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CONSISTENCY OF COMMUNITY DETECTION IN NETWORKS

UNDER DEGREE-CORRECTED STOCHASTIC BLOCK MODELS

BY YUNPENG ZHAO, ELIZAVETA LEVINA1 AND JI ZHU2

George Mason University, University of Michigan and University of Michigan

Community detection is a fundamental problem in network analysis,
with applications in many diverse areas. The stochastic block model is a
common tool for model-based community detection, and asymptotic tools
for checking consistency of community detection under the block model have
been recently developed. However, the block model is limited by its assump-
tion that all nodes within a community are stochastically equivalent, and pro-
vides a poor fit to networks with hubs or highly varying node degrees within
communities, which are common in practice. The degree-corrected stochastic
block model was proposed to address this shortcoming and allows variation
in node degrees within a community while preserving the overall block com-
munity structure. In this paper we establish general theory for checking con-
sistency of community detection under the degree-corrected stochastic block
model and compare several community detection criteria under both the stan-
dard and the degree-corrected models. We show which criteria are consistent
under which models and constraints, as well as compare their relative perfor-
mance in practice. We find that methods based on the degree-corrected block
model, which includes the standard block model as a special case, are consis-
tent under a wider class of models and that modularity-type methods require
parameter constraints for consistency, whereas likelihood-based methods do
not. On the other hand, in practice, the degree correction involves estimating
many more parameters, and empirically we find it is only worth doing if the
node degrees within communities are indeed highly variable. We illustrate
the methods on simulated networks and on a network of political blogs.

1. Introduction. Networks have become one of the more common forms of
data, and network analysis has received a lot of attention in computer science,
physics, social sciences, biology and statistics (see [13, 15, 25] for reviews). The
applications are many and varied, including social networks [31, 37], gene regu-
latory networks [33], recommender systems and security monitoring. One of the
fundamental problems in network analysis is community detection, where com-
munities are groups of nodes that are, in some sense, more similar to each other
than to other nodes. The precise definition of community, like that of a cluster in
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multivariate analysis, is difficult to formalize, but many methods have been devel-
oped to address this problem (see [11, 15, 23] for comprehensive recent reviews),
often relying on the intuitive notion of community as a group of nodes with many
links between themselves and fewer links to the rest of the network.

Three groups of methods for community detection can be loosely identified in
the literature. A number of greedy algorithms such as hierarchical clustering have
been proposed (see [22] for a review), which we will not focus on in this paper. The
second class of methods involves optimization of some “reasonable” global crite-
ria over all possible network partitions and includes graph cuts [34, 38], spectral
clustering [28] and modularity [23, 26], the latter discussed in detail below. Finally,
model-based methods rely on fitting a probabilistic model for a network with com-
munities. Perhaps the best known such model is the stochastic block model, which
we will also refer to as simply the block model [18, 29, 35]. Other models include a
recently introduced degree-corrected stochastic block model [20], mixture models
for directed networks [27], multivariate latent variable models [16], latent feature
models [17] and mixed membership stochastic block models for modeling over-
lapping communities [2]. From the algorithmic point of view, many model-based
methods also lead to criteria to be optimized over all partitions, such as the profile
likelihood under the assumed model.

The large number of available methods leads to the question of how to compare
them in a principled manner, other than on individual examples. There has been lit-
tle theoretical analysis of community detection methods until very recently, when
a consistency framework for community detection was introduced by Bickel and
Chen [5]. They developed general theory for checking the consistency of detection
criteria under the stochastic block model (discussed in detail below) as the number
of nodes grows and the number of communities remains fixed, and their result has
been generalized to allow the number of communities to grow in [7]; see also [32].
The stochastic block model, however, has serious limitations in practice: it treats
all nodes within a community as stochastically equivalent, and thus does not allow
for the existence of “hubs,” high-degree nodes at the center of many communities
observed in real data. To address this issue, Karrer and Newman [20] proposed the
degree-corrected stochastic block model, which can accommodate hubs (a simi-
lar model for a directed network was previously proposed in [36], but they did
not focus on community detection and assumed known community membership).
In [20], the authors gave several examples showing this model fits data with hubs
much better than the block model; however, there are no consistency results avail-
able under this new model, and thus no way to compare methods in general.

In this paper we generalize the consistency framework of [5] to the degree-
corrected stochastic block model and obtain a general theorem for community de-
tection consistency. Since the degree-corrected model includes the regular block
model as a special case, consistency results under the block model follow auto-
matically. We then evaluate two types of modularity and the two criteria derived
from the block model and the degree-corrected block model using this general
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framework. One of our goals is to emphasize the difference between assumed
models (needed for theoretical analysis) and criteria for finding the optimal par-
tition, which may or may not be motivated by a particular model. What we ulti-
mately show agrees with statistical common sense: criteria derived from a particu-
lar model are consistent when this model is assumed, but not necessarily consistent
if the model does not hold. Further, if a criterion relies implicitly on an assump-
tion about the model parameters (e.g., modularity implicitly assumes that links
within communities are stronger than between), then it will be consistent only if
the model parameters are constrained to satisfy this assumption. We make all of
the above statements precise later in the paper.

The rest of the article is organized as follows. We set up all notation and define
the relevant models and criteria in Section 2. Consistency results under the regular
and the degree-corrected stochastic block models for all of the criteria in Section 2
are stated in Section 3. The general consistency theorem which implies all of these
results is presented in Section 4. In Section 5 we compare the performance of
these criteria on simulated networks, and in Section 6 we illustrate the methods on
a network of political blogs. Section 7 concludes with a summary and discussion.
All proofs are given in the Appendix.

2. Network models and community detection criteria. Before we proceed
to discuss specific criteria and models, we introduce some basic notation. A net-
work N = (V ,E), where V is the set of nodes (vertices), |V | = n, and E is the
set of edges, can be represented by its n × n adjacency matrix A = [Aij ], where
Aij = 1 if there is an edge from i to j , and Aij = 0 otherwise. We only consider
unweighted and undirected networks here, and thus A is a binary symmetric ma-
trix. The community detection problem can be formulated as finding a disjoint
partition V = V1 ∪ · · · ∪ VK or, equivalently, a set of node labels e = {e1, . . . , en},
where ei is the label of node i and takes values in {1,2, . . . ,K}.

For any set of label assignments e, let O(e) be the K × K matrix defined by

Okl(e) =
∑

ij

Aij I {ei = k, ej = l},

where I is the indicator function. Further, let

Ok(e) =
∑

l

Okl(e), L =
∑

ij

Aij .

For k �= l, Okl is the total number of edges between communities k and l; Ok is
the sum of node degrees in community k, and L is the sum of all degrees in the
network. If self-loops are not allowed (i.e., Aii = 0 is enforced), then we can also
interpret Okk as twice the total number of edges within community k and L as
twice the number of edges in the whole network. Finally, let nk(e) =

∑

i I {ei = k}

be the number of nodes in the kth community, and f (e) = (n1
n

, n2
n

, . . . , nK

n
)T .
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The stochastic block model, which is perhaps the most commonly used model
for networks with communities, postulates that, given node labels c = {c1, . . . , cn},
the edge variables Aij ’s are independent Bernoulli random variables with

E[Aij ] = Pcicj
,(2.1)

where P = [Pab] is a K × K symmetric matrix. We will use this formulation
throughout the paper, which allows for self-loops. While it is also common to
exclude self-loops, sometimes they are present in the data (as in our example in
Section 6) and allowing them leads to simpler notation. In principle, all of our
results go through for the version of the models with self-loops excluded, with
appropriate modifications made to the proofs.

Under the model (2.1), all nodes with the same label are stochastically equiv-
alent to each other, which in practice limits the applicability of the stochastic
block model, as pointed out in [20]. The alternative proposed in [20], the degree-
corrected stochastic block model, is to replace (2.1) with

E[Aij ] = θiθjPcicj
,(2.2)

where θi is a “degree parameter” associated with node i, reflecting its individual
propensity to form ties. The degree parameters have to satisfy a constraint to be
identifiable, which in [20] was set to

∑

i θiI (ci = k) = 1, for each k (other con-
straints are possible). Further, they replaced the Bernoulli likelihood by the Pois-
son, to simplify technical derivations. With these assumptions, a profile likelihood
can be derived by maximizing over θ and P , giving the following criterion to be
optimized over all possible partitions:

QDCBM(e) =
∑

kl

Okl log
Okl

OkOl

.(2.3)

We have compared the performance of this criterion in practice to its slightly
more complicated version based on the (correct) Bernoulli likelihood instead of
the Poisson and found no difference in the solutions these two methods produce.
The Bernoulli distribution with a small mean is well approximated by the Poisson
distribution, and most real networks are sparse, so one can expect the approxi-
mation to work well; see also a more detailed discussion of this in [30]. We will
use (2.3) in all further analysis, to be consistent with [20] and take advantage of
the simpler form.

The degree-corrected model includes the regular stochastic block model as a
special case, with all θi’s equal. Enforcing this additional constraint on the profile
likelihood leads to the following criterion to be optimized over all partitions:

QBM(e) =
∑

kl

Okl log
Okl

nknl

.(2.4)
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Like criterion (2.3), this is based on the Poisson assumption but gives identical
results to the Bernoulli version in practice. Here we use the form (2.4) for consis-
tency with (2.3) and with [20].

A different type of criterion used for community detection is modularity, intro-
duced in [26]; see also [23] and [24]. The basic idea of modularity is to compare the
number of observed edges within a community to the number of expected edges
under a null model and maximize this difference over all possible community par-
titions. Thus, the general form of a modularity criterion is

Q(e) =
∑

ij

[Aij − Pij ]I (ei = ej ),(2.5)

where Pij is the (estimated) probability of an edge falling between i and j under
the null model. The convention in the physics literature is to divide Q by L, which
we omit here, since it does not change the solution.

The choice of the null model, that is, of a model with no communities (K = 1),
determines the exact form of modularity. The stochastic block model with K = 1
is simply the Erdos–Renyi random graph, where Pij is a constant which can be
estimated by L/n2. Plugging Pij = L/n2 into (2.5) gives what we will call the
Erdos–Renyi modularity (ERM),

QERM(e) =
∑

k

(

Okk −
n2

k

n2 L

)

.(2.6)

If instead we take the degree-corrected model with K = 1 as the null model,
it postulates that Pij ∝ θiθj , where θi is the degree parameter. This is essentially
the well-known expected degree random graph, also known as the configuration
model. In this case, Pij can be estimated by didj/L, where di =

∑

j Aij is the
degree of node i. Substituting this into (2.5) gives the popular Newman–Girvan
modularity (NGM), introduced in [26]:

QNGM(e) =
∑

k

(

Okk −
O2

k

L2 L

)

.(2.7)

The four different criteria for community detection are summarized in Table 1.
Note that the two likelihood-based criteria, BM and DCBM, take into account

TABLE 1
Summary of community detection criteria

Block model Degree-corrected block model

Modularity
∑

k(Okk −
n2

k

n2 L) (ERM)
∑

k(Okk −
O2

k

L2 L) (NGM)

Likelihood
∑

kl Okl log Okl
nknl

(BM)
∑

kl Okl log Okl
OkOl

(DCBM)
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all links within and between communities, and which communities they connect;
whereas the modularities would not change if all the links connecting different
communities were randomly permuted (as long as they did not become links within
communities). Further, note that the degree correction amounts to substituting Ok

for nk and L for n, both for modularity and likelihood-based criteria. Thus, if all
nodes within a community are treated as equivalent, their number suffices to weigh
community strength appropriately; and if the nodes are allowed to have different
expected degrees, then the number of edges becomes the correct weight. Both of
these features make sense intuitively and, as we will see later, will fit in naturally
with consistency conditions.

Our analysis indicates that Newman–Girvan modularity and degree-corrected
block model criteria are consistent under the more general degree-corrected mod-
els but Erdos–Renyi modularity and block model criteria are not, even though they
are consistent under the regular block model. Further, we show that likelihood-
based methods are consistent under their assumed model with no restrictions on
parameters, whereas modularities are only consistent if the model parameters are
constrained to satisfy a “stronger links within than between” condition, which is
the basis of modularity derivations. In short, we show that a criterion is consis-
tent when the underlying model and assumptions are correct, and not necessarily
otherwise.

3. Consistency of community detection criteria. Here we present all the
consistency results for the four different criteria defined in Section 2. All these
results follow from the general consistency theorem in Section 4; the proofs are
given in the Appendix. The notion of consistency of community detection as the
number of nodes grows was introduced in [5]. They defined a community detection
criterion Q to be consistent if the node labels obtained by maximizing the criterion,
ĉ = arg maxe Q(e), satisfy

P [ĉ = c] → 1 as n → ∞.(3.1)

Strictly speaking, this definition suffers from an identifiability problem, since most
reasonable criteria, including all the ones discussed above, are invariant under a
permutation of community labels {1, . . . ,K}. Thus, a better way to define consis-
tency is to replace the equality ĉ = c with the requirement that ĉ and c belong to
the same equivalence class of label permutations. For simplicity of notation, we
still write ĉ = c in all consistency results in the rest of the paper, but take them to
mean that ĉ and c are equal up to a permutation of labels.

The notion of consistency in (3.1) is very strong, since it requires asymptotically
no errors. One can also define what we will call weak consistency,

∀ε > 0 P

[(

1

n

n
∑

i=1

1(ĉi �= ci)

)

< ε

]

→ 1 as n → ∞,(3.2)
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where equality is also interpreted to mean membership in the same equivalence
class with respect to label permutations. In [6], conditions were established for a
criterion to be weakly consistent under the stochastic block model. All other as-
sumptions being equal, weak consistency only requires that the expected degree of
the graph λn → ∞, whereas strong consistency requires λn/ logn → ∞. Here, we
will analyze both strong and weak consistency under the degree-corrected stochas-
tic block model.

For the asymptotic analysis, we use a slightly different formulation of the
degree-corrected model than that given by [20]. The main difference is that we
treat true community labels c and degree parameters θ = (θ1, . . . , θn) as latent
random variables rather than fixed parameters. Note, however, that the criteria we
analyze were obtained as profile likelihoods with parameters treated as constants.
This is one of the standard approaches to random effects models, known as condi-
tional likelihood (see page 234 of [21]). The network model we use for consistency
analysis can be described as follows:

(1) Each node is independently assigned a pair of latent variables (ci, θi), where
ci is the community label taking values in 1, . . . ,K , and θi is a discrete “degree
variable” taking values in x1 ≤ · · · ≤ xM . We do not assume that ci is independent
of θi .

(2) The marginal distribution of c is multinomial with parameter π = (π1, . . . ,

πK)T , and θ satisfies E[θi] = 1 for identifiability.
(3) Given c and θ , the edges Aij are independent Bernoulli random variables

with

E[Aij |c, θ] = θiθjPcicj
,

where P = [Pab] is a K × K symmetric matrix.

For simplicity, we allow self-loops in the network, that is, E[Aii |c, θ ] = θ2
i Pcici

.
Otherwise diagonal terms of A have to be treated separately, which ultimately
makes no difference for the analysis but makes notation more awkward.

To ensure that all probabilities are always less than 1, we require the model to
satisfy the constraint x2

M maxa,b Pab ≤ 1. We also need to consider how the model
changes with n. If Pab remains fixed as n grows, the expected degree λn will
be proportional to n, which makes the network unrealistically dense. Instead, we
allow the matrix P to scale with n and, in a slight abuse of notation, reparameterize
it as Pn = ρnP , where ρn = P(Aij = 1) → 0 and P is fixed. We then specify the
rate of c the expected degree λn = nρn, which has to satisfy λn

logn
→ ∞ for strong

consistency and λn → ∞ for weak consistency.
Let � be the K × M matrix representing the joint distribution of (ci, θi) with

P(ci = a, θi = xu) = �au. Further, define π̃a =
∑

u xu�au. Note that
∑

a π̃a = 1
since E(θi) = 1. Moreover, we have π̃a = πa if c and θ are independent, or if
θi ≡ 1 (block models). Thus, we can view π̃ as an adjusted version of π .
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Next, we state our consistency results for the two types of modularities under
both the degree-corrected and the standard block model.

THEOREM 3.1. Under the degree-corrected stochastic block model, if the pa-

rameters satisfy

Ẽaa > 0, Ẽab < 0 for all a �= b,

where P̃0 =
∑

ab π̃aπ̃bPab, W̃ab = π̃a π̃bPab

P̃0
, Ẽ = W̃ − (W̃1)(W̃1)T , the Newman–

Girvan modularity is strongly consistent when λn/ logn → ∞ and weakly consis-

tent when λn → ∞.

The parameter constraints in Theorem 3.1 require, essentially, that the links
within communities are more likely than the links between. This is particularly
easy to see when K = 2, in which case the constraint simplifies to

P11P22 > P 2
12.

Taking θi ≡ 1, we immediately obtain the following.

COROLLARY 3.1 (Established in [5]). Under the standard stochastic block

model with parameters satisfying Theorem 3.1 constraints with π̃ replaced by π ,
Newman–Girvan modularity is strongly consistent when λn/ logn → ∞ and

weakly consistent when λn → ∞.

For Erdos–Renyi modularity, which has not been studied theoretically before,
we can also show consistency under the standard block model, albeit with a slightly
stronger condition on links within communities being more likely than the links
between:

THEOREM 3.2. Under the standard stochastic block model, if the parameters

satisfy

Paa > P0, Pab < P0 for all a �= b,

where P0 =
∑

ab πaπbPab, the Erdos–Renyi modularity criterion (2.6) is strongly

consistent when λn/ logn → ∞ and weakly consistent when λn → ∞.

However, the Erdos–Renyi modularity is not consistent under the degree-
corrected model, at least not under the same parameter constraint. The Erdos–
Renyi modularity prefers to group nodes with similar degrees together, which may
not agree with true communities when the variance in node degrees is large. Here
is a counter-example demonstrating this. Let K = 2,π = (1/2,1/2)T , ρn = 1 (so
that the graph becomes dense as n → ∞), and

P =

(

0.1 0.05
0.05 0.1

)

.
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Further, θ is independent of c and takes only two values, 1.6 and 0.4, with prob-
ability 1/2 each. If we assign all nodes their true labels, the population version of
the criterion (where all random quantities are replaced by their expectations under
the true model) gives QERM = 0.0125. However, by grouping nodes with the same
value of θi’s together, we get the population version of QERM = 0.0135, higher
than the value for the true partition, and this solution will therefore be preferred in
the limit.

Once again, the result makes sense intuitively, since the Erdos–Renyi mod-
ularity uses the regular block model as its null hypothesis, and the parameter
constraint matches the “fewer links between than within” notion. From the al-
gorithmic point of view, the main difference between Erdos–Renyi modularity and
Newman–Girvan modularity is that the latter depends on the edge matrix O only
and “weighs” communities by the number of edges, whereas the former weighs
communities by the number of nodes nk (which, under the block model, is propor-
tional to the number of edges, but under the degree-corrected model is not).

Next we state the consistency results for the two criteria derived from profile
likelihoods, DCBM (2.3) and BM (2.4). These require no parameter constraints.

THEOREM 3.3. Under the degree-corrected stochastic block model (and

therefore under the regular model as well), the degree-corrected criterion (2.3)
is strongly consistent when λn/ logn → ∞ and weakly consistent when λn → ∞.

THEOREM 3.4. Under the stochastic block model, the block model crite-

rion (2.4) is strongly consistent when λn/ logn → ∞ and weakly consistent when

λn → ∞.

Theorem 3.4 was proved in [5] for a slightly different form of the profile likeli-
hood (Bernoulli rather than the Poisson). Under the degree-corrected block model,
criterion (2.4) is not necessarily consistent—the same counter-example can be used
to demonstrate this. As was the case with modularities, the criterion consistent un-
der the degree-corrected block model depends on O only, whereas the criterion
consistent only under the regular block model also depends on nk .

The theoretical results suggest that the likelihood-based criteria are always
preferable over the modularity-based criteria, and that criteria based on the degree-
corrected model are always preferred to the criteria based on the regular block
model, since they are consistent under weaker conditions. In practice, however,
this may not always hold. Computationally, modularity type criteria can be ap-
proximately optimized by solving an eigenvalue problem [24], whereas likelihood
type criteria have no such approximations and thus have to be optimized by slower
heuristic search algorithms, as was done in [5] and [20]. Moreover, fitting the
degree-corrected block model requires estimating many more parameters than fit-
ting a block model and creates the usual trade-off between model complexity and
goodness of fit. If the node degrees within communities do not vary widely, fitting
a block model may provide a better solution; see more on this in Section 5.
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4. A general theorem on consistency under degree-corrected stochastic

block models. Here we prove a general theorem for checking consistency under
degree-corrected stochastic block models for any criterion defined by a reasonably
nice function. All consistency results for specific methods discussed in Section 3
are corollaries of this theorem.

A large class of community detection criteria can be written as

Q(e) = F

(

O(e)

μn

, f (e)

)

,(4.1)

where μn = n2ρn. For instance, many graph cut methods (mincut, ratio cut [38],
normalized cut [34]) have this form and use functions that are designed to mini-
mize the number of edges between communities. All criteria discussed in Section 3
can also be written in this form. Our goal here is to establish conditions for con-
sistency of a criterion of this form under degree-corrected block models.

A natural condition for consistency is that the “population version” of Q(e)

should be maximized by the correct community assignment, as in M-estimation.
To define the population version of Q, we first define functions H(S) and h(S)

corresponding to population versions of O(e) and f (e), respectively (the precise
meaning of “population version” is clarified in Proposition 4.1 below). For any
generic array S = [Skau] ∈ R

K×K×M , define a K ×K matrix H(S) = [Hkl(S)] by

Hkl(S) =
∑

abuv

xuxvPabSkauSlbv,

and a K-dimensional vector h(S) = [hk(S)] by

hk(S) =
∑

au

Skau.

Also define R(e) ∈ R
K×K×M by

Rkau(e) =
1

n

n
∑

i=1

I (ei = k, ci = a, θi = xu).

Then we have the following:

PROPOSITION 4.1.
1

μn

E[Okl|c, θ] = Hkl

(

R(e)
)

,(4.2)

fk(e) = hk

(

R(e)
)

.(4.3)

Proposition 4.1 explains the precise meaning of “population version”: we take
the conditional expectations given c and θ and write them as functions of a
generic variable S instead of R(e). The population version of Q is defined as
F(H(S),h(S)).

Now we can specify the key sufficient condition as follows:
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(∗) F(H(S),h(S)) is uniquely maximized over S = {S :S ≥ 0,
∑

k Skau = �au}

by S = D, with Dkau = �auEka , for any a and u, where E is any row permu-
tation of a K × K identity matrix.

The matrix E deals with the permutation equivalence class. Since R(c) → D as
n → ∞, S = D implies each class k exactly matches a community in the pop-
ulation. For simplicity, in what follows we assume that E is in fact the identity
matrix itself. We will elaborate on this condition below. In addition, we need some
regularity conditions, analogous to those in [5]:

(a) F is Lipschitz in its arguments;

(b) Let W = H(D). The directional derivatives ∂2F
∂ε2 (M0 + ε(M1 − M0), t0 +

ε(t1 − t0))|ε=0+ are continuous in (M1, t1) for all (M0, t0) in a neighborhood of
(W,π);

(c) Let G(S) = F(H(S),h(S)). Then on S , ∂G((1−ε)D+εS)
∂ε

|ε=0+ < −C < 0
for all π ,P .

Now we are ready to state the main theorem.

THEOREM 4.1. For any Q(e) of the form (4.1), if π ,P ,F satisfy (∗), (a)–(c),
then Q is strongly consistent under degree-corrected stochastic block models if
λn

logn
→ ∞ and weakly consistent if λn → ∞.

The proof is given in the Appendix. This theorem is a generalization of Theo-
rem 1 in [5] from the standard stochastic block models to degree-corrected models,
and it implies all of the consistency results in Section 3.

Finally, we return to the key condition (∗). If Q(e) is maximized by the true
community labels c, then as n → ∞, F(H(S),h(S)), the population version of
Q(e), should also be maximized by the true partition S = D, since R(c) → D and
Q(c) → F(H(D), h(D)), making (∗) a natural condition. Further, since for any e,
∑

k Rkau(e) → �au, the limit S of R(e) must satisfy
∑

k Skau = �au. Therefore,
we only need to consider maximizers of F(H(S),h(S)) satisfying this constraint.

5. Numerical evaluation. In this section we compare the performance of the
four community detection criteria from Section 2 on simulated data, generated
from the regular or the degree-corrected block model. The criteria are maximized
over partitions using a greedy label-switching algorithm called tabu search [4, 14].
The key idea of tabu search is that once a node label has been switched, it will be
“tabu” and not available for switching for a certain number of iterations, to prevent
being trapped in a local maximum. Even though tabu search cannot guarantee con-
vergence to the global maximum, it performs well in practice. Moreover, we run
the search for a number of initial values and different orderings of nodes, to help
avoid local maxima.
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To compare the solution to the true labels, we use the adjusted Rand index [19],
a measure of similarity between partitions commonly used in clustering. We have
also computed the normalized mutual information, a measure more commonly
used by physicists in the networks literature, which gives very similar results (not
reported to save space). The adjusted Rand index is scaled so that 1 corresponds
to the perfect match and 0 to the expected difference between two random parti-
tions, with higher values indicating better agreement. The figures in this section all
present the median adjusted Rand index over 100 replications.

In all examples below, we generate networks with n = 1000 nodes and K = 2
communities. The node labels are generated independently with P(ci = 1) = π ,
P(ci = 2) = 1 −π . By varying π , we can investigate robustness of the methods to
unbalanced community sizes. The probability matrix for the block model and the
degree-corrected block model is set to

P = ρ

(

4 1
1 4

)

,

where we vary ρ to obtain different expected degrees λ.

5.1. The degree-corrected stochastic block model. For this simulation, we
generate data from the degree-corrected model with two possible values for the
degree parameter θ . The degree parameters are generated independently from the
labels, with

P(θi = mx) = P(θi = x) = 1/2,

which implies x = 2
m+1 , since we need to have E(θi) = 1. We vary the ratio m

from 1 (the regular block model) to 10, which allows us to study the effect of model
misspecification on the regular block model. In this simulation, the community
sizes are balanced (π = 0.5).

Figure 1 shows the results for three different expected degrees λ. For the dens-
est network with λ = 125 in Figure 1(a), the degree-corrected block model and

FIG. 1. Results for the degree-corrected stochastic block model with two values for the degree

parameters, π = 0.5, m varies.
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FIG. 2. Results for the standard stochastic block model, m = 1, π varies.

Newman–Girvan modularity perform the best overall, as they assume the correct
model and the methods are consistent. At m = 1, the regular block model is just
as good, but its performance deteriorates rapidly as m increases. The Erdos–Renyi
modularity also performs perfectly for m = 1, and it takes larger values of m for
its performance to deteriorate than for block model likelihood, so we can conclude
that the Erdos–Renyi modularity is more robust to variation in degrees. For both
of them, poor results are due to grouping nodes with similar degrees together. The
overall trend for sparser networks [Figure 1(b) and (c)] is similar, but all methods
perform worse, as with fewer links there is effectively less data to use for fitting the
model, and the effect is more pronounced for large m, when degrees have higher
variance.

5.2. The stochastic block model. Here we focus on the standard stochastic
block model (m = 1) and vary π to assess robustness to unbalanced community
sizes. All the four criteria are consistent in this case, but, in practice, the closer π

is to 0.5, the better they perform (Figure 2), with the exception of the block model
likelihood in the dense case (λ = 125), where it performs perfectly for all π . Over-
all, the block model likelihood performs best, which is natural because it is the
maximum likelihood estimator of the correct model. The Erdos–Renyi modularity
also performs better than the other two criteria, which overfit the data by assum-
ing the degree-corrected model and accounting for variation in observed degrees,
which in this case only adds noise.

5.3. Unbalanced community sizes. In this simulation we consider the degree-
corrected stochastic block model with unbalanced community sizes. We fix π =
0.3 and vary the ratio m in Figure 3. For a dense network [λ = 125, Figure 3(a)],
the performance with π = 0.3 is similar to the balanced case with π = 0.5 [Fig-
ure 1(a)]. However, in sparser networks modularity performs much worse with
unbalanced community sizes. This can also be seen in Figure 2 for the case m = 1.
The failure of modularity to deal with unbalanced community sizes was also re-
cently pointed out by [39]. Note also that in the sparsest case (λ = 12, Figure 3),
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FIG. 3. Results for the degree-corrected stochastic block model with two values for the degree

parameters, π = 0.3, m varies.

the degree-corrected model suffers from over-fitting when m = 1, as was also seen
in Figure 2.

5.4. A different degree distribution. In the last simulation we test the sensitiv-
ity of all methods, but in particular the degree-corrected model, to the assumption
of a discrete degree distribution. Here we sample the degree parameters θi inde-
pendently from the following distribution:

θi =

⎧

⎨

⎩

ηi, w.p. α,
2/(m + 1), w.p. (1 − α)/2,
2m/(m + 1), w.p. (1 − α)/2,

where ηi is uniformly distributed on the interval [0,2]. The variance of θi is equal
to α/3 + (1 − α)(m − 1)2/(m + 1)2. In this simulation, we fix m = 10, which
makes the variance a decreasing function of α, and vary α from 0 to 1. We also fix
π = 0.5.

The results in Figure 4 show that the degree-corrected block model likelihood
and Newman–Girvan modularity still perform well, which suggests that the dis-
creteness of θ is not a crucial assumption. The regular block model fails in this

FIG. 4. Results for the degree-corrected stochastic block model with a mixture degree distribution,
m = 10, π = 0.5, mixture parameter α varies.



2280 Y. ZHAO, E. LEVINA AND J. ZHU

TABLE 2
Statistics of node degrees in the political blogs network

Mean Median Min 1st Qt. 3rd Qt. Max

27.36 13.00 1.00 3.00 36.00 351.00

case, as we would expect from earlier results since m = 10, but the performance
of the Erdos–Renyi modularity improves as α increases, which agrees with our
earlier observation on its relative robustness to variation in degrees.

6. Example: The political blogs network. In this section we analyze a real
network of political blogs compiled by [1]. The nodes of this network are blogs
about US politics and the edges are hyperlinks between these blogs. The data were
collected right after the 2004 presidential election and demonstrate strong divi-
sions; each blog was manually labeled as liberal or conservative by [1], which we
take as ground truth. Following the analysis in [20], we ignore directions of the hy-
perlinks and focus on the largest connected component of this network, which con-
tains 1222 nodes, 16,714 edges and has the average degree of approximately 27.
Some summary statistics of the node degrees are given in Table 2, which shows
that the degree distribution is heavily skewed to the right.

We compare the partitions into two communities found by the four different
community detection criteria with the true labels using the adjusted Rand index.
The Newman–Girvan modularity and the degree-corrected model find very similar
partitions (they differ over only four nodes and have the same adjusted Rand index
value of 0.819, the highest of all methods). The partition found by the Erdos–
Renyi modularity has a slightly worse agreement with the truth (adjusted Rand
index of 0.793). The block model likelihood divides the nodes into two groups
of low degree and high degree, with the adjusted Rand index of nearly 0, which
is equivalent to random guessing. The results are shown in Figure 5 (drawn us-
ing the igraph package in R [9] with the Fruchterman and Reingold layout [12]).
These are consistent with what we observed in simulation studies: the Newman–
Girvan modularity and the degree-corrected block model likelihood perform better
in a network with high degree variation, and the Erdos–Renyi modularity is more
robust to degree variation than the block model likelihood.

All criteria were maximized by tabu search, but for modularities we also com-
puted the solutions based on the eigendecomposition of the modularity matrix.
Both solutions were worse that those found by tabu search, but while for Newman–
Girvan modularity the difference was slight (the adjusted Rand index of 0.781 in-
stead of 0.819), eigendecomposition of the Erdos–Renyi modularity yielded a poor
result similar to that of block model likelihood (with adjusted Rand index value of
0.092 instead of 0.819 by tabu search). This suggests that Erdos–Renyi modularity
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FIG. 5. Political blogs data. Node area is proportional to the logarithm of its degree and the colors

represent community labels.
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is numerically less stable under high degree variation, in addition to being theoret-
ically not consistent. More analysis of the eigendecomposition-based solutions is
needed for both types of modularities to understand conditions under which these
approximations work well.

7. Summary and discussion. In this paper we developed a general tool for
checking consistency of community detection criteria under the degree-corrected
stochastic block model, a more general and practical model than the standard
stochastic block model for which such theory was previously available [5]. This
general tool allowed us to obtain consistency results for four different commu-
nity detection criteria, and, to the best of our knowledge for the first time in the
networks literature, to clearly separate the effects of the model assumed for crite-
ria derivation from the model assumed true for analysis of the criteria. What we
have shown is, essentially, statistical common sense: methods are consistent when
the model they assume holds for the data. The parameter constraints are needed
when methods implicitly rely on them, although we found that the two different
modularity methods, while using the same constraint in spirit, require somewhat
different conditions on parameters to be consistent. The theoretical analysis agrees
well with both simulation studies and the data analysis, which also indicate that
the methods with better theoretical consistency properties do not always perform
best in practice: there is a cost associated with fitting the extra complexity of the
degree-corrected model, and if there is not enough data for that, or the data does
not have much variation in node degrees, simpler methods based on the standard
stochastic block model will in fact do better.

There are many questions that require further investigation here, even in the con-
text of model-based community detection when a model is assumed true. For ex-
ample, we assumed that K is known, which is not unreasonable in some cases (e.g.,
dividing political blogs into liberal and conservative), but is in general a difficult
open problem in community detection. Standard methods such as AIC and BIC do
not seem to lend themselves easily to this case, because of parameters disappear-
ing in nonstandard ways when going from K + 1 to K blocks. A permutation test
was proposed in [40], but clearly more work is needed. There is also the question
of what happens if K is allowed to grow with n, which is probably more realistic
than fixed K ; for the stochastic block model, this case has been considered by [7]
and [32], but their analysis is specific to the particular methods they considered and
does not extend easily to the degree-corrected block model. Another open question
is the properties of approximate but more easily computable solutions based on the
eigendecomposition, as opposed to the properties of global maximizers we studied
here. For the stochastic block model, part of this analysis was performed in [32].
Our practical experience suggests that the behavior of eigenvectors can be quite
complicated, and it is not understood at this point when this approximation works
well. Finally, the sparse case λn = O(1) is an open problem in general, although
results for some special cases of the stochastic block model have been recently
obtained [8, 10].
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APPENDIX

We start from summarizing notation. Let R(e),V (e) ∈ R
K×K×M , �̂ ∈ R

K×M ,
f (e), f 0(e) ∈ R

K , where

Rkau(e) =
1

n

n
∑

i=1

I (ei = k, ci = a, θi = xu),

Vkau(e) =

∑n
i=1 I (ei = k, ci = a, θi = xu)
∑n

i=1 I (ci = a, θi = xu)
,

�̂au =
1

n

n
∑

i=1

I (ci = a, θi = xu),

fk(e) =
1

n

n
∑

i=1

I (ei = k) =
∑

au

Vkau(e)�̂au,

f 0
k (e) =

∑

au

Vkau(e)�au.

Even though the arbitrary labeling e is not random, intuitively one can think of R

as the empirical joint distribution of e, c, and θ , V as the conditional distribution
of e given c and θ . Further, �̂ is the empirical joint distribution of c and θ , and
thus an estimate of their true joint distribution �, f is the empirical marginal
“distribution” of e, and f 0 is the same marginal but with the empirical joint
distribution �̂ replaced by its population version �. Then

∑

k Vkau(e) = 1, and
Vkau(c) = I (k = a) for all u. Further, define T̂ (e) ∈ R

K×K to be a rescaled expec-
tation of the matrix O conditional on c and θ ,

T̂kl(e) =
1

μn

E[Okl|c, θ].

From Proposition 4.1,

T̂kl(e) =
∑

abuv

xuxvPabRkau(e)Rlbv(e)

=
∑

abuv

xuxvPstVkau(e)�̂auVlbv(e)�̂bv.

Replacing �̂ by its expectation �̂, we define T (e) ∈ R
K×K by

Tkl(e) =
∑

abuv

xuxvPstVkau(e)�auVlbv(e)�bv.

Also define X(e) ∈ R
K×K to be the rescaled difference between O and its condi-

tional expectation,

Xkl(e) =
Okl(e)

μn

− T̂kl(e).
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These quantities will be used in the proof of the general Theorem 4.1, where we
first approximate 1

μn
Okl by T̂kl(e) and then approximate T̂kl(e) by Tkl(e).

PROOF OF PROPOSITION 4.1. We only proof (4.2) since (4.3) is trivial.

1

μn

E[Okl|c, θ]

=
1

μn

∑

ij

∑

abuv

E
[

Aij I (ei = k, ci = a, θi = xu)I (ej = l, cj = b, θj = xv)|c, θ
]

=
∑

abuv

xuxvPabRkau(e)Rlbv(e) = Hkl

(

R(e)
)

.
�

Before we proceed to the general theorem, we state a lemma based on Bern-
stein’s inequality.

LEMMA A.1. Let ‖X‖∞ = maxkl |Xkl| and |e − c| =
∑n

i=1 I (ei �= ci). Then

P

(

max
e

∥

∥X(e)
∥

∥

∞ ≥ ε
)

≤ 2Kn+2 exp
(

−
1

8C
ε2μn

)

(A.1)

for ε < 3C, where C = max{xuxvPab}.

P

(

max
|e−c|≤m

∥

∥X(e) − X(c)
∥

∥

∞ ≥ ε
)

≤ 2
(

n

m

)

Km+2 exp
(

−
3

8
εμn

)

(A.2)

for ε ≥ 6Cm/n.

P

(

max
|e−c|≤m

∥

∥X(e) − X(c)
∥

∥

∞ ≥ ε
)

≤ 2
(

n

m

)

Km+2 exp
(

−
n

16mC
ε2μn

)

(A.3)

for ε < 6Cm/n.

This lemma is similar to Lemma 1.1 of [5], with a few minor errors corrected.
The proof can be found in the electronic supplement to this article [41].

PROOF OF THEOREM 4.1. The proof is divided into three steps.
Step 1: show that F(O(e)

μn
, f (e)) is uniformly close to its population version.

More precisely, we need to prove that there exists εn → 0, such that

P

(

max
e

∣

∣

∣

∣

F

(

O(e)

μn

, f (e)

)

− F
(

T (e), f 0(e)
)

∣

∣

∣

∣

< εn

)

→ 1 if λn → ∞.(A.4)

Since
∣

∣

∣

∣

F

(

O(e)

μn

, f (e)

)

− F
(

T (e), f 0(e)
)

∣

∣

∣

∣

≤

∣

∣

∣

∣

F

(

O(e)

μn

, f (e)

)

− F
(

T̂ (e), f (e)
)

∣

∣

∣

∣

+
∣

∣F
(

T̂ (e), f (e)
)

− F
(

T (e), f 0(e)
)∣

∣,
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it is sufficient to bound these two terms uniformly. By Lipschitz continuity,
∣

∣

∣

∣

F

(

O(e)

μn

, f (e)

)

− F
(

T̂ (e), f (e)
)

∣

∣

∣

∣

≤ M1
∥

∥X(e)
∥

∥

∞.(A.5)

By (A.1), (A.5) converges to 0 uniformly if λn → ∞, and
∣

∣F
(

T̂ (e), f (e)
)

− F
(

T (e), f 0(e)
)∣

∣

(A.6)
≤ M1

∥

∥T̂ (e) − T (e)
∥

∥

∞ + M2
∥

∥f (e) − f 0(e)
∥

∥

where ‖ · ‖ is the Euclidean norm for vectors. Further,

∣

∣T̂kl(e) − Tkl(e)
∣

∣ =

∣

∣

∣

∣

∑

abuv

xuxvPabVkau(e)Vlbv(e)(�̂au�̂bv − �au�bv)

∣

∣

∣

∣

(A.7)
≤

∑

abuv

xuxvPab|�̂au�̂bv − �au�bv|,

and
∣

∣fk(e) − f 0
k (e)

∣

∣ =

∣

∣

∣

∣

∑

au

Vkau(e)(�̂au − �au)

∣

∣

∣

∣

≤
∑

au

|�̂au − �au|.(A.8)

Since �̂
P
→ �, (A.6) converges to 0 uniformly. Thus, (A.4) holds.

Step 2: Prove that there exists δn → 0, such that

P

(

max
{e : ‖V (e)−I‖1≥δn}

F

(

O(e)

μn

, f (e)

)

< F

(

O(c)

μn

, f (c)

))

→ 1,(A.9)

where ‖W‖1 =
∑

kau |Wkau| for W ∈ R
K×K×M .

By continuity and (∗), there exists δn → 0, such that

F
(

T (c), f 0(c)
)

− F
(

T (e), f 0(e)
)

> 2εn

if ‖V (e) − I‖1 ≥ δn, where I = V (c). Thus, from (A.4),

P

(

max
{e : ‖V (e)−I‖1≥δn}

F

(

O(e)

μn

, f (e)

)

< F

(

O(c)

μn

, f (c)

))

≥ P

(
∣

∣

∣

∣

max
{e : ‖V (e)−I‖1≥δn}

F

(

O(e)

μn

, f (e)

)

− max
{e : ‖V (e)−I‖1≥δn}

F
(

T (e), f 0(e)
)

∣

∣

∣

∣

< εn,

∣

∣

∣

∣

F

(

O(c)

μn

, f (c)

)

− F
(

T (c), f 0(c)
)

∣

∣

∣

∣

< εn

)

→ 1.

(A.9) implies

P
(∥

∥V (ĉ) − I
∥

∥ < δn

)

→ 1.
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Since

1

n
|e − c| =

1

n

n
∑

i=1

I (ci �= ei) =
∑

au

�au

(

1 − Vaau(e)
)

≤
∑

au

(

1 − Vaau(e)
)

=
1

2

(

∑

au

(

1 − Vaau(e)
)

+
∑

au

∑

k �=a

Vkau(e)

)

=
1

2

∥

∥V (e) − I
∥

∥

1,

weak consistency follows.
Step 3: In order to prove strong consistency, we need to show that

P

(

max
{e : 0<‖V (e)−I‖1<δn}

F

(

O(e)

μn

, f (e)

)

< F

(

O(c)

μn

, f (c)

))

→ 1.(A.10)

Note that combining (A.9) and (A.10), we have

P

(

max
{e : e�=c}

F

(

O(e)

μn

, f (e)

)

< F

(

O(c)

μn

, f (c)

))

→ 1,

which implies the strong consistency.
Here we closely follow the derivation given in [3]. To prove (A.10), note that by

Lipschitz continuity and the continuity of derivatives of F with respect to V (e) in
the neighborhood of I, we have

F

(

O(e)

μn

, f (e)

)

− F

(

O(c)

μn

, f (c)

)

(A.11)
= F

(

T̂ (e), f (e)
)

− F
(

T̂ (c), f (c)
)

+ �(e, c),

where |�(e, c)| ≤ M ′(‖X(e) − X(c)‖∞), and

F
(

T (e), f 0(e)
)

− F
(

T (c), f 0(c)
)

(A.12)
≤ −C′

∥

∥V (e) − I
∥

∥

1 + o
(
∥

∥V (e) − I
∥

∥

1

)

.

Since the derivative of F is continuous with respect to V (e) in the neighborhood
of I, there exists a δ′ such that

F
(

T̂ (e), f (e)
)

− F
(

T̂ (c), f (c)
)

(A.13)
≤ −

(

C′/2
)∥

∥V (e) − I
∥

∥

1 + o
(∥

∥V (e) − I
∥

∥

1

)

holds when ‖�̂ − �‖∞ ≤ δ′. Since �̂ → �, (A.13) holds with probability ap-
proaching 1. Combining (A.11) and (A.13), it is easy to see that (A.10) follows if
we can show

P

(

max
{e�=c}

∣

∣�(e, c)
∣

∣ ≤ C′
∥

∥V (e) − I
∥

∥

1/4
)

→ 1.(A.14)
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Again note that 1
n
|e − c| ≤ 1

2‖V (e) − I‖1. So for each m ≥ 1,

P

(

max
|e−c|=m

∣

∣�(e, c)
∣

∣ > C′
∥

∥V (e) − I
∥

∥

1/4
)

(A.15)

≤ P

(

max
|e−c|≤m

∥

∥X(e) − X(c)
∥

∥

∞ >
C′m

2M ′n

)

= I1.

Let α = C′/2M ′, if α ≥ 6C, by (A.2),

I1 ≤ 2Km+2nm exp
(

−α
3m

8n
μn

)

= 2K2[

K exp
(

logn − αμn/(8/3n)
)]m

.

If α < 6C, by (A.3),

I1 ≤ 2Km+2nm exp
(

−α2 m

16Cn
μn

)

= 2K2[

K exp
(

logn − α2μn/(16Cn)
)]m

.

In both cases, since λn/ logn → ∞,

P

(

max
{e�=c}

∣

∣�(e, c)
∣

∣ > C′
∥

∥V (e) − I
∥

∥

1/4
)

=
∞
∑

m=1

P

(

max
|e−c|=m

∣

∣�(e, c)
∣

∣ > C′
∥

∥V (e) − I
∥

∥

1/4
)

→ 0

as n → ∞, which completes the proof. �

PROOF OF THEOREM 3.2. The regularity conditions are easy to verify. To
check the key condition (∗), note that under the block model assumption, (∗) be-
comes

(∗∗) F(H(S),h(S)) is uniquely maximized over S = {S :S ≥ 0,
∑

k Ska = πa}

by S = D, with D = diag(π),

where S is a generic K by K matrix.
Up to a constant, the population version of QERM is

F
(

H(S),h(S)
)

=
∑

k

(

Hkk − h2
kP0

)

.

Using the identity,

∑

k

(

Hkk − h2
kP0

)

+
∑

k �=l

(Hkl − hkhlP0) =
∑

kl

Hkl −

(

∑

k

hk

)2

P0 = 0,
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and define

�kl =

{

1, if k = l,
−1, if k �= l.

Then we have

F
(

H(S),h(S)
)

=
1

2

∑

kl

�kl(Hkl − hkhlP0)

=
1

2

∑

kl

�kl

(

∑

ab

SkaSlbPab −
∑

ab

SkaSlbP0

)

=
1

2

∑

kl

∑

ab

SkaSlb�kl(Pab − P0)

≤
1

2

∑

kl

∑

ab

SkaSlb�ab(Pab − P0)

=
1

2

∑

ab

�abπaπb(Pab − P0) = F
(

H(D),h(D)
)

.

Now it remains to show the diagonal matrix D (up to a permutation) is the unique
maximizer of F . This follows from Lemma 3.2 in [5], since equality holds only if
�kl = �ab when SkaSlb > 0 and � does not have two identical columns. �

PROOF OF THEOREM 3.1. The consistency of Newman–Girvan modularity
under the block model has already been shown in [5]. To extend this result to the
degree-corrected block model, define S̃ka =

∑

u xuSkau. Then

π̃a =
∑

k

S̃ka,

Hkl =
∑

abuv

xuxvPabSkauSlbv =
∑

ab

S̃kaS̃lbPab,

Hk =
∑

l

Hkl =
∑

as

S̃kaπ̃sPas .

The population version of QNGM is

F
(

H(S)
)

=
∑

k

(

Hkk

P̃0
−

(

Hk

P̃0

)2)

.

Using the identity

∑

k

(

Hkk

P̃0
−

(

Hk

P̃0

)2)

+
∑

k �=l

(

Hkl

P̃0
−

HkHl

P̃ 2
0

)

=
∑

kl

Hkl

P̃0
−

(

∑

k

Hk

P̃0

)2

= 0,
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we obtain

F
(

H(S)
)

=
1

2

∑

kl

�kl

(

∑

ab S̃kaS̃lbPab

P̃0
−

(
∑

as S̃kaπ̃sPas)(
∑

bt S̃lbπ̃tPbt )

P̃ 2
0

)

=
1

2

∑

kl

∑

ab

S̃kaS̃lb�kl

(

Pab

P̃0
−

(
∑

s π̃sPas)(
∑

t π̃tPbt )

P̃ 2
0

)

≤
1

2

∑

kl

∑

ab

S̃kaS̃lb�ab

(

Pab

P̃0
−

(
∑

s π̃sPas)(
∑

t π̃tPbt )

P̃ 2
0

)

=
1

2

∑

ab

�abπ̃aπ̃b

(

Pab

P̃0
−

(
∑

s π̃sPas)(
∑

t π̃tPbt )

P̃ 2
0

)

= F
(

H(D)
)

.

Similar to Theorem 3.2, D is the unique maximizer of F(H(S̃)), so it is enough
to show S = D whenever S̃ = D to prove uniqueness. S̃ = D implies S̃ka = 0, if
k �= a. Since xu > 0, we obtain Skau = 0 if k �= a, which gives the result.

We note that this argument cannot be applied to prove the consistency of Erdos–
Renyi modularity under degree-corrected block models, because in that case hk =
∑

au Skau �=
∑

a(
∑

u xuSkau) =
∑

a S̃ka , when we use the transformation S̃ka =
∑

u xuSkau. �

PROOF OF THEOREM 3.4. Up to a constant, the population version of QBL is

F
(

H(S),h(S)
)

=
∑

kl

(

Hkl log
Hkl

hkhl

− Hkl

)

.

Let gkl = Hkl/(hkhl),

F
(

H(S),h(S)
)

=
∑

kl

(Hkl loggkl − hkhlgkl) =
∑

abkl

SkaSlb(Pab loggkl − gkl)

≤
∑

ab

∑

kl

SkaSlb(Pab logPab − Pab)

=
∑

ab

(πaπbPab logPab − πaπbPab) = F
(

H(D),h(D)
)

.

Since the inequality holds if and only if gkl = Pab when SkaSlb > 0, uniqueness
follows from Lemma A.2, stated next. �

LEMMA A.2. Let g, P , S be K × K matrices with nonnegative entries. As-

sume that:

(a) P and g are symmetric;
(b) P does not have two identical columns;
(c) there exists at least one nonzero entry in each column of S;
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(d) for 1 ≤ k, l, a, b ≤ K,gkl = Pab whenever SkaSlb > 0.

Then S is a diagonal matrix or a row/column permutation of a diagonal matrix.

This lemma is a generalization of Lemma 3.2 in [5]. The proof is given in the
electronic supplement [41].

PROOF OF THEOREM 3.3. Up to a constant, the population version of QDCBM

is

F
(

H(S)
)

=
∑

kl

(

Hkl log
Hkl

HkHl

− Hkl

)

,(A.16)

where we only check (∗∗) [the form (∗) takes under the block model]. The general-
ization to the degree-corrected block model is similar to the proof of Theorem 3.1
and is omitted.

Let gkl = Hkl/(HkHl), and

F
(

H(S)
)

=
∑

kl

(Hkl loggkl − HkHlgkl)

=
∑

kl

[

∑

ab

SkaSlbPab loggkl −

(

∑

as

SkaπsPas

)(

∑

bt

πtSlbPtb

)

gkl

]

=
∑

kl

∑

ab

SkaSlb

[

Pab loggkl −

(

∑

s

πsPas

)(

∑

t

πtPtb

)

gkl

]

= I2.

Since arg maxx(c1 logx − c2x) = c1/c2, replacing gkl by

Pab

(
∑

s πsPas)(
∑

t πtPtb)
,

we obtain

I2 ≤
∑

kl

∑

ab

SkaSlb

[

Pab log
Pab

(
∑

s πsPas)(
∑

t πtPtb)
− Pab

]

=
∑

ab

[

πaπbPab log
Pab

(
∑

s πsPas)(
∑

t πtPtb)
− πaπbPab

]

= F
(

H(D)
)

.
�
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