he will most probably accept a lower level of
consistency, if this prevents the fight from being slowed down.
Therefore, the MMVE can select the required consistency
model for an event per session. In addition, it can select the



consistency model that should be used for delivering the event
to peers that are not included in a session. In our example,
the MMVE would specify the use of strong consistency for
movement events when sending them to entities in the session,
i.e. the fighting user and the NPC, and no consistency when
sending them to other entities, i.e. the observing user.

All events in a session must use the same consistency
plug-in. While this restricts the usage of sessions, it makes
implementing consistency plug-ins much easier. Otherwise, if
a session contains events that use optimistic synchronization,
and the MMVE tries to add an event that uses conservative
synchronization, the plug-in implementing the conservative
synchronization must guarantee that none of the earlier events
in the session will ever have to be undone. Otherwise it would
have to undo its own event, too, breaking its own semantic.
To ensure this, the different consistency plug-ins would have
to interact with each other. If an MMVE requires events in
the same session to use different consistency models, the
MMVE developer could implement a plug-in that integrates
these models and makes sure that mixed sessions are executed
correctly.

An event can be added into several sessions. This may lead
to complex situations that must be handled by the MMVE.
As an example, take an event that is added into a session
with conservative synchronization and into a session with
optimistic synchronization. Later, the system decides to roll
back the events in the second session. However, the first
session cannot be undone, as conservative synchronization
was used. Currently such dependencies are not handled by
the consistency management and must be dissolved by the
MMVE. While we expect such situations to be rare, we plan
to look into this issue more closely in the future.

5) Dynamic Relocation: As another optimization, we pro-
pose to let the consistency management initiate the dynamic
relocation of objects in the MMVE to other peers. A prominent
example for this is a user fighting an NPC in a game-themed
MMVE. The activities of the user and the NPC have to be
carefully synchronized to guarantee a consistent MMVE state
and a satisfactory progression for the user. If the latency be-
tween the user’s peer and the peer executing the NPC is high,
this synchronization may decrease the system responsiveness
unacceptably. The consistency management can detect this
situation and try to optimize the communication delay. To do
so, the management relocates the execution of the NPC to the
user’s peer. Thus, the network delay is reduced to zero and
consistency and responsiveness can be provided efficiently.

As the overhead for relocating objects is usually high, the
system should do so only if the resulting performance gain out-
weighs the initial effort. This depends on several factors, e.g.
the current network delay, or how long the interaction between
the peers will last. If synchronization between them is only
required for a few events, no relocation is performed. On the
other hand, if the peers are involved in a long term interaction,
a relocation should be initiated. To detect such situations, we
rely on the application. It notifies the consistency management
about a potentially long running interaction. The management

can then check if a relocation results in a sufficiently large
performance enhancement and execute it.

B. System Architecture

Our proposed consistency management infrastructure con-
sists of five system components as shown in Figure 1.
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Plugin ManagerPlugin Manager

…

Consistency BrokerConsistency Broker

Peers@Play MiddlewarePeers@Play Middleware

Reflection API

MMVE Object ContainerMMVE Object Container

…

Consistency Management Architecture:

Fig. 1. Architecture of the consistency management infrastructure.

The MMVE object container manages MMVE objects. It
allows objects to receive and send update messages if their
state changes. In addition, the computation of an MMVE
object’s behavior can be relocated to another peer. To do
so, it maintains the object’s life cycle, transfers its current
state and hands over control to the moved object. To use the
object container, application developers inherit new objects
from predefined classes.

Located below the object container, the consistency broker
is the central contact point for the MMVE and its objects.
Objects can register for incoming state update events, send up-
date events to other peers, select the consistency models to use
and notify the consistency management about possible MMVE
object relocations. Furthermore, the broker implements the
reflection API. MMVE objects can query the broker for the
expected delay for a given consistency model. To support
both discrete and continuous queries, the API offers both a
synchronous system call as well as an asynchronous callback
interface. To offer current delay information, the broker man-
ages a local history of past interactions and exchanges such
histories with remote brokers. Therefore a broker is able to
provide the application developer with current information,
even if the user’s avatar has recently moved into another area.
As an example, the MMVE might experience high load in a
specific area in the MMVE. When a user moves his avatar from
another low-load area into this one, his consistency broker
exchanges historical data with others in the area and learns
of this situation. It can notify the application of this, enabling
the latter to initiate an appropriate reaction, e.g. requesting
a lower level of synchronization for its activities. Finally,
the consistency broker is responsible for forwarding update
events between MMVE objects and plug-ins, and creates and
maintains consistency sessions.

Consistency plug-ins are maintained by the Plug-in Man-
ager. It offers an execution environment for plug-ins, main-



tains a list of installed plug-ins and mediates events be-
tween the consistency broker and the plug-ins. Each plug-
in implements a consistency protocol, realizing a defined
consistency model. To communicate with remote plug-ins,
they interact with the peers@play communication middleware
(see Section II), which determines the correct peers to send
events to, etc.

Finally, the Optimizer adapts the system behavior to provide
lower delays for executing interactions. It spans all system
layers and combines information from different system compo-
nents. Currently, it is used to initiate the relocation of MMVE
objects. To do so, it accesses the communication middleware
to learn about the current system state, e.g. network delay
and bandwidth. To learn about long running interactions, it
interacts with the consistency broker. If the Optimizer decides
to relocate a MMVE object it contacts its local MMVE object
container and initiates relocation. In the future, the Optimizer
may contain additional optimization algorithms.

C. Example

After discussing the design rationale of our infrastructure
and presenting its architecture, we give an example of an
activity that is executed within our system. In this example,
two users u1 and u2 attempt to pick up an object o at roughly
the same time. The system needs to ensure that only one of
the users receives the object.

First, the application selects as suitable consistency model.
It decides that picking up an object is an event for which
a strong consistency model is appropriate. The application
queries the broker if the system is currently able to provide
strong consistency, while maintaining adequate network de-
lays. For the sake of simplicity, we assume that the application
is satisfied with the current system state and a strong consis-
tency model can be used. In addition to selecting a consistency
model, the application also needs to determine if the event
should be part of a consistency session. Since the application
decided to use strong consistency, the ability to perform a
partial rollback is not needed. Thus, the application decides
not to include the event in a session.

Next, the application contacts the consistency broker and in-
structs it to enforce strong consistency by using the respective
plug-in. It also hands the broker a set of context variables that
are used by the strong consistency plug-in. In this example,
the context contains an area of effect for the pick up event.
This area determines all locations from which the object can
be picked up. It is used later by the plug-in to determine which
peers to synchronize with.

After being called by the broker, the plug-in determines all
users and NPCs that are near o and thus would be able to
pick it up. Here, this includes only u2. Note that the plug-
in does not know that u2 has actually just tried to pick up
o. It is only aware that she is in a position to do so, and
therefore needs to be considered. The plug-in now contacts
all affected users and NPCs (again only u2) and notifies them
that u1 wants to pick up o at this time. In order to this, it
uses the peers@play communication middleware. When the

corresponding consistency plug-in at u2’s peer receives this
request, it checks if it has already taken o or is in the process
of doing so. Here, we assume that u2 actually tried to pick up
o a short while after u1. Therefore u1 is entitled to receive the
object. The plug-in then passes this information back to the
broker via the plug-in manager, which informs the application
of the success of the event. During this entire process, u1 has to
wait for the confirmation of the consistency management. Only
after the confirmation arrives, does the item actually appear in
his inventory. The entire process looks almost identical for u2,
with the exception that the consistency management will report
that o has already been taken. Thus, u2 receives a message,
that the object is no longer available.

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed a consistency manage-
ment infrastructure and presented its main concepts. We also
gave an overview on the architecture of our infrastructure.
Currently we are implementing the discussed concepts and
components, as well as integrating a number of different
consistency models. So far, our infrastructure offers no support
for handling dependencies between different consistency plug-
ins. As discussed before, this might be necessary if events are
added into multiple consistency sessions. In future work we
plan to extend our infrastructure with suitable coordination
mechanisms for this.
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