
 

Article

Reference

Consistency of asymmetric kernel density estimators and smoothed
histograms with application to income data

BOUEZMARNI, Taoufik, SCAILLET, Olivier

Abstract

We consider asymmetric kernel density estimators and smoothed histograms when the
unknown probability density function f is defined on [0,+infinity). Uniform weak consistency on
each compact set in [0,+infinity) is proved for these estimators when f is continuous on its
support. Weak convergence in L_1 is also established. We further prove that the asymmetric
kernel density estimator and the smoothed histogram converge in probability to infinity at x=0
when the density is unbounded at x=0. Monte Carlo results and an empirical study of the
shape of a highly skewed income distribution based on a large micro-data set are finally
provided.

BOUEZMARNI, Taoufik, SCAILLET, Olivier. Consistency of asymmetric kernel density
estimators and smoothed histograms with application to income data. Econometric theory,
2005, vol. 21, p. 390-412

DOI : 10.1017/S0266466605050218

Available at:
http://archive-ouverte.unige.ch/unige:35102

Disclaimer: layout of this document may differ from the published version.

 1 / 1

http://archive-ouverte.unige.ch/unige:35102


CONSISTENCY OF ASYMMETRIC

KERNEL DENSITY ESTIMATORS

AND SMOOTHED HISTOGRAMS

WITH APPLICATION TO

INCOME DATA

TAAAOOOUUUFFFIIIKKK BOOOUUUEEEZZZMMMAAARRRNNNIII
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OLLLIIIVVVIIIEEERRR SCCCAAAIIILLLLLLEEETTT

HEC Genève, Université de Genève

and

FAME

We consider asymmetric kernel density estimators and smoothed histograms when

the unknown probability density function f is defined on @0,1`!+ Uniform weak

consistency on each compact set in @0,1`! is proved for these estimators when f

is continuous on its support+Weak convergence in L1 is also established+We fur-

ther prove that the asymmetric kernel density estimator and the smoothed histo-

gram converge in probability to infinity at x 5 0 when the density is unbounded

at x 5 0+ Monte Carlo results and an empirical study of the shape of a highly

skewed income distribution based on a large microdata set are finally provided+

1. INTRODUCTION

The most popular nonparametric estimator of an unknown probability density

function f is the standard kernel estimator+ Its consistency is well documented

when the support of the underlying density is unbounded+ In the case of a

bounded support we know that there exists a boundary bias ~see, e+g+, the esti-

mation of Figure 3 in Section 5!+ This problem is due to the use of a fixed
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kernel that assigns weight outside the support when smoothing is carried out

near the boundary+ It is further known that the expected value of the standard

kernel density estimator at x 5 0 converges to the half value of the underlying

density when f is twice continuously differentiable on its support @0,1`!+ To

solve this problem many remedies have already been suggested ~see, e+g+, Rice,
1984; Schuster, 1985; Müller, 1991; Marron and Ruppert, 1994; Jones, 1993;
Jones and Foster, 1996!+ They include use of particular kernels or bandwidths+

Recently, Chen ~2000! has proposed a gamma kernel estimator, and Scaillet

~2004! has introduced inverse Gaussian ~IG! and reciprocal inverse Gaussian

~RIG! estimators for densities defined on @0,1`!+ These estimators are based

on asymmetric kernels that have flexible form and location on the nonnegative

real line+ The kernel shapes are allowed to vary according to the position of the

data points, thus changing the degree of smoothing in a natural way, and their

support matches the support of the probability density function to be esti-

mated+ The gamma, IG, and RIG kernel density estimators are simple to imple-

ment, free of boundary bias, and always nonnegative, and they achieve the

optimal rate of convergence for the mean integrated squared error ~MISE! within

the class of nonnegative kernel density estimators+ Furthermore, their variance

reduces as the position where the smoothing is made moves away from the

boundary+ This is an advantage in estimating densities that have sparse areas

because more data points can be pooled to smooth in areas with fewer obser-

vations+ As pointed out by Cowell ~2000!, “Empirical income distributions typ-

ically have long tails with sparse data+” Hence it is expected that such estimators

should perform well in practice on income data ~this will be confirmed by our

empirical results in Section 7!+ Note that, when the densities are defined on a

compact support, similar estimators based on the asymmetric beta kernel have

been proposed by Chen ~1999! ~for regression curve estimation, see also Brown

and Chen, 1999; Chen, 2002! and have been applied in credit risk management

by Renault and Scaillet ~2003! to estimate the probability density function of

recovery rates when corporate bonds default+
Although we concentrate in the sequel on the empirics of income distribu-

tions, the estimators considered in this paper are also relevant for applied work

in insurance and finance+ For example, Aït-Sahalia ~1996a, 1996b! develops an

estimation and specification testing procedure for diffusion models of the short-

term interest rate+ In this framework, the nonparametric estimation of the sta-

tionary distribution of the interest rate process plays a key role+ Our results are

also potentially important for estimation and specification testing of the base-

line hazard function in autoregressive conditional duration ~ACD! models+ In

this literature parametric models like the Burr and generalized gamma distribu-

tion are popular specifications for the baseline hazard+We refer to Engle ~2000!
for an overview and to Fernandes and Grammig ~2000! for exploitation of asym-

metric kernels in financial duration analysis+ In insurance, a good understand-

ing of the size of a single claim is of most importance+ Loss distributions describe

the probability distribution of a payment to the insured+ Traditional methods in
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the actuarial literature use parametric specifications to model single claims+ The

most popular specifications are the lognormal, Weibull, and Pareto distribu-

tions ~Klugman, Panjer, and Willmot, 1998!+ It is, however, unlikely that some-

thing as complex as the generating process of insurance claims can be described

by just a few parameters+ An incorrect parametric specification may lead to an

inadequate measurement of the risk contained in the insurance portfolio and

consequently to a mispricing of insurance contracts+ Nonparametric density esti-

mation is useful there also ~see Bolancé, Guillen, and Nielsen, 2003, for a review;
and Hagmann and Scaillet, 2003, for use of asymmetric kernels in that area!+
Clearly the standard kernel estimator is again not appropriate in these contexts,
because it does not take into account that the underlying variables, interest rates,
durations, and losses, are nonnegative+

In this paper we first analyze convergence of the asymmetric kernel density

estimators for the class of density functions with support @0,1`!+ Then we exam-

ine convergence of the smoothed histograms proposed by Gawronski and Stadt-

müller ~1980, 1981!, which are also free of boundary bias and achieve the same

rate of convergence+
The paper is organized as follows+ In Section 2, we outline the framework and

present both estimators, namely, the asymmetric kernel density estimator and the

smoothed histogram+ Particular examples are developed+ Uniform weak consis-

tency on each compact set in @0,1`! is proved for both estimators in Section 3+
The L1 convergence of the two estimators is established in Section 4+ In Sec-

tion 5, the density function f is assumed to be unbounded at x 5 0, and we ana-

lyze the weak convergence of the two estimators to infinity at x 5 0+ To our best

knowledge it is the first attempt at providing a consistent estimator for such a

density ~see, however,Marron and Ruppert, 1994; Bouezmarni and Rolin, 2002,
2003, but for densities defined on @0,1# !+ Relative consistency is also studied+
Section 6 provides Monte Carlo results concerning the finite sample properties

of the estimators for various distributions and parameter values+ An empirical

illustration on a large microdata set is provided in Section 7+ We examine the

shape of the Brazilian income distribution, which is notoriously known to be

highly skewed with an accumulation of observed points near the zero boundary+
In addition, a data-driven procedure based on the L1 distance ~Hall and Wand,
1988! is discussed to select the bandwidth in practical situations+ Section 8 con-

tains some concluding remarks+ An Appendix gathers the proofs+ Finally, let us

remark that secondary results have been deleted from the main text to save space+
They are fully available in Bouezmarni and Scaillet ~2003!+

2. ASYMMETRIC KERNEL DENSITY ESTIMATORS

AND SMOOTHED HISTOGRAMS

Let X1, + + + , Xn be a random sample from a probability distribution F with an

unknown density function f+ The most popular nonparametric estimator for the

unknown probability density function f is the standard kernel estimator
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Zf ~x! 5
1

nh
(
i51

n

K~~x 2 Xi !0h!,

where the kernel K is a symmetric density function and h is a smoothing param-

eter, called the bandwidth+ When the density is defined on @0,1`! the bound-

ary bias of the standard kernel estimator is due to weight allocation by the fixed

symmetric kernel outside the support when the estimation of density is made

near the boundary+ To overcome the problem a simple idea is to use a flexible

kernel, which never assigns weight outside the support of the density function+
This is the idea behind the first estimator considered in this paper, namely, the

asymmetric kernel density estimator

Zfb~x! 5
1

n
(
i51

n

K~Xi ; x,b!, (1)

where b is the bandwidth and the asymmetric kernel K is either a gamma den-

sity KG with parameters ~x0b 1 1,b!, an IG density KIG with parameters ~x,10b!,
or a RIG density KRIG with parameters ~10~x 2 b!,10b!+ These densities corre-

pond to

KGSt;
x

b
1 1,bD 5

t x0be2t0b

bx0b11G~x0b 1 1!
, (2)

KIGSt; x,
1

b
D 5

1

M2pbt 3
expS2

1

2bx
S t

x
2 2 1

x

t
DD, (3)

KRIGSt;
1

x 2 b
,

1

b
D 5

1

M2pbt
expS2

x 2 b

2b
S t

x 2 b
2 2 1

x 2 b

t
DD+ (4)

Note that these asymmetric kernels do not take the form k~x 2 t,b! where k is

an asymmetric function ~instead of a symmetric one! and thus do not belong to

the class studied by Abadir and Lawford ~2004!+
The estimator Zfb based on the gamma kernel was proposed by Chen ~2000!,

whereas the IG and RIG kernel density estimators were proposed by Scaillet

~2004!+ Figure 1 plots the shapes of the gamma, IG, and RIG kernels for some

selected values of x and b 5 0+2+ It can be noticed that KG~t; x0b 1 1,b! for

x 5 0 is decreasing for t . 0 and becomes unbounded at t 5 0 when b shrinks

to zero+ This feature of the gamma kernel will be instrumental for convergence

when the density is unbounded at x 5 0 ~see Section 5!+ Let us also remark that

the asymmetric kernel density estimator is a particular case of the generalized

kernel density estimator ~Foldes and Revesz, 1974; Walter and Blum, 1979!+
The second estimator considered in this paper is another particular case of

the generalized kernel density estimator and is inspired by a well-known approx-

imation theorem for continuous distribution ~Feller, 1971, p+ 219!+ It was devel-

oped by Gawronski and Stadtmüller ~1980, 1981! and is called a smoothed

histogram+ It is defined by
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Zfk~x! 5 k(
i50

1`

vi, k pki ~x!, (5)

where the weights vi, k are random+ These weights are given by

vi, k 5 FnS i 1 1

k
D2 FnS i

k
D, (6)

where Fn is the empirical distribution function, the integer k is the smoothing

parameter, and pki~+! is based on use of either a family of lattice distribution or

integrals of continuous distributions and satisfies Gawronski and Stadtmüller’s

conditions ~for further details, see Gawronski and Stadtmüller, 1980, 1981!+

Example 1

pki~x! corresponds to a Poisson distribution function with parameter kx, namely,

pki ~x! 5 e2kx
~kx!i

i!
i 5 0,1, + + + +

For this choice the smoothed histogram Zfk can be viewed as a random weighted

sum ~mixture! of Poisson mass functions or alternatively as a random weighted

sum ~mixture! of gamma density functions

Figure 1. Shape of the gamma, IG, and RIG kernels K~x,b! for b 5 0+2+
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Zfk~x! 5 (
i50

1`

vi, kG~x, i 1 1, k!,

where G is the gamma density function

G~x, i 1 1, k! 5
x ik i11

i!
e2kx+

Figure 2 shows the different shapes of the gamma densities G~x, i 1 1, k! 5

kpki~x! in the mixture for k 5 3, and i 5 0,1,2,3+ Let us point out the decreas-

ing shape of the gamma density for i 5 0 and its unboundedness at x 5 0 when

k goes to infinity+ We will come back to this characteristic in Section 5+

Example 2

pki~x! 5 *i0k
~i11!0k

K~t; x,10k! dt where K~t; x,10k! is either the IG kernel or the

RIG kernel defined in ~3! and ~4! with a bandwidth equal to 10k+

Gawronski and Stadtmüller ~1980, 1981! found that smoothed histograms

are free of boundary bias and that their rate of convergence for the MISE is

O~n2405! for f in C 2~ @0,1`!!+ Using the Hadamard product technique, Stadt-

müller ~1983! proved the uniform consistency in probability for the estimators

Figure 2. Shape of the gamma densities G~x, i 1 1, k! with k 5 3 and i 5 0,1,2,3+

ASYMMETRIC KERNEL AND SMOOTHED HISTOGRAM 395



when the density function f is continuous and bounded on @0,1`!+We provide

a simpler proof of this type of convergence in this paper+

3. UNIFORM WEAK CONVERGENCE OF ASYMMETRIC KERNEL

DENSITY ESTIMATORS AND SMOOTHED HISTOGRAMS

In this section, we show that both estimators have the same asymptotic behav-

ior+ More precisely, we prove the uniform weak convergence on each compact

set I in @0,1`! of the asymmetric kernel estimator Zfb and the smoothed histo-

gram Zfk under some conditions on the smoothing parameter+ To get our conver-

gence results, we rely mainly on a large deviation device+ Note further that the

proofs differ completely from the proofs in the symmetric case+ Here we can-

not use the symmetry of the kernel and a usual change of variable, which both

play a central role in deriving results for standard kernels+
The conditions on the bandwidth are as follows+

Condition 1 ~Asymmetric kernel density estimator!+

lim
nr`

b 5 0 and lim
nr`

nb2a
5 1` ~a . 0!+

Condition 2 ~Smoothed histogram!+

lim
nr`

k 5 1` and lim
nr`

nk22
5 1`+

The main result for the asymmetric kernel density estimator in this section is

its uniform weak consistency under Condition 1+

THEOREM 3+1+ ~Uniform weak consistency of Zfb!+ Let f be a continuous

and bounded probability density function on @0,1`! , Zfb the asymmetric kernel

density estimator, and I a compact set in @0,1`! . Then

sup
x[I

6 Zfb~x!2 f ~x!6
P
&& 0 as nr `

under Condition 1 with a 5 1 for the gamma kernel and a 5
5
2
_ for the IG and

RIG kernels.

Remark 1+ We have the same result as that of Theorem 3+1 for a density

estimator based on a general kernel k~t; x,b! under the following conditions,
where a is a strictly positive number:

1+ IE~jx ! 5 x 1 O~b! and supx[I Var~jx ! 5 O~b!, for any compact set I,
where jx is a random variable with density k~x,b!+

2+ *0
1`
6dk~t; x,b!6 5 O~b2a!+

3+ limnr`b 5 0 and limnr`nb2a
5 1`+
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Note that we can also prove the uniform strong consistency on each compact

set of the asymmetric kernel density estimator under a stronger set of condi-

tions on the bandwidth b ~see Bouezmarni and Scaillet, 2003, Corollary 3+1!+
Similar results hold for smoothed histograms, namely, the following theorem+

THEOREM 3+2+ ~Uniform weak consistency of Zfk!+ Let f be a continuous

and bounded probability density function on @0,1`! , Zfk the smoothed histo-

gram, and I a compact set in @0,1`! . Then

sup
t[I

6 Zfk~x!2 f ~x!6
P
&& 0 as nr 1`

under Condition 2.

Again uniform strong consistency on each compact set of the smoothed his-

togram can be obtained under a stronger set of conditions on the smoothing

parameter k ~see Bouezmarni and Scaillet, 2003, Corollary 3+2!+

4. WEAK CONVERGENCE IN L1 OF ASYMMETRIC KERNEL

DENSITY ESTIMATORS AND SMOOTHED HISTOGRAMS

The excellent monograph of Devroye and Gyorfi ~1985! contains numerous

results for the standard kernel density estimator in the L1 case ~for SNP density

estimators, see Fenton and Gallant, 1996!+ In particular many equivalences ~types

of convergence, conditions on bandwidth, etc+! are shown to hold+ They advo-

cate the L1 approach for three main reasons+ First, it is a natural metric on the

space of density functions+ Second, it is proportional to the total variation met-

ric+ Finally, it is invariant under monotone transformations+ Note that Hall and

Wand ~1988! ~see also the proposal of Devroye and Lugosi, 1996; and the sur-

vey in Devroye, 1997! have proposed an algorithm that permits minimization

of the L1 distance for different estimators, such as the standard kernel density

estimator and the histogram+ We investigate application of this type of algo-

rithm later in the paper+
Hereafter we prove the consistency in L1 of the asymmetric kernel density

estimator and the smoothed histogram+

THEOREM 4+1 ~Weak consistency in L1 of Zfb!+ Let f be a probability den-

sity function on @0,1`! and Zfb the asymmetric kernel density estimator. Then

E
0

`

6 Zfb~x!2 f ~x!6 dx
P
&& 0 as nr `

under Condition 1 with a 5 1 for the gamma kernel and a 5
5
2
_ for the IG and

RIG kernels.
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THEOREM 4+2 ~Weak consistency in L1 of Zfk!+ Let f be a probability den-

sity function on @0,1`! and Zfk the smoothed histogram. Then

E
0

`

6 Zfk~x!2 f ~x!6 dx
P
&& 0 as nr `

under Condition 2.

Let us remark that, if f is assumed to be twice continuously differentiable,
Chen ~2000! and Scaillet ~2004! derive the rate of convergence of the MISE

for asymmetric kernel density estimators+
Similar results are available in Stadtmüller ~1983! for the smoothed histo-

gram+ Their pointwise results can also be easily used to build confidence inter-

vals+ In L1, the rate of convergence of the mean integrated absolute error remains

an open question+ We leave this task for future research ~for the symmetric

case where a complicated use of the slow convergence theorem is required, see

Devroye and Gyorfi, 1985!+

5. ESTIMATION OF UNBOUNDED DENSITIES AT x = 0

As already mentioned the standard kernel density estimator suffers from a bound-

ary bias for the class of density functions defined on @0,1`!+ Until now all

previous methods aimed at removing this boundary bias have been developed

under the assumption of a bounded density at x 5 0+ For such a class of density

functions, we have just proved the convergence properties of asymmetric ker-

nel density estimators and smoothed histograms+ In this section, we consider a

density function f defined on @0,1`! and unbounded at x 5 0+ This obviously

should induce a clustering of observations near the boundary+ As shown in Fig-

ure 3 behaviors of the standard kernel density estimator and the true density

can be dramatically different+ This illustrative estimation has been performed

on n 5 200 data drawn from a gamma density G~l,a! with a5 0+7 and l5 2+
We have used here a Gaussian kernel with a bandwidth minimizing the MISE+
As far as we know only two methods have been shown to accommodate the

case of an unbounded density: the complicated P and PD algorithms developed

by Marron and Ruppert ~1994! and the Bernstein polynomial and beta kernel

estimators ~Bouezmarni and Rolin, 2002, 2003!+ However the latter estimators

do not apply here because they are designed for density functions defined on

@0,1# ~the P, resp+ PD, algorithm further requires the presence of poles at both

boundaries, resp+ one boundary!+
Coming back to Figure 3 we may observe that the gamma kernel density

estimator and the smoothed histogram based on the Poisson distribution exhibit

the same behavior at the boundary point and interior points as the true gamma

density function G~0+7,2!+ In fact these two estimators satisfy the additional

sufficient conditions needed to get weak convergence of the asymmetric kernel

density estimator and smoothed histogram to infinity at x 5 0+
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THEOREM 5+1+ Let f be a probability density function on @0,1`!, unbounded

at x 5 0, and Zfb the asymmetric kernel density estimator. Under Condition 1

we have

Zfb~0!
P
&& 1` as nr `

if

for all d . 0, E
0

d

K~t;0,b! dtr 1 as br 0+

The additional condition in the preceding theorem can be checked for the

asymmetric kernel density estimator based on the gamma kernel+ Indeed we

have for d . 0: *0
d

KG ~t;0,b! dt 5 1 2 exp~2d0b! r 1, as b r 0+
Hence the gamma kernel density estimator gives almost all weight to the

boundary point when the bandwidth converges to zero+ This is due to the

particular behavior of the gamma kernel at x 5 0+ The two other asymmetric

kernels do not share this behavior and will not be suitable for estimation

of unbounded densities+ The second gamma kernel of Chen ~2000!, namely,
KG~t;rb~x!,b! with rb~x! 5 x0b if x $ 2b and rb~x! 5 ~ 14

_ !~x0b!2 1 1 if x [

@0,2b!, also satisfies the additional condition of Theorem 5+1+ As already men-

Figure 3. True density G~0+7, 2! together with its gamma kernel, smoothed histogram,

standard kernel, and log-transformed kernel estimates, each based on 200 observations+
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tioned in Chen ~2000!, we cannot use KG~t;~x0b!, b! on the whole support

because that kernel is unbounded on ~0,b! and not defined at x 5 0+
Let us now examine the case of smoothed histograms+

THEOREM 5+2+ Let f be a probability density function on @0,1`!, unbounded

at x 5 0, and Zfk the smoothed histogram. Under Condition 2, we have

Zfk~0!
P
&& 1` as nr `

if

pk0~0!r 1 as kr 1`+

When pki~x! corresponds to a Poisson distribution, we have pk0~0! 5 1, for

all k, and the additional condition of the last theorem is fulfilled+
This means that the smoothed histogram based on the Poisson distribution

gives a large weight to the boundary point+ The convergence result should not

come as a surprise in view of the particular behavior of kpki~x! at i 5 0 ~cf+
Section 2!+

We may also get relative convergence results in the same spirit as the result

in Marron and Ruppert ~1994!+ Note that these results hold trivially in the

bounded case+

THEOREM 5+3+ Let f be a density function in C 1~0,1`! , unbounded at

x 5 0, and Zfb the asymmetric kernel density estimator. Then

6 Zfb~x!2 f ~x!6

f ~x!

P
&& 0 as xr 0

under the following conditions:

A.1. *0
1`
6dk~x,b!~t !6 5 O~b2a! for a strictly positive number a.

A.2. x 6 f '~x!60f ~x! r C as x r 0 where C~C , `! is a constant.

A.3. for all d . 0, *0
d

K~x,b!~t ! dt r 1 as b, x r 0.

A.4. b r 0 such that nb2af 2~x! r ` as n,10x r `.

A.5. Var~jx ! r 0, as b, x r 0, where jx ; k~x,b! .

THEOREM 5+4+ Let f be a density function in C 1~0,1`! , unbounded at

x 5 0, and Zfk be the smoothed histogram. Then

6 Zfk~x!2 f ~x!6

f ~x!

P
&& 0 as xr 0

under the following conditions:

A.1. k r ` and nk22f 2~x! r ` as n,10x r `.

A.2. x 6 f '~x!60f ~x! r C as x r 0, where C~C , `! is a constant.
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A.3. pki~x! r 1 as i r 0 and k,10x r 1`.

A.4. Var~Sk0k! r 0 as k,10x r 1`, where Sk ; pki~x! .

6. MONTE CARLO RESULTS

This section gathers some simulation results about the finite sample properties

of the gamma kernel estimator and the smoothed histogram based on the Pois-

son distribution+We compare their properties with those of the Gaussian kernel

estimator and a log-transformed Gaussian kernel estimator ~transformation ker-

nel density estimator based on the Gaussian kernel and the logarithmic map-

ping!+ We consider 10 test densities with a left end boundary+ The group of

densities contains bounded and unbounded densities with either a single mode

or two modes:

~a! the standard lognormal density: f ~x! 5 ~10xM2p!exp~2~ ln x!202!,
~b! the chi-square density with one degree of freedom: f ~x! 5

~1YM2px!e2x02,
~c! the Maxwell’s density: f ~x! 5 x exp~2x 202!,
~d! the gamma density with scale a 5 2 and shape l 5 2,
~e! the gamma density with scale a 5 2 and shape l 5 0+7,
~f ! the standard exponential density: f ~x! 5 exp~2x!,
~g! the asymmetric Pareto density with parameter 3

2
_ : f ~x! 5 10~2x 302! on

@1,1`!,
~h! the inverse exponential density: f ~x! 5 10~2x 302 !exp~210Mx!,
~i! a gamma mixture: 2

3
_ weight is put on a G~0+7, 2! and 1

3
_ weight on a

G~20, 0+2!,
~ j! a lognormal mixture: 2

3
_ weight is put on a LN~0, 1! and 1

3
_ weight on a

LN~1+5, 0+1!+

Densities ~e! and ~i! correspond to the unbounded cases, whereas densities

~i! and ~ j! correspond to the bimodal cases+
The study is based on 100 simulations for each density+ For each simulation

the bandwidth minimizing the L1 norm among a grid of values is chosen+
Throughout we have a sample size of n 5 200+ Global performance is assessed

in terms of the mean and variance of *6 Zf 2 f 6 on the 100 simulations+ Tables 1

and 2 list results+ They show that the gamma kernel estimator is always domi-

nated by the smoothed histogram in terms of the mean of *6 Zf 2 f 6+ Similar

results also hold for the median ~see Bouezmarni and Scaillet, 2003!+ The vari-

ance for the smoothed histogram is smaller for the first five densities and larger

for the last five+When the shape is lognormal ~density ~a!! or close to ~density

~h!!, the log-transformed kernel estimator performs better than the smoothed

histogram and the gamma kernel estimator in terms of the mean+ The variance

in the log-transformed case is smaller for distributions ~ f !, ~g!, and ~i! when
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compared to the smoothed histogram and gamma kernel estimates+ It is also

smaller for distributions ~b! and ~c! with regard to gamma kernel estimates+

7. AN APPLICATION TO INCOME DATA

The empirical illustration concerns the analysis of the income distribution for

Brazil in 1981+ The estimation is performed on a comprehensive microdata set

~n 5 101, 864! already used in a study of the dynamics of income inequality by

Cowell, Ferreira, and Litchfield ~1998!+ These authors were interested in these

data because of the importance of Brazil as a major world economy ~ninth larg-

est GDP! and the presence of a strong inequality in terms of percentage shares

of income accruing to the richest and to the poorest of its population+ This strong

inequality is in fact revealed by the abnormal skewness of the income distribu-

Table 1. Mean of *6 Zf 2 f 6 on 100 simulations

Densities Smoothed histogram Gamma kernel Log-transformed kernel

~a! 0+09525606 0+1104269 0+08356177

~b! 0+0869127 0+1048551 0+1117045

~c! 0+06243878 0+09577176 0+1969462

~d! 0+0885472 0+1011263 0+1101729

~e! 0+1171365 0+1422371 0+16949476

~ f ! 0+07683467 0+0960356 0+1188438

~g! 0+03779601 0+0386833 0+04050847

~h! 0+0844546 0+08636857 0+0520408

~i! 0+08000198 0+09000876 0+142668

~ j! 0+06897213 0+07567178 0+08634281

Table 2. Variance of *6 Zf 2 f 6 on 100 simulations

Densities Smoothed histogram Gamma kernel Log-transformed kernel

~a! 0+000106 0+00097485 0+001203842

~b! 0+00055574 0+00067451 0+00065417

~c! 0+0002052549 0+00118107 0+000638013

~d! 0+001108625 0+00118664 0+001402027

~e! 0+000854753 0+000947512 0+002473

~ f ! 0+001962692 0+00140385 0+001184696

~g! 0+00064721 0+000457128 0+000187542

~h! 0+001064848 0+0009745832 0+001203842

~i! 0+001246965 0+001171683 0+000972848

~ j! 0+000487383 0+0004329083 0+0005053212
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tion ~see Table 3 for the descriptive statistics!+ Income should be understood as

gross monthly household income per capita denominated in 1981 cruzeiros,
where the income receiver is the individual+ Because lots of data are located

near the boundary it would not be surprising that the true density is unbounded

at the boundary+
Figure 4 compares the results of alternative estimation approaches+ Figure 4a

plots the gamma kernel estimator and the smoothed histogram based on the

Poisson distribution together with a pseudo-maximum-likelihood estimate under

a parametric assumption of a gamma distribution+
The smoothing parameters b and k have been chosen according to a band-

width selection method inspired by the proposal of Hall and Wand ~1988!, which

leads to an asymptotically optimal window in the sense of minimizing the L1

distance+ For the gamma kernel density estimator it consists in setting b* 5

n2205~u*!4 , where u* is that value of u that minimizes

l~u! 5 2E
e

`Su4B0~x!FS u3B0~x!

s0~x!
D1 u21s0~x!fS u3B0~x!

s0~x!
DD dx, (7)

where e is a small strictly positive number, B0~x! 5 f '~x! 1 ~ 12
_ !xf ''~x!, and

s0~x! 5 10~2Mp!102x2104 f ~x!102, whereas f and F denote the normal density

and distribution functions, respectively+ The boundary value e is set to avoid

any problems coming from potential undefined derivatives at zero when per-

forming numerical integration+We have taken e510215 in the simulation results

presented here+ The same procedure applies to the smoothed histogram based

on the Poisson distribution by taking k * 5 ~b*!21 with B0~x! 5 ~ 12
_ !~ f '~x! 1

xf ''~x!!+ Unknown quantities in criterion ~7! have been computed from the fitted

gamma distribution+

Table 3. Descriptive statistics of the
Brazilian income distribution in 1981

Mean income 12,147

Standard deviation 20,551

Skewness 7+737

Kurtosis 124+5

1st percentile 600

1st decile 1,733

1st quartile 3,116

Median income 6,000

3rd quartile 12,754

9th decile 26,954

99th percentile 95,097

ASYMMETRIC KERNEL AND SMOOTHED HISTOGRAM 403



Figure 4. ~a! The gamma kernel, smoothed histogram, and pseudo-maximum-likelihood

estimates and ~b! the standard kernel and log-transformed kernel estimates for the Bra-

zilian income distribution in 1981+
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Estimated values for the gamma distribution are 0+9233, resp+ 13,156, for

the shape, resp+ scale, parameter with standard deviation 1+59E-007, resp+ 44+64+
It is worth emphasizing that the estimate of the shape parameter yields an

unbounded density at x 5 0+ The smoothing parameter values b* and k * based

on this L1 reference density method with a parametric assumption of a gamma

distribution ~for further discussion in the context of standard kernel density esti-

mators, see Devroye, 1997! are found to be b* 5 0+02915 and k * 5 33+
To check whether the chosen L1 reference density method is a satisfactory

bandwidth selection procedure in practice, we have applied it on 10 simulated

samples from the distribution ~e! ~unbounded gamma distribution! of Sec-

tion 6+ Table 4 shows that the values of the data-driven bandwidth are akin to

the values of the optimal bandwidth, which entails similar performance in terms

of *6 Zf 2 f 6+
Finally, Figure 4b plots standard nonparametric estimates performed with a

Gaussian kernel on the raw data and log-transformed data ~transformation ker-

nel density estimator based on the logarithmic mapping!+ Bandwidth values are

Table 4. L1 errors for the gamma kernel density estimator and the smoothed
histogram under optimal and data-driven bandwidths

Sample bopt b* kopt k *

Sample 1 0+035261 0+04969 28 31

Sample 2 0+021161 0+030547 30 35

Sample 3 0+031567 0+045217 45 43

Sample 4 0+016124 0+0296718 35 39

Sample 5 0+041323 0+0396519 38 39

Sample 6 0+022657 0+044917 47 50

Sample 7 0+039185 0+050694 42 44

Sample 8 0+036283 0+0382074 25 28

Sample 9 0+030289 0+0372003 29 31

Sample 10 0+021792 0+034291 38 40

Sample *6 Zfk 2 f 6 *6 Zfk * 2 f 6 *6 Zfb 2 f 6 *6 Zfb* 2 f 6

Sample 1 0+1241102 0+137814 0+147992 0+172371

Sample 2 0+0893857 0+09611 0+1531942 0+208124

Sample 3 0+120691 0+13585 0+1311539 0+176137

Sample 4 0+1357063 0+15386 0+1146338 0+19931

Sample 5 0+11202135 0+131211 0+11300944 0+1766751

Sample 6 0+1381742 0+154867 0+1776474 0+207495

Sample 7 0+08927371 0+10473 0+1384143 0+17839

Sample 8 0+1147298 0+1238744 0+1257563 0+165952

Sample 9 0+11633368 0+123427 0+154371 0+184354

Sample 10 0+09401943 0+11728 0+122073 0+15041
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selected here by an L1 reference density method with a parametric assumption

of a normal distribution for the raw data or the log-transformed data+ This cor-

responds to taking h 5 2+3019 [sn2105 , where [s denotes the empirical standard

deviation of the raw data or the log-transformed data+ The difference between

the two parts of the figure is striking and illustrates the practical relevance of

the asymmetric kernel density estimator and of the smoothed histogram+

8. CONCLUDING REMARKS

We have studied consistency of two types of density estimators when the den-

sity function is defined on @0,1`!+ These are the asymmetric kernel density

estimator and the smoothed histogram+ Simulation results show that they both

have good finite sample properties and are able to avoid boundary bias existing

in standard kernel density estimation+ We think that they should be of some

help in monitoring the evolution of the shape of density functions and that they

should therefore be useful in applied work involving such nonparametric tech-

niques ~for example, see Härdle and Linton, 1994; Pagan and Ullah, 1999!+
This point has already been illustrated through a nonparametric estimation of

the income distribution from a Brazilian microdata set+ Nonparametric hazard

rate estimation should be another important area of application ~for a convinc-

ing use in goodness-of-fit testing procedures for duration models, see Fernandes

and Grammig, 2000!+ Finally let us remark that the estimators examined in this

paper may also be relevant for estimating a density that is known to exhibit

symmetry with respect to a discontinuity point+ For example, the product of

two independent standard normal random variables has a density that is infinite

at the origin and that can be represented by use of some hypergeometric func-

tions ~for several examples arising in econometrics, see Abadir and Paruolo,
1997; Abadir, 1999; Abadir and Rockinger, 2003!+ One may then suggest esti-

mating the density on the absolute value of the observed data for points located

on the nonnegative part of the real line and reflecting the estimated values for

the points located on the negative part+
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APPENDIX

Without loss of generality, we suppose that I 5 @h1,h2# , 0 , h1 , h2, and x [ I+

Proof of Theorem 3.1. We begin with the usual inequality:

sup
x[I

6 Zfb~x!2 f ~x!6 # sup
x[I

6 Zfb~x!2 IE~ Zfb~x!!61 sup
x[I

6IE~ Zfb~x!!2 f ~x!6+

Because the second term is nonstochastic and converges to zero ~see Bouezmarni

and Scaillet, 2003, Proposition 3+1!, we only need to prove that supx[I 6 Zfb~x! 2

IE~ Zfb~x!!6
P
&&rn 0 as n tends to infinity+ For all x,

6 Zfb~x!2 IE~ Zfb~x!!6 5 *E
0

1`

K~t; x,b! d @Fn~t !2 F~t !#*
# sup

t[@0,1`!

6Fn~t !2 F~t !6E
0

1`

6dK~t; x,b!6

# Cb2a sup
t[@0,1`!

6Fn~t !2 F~t !6,

where C is a constant, a 5 1 for the gamma kernel, and a 5
5
2
_ for the IG and RIG

kernels+ In fact, we have for the gamma kernel

E
0

1`

6dKG ~t; x,b!6 5 b21E
0

1`

6KG ~t; x,b!2 KG ~t; x 2 b,b!6 dt

# 2b21,

and it can be found that *0
1`
6dKIG ~t; x,b!6 5 *0

1`
6dKRIG ~t; x,b!6 5 O~b2502!+ Now,

applying the result in Massart ~1990! on the Dvoretzky, Kiefer, and Wolfowitz ~1956!

inequality, we obtain
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IPSsup
x[I

6 Zfb~x!2 IE~ Zfb~x!!6 $ eD # IPS sup
t[@0,1`!

6Fn~t !2 F~t !6$
eba

C
D

# 2 expS2

2e2

C 2
nb2aD+ n

Proof of Theorem 3.2. It is clear that

sup
x[I

6 Zfk~x!2 f ~x!6 # sup
x[I

6 Zfk~x!2 IE~ Zfk~x!!61 sup
x[I

6IE~ Zfk~x!!2 f ~x!6+

For the nonstochastic term ~see Bouezmarni and Scaillet, 2003, Proposition 3+2!, there

exists an integer n0~e! such that supx[I 6IE~ Zfk~x!! 2 f ~x!6 , e02, for all n . n0~e!+

Then, for all n . n0~e!,

IPSsup
x[I

6 Zfk~x!2 f ~x!6 . eD # IPSsup
x[I

6 Zfk~x!2 IE~ Zfk~x!!6 . e02D+
But we have for x [ I

6 Zfk~x!2 IE~ Zfk~x!!6 5 *k(
j50

1`

~Fn~Akj !2 F~Akj !!pkj ~x!*
# 2k sup

t[@0,1`!

6Fn~t !2 F~t !6,

where Akj 5 ~ j0k, ~ j 1 1!0k# j 5 0, + + + + Hence the version of the inequality of Dvoretzky

et al+ ~1956! given in Massart ~1990! yields

IPSsup
x[I

6 Zfk~x!2 IE~ Zfk~x!!6 . «02D # 2 expS2

1

8
e2 nk22D+ n

Proof of Theorem 4.1. From the convergence in L1 of the bias ~see Bouezmarni

and Scaillet, 2003, Proposition 4+1!, it is sufficient to prove that *0
`
6IE~ Zfb~x!! 2

Zfb~x!6 dx
P
&& 0, as n r `+ We have

E
0

`

6IE~ Zfb~x!!2 Zfb~x!6 dx # E
0

1`E
0

1`

6Fn~t !2 F~t !6 dK~t; x,b! dx,

but **6dK~t; x,b!6dx 5 O~b2a!, where a 5 1 for the gamma kernel and a 5
5
2
_ for the IG

and RIG kernels+ Then

E
0

`

6IE~ Zfb~x!!2 Zfb~x!6 dx # b2aC1 sup
t
6Fn~t !2 F~t !6+

We finally get

IPSE
0

`

6IE~ Zfb~x!!2 Zfb~x!6 dx . eD # 2 expS22
e2

C1
2

nb2aD+ n

Proof of Theorem 4.2. From the convergence in L1 of the bias ~see Bouezmarni

and Scaillet, 2003, Proposition 4+2!, it is sufficient to prove that *0
`
6IE~ Zfk~x!! 2

Zfk~x!6 dx
P
&& 0, as n r `+ First, from the proof of Theorem 3+2 we know that
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E
0

1`

6IE~ Zfk~x!!2 Zfk~x!6 dx # E
0

1`

k(
j50

1`

6Fn~Akj !2 F~Akj !6pkj ~x! dx

# (
j50

1`

6Fn~Akj !2 F~Akj !6+

Second, from Devroye and Gyorfi ~1985!, we deduce that the last term converges in

probability under Condition 2+ n

Proof of Theorem 5.1. From the proof of Theorem 3+1,we have 6 Zfb~0!2 IE~ Zfb~0!!6
P
&& 0

as nb2a becomes large, i+e+, Zfb~0! and IE~ Zfb~0!! have the same asymptotic behavior as

nb2a
r `+ Now we prove that IE~ Zfb~0!! r 1` as b r 0, i+e+, for A . 0 there exists

h . 0 such that IE~ Zfb~0!! . A for all b , h+ In fact, f ~t !r 1`, as tr 0, and thus for

A . 0 there exists d~A! . 0 such that f ~t ! . 2A for all 0 , t , d+ Now IE~ Zfb~0!! $

2A*0
d

K~t;0,b! dt+ If we suppose that for all d . 0, *0
d

k~t;0,b! r 1, as b r 0, we

get *0
d

K~t;0,b! dt .
1
2
_ , for all b , h+ Then, for A . 0 there exists h such that

IE~ Zfb~0!! . A, for all b , h, which leads to the stated result+ n

Proof of Theorem 5.2. First, we show that IE~ Zfk~0!!r 1`, as kr `, i+e+, for A .

0, there exists k0 such that IE~ Zfk~0!! . A, for all k $ k0+ In fact, because f ~t !r 1`, as

t r 0, we have f ~t ! . 2A, for all k $ k1+ Now if pk0~0! r 1, as k r 1`, we have

pk0~0! .
1
2
_ , for all k $ k2+ Therefore,

6IE~ Zfk~0!!6 $ kpk0~0!E
0

10k

f ~t ! dt

. A, for k $ k0 5 max~k1, k2 !+

From the proof of Theorem 3+2, we know that 6 Zfk~0!2 IE~ Zfk~0!!6
P
&& 0, as nk22

r 1`,

which completes the proof+ n

Proof of Theorem 5.3. On one hand, we have

6IE~ Zfb~x!!2 f ~x!6

f ~x!
5 *E

0

1`S f ~t !

f ~x!
2 1DK~x,b!~t ! dt*

# E
6 t2mx 6#de

* f ~t !

f ~x!
2 1*K~x,b!~t ! dt

1 E
0

mx2de

* f ~t !

f ~x!
2 1*K~x,b!~t ! dt

1 E
mx1de

1`

* f ~t !

f ~x!
2 1*K~x,b!~t ! dt+
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We get

E
6 t2mx 6#de

* f ~t !

f ~x!
2 1*K~x,b!~t ! dt #

e

3
~continuity of f !,

E
0

mx2de

* f ~t !

f ~x!
2 1*K~x,b!~t ! dt .

6 f '~x!6

f ~x!
E

0

mx2de

~x 2 t !K~x,b!~t ! dt

#

6x f '~x!6

f ~x!

Var~jx !

de
2

~Chebyshev inequality!

#

e

3
as x,br 0 from A+2 and A+5,

and finally

E
mx1de

1`

* f ~t !

f ~x!
2 1*K~x,b!~t ! dt # E

mx1de

1`

K~x,b!~t ! dt

#

e

3
as x,br 0 from A+3+

Hence we deduce

6IE~ Zfb~x!!2 f ~x!6

f ~x!
, e as b, xr 0+ (A.1)

On the other hand, we have

6 Zfb~x!2 IE~ Zfb~x!!6

f ~x!
#

Cb2a

f ~x!
sup

t[@0,1`!

6Fn~t !2 F~t !6 from A+1+

Now, from Massart ~1990!, we obtain

IPS 6 Zfb~x!2 IE~ Zfb~x!!6

f ~x!
$ eD # 2 expS2

2e2

C 2
nb2a f 2~x!D+ (A.2)

Equations ~A+1! and ~A+2! yield the stated result+ n

Proof of Theorem 5.4. Let d be a small positive number+ We have

6IE~ Zfk~x!!2 f ~x!6

f ~x!
# kIExFE

Sk0k

~Sk11!0k 6 f ~t !2 f ~x!6

f ~x!
dt; * Sk

k
2 x* # dG

1 kIExFE
Sk0k

~Sk11!0k 6 f ~t !2 f ~x!6

f ~x!
dt;

Sk

k
2 x . dG

1 kIExFE
Sk0k

~Sk11!0k 6 f ~t !2 f ~x!6

f ~x!
dt;

Sk

k
2 x , 2dG

5 I 1 II 1 III+
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We get

I 5 kIExFE
Sk0k

~Sk11!0k 6 f ~t !2 f ~x!6

f ~x!
dt; * Sk

k
2 x* # dG

5 IExFE
0

1 1

f ~x! * fS Sk 1 s

k
D2 f ~x!* ds; * Sk

k
2 x* # dG

#

e

3
~continuity of f !,

whereas

II 5 kIExFE
Sk0k

~Sk11!0k 6 f ~t !2 f ~x!6

f ~x!
dt;

Sk

k
2 x . dG

# IPS Sk

k
2 x . dD

#

e

3
as x, 10kr 0 from A+3

and

III 5 kIExFE
Sk0k

~Sk11!0k 6 f ~t !2 f ~x!6

f ~x!
dt;

Sk

k
2 x , 2dG

. kIExFE
Sk0k

~Sk11!0k 6 f '~x!~x 2 t !6

f ~x!
dt;

Sk

k
2 x , 2dG

#

6 f '~x!x 6

f ~x!
IPF Sk

k
2 x , 2dG

#

6 f '~x!x 6

f ~x!

Var~Sk !

~kd!2
~Chebyshev inequality!

#

e

3
as x,10kr 0 from A+2 and A+4+

Besides as in the proof of Theorem 3+2, we have

IPS 6 Zfk~x!2 IE~ Zfk~x!!6

f ~x!
. «02D # 2 expS2

1

8
e2nk22 f 2~x!D+ n

412 TAOUFIK BOUEZMARNI AND OLIVIER SCAILLET


