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Abstract

We consider a collective choice problem in which the number of alternatives and the
number of voters vary. Two fundamental axioms of consistency in such a setting,
reinforcement and composition-consistency, are incompatible. We first observe that
the latter implies four conditions each of which can be formulated as a consistency
axiom on its own right. We find that two of these conditions are compatible with
reinforcement. In fact, one of these, called composition-consistency with respect to
non-clone winners, turns out to characterize a class of scoring rules which contains
the Plurality rule. When combined with a requirement of monotonicity, composition-
consistency with respect to non-clone winners uniquely characterizes the Plurality
rule. A second implication of composition-consistency leads to a class of scoring
rules that always select a Plurality winner when combined with monotonicity.

Keywords Plurality rule · Cloning-consistency · Composition-consistency ·

Reinforcement · Scoring rules · Monotonicity

JEL Classification D70 · D71 · D72

1 Introduction

The outcome of an election can be manipulated by an interested party to achieve strate-
gic results. This paper studies two consistency conditions that rule out manipulations
via partitioning the electorate into sub-electorates and manipulations via altering the
set of alternatives running in the election.
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The framework includes a potential set of electorates and a potential set of alterna-
tives. Each individual has preferences over the set of all possible alternatives. A social
choice rule specifies the winning alternative(s) as a function of the set of entering
alternatives (called agendas) and voters’ preferences over the entering alternatives.
We focus only on social choice rules that are neutral and anonymous. Additionally,
we often insist that the social choice rule satisfy faithfulness. The condition states that
if there is only one voter, the most preferred alternative of the single voter should be
uniquely chosen. Our first consistency condition, reinforcement due to Young (1974),
says that if two disjoint electorates have some alternative in common in their choice
set, then the choice set of their union should consist of the common choices of the
separate groups.1 The second consistency axiom, composition-consistency due to Laf-
fond et al. (1996), uses the notion of a set of clones. We say that a set of alternatives
A is a set of clones at a preference profile if the alternatives in A perform identically
in pairwise comparisons with alternatives outside the set A. In other words, the alter-
natives in A are adjacent in all voters’ preference relations. Composition-consistency
states that (i) cloning of an alternative should not change the winning status of another
alternative, and (ii) a cloned alternative should win after cloning if and only if it is
the best alternative among its clones (i.e., if it is chosen when the social choice rule is
applied to the set of clones only) and it wins when all of its clones are removed from
the agenda. In other words, part (ii) of the condition says that the best clones of the
best alternatives should win after cloning.

Brandl et al. (2016) showed that population-consistency—a condition implied by
reinforcement—and composition-consistency are incompatible if one insists on faith-
fulness applied only to the case of two alternatives.2 They proceed to show that this
impossibility disappears if we change the context from non-probabilistic social choice
to probabilistic social choice. Probabilistic social choice has its merits and areas of
applications. However, not all voting situations where a group of individuals must make
a choice involves lotteries over alternatives. Our main goal in this paper is to investi-
gate the incompatibility of reinforcement and composition-consistency more closely
in a non-probabilistic social choice setting. Since reinforcement is a defining feature
of scoring rules, our study is mainly about the composition-consistency properties
of scoring rules. We first show that the only scoring rule that satisfies composition-
consistency is the trivial rule which always selects all members of a given agenda
regardless of the configuration of voters’ preferences (Proposition 1). It immediately
follows that no scoring rule satisfies composition-consistency and faithfulness.

We insist on faithfulness and move on to investigate the requirements of
composition-consistency more closely. First, we observe that composition-consistency
implies four conditions each of which is a reasonable consistency condition on its own
right (Sect. 4). Broadly put, the first condition says that a loser of an election should
continue to lose if clones of another alternative are added to the agenda. The second

1 Similar consistency axioms were used by Fine and Fine (1974a, b) and Smith (1973) for social ordering
functions.
2 This condition is called unanimity. Population-consistency says that whenever an alternative is chosen
simultaneously by two electorates, this alternative should also be chosen by the union of the elec-
torates. Brandl et al. (2016) also require that the set of preference profiles where a social choice rule
chooses more than one alternative be negligible.
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condition, called composition-consistency with respect to non-clone winners, says
that a winner of an election should continue to win if clones of another alternative are
added to the agenda. The third condition, called composition-consistency with respect
to clone losers, says that a loser of an election should continue to lose after it is cloned.
The fourth condition, called composition-consistency with respect to clone winners,
says that a winner of an election should continue to win after it is cloned if it is the
best alternative among its clones.

We find that, individually, the first three of these conditions are satisfied by scoring
rules other than the trivial rule. However, composition-consistency with respect to
non-clone losers clashes with faithfulness and composition-consistency with respect
to clone winners is only satisfied by the trivial rule. Furthermore, combinations of
the four conditions with each other also lead us to the trivial rule (Proposition 2). It
follows immediately that combinations of the conditions of composition-consistency
still clash with faithfulness and reinforcement. Fortunately, we are able to find scoring
rules that satisfy faithfulness and composition-consistency with respect to non-clone
winners or composition-consistency with respect to clone losers. The class of faithful
scoring rules that satisfy composition-consistency with respect to non-clone winners
consists of scoring rules with non-monotonic score vectors, with the Plurality rule
being the only exception. The class of faithful scoring rules that satisfy composition-
consistency with respect to clone losers, on the other hand, also consists of scoring rules
with non-monotonic score vectors, with scoring rules that always choose a Plurality
winner being the only exception (Lemma 1 and Theorem 1).

As noted before, conditions two and four clash with faithfulness. The definition of
the best clone alternative by composition-consistency with respect to clone winners
is open to interpretation. Indeed, the condition defines the best clone as the clone
alternative that is chosen when the social choice rule is applied to the set of clones. We
propose to define the best clone alternative as the one that Pareto dominates all of its
clones. We call this new condition composition-consistency with respect to dominant
clone winners.3 We show that the Plurality rule is the unique scoring rule that satisfies
composition-consistency with respect to dominant clone winners and composition-
consistency with respect to non-clone winners (Theorem 2).

Our contribution is twofold. First, we identify the driving forces behind the tension
between consistency with respect to varying electorates (captured by reinforce-
ment) and consistency with respect to varying agendas (captured by composition-
consistency). Second, we contribute to a line of research on the axiomatization of
scoring rules, particularly the Plurality rule. Indeed, Theorems 1 and 2 present new
characterizations of the Plurality rule.

1.1 Related literature

A first hint at the failure of scoring rules to satisfy composition-consistency can be
found in the contribution of Laslier (1996). The author showed that no efficient rank

3 Note that composition-consistency with respect to dominant clone winners does not make a statement
about the best clone alternative in situations in which no clone of a winning alternative Pareto dominates
all of its clones.
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based social choice rule—a class of social choice rules which include scoring rules—
satisfies composition-consistency in a setting with a fixed set of voters. Faithfulness
is a weaker condition than efficiency. Thus, our results show that the impossibility
prevails if efficiency is replaced with the weaker condition of faithfulness in a setting
with a variable set of voters. As mentioned before, Brandl et al. (2016) then provided
a first complete proof of the clash of composition-consistency with unanimity (a con-
dition weaker than faithfulness) and population-consistency (a condition weaker than
reinforcement). The current study thus adds to this strand of the literature by providing
a more in-depth investigation of the tension.

A number of publications studied cloning or composition consistency properties of
social choice rules rather than focusing on the relationship between these consistency
properties and reinforcement. Tideman (1987) considered a consistency axiom, called
independence of clones, where part (ii) of composition-consistency is replaced by the
following condition: an alternative that is a member of a set of clones should win
if and only if some member of that set of clones wins after a member of the set is
removed from the agenda. He proposed a new voting rule called ranked-pairs rule
which he showed to be independent of clones in all but a small fraction of preference
profiles. Zavist and Tideman (1989) later proposed a modification of the ranked-pairs
rule that is independent of clones on the whole domain. Laslier (2000) used a weaker
independence of clones criterion in the characterization of a social choice rule known as
the essential set. Schulze (2011) showed that the single valued social choice rule called
the Schulze method satisfies a clone independence property similar to the condition
of Tideman (1987). Freeman et al. (2014) characterized the runoff voting rule called
single transferable vote using a clone independence criterion defined for single valued
social choice rules.

Taking a different approach, Elkind et al. (2011) call a cloning manipulation by
a campaign manager successful if it leads to the highest ranked alternative of the
campaign manager to win. Instead of investigating composition-consistency properties
of social choice rules, for a number of well-known rules, the authors characterized the
preference profiles for which a successful cloning manipulation exists. In a similar
vein, Elkind et al. (2012) analyzed the structure of clone sets from a computational
social choice perspective.

Another closely related literature is the literature on control by adding alternatives
studied by Dutta et al. (2001). The authors also considered the possibility of manipu-
lation by altering the set of alternatives. Unlike ours, in their case, a new alternative
added to the agenda does not have to be a clone of an existing alternative. Cloning as
a manipulation strategy has certain advantages over introducing an entirely new alter-
native. The latter is more likely to be risky as the manipulator is more likely to end
up with rankings different than his initial expectations. In comparison, the outcome
of cloning is likely to be more predictable, and therefore manipulation by cloning
may be easier to implement. It is therefore natural to study such a specific type of
manipulation strategy.

Finally, this paper adds to the literature that provide axiomatic characterizations
of scoring rules. The first axiomatic characterization of the Plurality rule was by
Richelson (1978) who showed that the Plurality rule is the unique social choice rule
that satisfies neutrality, anonymity, reinforcement, continuity and independence of
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dominated alternatives.4 Ching (1996) showed that continuity is redundant in the
characterization of Richelson (1978). Independence of dominated alternatives implies
composition-consistency with respect to dominant clone winners. However, the con-
verse does not hold.5 Besides, composition-consistency with respect to non-clone
winners and independence of dominated candidates are independent. Thus, Theo-
rems 1 and 2 are new characterizations of the Plurality rule. However, the similarity
between independence of dominated alternatives and composition-consistency with
respect to dominant clone winners confirms that the Plurality rule does significantly
better than other scoring rules in the sense that it is not affected when some inessential
alternatives (defined in this case as dominated alternatives) are withdrawn from or
added to the agenda. Other characterizations of the Plurality rule were provided by
Yeh (2008), Sekiguchi (2012), and Kelly and Qi (2016). Yeh (2008) replaced inde-
pendence of dominated alternatives with efficiency and tops-only.6 Sekiguchi (2012)
strengthened Yeh (2008)’s result by replacing efficiency with the weaker condition
of faithfulness. Kelly and Qi (2016) characterized the rule by neutrality, anonymity,
tops-only and a monotonicity property on a domain with a fixed number of voters.
The monotonicity axiom of Kelly and Qi (2016) states that, if an alternative is chosen
at a preference profile, and if this alternative is moved from second place to the first
place in one voter’s ordering, than this alternative should be uniquely chosen in the
new preference profile. Our monotonicity axiom is independent from that of Kelly and
Qi (2016).7 Tops-only is clearly independent of the composition-consistency require-
ments defined here. Thus, the characterizations given here are independent of the
characterizations of Yeh (2008), Sekiguchi (2012) and Kelly and Qi (2016).

2 Basic notation and definitions

Let A be the universal set of alternatives and A the set of all finite non-empty subsets
of A. We refer to each member of A as an agenda. Let N be the set of all non-
negative integers, and N be the set of all finite non-empty subsets of N . The elements
of N will be called electorates. Individuals have strict preferences over the set of
alternatives represented by a complete, transitive and anti-symmetric binary relation.
The preference relation of voter i over an agenda A is denoted by Ri (A). Given an
agenda A in A and an electorate N in N, a preference profile is denoted by RN (A). The

4 Continuity says that if an alternative is chosen in one problem and the set of voters of another problem
contains a sufficiently large replica of the agents in the first problem, then that alternative should also be
chosen in the second problem. Independence of dominated alternatives states that removing all Pareto-
dominated alternatives should not alter the social choice.
5 For instance, the unanimous scoring rule that uses the score vector (2, 1, 1, . . . , 1, 0) for any m > 2 sat-
isfies composition-consistency with respect to dominant clone winners, but not independence of dominated
alternatives.
6 Efficiency says that a Pareto-dominated alternative should not be chosen. Tops-only requires the social
choice set to be identical for two choice problems at which the set of top-ranked alternatives are identical.
7 For instance, the simple scoring rule with the associated score vector (2, 0, . . . , 0, 1) satisfies the mono-
tonicity requirement of Kelly and Qi (2016), but not the monotonicity axiom defined here. The simple
scoring rule with the associated score vector (1, 1, . . . , 1, 0), on the other hand, meets the monotonicity
condition defined here, but not that of Kelly and Qi (2016).
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restriction of RN (A) to a subset A′ of A is denoted by RN (A)|A′ . The set R collects all
possible preference profiles. That is, R = ∪N∈N ∪A∈A RN (A). A social choice rule F

is a correspondence that assigns to each preference profile RN (A) in R a non-empty
subset F(RN (A)) of A.

We define three basic axioms.
Let A be an agenda in A and π be a permutation on A. Let π(Ri (A)) be such that

for all a, b in A, π(a)π(Ri (A))π(b) if a Ri (A)b. Set π(RN (A)) = (π(Ri (A))i∈N ).
Neutrality. For each preference profile RN (A) in R and each permutation π on A,
F(π(RN (A))) = π(F(RN (A))).
Anonymity. For each preference profile RN (A) in R and each permutation η on N ,
F(RN (A)) = F(Rη(N )(A)).

To define the next axiom, let τ(Ri (A)) be voter i’s most preferred alternative at
Ri (A).
Faithfulness. For each i in N , each A in A, F(Ri (A)) = {τ(Ri (A))}.

Next, we define a special class of social choice rules called scoring rules.

2.1 Scoring rules

Let (sm;m, sm−1;m, . . . , s1;m) be an m-dimensional vector of real numbers. A simple

scoring rule with the associated score vector (sm;m, sm−1;m, . . . , s1;m) for m alterna-
tives is a social choice rule such that for each A of cardinality m and each preference
profile RN (A),

F(RN (A)) = {a ∈ A :
∑

i∈N

sr(a,Ri (A));m ≥
∑

i∈N

sr(b,Ri (A));m for all b ∈ A},

where r(a, Ri (A)) is one plus the number of alternatives that are ranked lower than
a at Ri (A). That is, r(a, Ri (A)) = 1 + |{b ∈ A : a Ri b}|. Two key features of the
definition of a simple scoring rule are as follows. First, we do not assume that the score
assigned to an alternative decreases as the rank of the alternative decreases, i.e., it is
not assumed that sm;m ≥ sm−1;m ≥ · · · ≥ s1;m . We only assume that the score vector
is a real valued vector. Second, two scoring rules are equivalent if the score vector of
one is obtained from the score vector of the other by a positive affine transformation.

The Plurality rule is the simple scoring rule P with the associated score vector
(1, 0, 0, . . . , 0) for any number of alternatives. Next, let F s and F t be simple scoring
rules with associated score vectors s and t for m alternatives. The composition of F s

and F t , denoted by F s ◦ F t , is a social choice rule such that, for each A of cardinality
m, for each profile RN (A) in R and for each a ∈ A, a ∈ (F s ◦ F t )(RN (A)) if and
only if

a ∈ F t (RN (A)) and ∀b ∈ F t (RN (A)),
∑

i∈N

sr(a,Ri (A));m ≥
∑

i∈N

sr(b,Ri (A));m .

A scoring rule is a social choice rule that is the composition of a finite number of
simple scoring rules, i.e., there exist simple scoring rules Fα, Fα−1, . . . , F1 such that
F = Fα ◦ Fα−1 ◦ · · · ◦ F1.
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3 Reinforcement and composition-consistency

We consider two consistency axioms that are very natural for a social choice rule that
operates with variable electorates and variable agendas. The first, reinforcement, links
the choice of two electorates to the choice of their union. The condition says that if
two disjoint electorates have some alternative in common in their choice set, then the
choice set of their union should consist of the common choices of the separate groups.
Reinforcement rules out the possibility of strategic manipulation by partitioning an
electorate into sub-electorates that overlap and it is intuitively appealing.
Reinforcement. For all sets of voters N and M in N with N ∩ M = ∅ and for each
agenda A in A such that F(RN (A)) ∩ F(RM (A)) 
= ∅,

F(RN (A)) ∩ F(RM (A)) = F(RN (A), RM (A)). (1)

Young (1975) showed that a social choice rule satisfies anonymity, neutrality and
reinforcement if and only if it is a scoring rule (simple or composite).
Young (1975, Theorem 1): A social choice rule F satisfies neutrality, anonymity and
reinforcement if and only if there exists simple scoring rules Fα, Fα−1, . . . , F1 such
that F = Fα ◦ Fα−1 ◦ · · · ◦ F1.

The second consistency condition, composition-consistency, concerns varying
agendas. Let RN (A) inRbe a preference profile such that A = A′∪B and A′∩B = {b}.
We say that B is a set of clones at RN (A) if the alternatives in B perform identically in
pairwise comparisons with alternatives outside the set. That is, if for each a in A \ B,
for all b′, b′′ in B and for each i in N , we have

a Ri (A) b′ if and only if a Ri (A) b′′.

In this case, we say that RN (A) is obtained from RN (A′) by cloning b.

Example 1 Consider the two preference profiles below. The set {a, â} constitutes a set
of clones at R. In other words, the preference profile R is obtained from R′ by cloning
a.

R =

R1 R2 R3

a d c

â c â

b a a

c â d

d b b

R′ =

R′
1 R′

2 R′
3

a d c

b c a

c a d

d b b

A well-known consistency condition with respect to varying agendas is composition-
consistency due to Laffond et al. (1996). The condition states that (i) cloning of an
alternative should not affect the winning status of another alternative and (ii) an alter-
native that is a member of a set of clones wins if and only if it wins after its clones
are removed from the agenda and if it is the best alternative among its clones (i.e., if
it wins when F is applied to the set of clones).

123



808 Z. E. Öztürk

Composition-consistency. For each preference profile RN (A) in R at which B is a
set of clones with A = A′ ∪ B and A′ ∩ B = {b},

(i) ∀a ∈ A \ B, a ∈ F(RN (A)) ⇐⇒ a ∈ F(RN (A)|A′), and

(ii) ∀b′ ∈ B, b′ ∈ F(RN (A))⇐⇒b′ ∈ F(RN (A)|(A\B)∪{b′}) and b′ ∈ F(RN (A)|B).

(2)

A first observation is that the trivial rule—the rule that selects A at each RN (A) in
R—is the only scoring rule to satisfy composition-consistency.

Proposition 1 The trivial rule is the unique scoring rule that satisfies composition-

consistency.

The trivial rule does not satisfy faithfulness. Hence, it immediately follows
from Proposition 1 that there exists no scoring rule that satisfies faithfulness and
composition-consistency. Dropping faithfulness leads us to the trivial rule as shown in
Proposition 1, but this could hardly be called good news. Indeed, the trivial rule does
not actually make a selection at a preference profile, it is not decisive. As such, it is
not of much interest for social choice theory. We therefore insist on the requirement
of faithfulness. The following example helps us see the clash between faithfulness
and composition-consistency, and helps us motivate the approach laid out in the next
section.

Example 2 Let F be a simple scoring rule that satisfies faithfulness and composition-
consistency. Consider the following profiles.

R =

R1 R2 R3

a b b

b a a

R′ =

R′
1 R′

2
a b

a′ a

b a′

R′′ =

R′′
1 R′′

2 R′′
3

a b b′

b b′ b

b′ a a

Let (s3;3, s2;3, s1;3) be the score vector F uses for 3 alternatives. By neutrality and
anonymity, F(R1, R2) = {a, b}. By faithfulness, F(R3) = {b}. By reinforcement,
then, we must have F(R) = {b}. Note that R′ is obtained from (R1, R2) by cloning a.
Since b ∈ F(R1, R2), by part (i) of composition-consistency, it must be that b ∈ F(R′).
The total score of b at R′ is s3;3 + s1;3, while the total score of a at R′ is s3;3 + s2;3.
Since b ∈ F(R′), the total score of b cannot be less than the total score of a. That is,
s3;3+s1;3 ≥ s3;3+s2;3, i.e., s1;3 ≥ s2;3. Also note that R′′ is obtained from R by cloning
b. Since F(R) = {b}, by part (i) of composition-consistency, a /∈ F(R′′). However,
the total score of a at R′′ cannot be less than the total scores of b and b′ at R′′ since
s1;3 ≥ s2;3. That is, it must be that a ∈ F(R′′), which leads to a contradiction. Thus,
a social choice rule cannot simultaneously satisfy neutrality, anonymity, faithfulness,
reinforcement and part (i) of composition-consistency.

A key observation embedded in Example 2 is that part (i) of composition-consistency
clashes with faithfulness. A natural question is then whether part (ii) of composition-
consistency also leads to such a clash. In the sequel, we investigate the requirements
of composition-consistency more closely.
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4 The four implications of composition-consistency

A close inspection of composition-consistency reveals that the axiom actually
comprises four requirements. In this section, we formulate each implication of
composition-consistency as an axiom on its own right.8

The first two axioms are implications of part (i) of composition-consistency.
The first, composition-consistency with respect to non-clone losers, states that an

alternative a that is not chosen at a preference profile R should not be chosen at
any profile R′ that is obtained from R by cloning another alternative b. The anti-
plurality rule with the associated score vector (1, 1, 1 . . . , 1, 0) for any finite number
of alternatives satisfies composition-consistency with respect to non-clone losers.
Composition-consistency with respect to non-clone losers. For each preference
profile RN (A) in R at which B is a set of clones with A = A′ ∪ B and A′ ∩ B = {b},
for each a in A \ B,

a /∈ F(RN (A)|A′) ⇒ a /∈ F(RN (A)).

The second, composition-consistency with respect to non-clone winners, states that
an alternative a that is chosen at a preference profile R should still be chosen at any
profile R′ that is obtained from R by cloning another alternative b.
Composition-consistency with respect to non-clone winners. For each preference
profile RN (A) in R at which B is a set of clones with A = A′ ∪ B with A′ ∩ B = {b},
for each a in A \ B,

a ∈ F(RN (A)|A′) ⇒ a ∈ F(RN (A)).

The next two axioms are implications of part (ii) of composition-consistency.
Composition-consistency with respect to clone losers states that an alternative that

is not chosen at a preference profile cannot be chosen after it is cloned. Plurality rule
satisfies composition-consistency with respect to non-clone winners and composition-
consistency with respect to clone losers.
Composition-consistency with respect to clone losers. For each preference profile
RN (A) in R at which B is a set of clones with A = A′ ∪ B with A′ ∩ B = {b}, for
each b′ in B,

b′ /∈ F(RN (A)|(A\B)∪{b′}) ⇒ b′ /∈ F(RN (A)).

Composition-consistency with respect to clone winners states that a cloned alter-
native wins after cloning only if it wins before its clones are added to the agenda and
if it wins when F is applied to the set of clones.
Composition-consistency with respect to clone winners. For each preference profile
RN (A) in R at which B is a set of clones with A = A′ ∪ B with A′ ∩ B = {b}, for
each b′ in B,

b′ ∈ F(RN (A)|(A\B)∪{b′}) and b′ ∈ F(RN (A)|B) ⇒ b ∈ F(RN (A)).

8 The conjunction of the four axioms in this section is not equivalent to composition-consistency.
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It turns out that weakening composition-consistency does not lead to meaningful
scoring rules. In fact, as reported in the next proposition, the trivial rule is still the only
scoring rule that satisfies combinations of the four conditions.

Proposition 2 The trivial rule is the unique scoring rule that satisfies

(a) composition-consistency with respect to non-clone losers and composition-

consistency with respect to non-clone winners.

(b) composition-consistency with respect to non-clone losers and composition-

consistency with respect to clone losers.

(c) composition-consistency with respect to clone winners.

An immediate implication of Proposition 2 is that no faithful scoring rule sat-
isfies composition-consistency with respect to clone winners, and the combination
of composition-consistency with respect to non-clone losers with composition-
consistency with respect to non-clone winners and composition-consistency with
respect to clone losers. In fact, as the next proposition shows, there exists no scoring
rule which satisfies faithfulness and composition-consistency with respect to non-clone
losers by itself.9

Proposition 3 There exists no scoring rule that satisfies faithfulness and composition-

consistency with respect to non-clone losers.

The results so far show that composition-consistency with respect to non-clone
losers and composition-consistency with respect to clone winners are the culprits
behind the failure of faithful scoring rules to satisfy composition-consistency. In the
next section, we show that the remaining two conditions—composition-consistency
with respect to non-clone winners and composition consistency with respect to clone
losers—provide strong positive results. Furthermore, we define a weaker version of
composition-consistency with respect to clone winners which leads to positive results.

5 Characterizations using the sub-requirements of
composition-consistency

In this section, we focus on the last three sub-conditions of composition-consistency
individually. First, we show that if a faithful scoring rule satisfies composition-
consistency with respect to non-clone winners or composition-consistency with respect
to clone losers, then the score vector(s) the rule uses take very specific forms.

Lemma 1 Let F be a scoring rule with F = Fα ◦ Fα−1 ◦ · · · ◦ F1. For each β in

{1, 2, . . . , α}, each m in N, let s
β
m = (s

β

m;m, s
β

m−1;m, . . . , s
β

1;m) be the score vector

associated with the simple scoring rule Fβ .

(a) F satisfies faithfulness and composition-consistency with respect to non-clone

winners if and only for each β in {1, 2, . . . , α}, each m in N, we have s
β
m =

(x
β
m, y

β
m, y

β
m, . . . , y

β
m, z

β
m) with x

β
m ≥ y

β
m and z

β
m ≥ y

β
m .

9 The proof given for this fact was developed by an anonymous referee to whom I am deeply grateful.
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(b) If F satisfies faithfulness and composition-consistency with respect to clone losers,

then, for each m ≥ 3, we have s1
1;m ≥ s1

m−1;m .

The class of social choice rules reported in part (a) of Lemma 1 contains scoring

rules for which the associated score vector of each Fβ has the property that z
β
m > y

β
m .

Similarly, the class of social choice rules reported in part (b) of the lemma contains

scoring rules for which s1
1;m > s1

m−1;m . A scoring rule for which z
β
m > y

β
m for each β

in {1, 2, . . . , α} seems odd since an alternative that is bottom ranked by all individuals,
for instance, would receive a higher total score than an alternative that is ranked above
it by all individuals. Similarly, it is odd to have s1

1;m > s1
m−1;m since a bottom ranked

alternative would receive a higher total score than an alternative ranked second by
all individuals. In other words, such scoring rules fail to meet a very basic require-
ment of social choice: if an alternative a is chosen at some preference profile, and the
preference profile changes by moving a up in one voter’s ranking, then a should con-
tinue to be chosen at the new preference profile. We call this consistency requirement
monotonicity. To define this consistency requirement formally, let us formalize what
it means for an alternative to move up in a voter’s ranking. We say that a preference
profile R′ in R is obtained from another preference profile R in R by an improvement
of a if and only if there exists i in N and b in A such that b Ri (A) a and a R′

i (A) b;
for all c, d ∈ A \ {a, b}, c Ri (A) d if and only if c R′

i (A) d and for each j in N\{i},
all c, d ∈ A, c R j (A) d if and only if c R′

j (A) d.
Monotonicity. For each preference profile RN (A) in R, each a in F(RN (A)), if
R′

N (A) in R is obtained from RN (A) by an improvement of a, then a ∈ F(R′
N (A)).

Monotonicity is a very weak, yet appealing requirement. It ensures that the social
choice rule is positively responsive to voters’ preferences. In fact, a scoring rule F =

Fα ◦ Fα−1 ◦ · · · ◦ F1 satisfies monotonicity only if the score vector of F1 is strictly
monotonically decreasing or if the score vector of every one of Fα, Fα−1, . . . , F1 is
weakly monotonically decreasing as reported in the next lemma.

Lemma 2 If a scoring rule F = Fα ◦ Fα−1 ◦ · · · ◦ F1 satisfies monotonicity, then at

least one of the following holds.

(i) For each m in N, each k, ℓ ≤ m with k > ℓ, we have s1
k;m > s1

ℓ;m .

(ii) For each m in N, each k, ℓ ≤ m with k > ℓ, each β in {1, 2, . . . , α}, we have

s
β

k;m ≥ s
β

ℓ;m .

Combined with Lemma 1, Lemma 2 implies that when combined with faithfulness
and composition-consistency with respect to non-clone winners, monotonicity singles
out the Plurality rule. When combined with faithfulness and composition-consistency
with respect to clone losers, on the other hand, monotonicity implies that F1 is the
Plurality rule, and hence it leads us to a class of social choice rules that always select
a Plurality winner.

Theorem 1 Let F be a scoring rule.

(a) F satisfies faithfulness, composition-consistency with respect to non-clone winners

and monotonicity if and only if it is the Plurality rule.
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(b) F satisfies faithfulness, composition-consistency with respect to clone losers and

monotonicity if and only if for each preference profile RN (A) ∈ R, we have

F(R) ⊆ P(R), where P is the Plurality rule.

Monotonicity is a weaker condition than positive responsiveness, used frequently in
the literature on voting rules, which states that if an alternative is chosen at a preference
profile R and another profile R′ is obtained from R by moving a up in one voter’s
ordering, than a should be uniquely chosen at the new preference profile. The axiom
was used by May (1952) in his characterization of the majority rule. He showed that if
the set of alternatives contains two members, an anonymous and neutral social choice
rule is positively responsive if and only if it is majority rule.

The Plurality rule satisfies composition-consistency with respect to clone losers.
In light of Theorem 1, this implies that a scoring rule that satisfies faithfulness,
composition-consistency with respect to non-clone winners and monotonicity also
satisfies composition-consistency with respect to clone losers. However, the con-
verse does not hold. To see that, let F = B ◦ P , where P is the Plurality rule and
B is Borda’s rule, i.e., B is a simple scoring rule with the associated score vector
(m, m − 1, . . . , 2, 1) for each m ∈ N . By Theorem 1, we know that this rule satisfies
composition-consistency with respect to clone losers. Consider the following profiles.

R =

R1 R2

a b

b a

R′ =

R′
1 R′

2
a b

a′ a

b a′

By neutrality and anonymity, we have F(R) = {a, b}. We have P(R′) = {a, b}, but
the Borda scores of a and b at R′ are 5 and 4, respectively. So, (B ◦ P)(R′) = {a}. That
is, F = B ◦ P does not satisfy composition-consistency with respect to non-clone
winners.

As noted before, an immediate implication of Proposition 2 is that composition-
consistency with respect to clone winners clashes with faithfulness by itself. A standard
approach social choice theory adopts to deal with such impossibilities is to use a weaker
version of one of the axioms that clash with each other. An axiom can be weakened
by restricting the number of situations in which it applies. This is the approach we
follow with regards to composition-consistency with respect to clone winners.10

When a winning alternative is cloned, we cannot simply say that it should continue
to win regardless of the relationship between the clones. Composition-consistency
with respect to clone winners states that when a winning alternative is cloned, the best

clone of the alternative should be chosen, where the best clone alternative is defined
as the one that is chosen by F when the rule is applied to the set of clones. Such a
definition of the best clone is reasonable, but it is not the only way one can reasonably
define a consistency axiom with respect to clone winners. We propose to weaken the

10 As Proposition 3 shows, composition-consistency with respect to non-clone losers also clash with faith-
fulness. However, a weaker version of the axiom is not readily available, and hence we do not seek a
modification of this axiom.
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Consistency of scoring rules: a reinvestigation of composition-consistency 813

axiom by defining the best clone alternative as the member of a set of clones that
Pareto dominates all of its clones.
Composition-consistency with respect to dominant clone winners. For each pref-
erence profile RN (A) in R at which B is a set of clones with A = A′ ∪ B and
A′ ∩ B = {b} and with τ(Ri (A)|B) = {b} for each i ∈ N ,

b ∈ F(RN (A)|A′) ⇒ b ∈ F(RN (A)).

The next theorem shows that such a weakening of composition-consistency with
respect to clone winners helps us avoid the impossibility of a faithful scoring rule that
satisfies composition-consistency with respect to clone winners. In fact, Plurality rule
is uniquely characterized if we add composition-consistency with respect to dominant
clone winners to the list of axioms in part (a) of Lemma 1.11

Theorem 2 A scoring rule satisfies faithfulness, composition-consistency with respect

to non-clone winners and composition-consistency with respect to dominant clone

winners if and only if it is the Plurality rule.

We have noted before that the Plurality rule satisfies composition-consistency
with respect to clone losers. Thus, in light of Theorem 2, we can conclude that if
a scoring rule satisfies composition-consistency with respect to non-clone winners
and composition-consistency with respect to dominant clone winners, then it also
satisfies composition-consistency with respect to clone losers.

6 Concluding remarks

This paper presents a first attempt at dealing with the incompatibility between faith-
fulness, reinforcement and composition-consistency in a deterministic social choice
setting. As reinforcement is a defining feature of scoring rules, the incompatibility in
fact tells us that no scoring rule satisfies faithfulness and composition-consistency.

The novelty and main contribution of our study lies in the fact that we weaken
composition-consistency into four axioms of consistency. We believe that each of
these four axioms is a reasonable axiom of social choice.

We end this section with three additional directions for an extension of the current
study. First, in a setting with a fixed number of voters, reinforcement is not a necessary
axiom. In such a setting, a characterization of social choice rules that satisfy neutrality,
anonymity, composition-consistency and monotonicity is an open question, worth
pursuing as all these conditions are appealing requirements of social choice.

Second, composition-consistency with respect to dominant clone winners is not the
only weakening of composition consistency with respect to clone winners. One might,
for instance, define the best clone alternative as the one that is Condorcet dominant
in the set of its clones (i.e., it is preferred by a majority of voters to any of its clones)
instead of requiring Pareto dominance. The investigation of the relationship between
such an axiom and reinforcement is left for future research.

11 We show the independence of the axioms used in the theorems in the Appendix.
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Third, population-consistency, which is weaker than reinforcement, is compatible
with composition-consistency in our setting. Indeed, the Pareto rule satisfies neutrality,
anonymity, faithfulness, population-consistency and composition-consistency. Brandl
et al. (2016) show that the two axioms characterize the family of all maximal lotteries
in a probabilistic social choice setting. The joint implication of population-consistency
and composition-consistency in a deterministic social choice setting, however, is an
open question.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
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in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

The first rule in Table 1 is a social choice rule for which there exists an α in A

such that for each RN (A) in R, Fα(RN (A)) = {α} if α ∈
⋃

i∈N {τ(Ri (A))} and
Fα(RN (A)) = P(RN (A))otherwise. That is, Fα chooses the fixed alternativeα at each
preference profile in which α is top ranked by at least one individual. The rule selects all
Plurality winners at any other preference profile. The second rule is the dictatorial rule
FD. Let ≻ be a strict and complete order on the set of natural numbers. An individual i

has a higher priority than individual j if i ≻ j . For each RN (A) in R, the dictatorial rule
FD chooses the most preferred alternative of the individual with the highest priority in
N , i.e., FD(RN (A)) = {τ(Ri (A)) : i ≻ j for each j ∈ N }. The third rule is the trivial
rule defined in Sect. 3. The fourth rule is the top rule FTop. For each RN (A) in R, the
top rule chooses top-ranked alternatives, i.e., FT(RN (A)) =

⋃

i∈N {τ(Ri (A))}. The
fifth rule is the simple scoring rule with the associated score vector (2, 1, . . . , 1, 0)

Table 1 Independence of the
axioms in Theorems 1 and 2

N A F R NCW Mon CL CDW

Fα ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

FD ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

FT ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓

FTop ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

F2,1,...,1,0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

F2,0,...,0,1 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗

FB ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

N neutrality, A anonymity, F faithfulness, R reinforcement, NCW

composition-consistency with respect to non-clone winners, Mon

monotonicity, CL composition-consistency with respect to clone
losers, CDW composition-consistency with respect to dominant clone
winners
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Consistency of scoring rules: a reinvestigation of composition-consistency 815

for each m ∈ N. The sixth rule is the simple scoring rule with the associated score
vector (2, 0, . . . , 0, 1) for each m ∈ N. The seventh rule, FB is Borda’s rule defined
in Sect. 5.

First, we prove Lemma 1.
Lemma 1. Let F be a scoring rule with F = Fα ◦ Fα−1 ◦ · · · ◦ F1. For each β in

{1, 2, . . . , α}, each m in N, let s
β
m = (s

β

m;m, s
β

m−1;m, . . . , s
β

1;m) be the score vector

associated with the simple scoring rule Fβ .

(a) F satisfies faithfulness and composition-consistency with respect to non-clone

winners if and only for each β in {1, 2, . . . , α}, each m in N, we have s
β
m =

(x
β
m, y

β
m, y

β
m, . . . , y

β
m, z

β
m) with x

β
m ≥ y

β
m and z

β
m ≥ y

β
m .

(b) If F satisfies faithfulness and composition-consistency with respect to clone losers,

then, for each m ≥ 3, we have s1
1;m ≥ s1

m−1;m .

Proof Let F be a scoring rule with F = Fα ◦ Fα−1 ◦ · · · ◦ F1. For each β in

{1, 2, . . . , α}, each m in N, let s
β
m = (s

β

m;m, s
β

m−1;m, . . . , s
β

1;m) be the score vector

associated with the simple scoring rule Fβ .

(a) Assume that F satisfies faithfulness and composition-consistency with respect to
non-clone winners.
Assume m ≥ 3. Consider the following preference profiles.

R =

R1 R2 . . . Rm−1

a1 a2 . . . am−1

a2 a3 . . . a1
...

...
...

...

am−1 a1 . . . am−2

R′ =

R′
1 R′

2 . . . R′
m−1

a1 a2 . . . am−1

am a3 . . . a1

a2 . . . . . . am

... a1
...

...

am−1 am . . . am−2

(3)

By neutrality and anonymity, F(R) = {a1, a2, . . . , am−1}. At the preference pro-
file R′, a1 and am are clones of each other. Thus, by composition-consistency with
respect to non-clone winners, we have {a2, . . . , am−1} ⊆ F(R′). That is, for each
β in {1, 2, . . . , α}, we have {a2, . . . , am−1} ⊆ Fβ(R′).
For each β in {1, 2, . . . , α}, each k in {1, 2, . . . , m − 2}, the total score of am−k at

R′ is
∑k

i=1 s
β

i;m +
∑m

i=k+2 s
β

i;m . Since {a2, . . . , am−1} ⊆ F(R′), the total scores

of a2, a3, . . . , am−1 at R′ must be the same. The equality of the total scores of
am−1 and am−2 implies

s
β

1;m + s
β

3;m + . . . + s
β

m;m = s
β

1;m + s
β

2;m + s
β

4;m + . . . + s
β

m;m .

That is, s
β

3;m = s
β

2;m . A similar calculation using the total scores of am−2 and am−3

yields s
β

3;m = s
β

4;m . Iterated use of the total scores of am−3, . . . , a2 yields s
β

2;m =

s
β

3;m = . . . = s
β

m−1;m . That is, each s
β
m takes the form (x

β
m, y

β
m, y

β
m, . . . , y

β
m, z

β
m),

where x
β
m, y

β
m, z

β
m ∈ R.
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To see that x
β
m ≥ y

β
m and z

β
m ≥ y

β
m , consider the following preference profiles.

R̂ =
R̂1 R̂2

a b

b a

R̂′ =

R̂′
1 R̂′

2
a b

a1 a1
...

...

am−2 a

b am−2

R̃ =

R̃1 R̃2

a1 a1

a2 a2
...

...

am am

By neutrality and anonymity, F(R̂) = {a, b}. The preference profile R̂′ is obtained
from R̂ by cloning a. The total scores of a, b and am−2 at R̂′ are, respectively,

x
β
m + y

β
m ; x

β
m + z

β
m and y

β
m + z

β
m . By composition-consistency with respect to non-

clone winners, we must have b ∈ F(R̂′), which implies that x
β
m + z

β
m ≥ y

β
m + z

β
m

and x
β
m + z

β
m ≥ x

β
m + y

β
m , i.e., x

β
m ≥ y

β
m and z

β
m ≥ y

β
m .

(b) Assume that F satisfies faithfulness and composition-consistency with respect to
clone losers.
Let m ≥ 3. Consider the following profiles.

R =

R1 R2

a1 am

a2 a1
...

...

am am−1

R′ =

R′
1 R′

2
a1 am

a2 a1
m

...
...

am−1 am−2
m

am a1

a1
m a2

a2
m
...

...

am−2
m am−1

Suppose, for a contradiction, that s1
m−1;m > s1

1;m . Then, am /∈ F(R) since the
total score of a1 at R is higher than the total score of am according to the score
vector of F1. The preference profile R′ is obtained from R by adding m −2 clones
of am . The total score of am at R′ is equal to the total score of a1. Similarly,
for each k ∈ {1, 2, . . . , m − 2}, the total score of ak

m is equal the total score of
ak+1. Thus, at least one of am, a1

m, . . . , am−1
m will be chosen at R′, a contradiction

with composition-consistency with respect to clone losers. Thus, it must be that
am ∈ F(R). That is, s1

1;m ≥ s1
m−1;m .

⊓⊔

Proposition 1. The trivial rule is the unique scoring rule that satisfies composition-

consistency.

Proof It is easy to verify that the trivial rule satisfies the axioms. Conversely, let F be
a scoring rule that satisfies composition-consistency. By Lemma 1, there exist simple
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scoring rules Fα, Fα−1, . . . , F1 with F = Fα ◦ Fα−1 ◦ · · · ◦ F1 such that for each
m in N and for each β in {1, 2, . . . , α}, the score vector associated with Fβ for m

alternatives takes the form (x
β
m, y

β
m, y

β
m, . . . , y

β
m, z

β
m) with x

β
m ≥ y

β
m and z

β
m ≥ y

β
m .

We will first show that F must be the trivial rule for 2 alternatives. Consider the
following preference profiles for m > 3.12

R =

R1 R2 … Rm−1

a1 a2 … am−1

a2 a3 … a1
...

...
...

...

am−1 a1 … am−2

R′ =

R′
1 R′

2 … R′
m−1

a1 a2 … am−1

am a3 … a1

a2 … … am

... a1
...

...

am−1 am … am−2

Assume that F is not the trivial rule for 2 alternatives.
Case 1. Assume that F(R′|{a1,am }) = {a1}. Let R′′ be a preference profile obtained

from R′ by swapping a1 and am at R′
1. That is,

R′′ =

R′′
1 R′

2 … R′
m−1

am a2 … am−1

a1 a3 … a1

a2 … … am

... a1
...

...

am−1 am … am−2

The preference profile R′′ is obtained from R by cloning a1. Since F(R′|{a1,am } = {a1},

there must be some γ in {1, 2, . . . , α} such that s
γ

2;2 > s
γ

1;2 and s
β

2;2 = s
β

1;2 for each

β < γ . Since m > 3, it must be that Fγ (R′′|{a1,am }) = {a1}. Then, F(R′′|{a1,am }) =

{a1} by definition of a scoring rule. By composition-consistency, then, F(R′′) =

{a1, a2, . . . , am−1}. On the other hand, for each Fβ , the total score of am at R′′ is equal
to the total score of a2 at R′′. Hence, it must be that am ∈ F(R′′), a contradiction.

Case 2. Assume that F(R′|{a1,am }) = {am}. Let R′′′ be a preference profile obtained
from R′ by swapping a1 and am at R′

2. That is,

R′′′ =

R′
1 R′′

2 … R′
m−1

a1 a2 … am−1

am a3 … a1

a2 … … am

... am

...
...

am−1 a1 … am−2

The preference profile R′′′ is obtained from R by cloning a1. A similar reasoning to
the above yields F(R′′|{a1,am }) = {am}. So, by composition-consistency, F(R′′′) =

12 These are the same profiles in (3).
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{a2, . . . , am−1, am}. For each Fβ , the total score of a1 at R′′′ is equal to the total score
of am−1 at R′′′. So, it must be that a1 ∈ F(R′′′), a contradiction. Thus, F must be the
trivial rule for m = 2, i.e., F(R′|{a1,am }) = {a1, am}.

Now, assume that F is the trivial rule for m ≥ 2. We will show that F must be the
trivial rule for m + 1. To see that, consider the following profiles.

R̂ =

a1

a2
...

am−1

am

R̂ =

a1

a2
...

am−1

am

R̂′ =

a1

a2
...

am−1

am

am+1

Since F is the trivial rule for m alternatives, we have F(R̂) = {a1, . . . , am}. The
preference profile R̂′ is obtained from R̂ by cloning am . Since F is the trivial rule
for two alternatives, we have F(R̂′|{am ,am+1} = {am, am+1}. Thus, by composition-

consistency, we have F(R̂) = {a1, . . . , am, am+1}, i.e., F is the trivial rule for m + 1
alternatives. This proves that F is the trivial rule for all m in N. ⊓⊔

Proposition 2. The trivial rule is the unique scoring rule that satisfies

(a) composition-consistency with respect to non-clone losers and composition-

consistency with respect to non-clone winners.

(b) composition-consistency with respect to non-clone losers and composition-

consistency with respect to clone losers.

(c) composition-consistency with respect to clone winners.

Proof Let F be a scoring rule.

(a) Let F satisfy composition-consistency with respect to non-clone losers and
composition-consistency with respect to non-clone winners. By Lemma 1, there
exist simple scoring rules Fα, Fα−1, . . . , F1 with F = Fα ◦ Fα−1 ◦ · · · ◦ F1 such
that for each m in N and for each β in {1, 2, . . . , α}, the score vector associated

with Fβ for m alternatives takes the form (x
β
m, y

β
m, y

β
m, . . . , y

β
m, z

β
m) with x

β
m ≥ y

β
m

and z
β
m ≥ y

β
m .

Let m ≥ 3. Assume. without loss of generality, that y
β
m = 0 for each β in

{1, 2, . . . , α}. There are four possible cases: x1 > 0 and z1 > 0; x1 > 0 and
z1 = 0; x1 = z1 = 0 and x1 = 0 and z1 > 0.
First, assume that x1 > 0 and z1 > 0. Consider the following profiles.

R =

R1 R2

a1 am

a2 a3
...

...

· a1

am a2

R′ =

R′
1 R′

2
a1 am

a2 a′
m

...
...

· ·

am a1

a′
m a2
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At R, the total scores of a1, a2 and am are, respectively, x1, z1 and x1 + z1,
whereas all other alternatives receive a total score of zero. Thus, F1(R) = {am},
i.e., F(R) = {am}. The preference profile R′ is obtained from R by cloning am

once. By composition-consistency with respect to non-clone losers, we must have
F(R) ⊆ {am, a′

m}. However, the total score of a1 is the same as the total score of
am at R′, whereas the total score of a2 is the same as the total score of a′

m . That is,
we have either a1 ∈ F(R) or a2 ∈ F(R) or both, a contradiction.
Next, assume that x1 > 0 and z1 = 0. Consider the following profiles.

R =

R1 R2 R3 R4 R5

a1 a1 a1 a2 a2

a2 a2 a2 a1 a1
...

...
...

...
...

am am am am am

R′ =

R′
1 R′

2 R′
3 R′

4 R′
5

a1 a′
1 a′′

1 a2 a2

a′
1 a1 a1 a1 a1

a′′
1 a′′

1 a′
1 a′′

1 a′
1

...
...

...
...

...

am am am am am

We have F(R) = {a1} since F1(R) = {a1}. The preference profile R′ is obtained
from R by adding two clones of a1. Thus, by composition-consistency with respect
to non-clone losers, it must be that a2 /∈ F(R′). However, F(R′) = {a2} since
F1(R′) = {a2}, a contradiction. The case in which x1 = 0 and z1 > 0 is symmetric
to the previous case, and hence is omitted. Thus, we have proven that F1 must be
the trivial rule. But then, F is equivalent to Fα ◦ Fα−1 ◦ · · · ◦ F2. The reasoning
above implies that F2 must also be the trivial rule. Iterated application of the proof
implies that F must be the trivial rule.

(b) Assume that F satisfies composition-consistency with respect to non-clone losers
and composition-consistency with respect to clone losers. Let F = Fα ◦ Fα−1 ◦

· · · ◦ F1 and s
β
m = (s

β

m;m, . . . , s
β

1;m) be the score vector associated with Fβ for m

alternatives.
Let us first assume that m ≥ 3. Let R be a preference profile with one voter as
follows.

R =

a1

a2
...

am−1

am

This preference profile will be kept fixed for the rest of the proof.
Step 1. We will first show that we cannot have F(R) = {a1} or F(R) = {am}.
Suppose, for a contradiction, that F(R) = {a1}, i.e., that F satisfies faithfulness.
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Consider the following profiles.

R̂ =

R̂1 R̂2 … R̂m R̂m+1

a1 a2 . . . am am

a2 a3 . . . a1 a2
...

...
...

...
...

am a1 . . . am−1 am−1

R̂′ =

R̂′
1 R̂′

2 . . . R̂′
m R̂′

m+1

a1 a2 . . . am a′
m

a2 a3 . . . a′
m am

. . . a1 a2
...

...
...

...
...

am−1 am . . . · ·

am a′
m . . . · ·

a′
m a1 . . . am−1 am−1

By neutrality and anonymity, we have F(R̂1, R̂2, . . . , R̂m) = {a1, a2, . . . , am}.
The faithfulness of F implies that F(R̂m+1) = {am}. By reinforcement, then,
we have F(R̂) = {am}. The preference profile R̂′ is obtained from R̂ by cloning
am once. By composition-consistency with respect to non-clone losers, we have
a2, a3, . . . , am−1 /∈ F(R̂′). For each β in {1, 2, . . . , α}, the total scores of a2 and
a′

m at R̂′ are both

s
β

1;m + s
β

2;m + . . . + s
β

m+1;m+1. (4)

That is, for each β in {1, 2, . . . , α}, we have a′
m ∈ Fβ(R̂′) if and only if a2 ∈

Fβ(R̂′). But then this would imply that a2 ∈ F(R̂′), which we know is not true. It
must therefore be that F(R̂′) = {am}, i.e., am ∈ F1(R̂′) and a′

m /∈ F1(R̂′). Using

the score vector of F1, the total score of am at R̂′ is

s1
2;m+1 + s1

3;m+1 + · · · + 2s1
m;m+1 + s1

m+1;m+1. (5)

Since am ∈ F1(R̂′) and a′
m /∈ F1(R̂′), the sum in (5) must be larger than the sum

in (4) for β = 1. That is, s1
m;m+1 > s1

1;m+1.

Moreover, F(R) = {a1} implies F(R̆) = {a1} for any R̆ obtained from R

by cloning one of a2, . . . , am once. That is, it must be that a1 ∈ F1(R̆), i.e.,
s1

m+1;m+1 ≥ s1
m;m+1.

We have thus shown that, for each number of alternatives m > 3,

s1
m;m ≥ s1

m−1;m > s1
1;m .
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Next, consider the following profiles with m > 3.

R̃ =

R̃1 R̃2

a1 am

a2 a1
...

...

am am−1

R̃′ =

R̃′
1 R̃′

2
a1 am

a2 a1
m

...
...

am−1 am−2
m

am a1

a1
m a2

a2
m
...

...

am−2
m am−1

Since s1
m−1;m > s1

1;m , the total score of a1 at R̃ is greater than the total score of

am at R̃. Thus, we have am /∈ F1(R̃), i.e., am /∈ F(R̃). The preference profile R̃′

is obtained from R̃ by adding m − 2 clones of am . By composition-consistency
with respect to clone losers, it must be that am, a1

m, . . . , am−2
m /∈ F(R̃′). However,

the total score of am at R̃′ is equal to the total score of a1. Similarly, for each
k ∈ {1, 2, . . . , m − 2}, the total score of ak

m is equal the total score of ak+1. Thus,
at least one of am, a1

m, . . . , am−2
m will be chosen at R̃′, a contradiction.

This shows that we cannot have F(R) = {a1}. The impossibility of F(R) = {am}

can be proven similarly, and hence is omitted.
Step 2. Assume that there exists k ∈ {1, 2, . . . , m − 1} such that ak /∈ F(R). Let
us further assume that ak is the highest ranked alternative among those that are
not chosen by F at R. Let R′ be a preference profile obtained from R by adding
m − k clones of ak , whereas R′′ is a preference profile obtained from R by adding
m − k clones of am as follows (for convenience, we reproduce R below).

R =

a1

a2
...

am−1

am

R′ =

a1

a2
...

ak

a1
k
...

am−k
k

ak+1
...

am

R′′ =

a1

a2
...

ak

ak+1
...

am

a1
m
...

am−k
m
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Since ak /∈ F(R), by composition-consistency with respect to clone losers,
ak, a1

k , . . . , am−k
k /∈ F(R′). Moreover, R′ and R′′ both have m′ = 2m − k

alternatives, and the scores of ak, . . . , am at R′′ are the same as the scores of
ak, a1

k , . . . , am−k
k , respectively. Thus, we have ak, . . . , am /∈ F(R′′).

There are 3 possibilities: F(R′′) ∩ {a1, a2, . . . , ak−1} = {a1, a2, . . . , ak−1} or
F(R′′) ⊂ {a1, a2, . . . , ak−1} or F(R′′) ∩ {a1, a2, . . . , ak−1} = ∅.
Case 1. Assume F(R′′) ∩ {a1, a2, . . . , ak−1} = {a1, a2, . . . , ak−1}. Consider the
following profiles.

R̄ =

R̄1 R̄2

a1 ak

a2 a2
...

...

ak−2 ak−2

ak−1 a1

ak ak−1

ak+1 a2
m

...
...

a1
m am

a2
m ak+1
...

...

am−k
m am−1

am a1
m

R̄′ =

R̄′
1 R̄′

2
a1 ak

a2 a1
k

...
...

ak−1 ak−2
k

a1
k a2
...

...

ak a1

ak−2
k ak−1

ak+1 a2
m

...
...

a1
m am

a2
m ak+1
...

...

am−k
m am−1

am a1
m

Since F is a scoring rule, F(R′′)∩{a1, a2, . . . , ak−1} = {a1, a2, . . . , ak−1} implies
that F(R̄1) = {a1, a2, . . . , ak−1} and F(R̄2) = {ak, a2, . . . , ak−2, a1}. Thus, by
reinforcement, we have F(R̄) = F(R̄1) ∩ F(R̄2) = {a1, a2, . . . , ak−2}. The
preference profile R̄′ is obtained from R̄ by adding k−2 clones of ak . Composition-
consistency with respect to clone losers and composition-consistency with respect
to non-clone losers imply ak−1, ak, a1

k , . . . , ak−2
k , am, . . . , am−k

m /∈ F(R̄′). But,
the total score of ak at R̄′ is the same as the total score of a1. Similarly, for each
ℓ ∈ {1, 2, . . . , k − 2}, the total score of aℓ

k is the same as the total score of aℓ+1.
That is, either ak−1, ak or at least one clone of ak , or am or at least one clone of
am will be chosen by F at R̄′, a contradiction.
Case 2. Assume F(R′′) ⊂ {a1, a2, . . . , ak−1}, i.e., there exists at ∈

{a1, a2, . . . , ak−1} such that at /∈ F(R′′). But then, following the same logic
in Step 1, we can find a preference profile R′′′ in which we have wither
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F(R′′) ∩ {a1, a2, . . . , at−1} = {a1, a2, . . . , at−1} or F(R′′) ⊂ {a1, a2, . . . , at−1}

or F(R′′) ∩ {a1, a2, . . . , ak−1} = ∅. If F(R′′) ⊂ {a1, a2, . . . , at−1}, i.e., there
exists aℓ ∈ {a1, a2, . . . , at−1} such that aℓ /∈ F(R′′′). Iterated application yields
that there exists a number of alternatives m′ and a preference profile such that

R I V =

a1
...

am

a1
m
...

am′

where F(R I V ) ⊆ {a1, a1
m, . . . , am′}. Since R I V is obtained from R by cloning

some alternatives step by step, composition-consistency with respect to clone
losers and composition-consistency with respect to non-clone losers together imply
either F(R) = {a1} or F(R) = {a1, am}. We have already ruled out the first case,
so assume F(R) = {a1, am} and consider the following profiles.

Ř =

Ř1 Ř2

a1 am

a2
...

...
...

am−1 a1

am a2

Ř′ =

Ř′
1 Ř2

a1 am

a2 a′
m

...
...

am a1

a′
m a2

Since F is a scoring rule, F(R) = {a1, am} implies that F(Ř1) = {a1, am} and
F(Ř1) = {a2, am}. Thus, by reinforcement, F(Ř) = {am}. The preference profile
Ř′ is obtained from Ř by cloning am once. By composition-consistency with
respect to non-clone losers, it must be that a1, a2, . . . , am−1 /∈ F(Ř′). However,
the total score of am at Ř′ is equal to the total score of a1 at Ř′, and the total score
of a′

m at Ř′ is equal to the total score of a2 at Ř′. Thus, one or both of a1 and a2

will be chosen at Ř′, a contradiction.
Case 3. Assume that F(R′′) ∩ {a1, a2, . . . , ak−1} = ∅. Then, it must be that
F(R′′) ⊆ {a1

m, . . . , am−k
m }.
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Consider the following profiles with m′ = 2m − k alternatives.

Ṙ =

Ṙ1 Ṙ2

a1 am−k
m

a2 a2
...

...

am am

a1
m a1

m

a2
m a2

m
...

...

am−k
m am−1

Ṙ′ =

Ṙ′
1 Ṙ′

2
a1 am−k

m

a2
1am−k

m
...

...

am

a1
m

a2
m
...

...

am−k
m a1

1am−k
m a2
...

...
2m−k−1am−k

m am′−1

(6)

We have already ruled out the possibility that F(R′′) = {am−k
m }. Thus, by

reinforcement, it must be that F(Ṙ) ⊆ {a1
m, . . . , am−k−1

m }, i.e., am−k
m /∈

F(Ṙ). The preference profile Ṙ′ is obtained from Ṙ by adding 2m − k −

1 clones of am−k
m . By composition-consistency with respect to clone losers,

am−k
m , 1am−k

m , . . . , 2m−k−1am−k
m /∈ F(Ṙ′). However, every clone of am−k

m has the
same score as one other alternative, i.e., at least one clone of am−k

m will be chosen
by F at Ṙ′, a contradiction.
We have therefore shown that, for m ≥ 3, F has to be the trivial rule, i.e., for each
β ∈ {1, 2, . . . , α}, we must have

s
β

1;m = s
β

2;m = . . . = s
β

m;m .

Finally, let m = 2 and consider the following profiles.

R =
a1

a2
R′ =

a1

a2

a3

Assume, without loss of generality, that a1 /∈ F(R). The preference profile R′ is
obtained from R by cloning a2. Thus, by composition-consistency with respect
to non-clone losers, it must be that a1 /∈ F(R′). But this contradicts the fact that
F is the trivial rule for m ≥ 3 alternatives. So, F must be the trivial rule for 2
alternatives, i.e., F is the trivial rule.

(c) We will first show that a simple scoring rule satisfies composition-consistency
with respect to clone winners if and only if it is the trivial rule. We will focus on
the only if part. Let F be a simple scoring rule with the associated score vector
sm = (sm;m, sm−1;m, . . . , s1;m) for m alternatives.
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Consider the following profiles.

R =

R1

a1

a2

R′ =

R′
1

a1

a′
1

a2

R′′ =

R′′
1

a1

a′′
1

a′
1

a2

R′′′ =

R′′
1

a1

a′′′
1

a′′
1

a′
1

a2

First assume that F is unanimous, i.e., F(R) = {a1}. The preference profiles R′, R′′

and R′′′ are obtained from R by cloning a1 once. By composition-consistency with
respect to clone winners, we have a1 ∈ F(R′′′) and a′′′

1 /∈ F(R′′′), that is, it must
be that s5:5 > s4,;5.
Next, consider the following profiles.

R̂ =

R̂1 R̂2 R̂3 R̂4

a b c d

b c d a

c d a b

d a b c

R̂′ =

R̂′
1 R̂′

2 R̂′
3 R̂′

4
a b c d

a′ c d a′

b d a′ a

c a a b

d a′ b c

R̂′′ =

R̂′′
1

a1

a2

a3

R̂′′′ =

R′′′
1

a1

a′
1

a′′
1

a2

a3

By neutrality and anonymity, F(R) = {a, b, c, d}. The preference profile R′ is
obtained from R by cloning a. Neutrality and anonymity imply F(R′|{a,a′}) =

{a, a′}. Thus, by composition-consistency with respect to clone winners, we have
a, a′ ∈ F(R′). The score of a′ at R′ is s4;4 + s1;5 + s3;5 + s4;5. The score of d

at R′ is s1;5 + s3;5 + s4;5 + s5;5. Since a′ ∈ F(R′), it must be that s4;5 ≥ s5;5, a
contradiction. Thus, F cannot be unanimous.
A similar reasoning rules out the possibility that F(R) = {a2}. Then, F must be
the trivial rule for 2 alternatives.
Finally, assume that F is the trivial rule for k ≥ 2 alternatives. We will show that
F must be the trivial rule for k + 1 alternatives. Consider the following profiles.

R̃ =

R̃1

a1
...

ak

R̃1 =

R̃′
1

a1

a′
1
...

ak

R̃k =

R̃′
1

a1
...

ak

ak+1

Since F is the trivial rule for k alternatives, we have F(R̃) = {a1, a2, . . . , ak}.
The preference profile R̃1 is obtained from R̃ by cloning a1 once. By composition-
consistency with respect to clone winners and the fact that F is the trivial rule
for 2 alternatives, we have a′

1 ∈ F(R̃1). Then, we have a2 ∈ F(R̃k) since F

is a scoring rule. A similar reasoning implies that a1, a2, . . . , ak−1 ∈ F(R̃k).
Moreover, the preference profile R̃k is obtained from R̃ by cloning ak once. Again,
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by composition-consistency with respect to clone winners and the fact that F is
the trivial rule for 2 alternatives, we have ak, ak+1 ∈ F(R̃k), i.e., F is the trivial
rule for k + 1 alternative.
Thus, we have proven that F is the trivial rule.

⊓⊔

Proposition 3. There exists no scoring rule that satisfies faithfulness and composition-

consistency with respect to non-clone losers.

Proof Suppose, seeking a contradiction, that F is a simple scoring rule that satisfies
faithfulness and composition-consistency with respect to non-clone losers.

First, assume that m = 3. Assume, without loss of generality, that the score vector
of F for three alternatives is (s3;3, s2;3, s1;3) = (1, s, 0). By faithfulness, we have
s < 1. Take α < 1/2. Consider the following profile.

R =

R1 R2 R3 R4

a a b b′

b b′ b′ b

b′
︸︷︷︸

α/2 times

b
︸︷︷︸

α/2 times

a
︸︷︷︸

(1−α)/2 times

a
︸︷︷︸

(1−α)/2 times

That is, R is a preference profile where fraction α/2 of all voters have preference
relation R1, fraction α/2 of all voters have preference relation R2 and so on. By
faithfulness, we have F(R|{a,b}) = {b}. By composition-consistency with respect to
non-clone losers, we have a /∈ F(R). By neutrality, then, we have F(R) = {b, b′}.
The score of a at R is α, whereas the score of b at R is 1/2s + (1 − α)/2. The score
of a must be less than that of b, i.e., we have α < 1/2s + (1 − α)/2, i.e., s > 3α − 1.
Since α can be arbitrarily close to 1/2, it follows that s ≥ 1/2.

Next, let m = 4. For α < 1/2, consider the following preference profile.

R′ =

R′
1 R′

2 R′
3 R′

4
a a b b′

b b′ b′ b

b′ b a a

c
︸︷︷︸

α/2 times

c
︸︷︷︸

α/2 times

c
︸︷︷︸

(1−α)/2 times

c
︸︷︷︸

(1−α)/2 times

Let (s4;4, s3;4, s2;4, s1;4) = (1, ŝ, t, 0) be the score vector of F for four alternatives.
By faithfulness, we have ŝ, t < 1. We know from the above that F |{a,b,c} = {b}. Hence,
by composition-consistency with respect to non-clone losers, we have a, c /∈ F(R′).
By neutrality, then, we have F(R′) = {b, b′}. Thus, the total score of a at R′ must
be less than the total score of b at R′, i.e., α + t(1 − α) < ŝ/2 + tα/2 + (1 − α)/2,
i.e., 3α − 1 + 2t − 3αt < ŝ. Since α can be arbitrarily close to 1/2, it follows that
ŝ ≥ 1/2(1 + t). That is, it must be that ŝ > t .
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Finally, let β < 1/3, ǫ > 0 and consider the preference profiles below.

R̂1 =

R̂1 R̂2

a b

b a

c c

c′
︸︷︷︸

(1−3β)
2 +ǫ times

c′
︸︷︷︸

(1−3β)
2 −ǫ times

R̂2 =

R̂3 R̂4 R̂5

a b c

b c c′

c c′ a

c′
︸︷︷︸

β times

a
︸︷︷︸

β times

b
︸︷︷︸

β times

By neutrality and anonymity, we have F(R̂2|{a,b,c}) = {a, b, c}. By faithfulness,

we have F(R̂1|{a,b,c}) = {a}. Let R̂ = (R̂1, R̂2). By reinforcement, then, we have

F(R̂|{a,b,c}) = {a}. Thus, by composition-consistency with respect to non-clone

losers, we have b /∈ F(R̂). The total score of b at R̂ is

(
1 − 3β

2
+ ǫ

)

ŝ +

(
1 − 3β

2
− ǫ

)

+ β ŝ + β,

whereas the total score of a is

(
1 − 3β

2
+ ǫ

)

+

(
1 − 3β

2
− ǫ

)

ŝ + β + βt .

Subtracting the total score of b from that of a yields

2ǫ(1 − ŝ) + β(t − ŝ). (7)

If ǫ is chosen so that ǫ < β(ŝ − t)/2(1 − ŝ), the total score of a is less than the total
score of b.

The total score of c at R̂ is

(
1 − 3β

2
+ ǫ

)

t +

(
1 − 3β

2
− ǫ

)

t + βt + β ŝ + β.

Subtracting the total score of b from that of c yields

(
1 − 3β

2
+ ǫ

)

(t − ŝ) +

(
1 − 3β

2
− ǫ

)

(t − 1) + βt ,

which is negative when β is small enough.
Finally, the total score of c′ at R̂ is

β(t + ŝ),

which is less than the total score of b. Hence, b ∈ F(R̂), a contradiction. ⊓⊔
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Lemma 2. If a scoring rule F = Fα ◦ Fα−1 ◦ · · · ◦ F1 satisfies monotonicity, then at

least one of the following holds.

(i) For each m in N, each k, ℓ ≤ m with k > ℓ, we have s1
k;m > s1

ℓ;m .
(ii) For each m in N, each k, ℓ ≤ m with k > ℓ, each β in {1, 2, . . . , α}, we have

s
β

k;m ≥ s
β

ℓ;m .

Proof Let F = Fα ◦ Fα−1 ◦ · · · ◦ F1 be a scoring rule that satisfies monotonicity. Let
m ≥ 2. Let k, ℓ ≤ m with k > ℓ. Consider the following profiles.

R =

R1 R2 . . . Rm

a1 a2 . . . am

...
... . . .

...

am−k+1 · . . . ·
...

... . . .
...

am−ℓ+1 · . . . ·
...

... . . .
...

am a1 . . . am−1

R′ =

R′
1 R′

2 . . . R′
m−1

a1 a2 . . . am

...
... . . .

...

am−ℓ+1 · . . . ·
...

... . . .
...

am−k+1 · . . . ·
...

... . . .
...

am a1 . . . am−1

By neutrality and anonymity, we have F(R) = {a1, a2, . . . , am}. The preference
profile R′ is obtained from R by swapping am−k+1 and am−ℓ+1, i.e., by an improvement
of am−ℓ+1. Thus, by monotonicity, we must have am−ℓ+1 ∈ F(R′). For each β ∈

{1, 2, . . . , α}, the total score of am−ℓ+1 at R′ is

s
β

1;m + . . . + s
β

k;m + . . . + s
β

k;m + . . . s
β

m;m , (8)

whereas the total score of am−k+1 at R′ is

s
β

1;m + . . . + s
β

ℓ;m + . . . + s
β

ℓ;m + . . . s
β

m;m , (9)

The total score of any other alternative at /∈ {am−k+1, am−ℓ+1} at R′ is

s
β

1;m + . . . + s
β

ℓ;m + . . . + s
β

k;m + . . . s
β

m;m . (10)

Since am−ℓ+1 ∈ F(R′), one of the following two must be correct:

(i) s1
k;m > s1

ℓ;m , i.e., F1(R′) = {am−ℓ+1}, i.e., F(R′) = {am−ℓ+1} or
(ii) for each β ∈ {1, 2, . . . , α}

s1
1;m + . . . + s1

k;m + . . . + s1
k;m + . . . s

β

m;m ≥ s
β

1;m + . . . + s
β

ℓ;m + . . . + s
β

ℓ;m + . . . s
β

m;m ,

i.e., s
β

k;m ≥ s
β

ℓ;m .

⊓⊔
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Theorem 1. Let F be a scoring rule.

(a) F satisfies faithfulness, composition-consistency with respect to non-clone winners

and monotonicity if and only if it is the Plurality rule.

(b) F satisfies faithfulness, composition-consistency with respect to clone losers and

monotonicity if and only if for each preference profile RN (A) ∈ R, we have

F(R) ⊆ P(R), where P is the Plurality rule.

Proof

(a) It is straightforward to show that the Plurality rule satisfies the axioms. Thus, we
prove the ‘only if’ part. Let F be a scoring rule that composition-consistency with
respect to non-clone winners and monotonicity. Let F = Fα ◦ Fα−1 ◦ · · · ◦ F1

where for each β in {1, 2, . . . , α}, Fβ is a simple scoring rule.
Faithfulness implies that F is the Plurality rule for 2 alternatives. Assume that
m ≥ 3. By Lemma 1, we know that, for each β in {1, 2, . . . , α}, the score vector

takes the form s
β
m = (x

β
m, y

β
m, . . . , y

β
m, z

β
m) with x

β
m ≥ y

β
m and z

β
m ≥ y

β
m . That is,

part (ii) of Lemma 2 must be true: for each β in {1, 2, . . . , α}, x
β
m ≥ y

β
m ≥ z

β
m .

Combined with the fact that z
β
m ≥ y

β
m , this means that for each β in {1, 2, . . . , α},

we have y
β
m = z

β
m . By faithfulness, there exist a β in {1, 2, . . . , α} such that

x
β
m > y

β
m and x

γ
m = y

γ
m for each γ < β. Thus, F must be the Plurality rule.

(b) Let F be a scoring rule such that F(R) ⊆ P(R) for each R in R. First note that
the Plurality rule satisfies composition-consistency with respect to clone losers.
Let R and R′ be two preference profiles in R, where R′ is obtained from R by
cloning alternatives that are not chosen by F at R. We have P(R′) = P(R). That
is, F(R′) ⊆ P(R′) ⊆ P(R), i.e., F satisfies composition-consistency with respect
to clone losers.
Next, let F be a social choice rule that satisfies the axioms. That is, by Theorem
1 in Young (1975), F is a scoring rule that satisfies faithfulness, composition-
consistency with respect to non-clone winners and monotonicity. Faithfulness
implies that F is the Plurality rule for 2 alternatives. Assume m ≥ 3. We know
by Lemma 1 that, for each m ≥ 3, we have s1

1;m ≥ s1
m−1;m . That is, option (ii)

in Lemma 2 must be true: for each β in {1, 2, . . . , α}, we have x
β
m ≥ y

β
m ≥ z

β
m .

Thus, we must have s1
1;m = s1

2;m = . . . = s1
m−1;m . By faithfulness, we have

s1
m;m ≥ s1

m−1;m . That is, F1 is either the trivial rule or the Plurality rule. If it is the
Plurality rule, then we are done.
Assume instead that F1 is the trivial rule. But then F is equivalent to Fα ◦ Fα−1 ◦

· · ·◦ F2. The same proof then implies that F2 is either the trivial rule or the Plural-
ity rule. If F2 is also the trivial rule, then F is equivalent to Fα ◦ Fα−1 ◦ · · · ◦ F3.
Since F is faithful, there must be a β in {1, 2, . . . , α} such that Fβ is the Plurality
rule and Fγ is the trival rule for each γ < β. Thus, we have F(R) ⊆ P(R).

⊓⊔

Theorem 2. A scoring rule satisfies faithfulness, composition-consistency with respect

to non-clone winners and composition-consistency with respect to dominant clone

winners if and only if it is the Plurality rule.
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Proof It is straightforward to verify that the Plurality rule satisfies the axioms. Con-
versely, let F be scoring rule that satisfies faithfulness, composition-consistency with
respect to non-clone winners and composition-consistency with respect to dominant
clone winners.

By Lemma 1, we know that F = Fα ◦ Fα−1 ◦ · · · ◦ F1 such that for each β in

{1, 2, . . . , α}, each m in N, we have s
β
m = (x

β
m, y

β
m, . . . , y

β
m, z

β
m) with x

β
m ≥ y

β
m and

z
β
m ≥ y

β
m .

Faithfulness implies that F coincides the Plurality rule for m = 2.
Assume that m ≥ 2. Consider the following profiles.

R =

R1 R2

a1 am

a2 ·
...

...

am−1 ·

am a1

R′ =

R′
1 R′

2
a1 am

a2 a′
m

...
...

am ·

a′
m a1

For each β in {1, 2, . . . , α}, the total score of a1 and am at R is x
β
m + z

β
m . Every

other alternative has a total score of 2yβ . We have a1, am ∈ F(R) since x
β
m ≥ y

β
m and

z
β
m ≥ y

β
m . The preference profile R′ is obtained from R by cloning am once. Moreover,

am Pareto dominates its clone a′
m at R′. Thus, by composition-consistency with respect

to dominant clone winners, we must have am ∈ F(R′). By composition-consistency
with respect to non-clone winners, on the other hand, we must have a1 ∈ F(R′). That
is, the total scores of a1 and am at R′ must be the same.

For each β in {1, 2, . . . , α}, the total score of am at R′ is x
β
m+1 + y

β
m+1. The total

score of a1 at R′ is x
β
m+1 + z

β
m+1. So, we have, y

β
m+1 = z

β
m+1. Thus, we have shown

that, for each m ≥ 3, each β in {1, 2, . . . , α}, we have s
β
m = (x

β
m, y

β
m, . . . , y

β
m, y

β
m).

By faithfulness, there exists a β in {1, 2, . . . , α} such that x
β
m > y

β
m with x

γ
m = y

γ
m for

each γ < β. That is, F is the Plurality rule. ⊓⊔
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