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Consistency Management Strategies for Data
Replication in Mobile Ad Hoc Networks

Takahiro Hara, Senior Member, IEEE, and Sanjay Kumar Madria, Senior Member, IEEE

Abstract—In a mobile ad hoc network, data replication drastically improves data availability. However, since mobile hosts’ mobility

causes frequent network partitioning, consistency management of data operations on replicas becomes a crucial issue. In such an

environment, the global consistency of data operations on replicas is not desirable by many applications. Thus, new consistency

maintenance based on local conditions such as location and time need to be investigated. This paper attempts to classify different

consistency levels according to requirements from applications and provides protocols to realize them. We report simulation results to

investigate the characteristics of these consistency protocols in a mobile ad hoc network.

Index Terms—Mobile ad hoc networks, consistency management, data replication, mobile computing.

Ç

1 INTRODUCTION

IN mobile ad hoc network (MANET) [14], as mobile hosts
move freely, disconnections often occur. This causes data

in two separated networks to become inaccessible to each
other. Preventing the deterioration of data availability at the
point of network partitioning is a very significant issue in
MANETs [9], [15]. To improve data availability, data
replication is the most promising solution [4], [8]. Based
on this idea, we have designed effective data replication
techniques in MANETs in our previous papers [9], [10], [12].

In [10] and [12], we assume that replicas of a data item
become invalid after the host holding the original updates it
and the consistency of data operations on replicas is kept in
the entire network. However, since network partitioning
frequently occurs in a MANET, this strong consistency
management scheme heavily deteriorates the data avail-
ability. Moreover, many applications in MANETs do not
require such a strong consistency. For instance, consider a
situation where members of a rescue service that constructs
a MANET in the disaster area are divided into several
groups each of which is responsible of a certain region and
the members in each group share various kinds of
information such as that on the extent of damages. In this
situation, the consistency of data operations to data items
that are used locally in each group must be strictly kept in
the same group and is not required to be maintained strictly
in different groups.

In this paper, we discuss different consistency conditions
of data operations on replicas in MANETs. First, we classify
consistency levels according to application requirements.

Next, we propose protocols to achieve them and, then,
discuss the impact of replica allocation for the system
performance when the memory space of mobile hosts is
limited. We also report simulation results to investigate the
behavior of the proposed protocols.

It should be noted that our proposed consistency levels
and protocols for achieving them are not very novel because
these are basically common and simple approaches to
maintain the consistency based on a typical quorum system
and time-based coherency condition. The main contribu-
tions of this paper are not only the proposal of the
consistency levels and protocols but 1) the classification of
consistency levels according to the system and application
requirements, 2) the choices of the existing techniques and
their extensions for design of the protocols of these
consistency levels in MANETs, and 3) performance studies
of these protocols.

Note that some of the results of this paper have been
reported in [11].

2 RELATED WORK

Consistency management is a popular research topic in
distributed database systems. For example, Alonso et al. [1]
discussed cache coherency issues and classified several
coherency conditions such as time-based, value-based, and
version-based ones. As mentioned in Section 1, our
proposed consistency levels are basically based on conven-
tional approaches. Time-based Consistency (TC) in this
paper is similar to the time-based coherency condition,
default coherency condition, in [1]. There have been also many
conventional works that aim to weaken the consistency
such as Epsilon serializability, which is a generalization of
classic serializability and allows some limited amount of
inconsistency [21]. Some of these conventional approaches
are applicable to our proposed consistency levels, which is
open to our future work.

In mobile environments (not MANET), several consis-
tency management strategies that consider host disconnec-
tions have been proposed [13], [17], [19], [20]. Most of them
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assume that mobile hosts access databases at sites in a fixed
network and replicate data on the mobile hosts because
wireless communication is more expensive than wired.
They address the consistency management issue of data
operations on original data and its replicas with low
communication costs. These strategies assume only one-
hop wireless communication.

In [19], the authors proposed the concept of d-consistency,
which is a cluster-based approach and allows a certain
degree of divergence of values of copies in different
clusters. Similar to Epsilon serializability [1], this concept
is also applicable to some of our proposed consistency
levels.

Several methods have been proposed for preserving
consistency of data operations on replicas in MANETs [15],
[16], [22]. In [15], the authors proposed methods in which
the consistency is maintained by employing a strategy
based on the quorum system that has been proposed for
distributed databases [2]. In [16], the authors extended the
methods proposed in [15] by applying probabilistic quorum
system [18]. Their methods are considered similar to ours
because consistency of data operations is maintained based
on the quorum system. However, in [15] and [16], the
authors aimed to roughly keep the consistency in the entire
network. Therefore, the locality in MANETs was not taken
into account.

In [22], the authors defined two different consistency
levels, local observation consistency and global observation
consistency. Global observation consistency is equivalent to
Global Consistency (GC) in this paper. Local observation
consistency is almost equivalent to Peer-based Consistency
(PC), except that it requires replicas to eventually converge
to the most recent version. In [22], only two different
consistency levels are defined, whereas in here we define
five levels. Moreover, the authors tried to keep consistency
based on an optimistic manner, i.e., transactions are
tentatively committed and the consistency is checked by
using serializability graphs. Such an optimistic approach
may not work well in MANETs due to frequent conflicts of
data operations performed in partitioned networks.

3 SYSTEM MODEL

In this paper, we assume an environment where each
mobile host accesses data items held by other mobile hosts
in a MANET and allocates replicas of the data items on its
memory space. We also assume that the area in which
mobile hosts can move around is divided into several
regions and the consistency of data operations on replicas is
managed based on the regions. Details of the system model
are given as follows:

. Each mobile host (peer) knows its current location
by using some device such as GPS and moves
around in the given area. Peers communicate with
others using wireless communication. Messages and
data items are exchanged between peers using an
underlying routing protocol. We do not restrict the
routing protocol and any existing protocols can be
applied to our assumed system model.

. The MANET consists of two kinds of mobile hosts;
proxies and peers. A proxy is a specially designated
peer who manages other peers in a specific region in
the MANET. A proxy has limited movement and
does not go out of its region. It does not encounter a
node failure. (Note that we can easily remove these
assumptions by adopting some existing techniques
for turning over the role of the proxy to another peer
in the region.) For other peers, there are two kinds of
movement according to the application. One is the
same as proxy, i.e., limited movement inside the
region. The other is unlimited movement where
peers can move across regions. In this paper, we
basically assume the former case but also discuss
how to deal with the latter case.

. Each proxy and peer knows all proxies in the entire
network. This assumption is easy to find in many
real situations. In an example of rescue service, it is
natural that every member knows group leaders
who act as proxies. Even when members do not
know each other, a new peer has to register its
participation to the proxy to join the MANET, and
the peer can get the information on all proxies from
the proxy. Here, every proxy can know all the others
at the configuration phase of the MANET.

. The set of all regions in the entire network is
denoted by R ¼ fR1; R2; . . . ; Rlg, where l is the
total number of regions and Ri ði ¼ 1; . . . ; lÞ is the
region identifier.

. We do not restrict to any particular architecture
design for regions because in a real situation, regions
are geographically defined according to require-
ments from the application. For example, in an
environmental sensing operation where the entire
area has to be examined uniformly, the area should
be divided into shared-nothing regions.

. If proxies are not within direct communication range
of their neighboring proxies, communication packets
are forwarded via other peers in a multihop manner.

. Data are handled as a collection of data items. We
assign a unique data identifier to each data item
located in the system. The set of all data items is
denoted by DD ¼ fD1; D2; . . . ; Dng, where n is the
total number of data items and Dj ð1 � j � nÞ is a
data identifier.

. Each peer performs read and write (update) opera-
tions to any data items. For simplicity, we basically
assume blind writes, where a peer writes a value
without reading the latest value before. We can
easily remove this assumption in our protocols to
achieve GC, Local Consistency (LC), and PC by
appropriately setting some system parameters, e.g.,
quorum sizes.

. We assume a simple transaction model in which
each transaction consists of a single database
operation (read or write). Thus, the consistency of
data operations on replicas is defined such that
every read operation reads a valid replica. Here, a
valid replica is the latest version in a specific area
(the area is different according to the consistency
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levels) except for TC in which a replica whose
version is within a predetermined time from its
reading time is considered valid. This assumption is
based on the fact that many MANET applications
require only simple transactions. Of course, there are
other applications in which a transaction consists of
multiple data operations. We do not consider such
complex transactions in our work.

Here, our model allows different versions of

replicas of each data item under the condition that

every read operation reads a valid replica in a

specific area. This is different from a problem of

maintaining replica coherency in which replicas

necessarily converge on one version.
. We assume three different cases for memory avail-

able at proxies and peers for creating replicas. The
first case is where proxies and peers have unlimited
memory space and they replicate all data items.
Some conventional works [15], [16] made this
assumption for the purpose of simplicity. When
data items of small sizes such as location and
statistical data are shared for collaborative work,
this assumption is reasonable.

The second case is where only proxies have

unlimited memory space for replicating all data

items and other peers have no memory space. This is

a typical case where proxies have much more

resources and computational power than other

peers. A good example is a rescue or military

applications where group leaders (proxies) are

equipped with powerful mobile machines and other

members (peers) are equipped with small mobile

devices.
The last case is where proxies and peers have

limited memory space for replication. This is a more

general assumption depicting a real situation. Here,

we do not restrict to any particular replication

strategy to allocate replicas. It is assumed that the

proxy knows replicas held by peers in its region.

This is achieved by sending the information on

replicas held by a peer to the proxy when the peer

participates in a new region.

4 CLASSIFICATION OF CONSISTENCY LEVELS

Since there are various applications in MANETs such as

information sharing in a rescue service and distributed data

processing in sensor networks, there cannot be one

universal optimal strategy for consistency management.

Thus, in this section, we propose four different primitive

consistency levels, GC, LC, TC, and PC and one combined

consistency level. Here, which consistency level an applica-

tion requires is determined based on for what the data

obtained by read operations are used in the application and

for whom (individual, group, or everyone) the data are

useful. Thus, in this section, we describe the requirement

for read operations in each consistency level. Then, in the

next section, we describe how to handle read and write

operations to meet these requirements.

4.1 Global Consistency (GC)

The consistency of data operations on replicas is required
in the entire network. This is equivalent to the traditional
notion of GC. Formally, GC requires that every read
operation issued by any peer necessarily reads a replica
of the latest version in the entire network, i.e., a replica
that was written by the latest write operation issued in
the entire network. Providing such a strong consistency
requires many hops of message passing and, therefore, is
hard to achieve in MANETs. Also, many applications do
not desire it.

However, there exist some applications that require GC
in MANETs. A good example is a situation in which
members of a rescue service are divided into several groups
each of which is responsible of a certain region and the
information on the progress of tasks assigned to each group
is shared in the entire network. In this case, the shared
information is used for administrative decisions at the
highest level such as allocation of machine or human
resources, and scheduling of new tasks. Thus, the consis-
tency of data operations must be maintained strictly in the
entire network.

4.2 Local Consistency (LC)

The consistency of data operations on replicas is required
only in each region of interest. Thus, this consistency level
weakens the strictness of consistency from the spatial
perspective. Formally, LC requires that in each region,
every read operation issued by any peer in the region
necessarily reads a replica of the latest version in the region,
i.e., a replica that was written by the latest write operation
issued in the region.

An example of an application that requires LC is a
situation in which members of a rescue service share the
information on the damages such as the number of injured
persons and destroyed buildings, which can be separate
data items according to the extent of the damages. This
information is used locally by the leader in each region to
decide the resource allocation and task scheduling in the
group. Since this information is referenced only by the
leader and members in the same group, it is not necessary
and too costly to keep the strict consistency in the entire
network. Therefore, in this case, LC is suitable.

4.3 Time-Based Consistency (TC)

In TC, replicas are valid even if their versions are
different but have not passed a predetermined time
(validity period T ) since they have been updated last.
This consistency level weakens the strictness of consis-
tency from the temporal perspective.

Specifically, when the version of a replica of data item Dj

is Vj, i.e., the latest write operation on the replica was
performed at time Vj, a read operation on the replica
succeeds if the read operation is issued at time Aj on
condition that Vj þ T > Aj. Here, we assume peers use
some logical clocks and time is synchronized among all
peers by applying some conventional protocols such as [7].

TC can be usually applied to data items whose values
continuously (preferably slowly) change and the values
themselves are not very important for the application. A
good example is a situation in which members in a rescue
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service share the information on locations of the members.
This information can be used by the members for various
purposes such as temporarily constructing a subgroup of
nearby members to carry out some tasks, e.g., removing a
heavy rock.

4.4 Peer-Based Consistency (PC)

The consistency of data operations is required only in each
peer. Thus, this consistency level further weakens the
strictness of consistency than LC and is the weakest from
the spatial perspective. Formally, PC requires that at each
peer, every read operation issued by the peer necessarily
reads its own replica to which the latest write operation was
performed by itself.

An example of an application that requires PC is a
situation in which members in a rescue service conduct a
survey on some objects, e.g., check out and describe features
of damaged buildings, where the survey result (review) of
each object is recorded as a data item. In this case, a member
engaged in the survey can read and update his own review
on each object anytime, independent of reviews of others on
the same object.

4.5 Application-Based Consistency (AC)

Since different applications running in a MANET might
require different consistency levels, hybrid consistency
levels should be considered. In Application-Based Consis-
tency (AC), assuming that there exist different kinds of
applications requiring different consistency levels, all the
required consistency levels are satisfied.

Here, applications running in a MANET might require
just a subset of the four primitive consistency levels rather
than all, thus, AC is an extreme case. Since how to choose
and design appropriate combinations of different consis-
tency levels is not a focus in terms of the scope of this paper,
we just introduce AC as an example of such hybrid
approaches.

Note that to achieve AC, write operations must be
handled to provide the strongest consistency level, i.e., GC,
while read operations can be handled in different ways
according to the application requirements, i.e., the way to
provide just the same consistency level as the application
requires.

5 CONSISTENCY MANAGEMENT PROTOCOLS

In this section, we describe protocols to realize the five
consistency levels given in the previous section.

As for the three primitive consistency levels except for
TC, the system has to guarantee peers to read the latest
version in a specific area, i.e., in the entire network for GC,
in the region for LC, and in the peer itself for PC. In doing
so, we need protocols to control write and read operations
because the latest write operation performed on each data
item must be distinguished in the specific area.

5.1 Global Consistency (GC)

5.1.1 Basic Idea

To realize GC, the simplest way is “read-one write-all,”
which is a traditional and common approach to maintain
consistency among data operations on replicas. However,

since “read-one write-all” requires that every write opera-
tion is performed on all the replicas, it works badly in
MANETs due to frequent peer disconnections and network
partitioning, i.e., most write operations fail. Alternatively,
we consider a quorum system following [15] and [16].

In a quorum system, read and write operations are
performed on only replicas held by mobile hosts that form
read and write quorums, respectively, where every pair of
read and write quorums have an intersection. Specifically,
when a mobile host updates a data item, it performs the
write operation on replicas held by all mobile hosts in a
write quorum so that replicas of the latest version exist in
the quorum. On the other hand, when a mobile host reads a
data item, it performs the read operation on replicas held by
all mobile hosts in a read quorum. Since there is an
intersection between write and read quorums, at least one
mobile host in a read quorum holds a replica of the latest
version, and thus, the consistency of data operations can be
kept by reading the latest version.

The quorum-based consistency management is suitable
for MANETs because it can perform read and write
operations when mobile hosts that form quorums are
accessible, even if some mobile hosts that hold replicas
disconnect from the network or network partitioning
occurs.

5.1.2 Overview

We employ a quorum system based on dynamic quorums
similar to [16], where mobile hosts are dynamically grouped
into quorums, thus, it is tolerant to unpredictable network
topology change and node failures in MANETs. The
consistency of data operations on replicas is hierarchically
managed at two levels; among peers in each region (local
quorum) and among proxies (global quorum).

In MANETs, it is not wise to adopt a strategy that
requires complex calculation and a large amount of
information for the calculation. Thus, we adopt a very
simple strategy that calculates the sizes of quorums and
dynamically constructs quorums with the calculated sizes,
by using the information that is easily available by proxies.
Specifically, to calculate quorum sizes, each proxy uses the
information on the total number of regions (proxies) in the
entire network and on the total number of peers having
each replica in its responsible region. In the following, we
explain the details.

First, the quorum size for a write operation (to any data
item), jQW j, and that for a read operation, jQRj, in the
entire network are determined where the condition
jQW j þ jQRj > l is satisfied. Here, l is the total number
of regions (proxies) in the entire network. Moreover, in
each region Ri ði ¼ 1; . . . ; lÞ, the quorum size for a write
operation on data item Dj, jQLWijj, and that for a read
operation, jQLRijj, are determined where the condition
jQLWijj þ jQLRijj > Pij is satisfied. Here, Pij is the total
number of peers that hold Dj in the region. If Pij is 1, both
jQLWijj and jQLRijj are set to 1. Within the conditions, the
quorum sizes are arbitrarily determined according to the
performance requirements from the application, e.g., jQRj
should be set as a small value if read operations are issued
much more frequently than write operations.
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Owing to condition jQLWijj þ jQLRijj > Pij, every
(local) read operation can read the latest version in the
region. In addition, owing to condition jQW j þ jQRj > l,
every (global) read operation can read the latest version in
the entire network. Thus, a read (write) operation succeeds
if it can be performed in jQRj ðjQW jÞ regions, in each of
which the operation is performed on jQLRijj ðjQLWijjÞ
replicas.

Here, in our protocol, to dynamically determine a local
quorum, the proxy has to maintain the information on the
sizes of the local quorums, jQLWijj and jQLRijj, for each
data item. In distributed database systems, various kinds of
metadata such as information on data creator, version (time
stamp), size, and keywords are attached to each data item.
Thus, the information on the local quorum sizes could also
be attached to each data item as metadata. Since the size of
the information on the quorum sizes is very small, e.g.,
1 byte for each, it does not raise a scalability problem even
when granularity of the data items is fine.

5.1.3 Protocol

In this clause, we present the protocol to achieve GC. Since
GC requires hierarchical data operations in the entire
network, it takes long time, e.g., a few seconds or more, to
perform. Thus, to cope with network topology change and
peer failures during the protocol execution, we adopt a
three-phase approach for a write (read) operation, which
basically consists of three rounds of message exchanges, 1) a
lock request/its reply, 2) write operations/its acknowl-
edgment (a request for the latest replica/data transfer), and
3) a message for commit and lock release/its acknowl-
edgment (acknowledgment and lock release).

In the following, we describe the details of each of the
three phases. For easy understanding, we first assume the
limited movement case, where peers do not move beyond
their existing regions. Then, in the next clause, we discuss
how to deal with the unlimited movement case for peers.

Phase 1. When a read (write) operation is issued by a peer
in region Ri to data itemDj, first, the peer unicasts a request
(query) for the operation to the proxy of the region. If the
peer does not connect to the proxy, the peer tries to find
another proxy in a different region by sequentially unicast-
ing the request to proxies (from those in closer regions)
until the request reaches a proxy. If the peer fails to find a
proxy, the operation fails immediately. Otherwise, the
proxy that received the request becomes the coordinator to
process the operation.

The coordinator tries to set global read (write) locks to
arbitrary jQRj ðjQW jÞ replicas held by proxies including
itself (Global quorum). This is done by sequentially unicast-
ing a global lock request to other proxies (from those in
closer regions) until the total number of the global locks set
on replicas reaches jQRj ðjQW jÞ. Note that a global lock is
not an actual lock for data operation but a virtual lock,
which represents whether or not the necessary number of
local locks are set on replicas held by peers in the region as
explained later.

Each proxy in region Ri that received the request tries to
set local read (write) locks to arbitrary jQLRijj ðjQLWijjÞ
replicas of data item Dj held by itself and peers in the
region (Local quorum). If jQLRijj ðjQLWijjÞ is 1 and the

proxy holds Dj, the proxy sets the local lock to its holding
replicas. Otherwise, the proxy multicasts a local lock
request to all peers that hold Dj in the region. Each peer
that received the request sets the local lock to its holding
replica ofDj and sends back a reply to the proxy. In the case
of a read operation, the reply contains the information on
the version of the replica.

If the proxy succeeds to set equal or more than
jQLRijj ðjQLWijjÞ local locks, the global read (write) lock
is set on the replica that the proxy holds and the proxy
sends back a reply to notify the coordinator of the fact. In
the case of a read operation, the reply contains the
information on the version of the latest replica in the
region. In addition, the proxy records the IDs of peers that
replied to the request and, in the case of a read operation,
the IDs of peers that hold the latest replica. Otherwise, if the
proxy failed to set the necessary number of local locks, it
also sends back a reply to notify the coordinator of the fact.

If the coordinator succeeds to set jQRj ðjQW jÞ global
locks, it sends a query reply to notify the request-issuing
peer of the fact. The reply contains the IDs of proxies with
the global lock, and in the case of a read operation, the IDs
of proxies having the latest replica in the entire region and
its version. In the case of a write operation, the coordinator
notifies the request-issuing peer of the success of phase 1
and requests the replica of the new (latest) version. Then,
the procedure goes to phase 2. Otherwise, the operation
request fails immediately and the coordinator notifies the
request-issuing peer of the fact.

Fig. 1 shows an example of executing phase 1 of this
protocol. In this example, there are nine shared-nothing
regions ðR1; . . . ; R9Þ. A circle denotes a peer, whereas a gray
one denotes a proxy. A solid line between two peers denotes
a wireless link. Here, let us suppose that every peer has
enough memory space to replicate all data items. Thus, Pij,
the number of peers having a replica of data item Dj in
region Ri, is equal to the total number of peers in Ri for all
data items, i.e., fP1;j; P2;j; P3;j; P4;j; P5;j; P6;j; P7;j; P8;j; P9;jg¼
f4; 4; 4; 5; 3; 3; 3; 4; 4g. Let us also suppose that jQRj ¼ 5,
jQW j¼5, jQLRijj¼bPij=2c, and jQLWijj¼Pij � jQLRijj þ 1.

Here, we assume that the black colored peer inR1 issues a
write operation on D1. The proxy in the region becomes the
coordinator and tries to set aglobal lock to jQW j ð¼ 5Þproxies
fromthose in the closer regions to fartherones, i.e., theorder is
fR1g, fR2; R4g, fR3; R5; R7g, fR6; R8g, and fR9g, if we use the
Manhattan distance. Among the proxies in six regionswhose

954 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 8, NO. 7, JULY 2009

Fig. 1. Example of executing GC.



Manhattan distance is equal or less than 2, the coordinator
succeeds to set a global lock to four proxies ðR1; R2; R4; R5Þ

because it has a communication path (denoted by directional
arrows) to each of them, and theseproxies connect to an equal
or larger number of peers in their region than the local
quorum sizes. Specifically, fjQLW1;1j; jQLW2;1j; jQLW4;1j;

jQLW5;1jg¼f3; 3; 3; 2g, and the numbers of accessible peers
from the proxies are {4, 3, 4, 3}.

Then, R1 tries another proxy in the region whose
Manhattan distance is 3 (R6 or R8). Here, it succeeds to
set a global lock to the proxy in R6. Since the total number of
proxies with a global lock becomes 6, phase 1 successfully
completes.

Phase 2: read operation. In this phase, the requested data
operation is performed on replicas with locks. As for read
operations, if the request-issuing peer holds the latest
version (it can be known from the information on the latest
version attached with the query reply), it performs the
read operation on its own replica. In this case, the
coordinator does nothing and the procedure goes to the
next phase. Otherwise, the coordinator unicasts a data
transmission request to the closest proxy having the latest
version in its region.

The proxy that received the data transmission request
sends a local data transmission request to the closest peer
that holds the latest replica. The peer that received the
request transfers its holding replica to the proxy. Then, the
proxy sends back the acknowledgment to the sender peer
and forwards the replica to the coordinator. The coordinator
that received the latest replica sends back the acknowl-
edgment to the sender proxy and forwards the replica to the
request-issuing peer. Then, the procedure goes to phase 3.

Note that it can happen that the proxy that holds the
latest replica becomes inaccessible from the coordinator or
all the peers having the latest replica in the region become
inaccessible from the proxy during the execution of phase 2.
In such a case, the coordinator tries to find another latest
replica holder. Here, the coordinator knows the proxies
having the latest version in their regions, and these proxies
also know peers having the latest version. Thus, from the
closest proxy to farther ones, the coordinator successively
sends a data transmission request to the proxy until it
obtains a latest replica. If all these procedures fail, the
coordinator aborts the request. Of course, if the request-
issuing peer becomes inaccessible from the coordinator, the
request fails immediately.

Phase 3: read operation. In this phase, the request-issuing
peer that received a latest replica sends an acknowledgment
to the coordinator, and then the coordinator sends a commit
and lock release message to the proxies involved in the
global quorum. Each proxy that received this message
forwards it to the peers involved in the local quorum in the
region. Then, all the locks set to replicas for this operation
are released and the procedure finishes. Even if the commit
and lock release message cannot reach the proxy and peers
involved in the quorums, it does not affect the database
state, thus, the coordinator can complete the operation.

Phase 2: write operation. In phase 2 of the write operation,
the coordinator receives the replica of the new version from

the request-issuing peer and forwards it to jQW j proxies
with the global locks.

Each proxy that received the replica forwards it to the
closest jQLWijj peers having replicas with the local lock.
Each peer that received the replica of the new version
replaces its holding replica with the received one and sends
back the acknowledgment to the proxy. If the proxy receives
the acknowledgment from all the jQLWijj peers, it sends
back the (positive) acknowledgment to the coordinator. If
the coordinator receives the acknowledgment from all the
jQW j proxies, the procedure goes to phase 3.

Here, it can happen that only less than jQLWijj peers
having locked replicas are accessible from the proxy or some
proxies with the global lock become inaccessible. In such a
case, if the missing peers are proxies, finding alternative
proxies that can set the necessary number of local locks is
very costly, thus, in our protocol the coordinator aborts the
request. On the other hand, if the missing ones are peers, the
proxy in the region with the missing peers tries to fine-
adjust the quorum by searching alternative accessible peers
in the region. The overhead of this process is low because
the proxy can reuse the result of phase 1, i.e., the
information on accessible peers. If it fails, the coordinator
aborts the request.

Phase 3: write operation. In phase 3 of the write operation,
the coordinator sends a commit and lock release message to
the proxies involved in the global quorum. Each proxy that
received this message forwards it to the peers having
replicas with the local lock. Then, each peer that received
the message sends back the acknowledgment to the proxy
and releases the local lock set to its holding replica. If the
proxy receives the acknowledgment from all the peers
involved in the local quorum, it sends back the acknowl-
edgment to the coordinator and releases the global lock. If
the coordinator receives the acknowledgment from all the
proxies involved in the global quorum, it sends a message
notifying the success of the operation to the request-issuing
peer and the procedure finishes.

If phase 3 fails during the execution and the missing
peers are not proxies, the coordinator tries to find
alternative available peers in the same way as the fail in
phase 2, and then, phase 3 is executed again to replicas that
are newly performed by the operation. If it also fails, the
operation fails and the coordinator sends an abort message
to all the proxies and peers having locked replicas.

Here, to ensure the execution of write operations on
replicas held by multiple nodes in a distributed system, two-
phase commit (2PC) is the most popular approach. 2PC
achieves this by two rounds of message transmissions
between the coordinator and all the replica holders; commit
prepare/acknowledgment and commit/acknowledgment. How-
ever, the overhead of two rounds of message transmissions
is very high for MANETs. To solve this problem, there are
several possible approaches. For example, we can omit the
first round (commit prepare/acknowledgment) by merging
it with phase 2 of our protocol. This is possible because in
our protocol, phase 2 is basically performed synchronously
among peers having replicas with locks and requires the
acknowledgment. Also, if the underlying routing protocol
requires flooding of a route request before sending
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communication packets, the messages of the first phase in
2PC can be piggybacked on the route request and its reply.
Since the possible approaches depend on the implementa-
tion of the underlying network protocols and other factors,
we do not restrict a particular one in our protocol.

Time-out in processing. Each of the three phases 1, 2, and 3
has the time-out at both proxy and peer. As for proxy time-
out, if the proxy cannot receive the required number of
replies within the time-out, it retries to find other ones. As
for peer time-out, if a peer has not received a message or
request for the next procedure after it replied to the proxy
for the previous phase, it aborts all the procedures
performed for the corresponding operation.

5.1.4 How to Deal with Peers’ Movement across

Regions

The protocol of GC (also LC described later) uses the
number of replica holders in each region to construct local
quorums. Here, the number of replica holders in each
region, Pij, dynamically changes in the case of unlimited
movement where peers move across regions. Therefore, a
mechanism to maintain the members (peers) in each group
is needed.

In this clause, we first explain a mechanism for member
maintenance. Then, we present how our protocol works in
the case of unlimited peer movement. Here, all the
procedures except for that for calculating the quorum size
are basically the same as those of the original protocol
described above.

Mechanism for member maintenance. When a peer moves
into a new region, the peer tries to notify the proxy in the
region (where the peer previously existed) of its exit from
the region by sending its peer identifier. When the peer
cannot make this, i.e., it does not connect to the proxy, the
peer is considered in the region even if it is out of the
region. If the peer succeeds in the exit notification, it then
notifies the proxy in the new region of its entrance by
registering its peer identifier. When the peer cannot make
this registration, the peer is considered not in the region
even if it does exist geographically in the region. In this
case, the peer is considered in no region. Here, peers that
failed to register exit or entrance retry it periodically.

Extension of the GC protocol. As for write operations, the
local quorum in the region can be dynamically constructed
based on the current value of Pij. As for read operations, it
is not enough to consider the current value of Pij. Instead, a
read operation must consider the local quorum to which the
latest write operation was performed in the region, whereas
the members might have changed a lot. A possible way to
solve this problem is recording at the proxy the time T 0

j

when the latest write operation to Dj was performed in the
region, and the number of peers P 0

ij that hold Dj in the
region at T 0

j . Since, in the protocol of GC, every read and
write request is processed through the proxy in the region,
this extension is easy to achieve.

Based on the above extension, each proxy can calculate
the local quorum size for a read operation in the region.
Specifically, by using the recorded information on P 0

ij, the
proxy can calculate jQLW 0

ijj, which is the local quorum
size for the latest write operation. Then, the quorum size
for a read operation in the region is initially set as
jQLRijj ¼ P 0

ij � jQLW 0
ijj þ 1 to guarantee that every pair of

local write and read quorums has an intersection. After
then, jQLRijj is decreased by one every time a peer having
a replica of Dj, which has belonged to the region before
and after the latest write operation was issued but not
being involved in the local write quorum, exits from the
region. This can be done by using the information
recorded at the proxy on the latest write time T 0

j , the
time tp when the peer came into the region, and the
version of the replica of Dj held by the peer.

When a read operation to Dj is issued by a peer, the
proxy in the region sends a local lock request to all peers
that have a replica of Dj and have belonged to the region
before and after the latest write time, i.e., T 0

j > tp.

Theorem. The extended protocol can preserve GC in environ-
ments where peers move across regions.

Proof. First, we focus on consistency inside a region. When
a write operation is performed on data item Dj at
time T 0

j , replicas of Dj in the region can be categorized
into two different classes; jQLW 0

ijj replicas on which the
latest write operation was performed and P 0

ij � jQLW 0
ijj

replicas on which the operation was not performed.
Then, we assume that a read operation is issued in

the region at time T 00
j ðT 00

j > T 0
jÞ. We also assume that

among the P 0
ij peers, Ej peers have exited from the

region during the time interval from T 0
j to T 00

j , among

which E0
j peers hold old (not the latest) replicas. In this

case, there are still jQLW 0
ijj � ðEj � E0

jÞ latest replicas

and P 0
ij � jQLW 0

ijj � E0
j old replicas in the region, all of

which were written in the region. Since in the extended
protocol, the quorum size for the read operation is set as

jQLRijj ¼ P 0
ij � jQLW 0

ijj � E0
j þ 1 and only peers that

have belonged to the region before and after the latest

write operation was issued are involved in the read

quorum, an arbitrary read quorum contains at least one

latest replica (because the total number of old replicas in

the region is P 0
ij � jQLW 0

ijj �E0
j). Thus, the consistency

of data operations is preserved in the region.
Since the consistency is preserved in the region, the

consistency in the entire network is also preserved by
using the global quorum described in Section 5.1.3. tu

5.1.5 Correction of Message Arrival Order

In a real environment, due to the delay of message
propagation on a multihop route, two messages generated
from two different peers are often received by other peers in
the reverse order. This may cause a deadlock of requests
that try to set locks to quorums. In this paper, a peer that
received request messages can fix the order even when their
arrival times are reversed, by using the information on the
query issued time that is attached to every request message
(query, local lock, and global lock).

5.2 Local Consistency (LC)

5.2.1 Overview

Similar to GC, we employ dynamic quorums to realize LC.
Since consistency of data operations on replicas is managed
only among peers in each region, LC allows different
versions of replicas in different regions; thus, reconciliation
to converge the values of replicas is not necessary.
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The procedure of the protocol to achieve LC is basically
the same as the procedure in the region of the GC protocol,
which also consists of three rounds of message exchanges.
Thus, we briefly explain it and omit the details.

In each region Ri ði ¼ 1; . . . ; lÞ, the quorum size for a
write operation to data item Dj, jQLWijj, and that for a
read operation, jQLRijj, are determined where the condi-
tion jQLWijj þ jQLRijj > Pij is satisfied. If Pij is 1, both
jQLWijj and jQLRijj are set to 1. Owing to condition
jQLWijj þ jQLRijj > Pij, it is guaranteed that every read
operation reads a replica of the latest version in the region.

5.2.2 Protocol

When a read (write) operation is issued by a peer in
region Ri, the peer tries to set read (write) locks to arbitrary
jQLRijj ðjQLWijjÞ replicas held by the proxy and peers in
the region in which the peer exist (Local quorum). If equal to
or more than jQLRijj ðjQLWijjÞ peers or the proxy replied,
the read (write) operation is performed on the replicas with
the locks. As for read operations, the operation is done on a
replica of the latest version among those with locks. As for
write operations, the operation is performed on the closest
jQLWijj replicas held by peers in the quorums.

We show some examples of executing phase 1 of the
LC protocol using Fig. 1. When a peer in R9 issues a write
operation on D1, phase 1 of the LC protocol succeeds
because every peer in R9 connects to more than
jQLW9;1j ð¼ 3Þ peers. Here, if the required consistency
level is GC, this request fails because the proxy in R9

cannot set the necessary number of global locks ðjQW j ¼ 5Þ.

5.2.3 How to Deal with Peers’ Movement across

Regions

The protocol of LC can be also extended to deal with peers’
movement across regions in the same way as that of GC.
However, to do so, the protocol of LC has to be changed to
make every read and write request be processed through
the proxy in the region. This has a shortcoming that the
flexibility of choosing a quorum is slightly decreased
because request-issuing peers have to connect to the proxy
in the region.

5.3 Time-Based Consistency (TC)

5.3.1 Overview

TC does not require peers to read the latest version but
requires them to read replicas whose version is within the
valid period T . Therefore, as for TC, validity of a replica is
affected only by the last write operation that was performed
on the replica but not affected by any write operations
performed on other replicas. Namely, the protocol does not
need to control write operations in terms of consistency, i.e.,
write operations can be performed on any replicas either
valid or invalid. On the other hand, read operations need to
find a valid replica. If the peer that issued a read operation
request holds a valid replica, it can perform the operation
locally.

5.3.2 Protocol

When a write operation to a data item is issued by a peer
and the peer holds a replica of the target item, the operation

is performed on the replica. If the peer does not hold the
replica, it tries to find a replica held by a peer in its region.
This is done by broadcasting the write request in the region
because peers do not know the members in the same region.
If the peer receives replies from peers having a replica, the
write operation is performed on a replica held by the closest
peer. If it fails, the peer tries to find a replica held by a peer
in another region by broadcasting the request in the entire
network. If it succeeds, the operation is performed on a
replica held by the closest peer.

As for read operations, the same procedure as a write
operation is performed except that the peer has to find a
valid replica. Specifically, the information on the read
operation issued at time Aj is attached to the request
message sent to other peers. Then, at each peer that received
the request, it is checked whether condition Vj þ T > Aj is
satisfied for its holding replica, where Vj is the version of
the replica. If the replica is valid, the reply is sent to the
request-issuing peer.

5.3.3 Discussions

As described above, in terms of consistency, a write
operation can be performed on any replica, thus, we adopt
a simple approach. However, in terms of performance such
as transaction success ratio and communication overhead,
there are various other choices. For example, to improve
read success ratio, a write operation performed on a peer is
better to be propagated to distribute newer replicas to other
peers, which can be done based on lazy updates. Here, the
propagation of write operations is not good in terms of
communication overhead. Thus, there is a trade-off relation-
ship between read success ratio and communication over-
head in TC.

5.4 Peer-Based Consistency (PC)

PC just requires each peer to read the latest version written
by it. Thus, PC can be applied only to replicas that the peer
holds. In other words, basically, PC is defined only in cases
where every peer has enough memory space to replicate all
data items that the peer accesses.

In our assumed system model, since every transaction
consists of a single operation, each peer can perform read
and write operations anytime on its own replica and no
special mechanism is needed. Namely, database operations
issued at a peer do not affect those issued at other peers, i.e.,
PC allows different versions of replicas. Thus, reconciliation
to converge the values of replicas is not necessary.

5.5 Application-Based Consistency (AC)

AC provides all consistency levels required from different
applications. Therefore, in the AC protocol, write operations
are performed in the same way as the GC protocol. On the
other hand, read operations are performed in different ways
according to the consistency levels that the request-issuing
peers require. For example, if the request-issuing peer
requires LC for a read operation, the request is processed by
the LC protocol, and so on.

5.6 Impact of Replica Allocation

If proxies and peers have limited memory space, they have
to determine which data items to replicate. In such a
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situation, the performance for consistency management is
affected by the replication strategy. More specifically, in GC
and LC, the quorum size for a write (read) operation in the
region jQLWijj ðjQLRijjÞ changes according to the number
of replicas of each data item. This directly affects the
communication cost and might affect the data availability.
Moreover, the number of replicas also affects the hopcount
to the closest replica holder in read operation, i.e., more
replicas generally result in a shorter hopcount. In the
extreme case that a region has only one copy of an item, the
traffic for constructing a quorum is very low. However, it
makes the hopcount for reading the replica longer, becomes
a single point of failure, and unbalances load and power
consumption among peers. This has a large impact on
performance when the read frequency is much higher than
the write frequency and the sizes of data items are large.

Similarly, in TC, the number of replicas affects the
communication costs and the data availability because a
request-issuing peer has to search another peer that holds a
(valid) replica of the target data item if it does not hold.

Therefore, in the simulation experiments, we examined
the impact of two typical replication strategies; 1) square-
root* allocation (SRA) and 2) inversed SRA (ISRA). SRA is a
popular strategy used in an unstructured P2P network [5],
in which the ratios of numbers of replicas are proportional
to the square-root of the query (read) frequencies to the data
items. It is known that SRA achieves the optimal replica
allocation in terms of query efficiency, i.e., it is effective for
finding one replica in the entire system. However, it is not
always effective for a quorum system because it requires
many message transmissions to construct a quorum and
also many data transmissions for a write operation. On the
contrary, ISRA allocates replicas, in which the ratios of
numbers of replicas are inversely proportional to the square
root of the read frequencies to the data items. This strategy
is effective to reduce message transmissions to construct a
quorum for hot data items.

Here, it can happen that there is no copy of a certain data
item in some region if the adopted replication strategy is not
aware of the number of replicas of each data item in each
region. This might cause considerable degrading in data
availability. Thus, in a real environment, some strategies
should be considered to keep at least one copy of each data
item in every region. Since such a strategy is beyond the
scope of our paper, we assume the above typical strategies
to fairly verify the impact of the number of replicas on the
performance.

6 SIMULATION

In this section, we show simulation results to investigate the
characteristics of the proposed consistency levels and
protocols. Since the limitation of memory space affects the
system performance, we evaluated all the three cases
discussed in Section 3; Case 1: unlimited memory space
for both proxies and peers, Case 2: unlimited memory space
for proxies, and Case 3: limited memory space for both
proxies and peers. We also examined the performance of
the two cases for peers’ mobility described in Section 3;
limited and unlimited.

6.1 Simulation Model

In our simulation experiments, we assume a situation
where members engaged in a collaborative work such as
rescue operations share information for efficiency of their
own task. The members are divided into groups, each of
which is assigned a specific region. They are equipped with
mobile terminals with a wireless communication facility
such as Bluetooth, wireless LAN, and Zigbee. In the
experiments, we assume that a unit of simulation time
corresponds to 5 seconds in a real environment. In the
following, we present the details of the simulation model.

Mobile hosts exist in an area of X � Y ðm2Þ, which
consists of 12 regions of X=3�X=3, R ¼ fR1; . . . ; R12g (see
Fig. 2). Here, ratioX : Y is kept to 3:4. In our experiments,X
is changed as a variable parameter in the range from 300 to
600 m. Here, the experiments changing X are almost
identical to those varying the number of mobile hosts and
the radio communication range because all of them affect
the connectivity among mobile hosts.

The number of mobile hosts in the entire system is 240
ðM ¼ M1; . . . ;M240Þ.Mi ði ¼ 1; . . . ; 12Þ is the proxy of region
Ri, and Mj ðj ¼ 13; . . . ; 240Þ is a peer that initially exists in
region Rðmmod 12Þ if (m mod 12) is not 0 or R12 if (m mod 12)
is 0. The number of data items in the entire network is 500
ðD ¼ D1; . . . ; D500Þ. For the purpose of simplicity, we
assume that all data items are of the same size.

We assume two cases for peers’ mobility; limited and
unlimited. In the limited mobility model, each peer does
not go beyond its initially assigned region; thus, every
region contains 20 static peers. Each peer moves according
to the random waypoint model [3], where each host selects
a random destination in its assigned region. In the
unlimited mobility model, each peer moves according to
the random waypoint model, where each host selects a
random destination in the whole area. In both models, the
pause time and the maximum movement speed are set as
0 second and 2 m/s, respectively, assuming that peers
move in a walking speed.

The communication range of each mobile host is a circle
with a radius of 50 m. To remove the impact of underlying
network protocols, we simply assume that every message
and data transmission is routed via the shortest path from
the source to the destination. Moreover, even in a multicast
transmission, e.g., lock request, a message or data item is
separately transmitted to each of the multicast members via
the shortest path, i.e., a multicast transmission consists of
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separate unicast transmissions. While the GC and LC
protocols adopt 2PC in phase 3, the possible approaches
for this aim depend on the implementation; thus, we just
count the hopcount for one round of message transmissions.

We assume three different cases for memory space. The
first one is the unlimited case in which every proxy and
peer replicates all the 500 data items. The second one is the
unlimited case with proxies in which proxies replicate all
the 500 data items and peers do not replicate any data items.
The last one is the limited case in which each mobile host
replicates 150 data items by using SRA and ISRA, where the
minimum number of replicas in each region for every data
item is set as 1. The last case is evaluated only in the limited
mobility model because we do not want to consider cases
where there is no replica of a certain data item in some
region, which happen when all the replica holders go out
from the region.

Read and write frequencies of each peer to data items are
0.02/second and 0.002/second, respectively. The read/write
probability, qj, to Dj in the entire network follows the Zipf
distribution [23] and is expressed by the following equation:

qj ¼
j�0:6

P
500

m¼1
m�0:6

: ð1Þ

Equation (1) shows that data items with smaller identifiers
are requested more frequently. This is for simplicity of
discussion, but we can arbitrarily change the order without
losing generality. In this read/write model, every proxy
and peer has the same access characteristics. This is to
properly examine the impact of the replication strategy.

In TC, the validity period for read operations is set to
10 seconds. In GC and LC, jQLRijj ði ¼ 1; . . . ; 12; j ¼ 1;
. . . ; 500Þ is set to bPij=2c and jQLWijj is set to Pij �
jQLWijjþ1. In GC, jQRj is set to 6 (= 12/2) and jQW j is set
to 7. In LC, every data operation request is processed
through the proxy. In TC, awrite operation is not propagated
to other peers and proxies.

In the simulations, we examined the success ratios of read
and write operations, the message traffic, and data traffic to
process a read/write operation during 200,000 units of
simulation time (1,000,000 seconds). The success ratio is
defined as the ratio of successful read/write operations to all
requests of read/write operations issued during the simula-
tion time. The message traffic is defined as the average of the
total hopcount for message exchanges to process a read/
write operation excluding transmissions of data items. The
data traffic is defined as the average of the total hopcount to
transmit a data item to perform a (successful) read/write
operation. Here, because the sizes of data items change
depending on kinds of data and also on applications, we do
not assume any particular sizes for both messages and data
items. The actual traffics caused by message and data
transmissions can be calculated by multiplying the message
and data traffics obtained in our experiments by their sizes.

We assume that every protocol execution finishes within
a unit of simulation time, i.e., 5 seconds. This is usually true
in a real environment, because even in GC, one round of
message exchanges in the entire network takes less than 1 or
2 seconds, and thus, the entire procedure that requires three
rounds of messages or data exchanges takes less than

5 seconds. Even for transmission of a data item, it takes
almost the same time if the data size is not very large. In
MANETs, data items shared among mobile hosts are
basically not very large, e.g., from a few dozen bytes to a
few Megabytes.

To examine the reliability of the simulation results, we
calculated breadths of 90 percent confidence intervals for
the simulation results using the Batch Means method [6],
where the batch size is 20,000 units of time and the number
of batches is 10. The results show that the simulations were
sufficiently converged, where the breadths of the confi-
dence intervals were a few percent in most cases and at
most 10 percent of the average values.

In the experiments, we only evaluated the four primitive
consistency levels, GC, LC, PC, and TC, because AC is a
hybrid version of the primitive ones. We basically assumed
that neither network topology change nor peer failure
occurs during the protocol execution in every consistency
level. This is because the probability that the network
topology changes and a peer failure occurs during the
protocol execution is generally small. However, we also
provide some simulation results where we assumed both
the network topology change and peer failure during the
protocol execution.

6.2 Case 1-1: Unlimited Memory and Limited
Movement

First, assuming the case where the memory space of all
proxies and peers is unlimited and each of them moves
around inside a particular region, we examine the perfor-
mance of the protocols to achieve the four primitive
consistency levels.

Fig. 3 shows the simulation results. In all graphs, the
horizontal axis indicates area size, X. The vertical axis
indicates success ratio in the cases of Figs. 3a and 3b,
message traffic in the cases of Figs. 3c and 3d, and data
traffic in the cases of Figs. 3e and 3f. From Figs. 3a and 3b,
the success ratios of both read and write operations in GC
and LC become lower as the area size becomes larger. This
is because the connectivity among mobile hosts becomes
lower; thus, the necessary number of locks on replicas
cannot be set with high probability. The differences in
success ratio between write and read operations are not big
in both GC and LC because the difference in quorum sizes
between write and read operations are at most 1. We can see
an interesting fact that when the area size is larger than 450,
the success ratio in GC suddenly becomes lower, but in LC,
it remains high. This fact shows that even when the
connectivity among mobile hosts is still high in each region,
the connectivity among proxies becomes low. It is expected
that the employed mobility model (random waypoint
model) accelerates this characteristic because in this model
peers tend to locate near the center of the region.

The success ratio of write operations in TC and those of
write and read operations in PC are always 1 because every
peer replicates all data items and operations can be
executed locally. The success ratio of read operations in
TC becomes lower as the area size becomes larger. This is
because when the connectivity is low, mobile hosts cannot
access valid replicas held by connected mobile hosts with
high probability. Comparing LC and TC, TC always gives a
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lower success ratio, although TC weakens consistency from
the temporal perspective. This is because in this experiment
a peer that performed a write operation does not propagate
the operation to other peers, thus replicas held by peers are
only refreshed by themselves, which results in many
replicas expiring the validity period.

From Figs. 3c and 3d, the message traffic of write and
read operations in GC and that of write operations in TC
first become higher and then lower from a certain point
ðX ¼ 450Þ as the area size becomes larger. The reason why
the message traffic first becomes higher in GC is that the
proxy that received a request of a write/read operation
from a peer fails more times to find proxies that can set the
necessary number of local locks in their responsible regions.
The message traffic of write operations in TC first becomes
higher because the request-issuing peer fails more times to
find a proxy or peer that holds a valid replica. The message
traffic in both GC and TC (write operations) then becomes
lower because the number of proxies and peers that a
request-issuing peer can communicate with becomes lower.
This fact can be confirmed from the results in Figs. 3a
and 3b in which the success ratios in these cases become
lower. Of the four protocols, GC produces the highest
message traffic, and LC produces much lower than GC and
TC (for write operations).

The message traffic of write and read operations in LC is
barely affected by the area size. This is because a request-
issuing peer always multicasts the request to all the replica
holders in the region. The reason why the message traffic in
LC slightly increases as the area size becomes larger is that
hopcounts between two mobile hosts become higher. Since
the connectivity among peers in the same region is still high
even when the area size is large, the message traffic does
not decrease in LC. Here, the differences in message traffic
between write and read operations in GC and LC are

mainly due to phase 3 in which read operations require one-
way message transmission. Obviously, the message traffic
of write operations in TC and those of write and read
operations in PC are always 0.

From Figs. 3e and 3f, the data traffic is much lower than
the message traffic for both write and read operations.
However, the values do not represent actual traffic because
the data size is not considered. If the sizes of messages and
data items are given, it is determined which one is
dominant. Comparing write and read operations, the data
traffic for write operations is much higher than that for a
read operation. This is obvious because a read operation
just requires a unicast from the closest peer having the latest
replica to the proxy or the request-issuing peer, while a
write operation requires a multicast of the data item of the
new version.

In GC and LC, the data traffic for both write and read
operations basically keeps increasing as the area size
becomes higher. This is because hopcounts between two
peers tend to be larger and the data traffic is measured only
when a data operation request succeeds, i.e., fail cases are
ignored. The data traffic for read operations in TC is much
higher than other protocols, because there are fewer valid
replicas in TC as mentioned above, and request-issuing
peers have to obtain valid replicas from faraway peers.

Here, we examine the impact of differences in peer
density among regions. Of course, we can estimate the
performance of LC in each region from the results in Fig. 3
even when the numbers of peers differ among regions.
However, the difference in peer density affects the
performance of GC and TC because existence of sparse
regions between dense regions may cause network parti-
tioning. To examine this, we changed the simulation settings
to achieve an environment where there are two kinds of
regions, dense and sparse. Specifically, six regions having odd
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Fig. 3. Effects of the area size (Case 1-1: unlimited memory and limited movement). (a) Success ratio (write). (b) Success ratio (read). (c) Message

traffic (write). (d) Message traffic (read). (e) Data traffic (write). (f) Data traffic (read).



numbered identifiers, R1; R3; . . . ; R11, are assigned 10 peers
(sparse regions), while the other six regions, R2; . . . ; R12, are
assigned 30 peers (dense regions). Note that the density of
peers in the entire area is the same as that in the simulation
in Fig. 3. Fig. 4 shows the simulation result. Due to the
limitation of space, only the success ratios are shown here.
From this result, the success ratios for read and write
operations in GC and that for write operations in TC drop
faster than the result in Fig. 3. On the contrary, the success

ratios in LC are barely affected by the difference in peer
density. This result confirms that the existence of sparse
regions makes the connectivity among regions worse and
the success ratios for data operations decrease.

6.3 Case 2-1: Unlimited Memory with Proxies and
Limited Movement

Next, assuming the case where proxies have unlimited
memory space while peers have no memory and every
proxy and peer moves inside a particular region, we
examine the performance of the four protocols. Fig. 5 shows
the simulation results. In this graph, the performance of PC
is not shown because PC is defined only where every peer
accesses its own replicas. From Fig. 5, most of the
characteristics in Fig. 3 are preserved, but there are several
remarkable differences. The most remarkable difference is
that the message traffic is much reduced in Fig. 5, while the
success ratios of write and read operations in GC and LC
and that of read operations in TC are almost the same
between Figs. 3 and 5. The reduction of message traffic is
not surprising because a proxy that received a request from
the request-issuing peer or the coordinator in GC does not
need to send any messages to peers in the region in GC and
LC. Also in TC, since a request-issuing peer can directly
unicast a request to proxies, the message traffic is reduced.

The second remarkable difference is the results for write
operations in TC. In Fig. 5, the success ratio of write
operations in TC is not always 1 but becomes lower as the
area size becomes larger, and the message traffic is not 0.
This is because a request-issuing peer has to perform a write
operation on a replica held by a proxy. Here, the
performance in TC is almost the same as that in LC in
which a request succeeds when a request-issuing peer
connects to the proxy in its region.
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Fig. 4. Case 1-1: unlimited memory and limited movement (different

density). (a) Success ratio (write). (b) Success ratio (read).

Fig. 5. Effects of the area size (Case 2-1: unlimited memory with proxies and limited movement). (a) Success ratio (write). (b) Success ratio (read).

(c) Message traffic (write). (d) Message traffic (read). (e) Data traffic (write). (f) Data traffic (read).



The last remarkable difference is data traffic in LC and
GC. While the data traffic for write operations is reduced
from the result in Fig. 3e, that for a read operation is much
increased. This is because in the case of Fig. 3, it often hap-
pens that the request-issuing peer holds the latest replica.

From these results, we can confirm the following facts.
When all applications running in the network require GC
or LC, it is better in most cases to restrict replication so
that only proxies replicate all data items and other peers
hold no replicas. However, when data items are relatively
large compared with the message size and read operations
are issued much more frequently than the write opera-
tions, aggressive replication that creates more replicas
should be better.

6.4 Case 3-1: Limited Memory and Limited
Movement

We examine the performance of the proposed protocols
assuming the cases where proxies and peers have limited
memory space for replication (SRA and ISRA), and every
peer moves inside its region. Figs. 6 and 7 show the
simulation results. For the same reason as in Fig. 5, the
performance of PC is not shown here. From these results,
the characteristics are almost the same between the two
cases, SRA and ISRA; however, several interesting facts
can be seen.

Similar to the result in Fig. 5, the number of replicas held
by peers barely affects the success ratios in GC and LC. As
for TC, by comparing the two cases, SRA and ISRA, having
more replicas of more accessed data items, i.e., SRA, slightly
increases the success ratio of write operations.

The message traffic in GC and LC differs among the two
cases, where having fewer replicas of more accessed data
items (ISRA) reduces the message traffic. As for the data
traffic in GC and LC, having less replicas of more accessed

data items slightly reduces the data traffic for write
operations and slightly increases for read operations.
Together with the results in Fig. 5, these results on the
performance of the quorum-based approaches are comple-
tely different from a general knowledge that having more
replicas of more accessed data items reduces the message
traffic as well as increases the data availability, i.e., success
ratios of read operations.

As for TC, the message traffic of write operations is
reduced by having more replicas of more accessed data
items (SRA). This is due to the same reason as that in Fig. 5.

We conducted some other experiments in different
settings of peers’ memory sizes for replication. We also
conducted some experiments in which different peers have
different memory sizes. All the results of these experi-
ments basically showed the same characteristics as the
results in Figs. 6 and 7. Due to the limitation of space, we
omit the details.

6.5 Case 1-2: Unlimited Memory and Unlimited
Movement

Next, we examine the other movement pattern, where peers
move across regions. Fig. 8 shows the simulation results in
the case that proxies and peers have unlimited memory
space and replicate all data items. From the results, we can
observe several interesting facts. First, unlimited movement
of peers degrades the success ratios of both read and write
operations in LC but improves those in GC. As for GC,
points where the success ratios start to drop down are later
and angles of dip are more modest than the results in Fig. 3.
On the contrary, LC shows the reverse characteristics. This
is due to the characteristic of the random waypoint model,
where more nodes tend to locate near the center of the
whole area. Thus, the connectivity among peers in different
regions that exist near the center of the whole area becomes
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Fig. 6. Effects of the area size (Case 3-1: limited memory (SRA) and limited movement). (a) Success ratio (write). (b) Success ratio (read).

(c) Message traffic (write). (d) Message traffic (read). (e) Data traffic (write). (f) Data traffic (read).



higher and the success ratio in GC increases. The success
ratio of read operations in TC also increases due to the same
reason. On the other hand, since the density of peers in
regions that exist far from the center tends to be lower, the

success ratios of write and read operations in these regions
decrease, which results in a decrease of success ratio in LC
in the entire network. Here, in GC, this does not much affect
the success ratio because the necessary number of global
locks can be set on proxies in regions near the center of
the area.

To verify the above discussions, we examine the average
number of peers and success ratios of operations in each
region, focusing on the case of X ¼ 450 m. As for the
average number of peers in each region, we show both

peers that successfully register on entrance into each region
and peers that geographically (actually) exist in each region
independent of whether or not the peers succeed to register
on entrance. Fig. 9 shows the experimental result. In this
figure, the horizontal axis indicates the region number
shown in Fig. 2 and the vertical axes indicate the number of
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Fig. 7. Effects of the area size (Case 3-1: limited memory (ISRA) and limited movement). (a) Success ratio (write). (b) Success ratio (read).
(c) Message traffic (write). (d) Message traffic (read). (e) Data traffic (write). (f) Data traffic (read).

Fig. 8. Effects of the area size (Case 1-2: unlimited memory and unlimited movement). (a) Success ratio (write). (b) Success ratio (read).

(c) Message traffic (write). (d) Message traffic (read). (e) Data traffic (write). (f) Data traffic (read).



peers in each region for bar graphs and the success ratios of
write operations for line graphs. From the result, it can be
seen that the difference between the number of registered
peers and that of geographically existing peers is very
small, which shows that peers mostly succeed to register on
their entrance to new regions. Also, we can confirm the facts
discussed in the previous paragraph from the result on
success ratios in each region.

From Figs. 8c and 8d, we can observe an interesting fact
in the result for message traffic in GC and LC. Compared
with the result in Fig. 3, the differences in message traffic
between write and read operations become much larger.
This is because in an environment where peers move
across regions, the local quorum size for a read operation
on a data item is decreased as peers having an old replica
of the data item exit from the region. This makes the local
quorum size for a read operation smaller, and thus, the
message traffic becomes lower. Surprisingly, this is helpful
to improve the data success ratio of read operations in GC,
as shown in Fig. 8b.

On the other hand, the message traffic for write
operations in GC is higher than that in Fig. 3. This is due
to the increase in numbers of peers in regions that exist near
the center of the whole area and the increase in connectivity
among these peers in different regions.

6.6 Impact of Mobility Model

As mentioned above, the results of our simulations are
affected by the employed mobility model (random way-
point model). In this section, to examine the impact of the
mobility model, we measure the performance of the
proposed protocols assuming another well-known mobility
model, called the random walk model. In this model, each
mobile node randomly determines the movement direction
from all directions and randomly determines the move-
ment speed from 0 to 2 m/s at every unit of simulation
time. In the random walk model, peers distribute randomly
(almost uniformly) in each region. Because the perfor-
mance of our proposed protocols depends on the geogra-
phical distribution of peers, we think examining the
random walk model is enough to examine the side effects
of different mobility models.

Figs. 10 and 11 show the results of the simulations in the
two cases where peers move inside regions (limited move-
ment) and move across regions (unlimited movement),

respectively. In both cases, we assume that peers have

unlimited memory space for replication. Due to the

limitation of space, only the success ratios are shown here.

From these results, while the general features are basically

reserved even when using the random walk model, we can

confirm the side effects of the mobility models. Specifically,

since peers tend to distribute almost uniformly in each

region when using the random walk model, the success

ratios in LC become lower than the case using the random

964 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 8, NO. 7, JULY 2009

Fig. 9. Average number of peers and success ratio in each region.

Fig. 10. Case 1-1: unlimited memory and limited movement

(random walk). (a) Success ratio (write). (b) Success ratio (read).

Fig. 11. Case 1-2: unlimited memory and unlimited movement

(random walk). (a) Success ratio (write). (b) Success ratio (read).



waypoint model for both limited and unlimited move-
ments. As for GC, the success ratios become higher and the
performance drop points become later than the case using
the random waypoint model for limited movement, while
those for unlimited movement show opposite features.
Comparing the limited and unlimited movement cases, in
every protocol, we cannot find big differences in success
ratios between the two cases. This is because peers tend to
distribute almost uniformly in the entire area in both cases.

6.7 Impact of Node Failure and Topology Change

In the above simulations, we assume that neither topology
change nor node failure occurs during the protocol
execution. In this section, we examine the impact of
topology change and node failure. Since the execution time
of the three protocols to achieve LC, TC, and PC is very
short, e.g., less than 1 or 2 seconds, the impact of topology
change and node failure during the protocol execution is
generally small enough to be negligible. Therefore, we focus
only on the protocol of GC, where its execution time is
usually a few seconds to 5 seconds. Here, since the
difference in time scale between our simulations (5 seconds)
and message transmissions in a real environment (milli-
second) is very large, it is difficult to fairly examine the
impact of topology change and node failure.

Thus, we assume a very simple model to this end in
which the protocol execution of GC takes 5 seconds (a unit
of simulation time). Then, if the coordinator of a read/write
operation connected with enough number of proxies and
peers to construct global and local quorums at the request
issued time, it is checked whether these connections are still
available at the next simulation step, i.e., 5 seconds later. If
some of the connections are not available, it represents that
a failure happened during the protocol execution due to
either topology change or node failure. In that case, we

simply assume that there are two cases in which the failure
occurred during phase 2 or during phase 3, and these cases
occurred with the same possibility. As for peer failure, we
assume an environment where nodes fail with realistic
frequencies, i.e., periodic 5-minute failures after running
3 hours for changing or recharging a battery.

Fig. 12 shows the simulation results in the case that
proxies and peers have unlimited memory space and peers
move inside regions (random waypoint). In this experi-
ment, we show the performance of the two cases; the case
considering the topology change during the protocol
execution (denoted by “GC(mobility)”) and the case
considering both the topology change and peer failure
(denoted by “GC(failure)”). For comparison, we also show
the performance of the case where we assume neither
topology change nor peer failure during the protocol
execution (denoted by “GC”), which is identical to that in
Fig. 3.

Overall, it can be seen that the impact of topology change
is dominant, and that of node failure is basically small.
Moreover, we can observe several remarkable facts. First,
while the impact of topology change and peer failure on the
success ratio is not very large, that for write operations is
larger than that for read operations. This is because it is
much easier to find an alternative peer that holds the latest
replica for read operations than to collect the necessary
number of peers to reconstruct a local write quorum.
Moreover, the impact becomes larger as the area size
becomes higher, i.e., node density becomes lower.

Second, the impact of topology change and peer failure
on message and data traffic for write operations is much
larger than that for read operations. The reasons are as
follows: As for message traffic, a write operation sometimes
requires another message multicast to collect alternative
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Fig. 12. Impact of node failure (Case 1-1: unlimited memory and limited movement). (a) Success ratio (write). (b) Success ratio (read). (c) Message

traffic (write). (d) Message traffic (read). (e) Data traffic (write). (f) Data traffic (read).



replica holders, while a read operation just needs to find
another latest replica holder, and the information for this
aim is available at phase 1 in most cases. As for data traffic,
a write operation causes a large number of useless data
transmissions if phase 3 fails.

We have also conducted some experiments in other
conditions on memory space, i.e., Case 2-1 and Case 3-1.
Due to the limitation of space, we do not present the details,
but these results show almost the same characteristics.

6.8 Summary of the Simulation Results

In summary, through the simulation experiments, we found
several significant and interesting facts as listed below.

When mobility of peers is limited inside their region, i.e.,
mobility has strong locality, LC gives higher success ratios
(data availability) of both write and read operations than
GC if the network is relatively sparse. This feature is more
conspicuous in the case of using the random waypoint
model, in which nodes tend to locate near the center of the
region than the case of using the random walk model. Thus,
if applications do not require the strict consistency of data
operations in the entire network, we should choose LC in
terms of both success ratio and traffic.

When peers move across regions by selecting the
destinations randomly (i.e., random waypoint model), GC
gives higher success ratios than the case of limited mobility.
In a highly dynamic environment, it is not necessarily a
good choice to use LC, where it can happen that LC gives a
lower success ratio than GC. On the other hand, when
peers move across regions based on the random walk
model, the performance of each protocol is almost the same
as when peers move inside particular regions. Thus, we can
confirm that the performance of our protocols heavily
depends on the mobility pattern, i.e., distributions of peers
in the regions and entire area. Moreover, our protocol to
achieve GC could appropriately change the size of the local
read quorum according to the change of members in the
region, which works well even in an unlimited mobility
environment.

In GC and LC, due to the characteristic of the quorum
system, having more replicas does not result in higher
success ratios, while it produces higher message traffic for
both write and read operations and higher data traffic for
write operations. Thus, in most cases, we should restrict
replication if the proxy has enough memory space to
replicate all or most of the data items. However, having
more replicas results in lower data traffic for read
operations. Thus, when the data items are relatively large
compared with the message size and read operations are
issued much more frequently than the write operations,
having more replicas should be better.

While TC weakens consistency from the temporal
perspective, it gives lower success ratios and higher
message traffic for read operations than LC in most cases.
More specifically, performing write operations on only local
replicas improves traffic for write operations but much
degrades the performance for read operations. This fact
shows that a weaker consistency level does not simply give
better performance. Thus, we should carefully design a
protocol to achieve each consistency level.

Although topology change and peer failure during the
protocol execution do not much affect the success ratios in

GC, it increases both message and data traffic for write
operations. Therefore, in a highly dynamic environment, we
have to be careful to use GC if the network resource and
battery of peers are highly restricted.

7 DISCUSSIONS

In this section, we briefly describe some issues open for
investigation in our future work.

7.1 More Efficient Quorum Construction

In a quorum system, every pair of read and write quorums
must have an intersection. To meet this, our GC protocol
adopts a simple approach so that the total number of
proxies contained in global write and read quorums has to
be set at more than the total number of regions. However,
this approach causes large communication overhead.
Therefore, we will further investigate more efficient
methods to construct quorums.

7.2 Replication Strategy Suitable for a Quorum
System

In this paper, we examined the impact of the two typical
replication strategies; SRA and ISRA. However, there are a
large number of replication strategies proposed for
MANETs. We will further examine the impact of these
existing replication strategies and which one is optimal for
each of the consistency management protocols.

7.3 Other Consistency Levels

Although our proposed consistency levels cover many
applications in MANETs, we realize that they do not cover
all. As part of our future work, we will consider other
consistency levels suitable for MANET applications. For
example, while LC requires consistency of data operations
in the same region, it does not care about divergence of the
values in different regions. However, some applications
might require a certain degree of divergence of values
among copies such as d-consistent proposed in [19]. Such a
consistency level can be considered as in-between GC and
LC, which requires a weaker consistency among regions
(proxies). We expect that such a consistency level can be
achieved by applying some reconciliation mechanisms
proposed for traditional mobile databases.

7.4 Complex Transactions

In our work, we assume a simple transactionmodel in which
every transaction will consist of a data operation (read or
write). However, in a real environment, there are also many
applications in which a transaction consists of multiple
operations. In such an environment, consistency manage-
ment based on a pessimistic policy becomes much more
complex. We plan to address this issue in our future work.

8 CONCLUSION

Since in MANETs peers’ disconnection causes frequent
network partitioning, it is difficult and, in some cases, not
desirable to provide traditional strong consistency of data
operations. Moreover, since there are many kinds of
applications possible in MANETs, there cannot be one
universal optimal strategy for consistency management.
Thus, we have classified consistency levels according to
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applications’ demand and, then, have designed protocols to

achieve them.
We have conducted extensive simulations to investigate

the behaviors and features of our proposed protocols. From

these results, it is shown that the performance of the

proposed protocols much differs with each other and that

we should choose LC rather than GC in terms of both

success ratio and traffic if applications do not require the

strict consistency in the entire network. It is also shown that

limitations of mobility and memory space have impacts on

the performance. The results tell us that in most cases, we

should restrict replication at peers if the proxy has enough

memory space to replicate all or most of the data items.
As part of future work, we plan to consider replication

strategies suitable for each consistency level. We also plan

to extend our protocols to deal with more complex

transactions.
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