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CONSISTENCY OF SPECTRAL CLUSTERING
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Consistency is a key property of all statistical procedures analyzing ran-
domly sampled data. Surprisingly, despite decades of work, little is known
about consistency of most clustering algorithms. In this paper we investigate
consistency of the popular family of spectral clustering algorithms, which
clusters the data with the help of eigenvectors of graph Laplacian matrices.
We develop new methods to establish that, for increasing sample size, those
eigenvectors converge to the eigenvectors of certain limit operators. As a re-
sult, we can prove that one of the two major classes of spectral clustering
(normalized clustering) converges under very general conditions, while the
other (unnormalized clustering) is only consistent under strong additional as-
sumptions, which are not always satisfied in real data. We conclude that our
analysis provides strong evidence for the superiority of normalized spectral
clustering.

1. Introduction. Clustering is a popular technique which is widely used in
statistics, computer science and various data analysis applications. Given a set of
data points, the goal is to separate the points in several groups based on some
notion of similarity. Very often it is a natural mathematical model to assume that
the data points have been drawn from an underlying probability distribution. In
this setting it is desirable that clustering algorithms should satisfy certain basic
consistency requirements:

• In the large sample limit, do the clusterings constructed by the given algorithm
“converge” to a clustering of the whole underlying space?

• If the clusterings do converge, is the limit clustering a reasonable partition of
the whole underlying space, and what are the properties of this limit clustering?

Interestingly, while extensive literature exists on clustering and partitioning (e.g.,
see Jain, Murty and Flynn [27] for a review), very few clustering algorithms have
been analyzed or shown to converge in the setting where the data is sampled from
an arbitrary probability distribution. In a parametric setting, clusters are often iden-
tified with the individual components of a mixture distribution. Then clustering
reduces to standard parameter estimation, and of course there exist many results
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on the consistency of such estimators. However, in a nonparametric setting there
are only two major classes of clustering algorithms where convergence questions
have been studied at all: single linkage and k-means.

The k-means algorithm clusters a given set of points in R
d by constructing k

cluster centers such that the sum of squared distances of all data points to their
closest cluster centers is minimized (e.g., Section 14.3 of Hastie, Tibshirani and
Friedman [23]). Pollard [38] shows consistency of the global minimizer of the ob-
jective function for k-means clustering. However, as the k-means objective func-
tion is highly nonconvex, the problem of finding its global minimum is often in-
feasible. As a consequence, the guarantees on the consistency of the minimizer are
purely theoretical and do not apply to existing algorithms, which use local opti-
mization techniques. The same problem also concerns all the follow-up articles on
Pollard [38] by many different authors.

Linkage algorithms construct a hierarchical clustering of a set of data points
by starting with each point being a cluster, and then successively merging the two
closest clusters (e.g., Section 14.3 of Hastie, Tibshirani and Friedman [23]). For
this class of algorithms, Hartigan [22] demonstrates a weaker notion of consis-
tency. He proves that the algorithm will identify certain high-density regions, but
he does not obtain a general consistency result.

In our opinion, the results about the consistency of clustering algorithms which
can be found in the literature are far from satisfactory. This lack of consistency
guarantees is especially striking as clustering algorithms are widely used in most
scientific disciplines which deal with data in any form.

In this paper we investigate the limit behavior of the class of spectral clustering
algorithms. Spectral clustering is a popular technique going back to Donath and
Hoffman [17] and Fiedler [19]. In its simplest form, it uses the second eigenvector
of the graph Laplacian matrix constructed from the affinity graph between the sam-
ple points to obtain a partition of the samples into two groups. Different versions
of spectral clustering have been used for many different problems such as load bal-
ancing (Van Driessche and Roose [46]), parallel computations (Hendrickson and
Leland [24]), VLSI design (Hagen and Kahng [21]) and sparse matrix partitioning
(Pothen, Simon and Liou [40]). Laplacian-based clustering algorithms also have
found success in applications to image segmentation (Shi and Malik [43]), text
mining (Dhillon [15]) and as general purpose methods for data analysis and clus-
tering (Alpert [2], Kannan, Vempala and Vetta [28], Ding et al. [16], Ng, Jordan
and Weiss [36] and Belkin and Niyogi [10]). A nice survey on the history of spec-
tral clustering can be found in Spielman and Teng [44]; for a tutorial introduction
to spectral clustering, see von Luxburg [48].

While there has been some theoretical work on properties of spectral cluster-
ing on finite point sets (e.g., Spielman and Teng [44], Gauttery and Miller [20],
Kannan, Vempala and Vetta [28]), so far there have not been any results discussing
the limit behavior of spectral clustering for samples drawn from some underly-
ing probability distribution. In the current article, we establish consistency results
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and convergence rates for several versions of spectral clustering. To prove those
results, the main step is to establish the convergence of eigenvalues and eigenvec-
tors of random graph Laplace matrices for growing sample size. Interestingly, our
analysis shows that while one type of spectral clustering (“normalized”) is consis-
tent under very general conditions, another popular version of spectral clustering
(“unnormalized”) is only consistent under some very specific conditions which
do not have to be satisfied in practice. We therefore conclude that the normalized
clustering algorithm should be the preferred method in practical applications.

From a mathematical point of view, the question of convergence of spectral
clustering boils down to the question of convergence of spectral properties of ran-
dom graph Laplacian matrices constructed from sample points. The convergence
of eigenvalues and eigenvectors of certain random matrices has already been stud-
ied extensively in the statistics community, especially for random matrices of fixed
size such as sample covariance matrices, or for random matrices with i.i.d. entries
(see Bai [6] for a review). However, those results cannot be applied in our set-
ting, as the size of the graph Laplacian matrices (n × n) increases with the sam-
ple size n, and the entries of the random graph Laplacians are not independent
from each other. In the machine learning community, the spectral convergence of
positive definite “kernel matrices” has attracted some attention, as can be seen in
Shawe-Taylor et al. [42], Bengio et al. [12] and Williams and Seeger [50]. Here,
several authors build on the work of Baker [7], who studies numerical solutions of
integral equations by deterministic discretizations of integral operators on a grid.
However, his methods cannot be carried over to our case, where integral opera-
tors are discretized by a random selection of sample points (see Section II.10 of
von Luxburg [47] for details). Finally, Koltchinskii [30] and Koltchinskii and Giné
[31] have obtained convergence results for random discretizations of integral op-
erators which are close to what we would need for spectral clustering. However, to
apply their techniques and results, it is necessary that the operators under consider-
ation are Hilbert–Schmidt, which turns out not to be the case for the unnormalized
Laplacian. Consequently, to prove consistency results for spectral clustering, we
have to derive new methods which hold under more general conditions than all
the methods mentioned above. As a by-product we recover certain results from
Koltchinskii [30] and Koltchinskii and Giné [31] by using considerably simpler
techniques.

There has been some debate on the question whether normalized or unnormal-
ized spectral clustering should be used. Recent papers using the normalized ver-
sion include Van Driessche and Roose [46], Shi and Malik [43], Kannan, Vempala
and Vetta [28], Ng, Jordan and Weiss [36] and Meila and Shi [33], while Barnard,
Pothen and Simon [8] and Gauttery and Miller [20] use unnormalized clustering.
Comparing the empirical behavior of both approaches, Van Driessche and Roose
[46] and Weiss [49] find some evidence that the normalized version should be
preferred. On the other hand, under certain conditions, Higham and Kibble [25]
advocate for the unnormalized version. It seems difficult to resolve this question
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from purely graph-theoretic considerations, as both normalized and unnormalized
spectral clustering can be justified by similar graph theoretic principles (see next
section). In our work we now obtain the first theoretical results on this question.
They show the superiority of normalized spectral clustering over unnormalized
spectral clustering from a statistical point of view.

This paper is organized as follows: In Section 2 we briefly introduce the fam-
ily of spectral clustering algorithms, and describe what the difference between
“normalized” and “unnormalized” spectral clustering is. After giving an informal
overview of our consistency results in Section 3, we introduce mathematical pre-
requisites and notation in Section 4. The convergence of normalized spectral clus-
tering is stated and proved in Section 5, and rates of convergence are proved in
Section 6. In Section 7 we establish conditions for the convergence of unnormal-
ized spectral clustering. Those conditions are studied in detail in Section 8. In
particular, we investigate the spectral properties of the limit operators correspond-
ing to normalized and unnormalized spectral clustering, point out some important
differences, and show theoretical and practical examples where the convergence
conditions in the unnormalized case are violated.

2. Spectral clustering. The purpose of this section is to briefly introduce the
class of spectral clustering algorithms. For a comprehensive introduction to spec-
tral clustering and its various derivations, explanations and properties, we refer
to von Luxburg [48]. Readers who are familiar with spectral clustering or who
first want to get an overview over our results are encouraged to jump to Section 3
immediately.

Assume we are given a set of data points X1, . . . ,Xn and pairwise similarities
kij := k(Xi,Xj ) which are symmetric (i.e., kij = kji ) and nonnegative. We de-
note the data similarity matrix as K := (kij )i,j=1,...,n and define the matrix D to
be the diagonal matrix with entries di := ∑n

j=1 kij . Spectral clustering uses matri-
ces which have been studied extensively in spectral graph theory, so-called graph
Laplacians. Graph Laplacians exist in three different flavors. The unnormalized
graph Laplacian (sometimes also called the combinatorial Laplacian) is defined
as the matrix

L = D − K.

The normalized graph Laplacians are defined as

L′ = D−1/2LD−1/2 = I − D−1/2KD−1/2,

L′′ = D−1L = I − D−1K.

Given a vector f = (f1, . . . , fn)
t ∈ R

n, the following key identity can be easily
verified:

f tLf = 1
2

n∑
i,j=1

wij (fi − fj )
2.
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This equation shows that L is positive semi-definite. It can easily be seen that the
smallest eigenvalue of L is 0, and the corresponding eigenvector is the constant one
vector 1 = (1, . . . ,1)t . Similar properties can be shown for L′ and L′′. There is a
tight relationship between the spectra of the two normalized graph Laplacians: v is
an eigenvector of L′′ with eigenvalue λ if and only if w = D1/2v is an eigenvector
of L′ with eigenvalue λ. So from a spectral point of view, the two normalized
graph Laplacians are equivalent. A discussion of various other properties of graph
Laplacians can be found in the literature; see, for example, Chung [14] for the
normalized and Mohar [35] for the unnormalized case.

There exist two major versions of spectral clustering, which we call “normal-
ized” or “unnormalized” spectral clustering, respectively. The basic versions of
those algorithms can be summarized as follows:

Basic spectral bi-clustering algorithms

Input: Similarity matrix K ∈ R
n×n.

Find the eigenvector v corresponding to the second
smallest eigenvalue for one of the following
problems:

Lv = λv (for unnormalized spectral clustering),

L′′v = λv (for normalized spectral clustering).

Output: Clusters A = {j ;vj ≥ 0} and Ā = {j ;vj < 0}.

It is not straight forward to see why the clusters produced by those algorithms
are useful in any way. The roots of spectral clustering lie in spectral graph theory.
Here we consider the “similarity graph” induced by the data, namely, the graph
with adjacency matrix K . On this graph, clustering reduces to the problem of
graph partitioning: we want to find a partition of the graph such that the edges
between different groups have very low weights (which means that points in dif-
ferent clusters are dissimilar from each other) and the edges within a group have
high weights (which means that points within the same cluster are similar to each
other). Different ways of formulating and solving the objective functions of such
graph partitioning problems lead to normalized and unnormalized spectral cluster-
ing, respectively. For details, we refer to von Luxburg [48].

Note that the spectral clustering algorithms as presented above are simplified
versions of spectral clustering. The implementations used in practice can differ in
various details. In particular, in the case when one is interested in obtaining more
than two clusters, one typically uses not only the second but also the next few
eigenvectors to construct a partition. Moreover, more complicated rules can be
used to construct a partition from the coordinates of the eigenvectors than simply
thresholding the eigenvector at 0. For details, see von Luxburg [48].
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3. Informal statement of our results. In this section we want to present our
main results in a slightly informal but intuitive manner. For the precise mathemati-
cal details and proofs, we refer to the following sections. The goal of this article is
to study the behavior of normalized and unnormalized spectral clustering on ran-
dom samples when the sample size n is growing. In Section 2 we have seen that
spectral clustering partitions a given sample X1, . . . ,Xn according to the coordi-
nates of the first eigenvectors of the (normalized or unnormalized) Laplace matrix.
To stress that the Laplace matrices depend on the sample size n, from now on
we denote the unnormalized and normalized graph Laplacians by Ln, L′

n and L′′
n

(instead of L, L′ and L′′ as in the last section). To investigate whether the vari-
ous spectral clustering algorithms converge, we will have to establish conditions
under which the eigenvectors of the Laplace matrices “converge.” To see which
kind of convergence results we aim at, consider the case of the second eigenvector
(v1, . . . , vn)

t of Ln. It can be interpreted as a function fn on the discrete space
Xn := {X1, . . . ,Xn} by defining fn(Xi) := vi , and clustering is then performed
according to whether fn is smaller or larger than a certain threshold. It is clear
that in the limit for n → ∞, we would like this discrete function fn to converge
to a function f on the whole data space X such that we can use the values of this
function to partition the data space. In our case it will turn out that this space can
be chosen as C(X), the space of continuous functions on X. In particular, we will
construct a degree function d ∈ C(X) which will be the “limit” of the discrete de-
gree vector (d1, . . . , dn). Moreover, we will explicitly construct linear operators U ,
U ′ and U ′′ on C(X) which will be the limit of the discrete operators Ln, L′

n and
L′′

n. Certain eigenvectors of the discrete operators are then proved to “converge”
(in a certain sense to be explained later) to eigenfunctions of those limit operators.
Those eigenfunctions will then be used to construct a partition of the whole data
space X.

In the case of normalized spectral clustering it will turn out that this limit
process behaves very nicely. We can prove that, under certain mild conditions,
the partitions constructed on finite samples converge to a sensible partition of the
whole data space. In meta-language, this result can be stated as follows:

RESULT 1 (Convergence of normalized spectral clustering). Under mild as-
sumptions, if the first r eigenvalues λ1, . . . , λr of the limit operator U ′ satisfy
λi �= 1 and have multiplicity 1, then the same holds for the first r eigenvalues of
L′

n for sufficiently large n. In this case, the first r eigenvalues of L′
n converge

to the first r eigenvalues of U ′ a.s., and the corresponding eigenvectors converge
a.s. The clusterings constructed by normalized spectral clustering from the first r

eigenvectors on finite samples converge almost surely to a limit clustering of the
whole data space.

In the unnormalized case, the convergence theorem looks quite similar, but there
are some subtle differences that will turn out to be important.
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RESULT 2 (Convergence of unnormalized spectral clustering). Under mild as-
sumptions, if the first r eigenvalues of the limit operator U have multiplicity 1 and
do not lie in the range of the degree function d , then the same holds for the first r

eigenvalues of 1
n
Ln for sufficiently large n. In this case, the first r eigenvalues of

1
n
Ln converge to the first r eigenvalues of U a.s., and the corresponding eigenvec-

tors converge a.s. The clusterings constructed by unnormalized spectral clustering
from the first r eigenvectors on finite samples converge almost surely to a limit
clustering of the whole data space.

On the first glance, both results look very similar: if first eigenvalues are “nice,”
then spectral clustering converges. However, the difference between Results 1
and 2 is what it means for an eigenvalue to be “nice.” For the convergence state-
ments to hold, in Result 1 we only need the condition λi �= 1, while in Result 2
the condition λi /∈ rg(d) has to be satisfied. Both conditions are needed to ensure
that the eigenvalue λi is isolated in the spectrum of the limit operator, which is a
fundamental requirement for applying perturbation theory to the convergence of
eigenvectors. We will see that in the normalized case, the limit operator U ′ has the
form Id − T where T is a compact linear operator. As a consequence, the spec-
trum of U ′ is very benign, and all eigenvalues λ �= 1 are isolated and have finite
multiplicity. In the unnormalized case, however, the limit operator will have the
form U = M − S, where M is a multiplication operator and S a compact integral
operator. The spectrum of U is not as nice as the one of U ′, and, in particular, it
contains the continuous interval rg(d). Eigenvalues of this operator will only be
isolated in the spectrum if they satisfy the condition λ /∈ rg(d). As the following
result shows, this condition has important consequences.

RESULT 3 [The condition λ /∈ rg(d) is necessary].

1. There exist examples of similarity functions such that there exists no nonzero
eigenvalue outside of rg(d).

2. If this is the case, the sequence of second eigenvalues of 1
n
Ln computed by any

numerical eigensolver converges to mind(x). The corresponding eigenvectors
do not yield a sensible clustering of the data space.

3. For a large class of reasonable similarity functions, there are only finitely many
eigenvalues (say, r0) inside the interval ]0,mind(x)[. In this case, the same
problems as above occur if the number r of eigenvalues used for clustering
satisfies r > r0.

4. The condition λ /∈ rg(d) refers to the limit case and, hence, cannot be verified
on the finite sample.

This result complements Result 2. The main message is that there are many
examples where the conditions of Result 2 are not satisfied, that in this case unnor-
malized spectral clustering fails completely, and that we cannot detect on a finite
sample whether the convergence conditions are satisfied or not.
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To further investigate the statistical properties of normalized spectral clustering,
we compute rates of convergence. Informally, our result is the following:

RESULT 4 (Rates of convergence). The rates of convergence of normalized
spectral clustering can be expressed in terms of regularity conditions of the simi-
larity function k. For example, for the case of the widely used Gaussian similarity
function k(x, y) = exp(−‖x − y‖2/σ 2) on R

d , we obtain a rate of O(1/
√

n).

Finally, we show how our theoretical results influence the results of spectral
clustering in practice. In particular, we demonstrate differences between the be-
havior of normalized and unnormalized spectral clustering.

4. Prerequisites and notation. In the rest of the paper we always make the
following general assumptions:

GENERAL ASSUMPTIONS. The data space X is a compact metric space,
B the Borel σ -algebra on X, and P a probability measure on (X,B). Without
loss of generality we assume that the support of P coincides with X. The sample
points (Xi)i∈N are drawn independently according to P . The similarity function
k : X×X → R is supposed to be symmetric, continuous and bounded away from
0 by a positive constant, that is, there exists a constant l > 0 such that k(x, y) > l

for all x, y ∈ X.

Most of those assumptions are standard in the spectral clustering literature. We
need the symmetry of the similarity function in order to be able to represent our
data by an undirected graph (note that spectral graph theory does not carry over
to directed graphs as, e.g., the graph Laplacians are no longer symmetric). The
continuity of k is needed for robustness reasons: small changes in the data should
not change the result too much. For the same reason, we make the assumption
that k should be bounded away from 0. This becomes necessary when we consider
normalized graph Laplacians, where we divide by the degree function and still
want the result to be robust with respect to small changes in the underlying data.
Only the compactness of X is added for mathematical convenience. Most results
in this article are also true without compactness, but their proofs would require a
serious technical overhead which does not add to the general understanding of the
problem.

For a finite sample X1, . . . ,Xn, which has been drawn i.i.d. according to P ,
and a given similarity function k as in the General assumptions, we denote the
similarity matrix by Kn = (k(Xi,Xj ))i,j≤n and the degree matrix Dn as the diag-
onal matrix with the degrees di = ∑n

j=1 k(Xi,Xj ) on the diagonal. Similarly, we
will denote the unnormalized and normalized Laplace matrices by Ln = Dn − Kn

and L′
n = D

−1/2
n LnD

−1/2
n . The eigenvalues of the Laplace matrices 0 = λ1 ≤ λ2 ≤
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· · · ≤ λn will always be ordered in increasing order, respecting multiplicities. The
term “first eigenvalue” always refers to the trivial eigenvalue λ1 = 0. Note that
throughout the whole paper, we will use superscript-t (such as f t ) to denote the
transpose of a vector or a matrix, while “primes” (as in L′ or L′′) are used to dis-
tinguish different matrices and operators. I is used to denote the identity matrix.

For a real-valued function f , we always denote the range of the function by
rg(f ). If X is connected and f is continuous, rg(f ) = [infx f (x), supx f (x)]. The
restriction operator ρn :C(X) → R

n denotes the (random) operator which maps a
function to its values on the first n data points, that is, ρnf = (f (X1), . . . , f (Xn))

t .
Now we want to recall certain facts from spectral and perturbation theory. For

more details, we refer to Chatelin [13], Anselone [3] and Kato [29]. By σ(T ) ⊂ C,
we denote the spectrum of a bounded linear operator T on some Banach space E.
We define the discrete spectrum σd to be the part of σ(T ) which consists of all
isolated eigenvalues with finite algebraic multiplicity, and the essential spectrum
σess(T ) = σ(T ) \ σd(T ). The essential spectrum is always closed, and the discrete
spectrum can only have accumulation points on the boundary to the essential spec-
trum. It is well known (e.g., Theorem IV.5.35 in Kato [29]) that compact perturba-
tions do not affect the essential spectrum, that is, for a bounded operator T and a
compact operator V , we have σess(T + V ) = σess(T ). A subset τ ⊂ σ(T ) is called
isolated if there exists an open neighborhood M ⊂ C of τ such that σ(T )∩M = τ .
For an isolated part τ ⊂ σ(T ), the corresponding spectral projection Prτ is defined
as 1

2πi

∫
�(T − λI)−1 dλ, where � is a closed Jordan curve in the complex plane

separating τ from the rest of the spectrum. In the special case where τ = {λ} for
an isolated eigenvalue λ, Prτ is a projection on the invariant subspace related to λ.
If λ is a simple eigenvalue (i.e., it has algebraic multiplicity 1), then the spectral
projection Prτ is a projection on the eigenfunction corresponding to λ.

DEFINITION 5 (Convergence of operators). Let (E,‖ · ‖E) be an arbitrary
Banach space, B its unit ball, and (Sn)n a sequence of bounded linear operators
on E:

• (Sn)n converges pointwise, denoted by Sn
p→S, if ‖Snx − Sx‖E → 0 for all

x ∈ E.
• (Sn)n converges compactly, denoted by Sn

c→S, if it converges pointwise and if
for every sequence (xn)n in B , the sequence (S − Sn)xn is relatively compact
(has compact closure) in (E,‖ · ‖E).

• (Sn)n converges in operator norm, denoted by Sn
‖·‖→S, if ‖Sn − S‖ → 0, where

‖ · ‖ denotes the operator norm.
• (Sn)n is called collectively compact if the set

⋃
n SnB is relatively compact in

(E,‖ · ‖E).
• (Sn)n converges collectively compactly, denoted by Sn

cc→S, if it converges
pointwise and if there exists some N ∈ N such that the operators (Sn − S)n>N

are collectively compact.
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Both operator norm convergence and collectively compact convergence imply
compact convergence. The latter is enough to ensure the convergence of spectral
properties in the following sense (cf. Proposition 3.18 and Sections 3.6 and 5.1 in
Chatelin [13]):

PROPOSITION 6 (Perturbation results for compact convergence). Let (E,

‖ · ‖E) be an arbitrary Banach space and (Tn)n and T bounded linear operators
on E with Tn

c→T . Let λ ∈ σ(T ) be an isolated eigenvalue with finite multiplicity
m, and M ⊂ C an open neighborhood of λ such that σ(T ) ∩ M = {λ}. Then:

1. Convergence of eigenvalues: There exists an N ∈ N such that, for all n > N ,
the set σ(Tn) ∩ M is an isolated part of σ(Tn) consists of at most m different
eigenvalues, and their multiplicities sum up to m. Moreover, the sequence of sets
σ(Tn) ∩ M converges to the set {λ} in the sense that every sequence (λn)n∈N

with λn ∈ σ(Tn) ∩ M satisfies limλn = λ.
2. Convergence of spectral projections: Let Pr be the spectral projection of T cor-

responding to λ, and for n > N , let Prn be the spectral projection of Tn cor-
responding to σ(Tn) ∩ M (which is well defined according to part 1). Then

Prn
p→Pr.

3. Convergence of eigenvectors: If, additionally, λ is a simple eigenvalue, then
there exists some N ∈ N such that, for all n > N , the sets σ(Tn) ∩ M consist of
a simple eigenvalue λn. The corresponding eigenfunctions fn converge up to a
change of sign [i.e., there exists a sequence (an)n of signs an ∈ {−1,+1} such
that anfn converges].

PROOF. See Proposition 3.18 and Sections 3.6 and 5.1 in Chatelin [13]. �

To prove rates of convergence, we will also need some quantitative perturba-
tion theory results for spectral projections. The following theorem can be found in
Atkinson [5]:

THEOREM 7 (Atkinson [5]). Let (E,‖ ·‖E) be an arbitrary Banach space and
B its unit ball. Let (Kn)n∈N and K be compact linear operators on E such that
Kn

cc→K . For a nonzero eigenvalue λ ∈ σ(K), denote the corresponding spectral
projection by Pr. Let M ⊂ C be an open neighborhood of λ such that σ(K) ∩
M = {λ}. There exists some N ∈ N such that, for all n > N , the set σ(Kn) ∩ M

is isolated in σ(Kn). Let Prn, the corresponding spectral projections of Kn for
σ(Kn) ∩ M . Then there exists a constant C > 0 such that, for every x ∈ PrE,

‖x − Prn x‖E ≤ C
(‖(Kn − K)x‖E + ‖x‖E‖(K − Kn)Kn‖)

.

The constant C is independent of x, but it depends on λ and σ(K).
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For a probability measure P and a function f ∈ C(X), we introduce the abbre-
viation Pf := ∫

f (x) dP (x). Let (Xn)n be a sequence of i.i.d. random variables
drawn according to P , and denote by Pn := 1/n

∑n
i=1 δXi

the corresponding em-
pirical distributions. A set F ⊂ C(X) is called a Glivenko–Cantelli class if

sup
f ∈F

|Pf − Pnf | → 0 a.s.

Finally, the covering numbers N(F , ε, d) of a totally bounded set F with metric
d are defined as the smallest number n such that F can be covered with n balls of
radius ε.

5. Convergence of normalized spectral clustering. In this section we
present our results on the convergence of normalized spectral clustering. We start
with an overview over our method, then prove several propositions, and finally
state and prove our main theorems at the end of this section. The case of unnor-
malized spectral clustering will be treated in Section 7.

5.1. Overview over the methods. On a high level, the approach to prove con-
vergence of spectral clustering is very similar in both the normalized and un-
normalized case. In this section we focus on the normalized case. Moreover, as
we have already seen that there is an explicit one-to-one relationship between
the eigenvalues and eigenvectors of L′

n, L′′
n and the generalized eigenproblem

Lnv = λDnv, we only consider the matrix L′
n in the following. All results nat-

urally can be carried over to the other cases. To study the convergence of spectral
clustering, we have to investigate whether the eigenvectors of the Laplacians con-
structed on n sample points “converge” for n → ∞. For simplicity, let us discuss
the case of the second eigenvector. For all n ∈ N, let vn ∈ R

n be the second eigen-
vector of L′

n. The technical difficulty for proving convergence of (vn)n∈N is that,
for different sample sizes n, the vectors vn live in different spaces (as they have
length n). Thus, standard notions of convergence cannot be applied. What we want
to show instead is that there exists a function f ∈ C(X) such that the difference
between the eigenvector vn and the restriction of f to the sample converges to 0,
that is, ‖vn −ρnf ‖∞ → 0. Our approach to achieve this takes one more detour. We
replace the vector vn by a function fn ∈ C(X) such that vn = ρnfn. This function
fn will be the second eigenfunction of an operator U ′

n acting on the space C(X).
Then we use the fact that

‖vn − ρnf ‖∞ = ‖ρnfn − ρnf ‖∞ ≤ ‖fn − f ‖∞.

Hence, it will be enough to show that ‖fn − f ‖∞ → 0. As the sequence, fn will
be random, this convergence will hold almost surely.

STEP 1 [Relating the matrices L′
n to linear operators U ′

n on C(X)]. First we
will construct a family (U ′

n)n∈N of linear operators on C(X) which, if restricted
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to the sample, “behaves” as (L′
n)n∈N: for all f ∈ C(X), we will have the relation

ρnU
′
nf = L′

nρnf . In the following we will then study the convergence of (U ′
n)n

on C(X) instead of the convergence of (L′
n)n.

STEP 2 [Relation between σ(L′
n) and σ(U ′

n)]. In Step 1 we replaced the op-
erators L′

n by operators U ′
n on C(X). But as we are interested in the eigenvec-

tors of L′
n, we have to check whether they can actually be recovered from the

eigenfunctions of U ′
n. By elementary linear algebra, we can prove that the “inter-

esting” eigenfunctions fn and eigenvectors vn of U ′
n and L′

n are in a one-to-one
relationship and can be computed from each other by the relation vn = ρnfn. As
a consequence, if the eigenfunctions fn of U ′

n converge, the same is true for the
eigenvectors of L′

n.

STEP 3 (Convergence of U ′
n → U ′). In this step we want to prove that certain

eigenvalues and eigenfunctions of U ′
n converge to the corresponding quantities of

some limit operator U ′. For this, we will have to establish a rather strong type of
convergence of linear operators. Pointwise convergence is in general too weak for
this purpose; on the other hand, it will turn out that operator norm convergence
does not hold in our context. The type of convergence we will consider is compact
convergence, which is between pointwise convergence and operator norm conver-
gence and is just strong enough for proving convergence of spectral properties.
The notion of compact convergence has originally been developed in the context
of (deterministic) numerical approximation of integral operators. We adapt those
methods to a framework where the spectrum of a linear operator U ′ is approxi-
mated by the spectra of random operators U ′

n. Here, a key element is the fact that
certain classes of functions are Glivenko–Cantelli classes: the integrals over the
functions in those classes can be approximated uniformly by empirical integrals
based on the random sample.

5.2. Step 1: Construction of the operators on C(X). We define the follow-
ing functions and operators, which are all supposed to act on C(X): The degree
functions

dn(x) :=
∫

k(x, y) dPn(y) ∈ C(X),

d(x) :=
∫

k(x, y) dP (y) ∈ C(X),

the multiplication operators,

Mdn :C(X) → C(X), Mdnf (x) := dn(x)f (x),

Md :C(X) → C(X), Mdf (x) := d(x)f (x),
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the integral operators

Sn :C(X) → C(X), Snf (x) :=
∫

k(x, y)f (y) dPn(y),

S :C(X) → C(X), Sf (x) :=
∫

k(x, y)f (y) dP (y),

and the corresponding differences

Un :C(X) → C(X), Unf (x) := Mdnf (x) − Snf (x),

U :C(X) → C(X), Uf (x) := Mdf (x) − Sf (x).

The operators Un and U will be used to deal with the case of unnormalized spec-
tral clustering. For the normalized case, we introduce the normalized similarity
functions

hn(x, y) := k(x, y)/
√

dn(x)dn(y),

h(x, y) := k(x, y)/
√

d(x)d(y),

the integral operators

Tn :C(X) → C(X), Tnf (x) =
∫

h(x, y)f (y) dPn(y),

T̂n :C(X) → C(X), T̂nf (x) =
∫

hn(x, y)f (y) dPn(y),

T :C(X) → C(X), Tf (x) =
∫

h(x, y)f (y) dP (y),

and the differences

U ′
n := I − T̂n,

U ′ := I − T .

In all what follows, the operators introduced above are always meant to act on the
Banach space (C(X),‖ · ‖∞), and their operator norms will be taken with respect
to this space. We now summarize the properties of those operators in the following
proposition. Recall the general assumptions and the definition of the restriction
operator ρn of Section 4.

PROPOSITION 8 (Relations between the operators). Under the general as-
sumptions, the functions dn and d are continuous, bounded from below by the
constant l > 0, and from above by ‖k‖∞. All operators defined above are bounded,
and the integral operators are compact. The operator norms of Mdn , Md , Sn and
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S are bounded by ‖k‖∞, the ones of T̂n, Tn and T by ‖k‖∞/l. Moreover, we have
the following:

1

n
Dn ◦ ρn = ρn ◦ Mdn,

1

n
Kn ◦ ρn = ρn ◦ Sn,

1

n
Ln ◦ ρn = ρn ◦ Un, L′

n ◦ ρn = ρn ◦ U ′
n.

PROOF. All statements follow directly from the definitions and the general
assumptions. Note that in the case of the unnormalized Laplacian Ln we get the
scaling factor 1/n from the 1/n-factor hidden in the empirical distribution Pn. In
the case of the normalized Laplacian, this scaling factor cancels with the scaling
factors of the degree functions in the denominators. �

The main statement of this proposition is that if restricted to the sample points,
Un “behaves as” 1

n
Ln and U ′

n as L′
n. Moreover, by the law of large numbers, it

is clear that for fixed f ∈ C(X) and x ∈ X the empirical quantities converge to
the corresponding true quantities, in particular, Unf (x) → Uf (x) and U ′

nf (x) →
U ′f (x). Proving stronger convergence statements will be the main part of Step 3.

5.3. Step 2: Relations between the spectra. The following proposition estab-
lishes the connections between the spectra of L′

n and U ′
n. We show that U ′

n and
L′

n have more or less the same spectrum and that the eigenfunctions f of U ′
n and

eigenvectors v of L′
n correspond to each other by the relation v = ρnf .

PROPOSITION 9 (Spectrum of U ′
n).

1. If f ∈ C(X) is an eigenfunction of U ′
n with the eigenvalue λ, then the vector

v = ρnf ∈ R
n is an eigenvector of the matrix L′

n with eigenvalue λ.
2. Let λ �= 1 be an eigenvalue of U ′

n with eigenfunction f ∈ C(X), and v :=
(v1, . . . , vn) := ρnf ∈ R

n. Then f is of the form

f (x) = 1/n
∑

j k(x,Xj )vj

1 − λ
.(1)

3. If v is an eigenvector of the matrix L′
n with eigenvalue λ �= 1, then f defined by

equation (1) is an eigenfunction of U ′
n with eigenvalue λ.

4. The spectrum of U ′
n consists of finitely many nonnegative eigenvalues with finite

multiplicity. The essential spectrum of U ′
n consists of at most one point, namely,

σess(U
′
n) = {1}. The spectrum of U ′ consists of at most countably many nonneg-

ative eigenvalues with finite multiplicity. Its essential spectrum consists at most
of the point {1}, which is also the only possible accumulation point in σ(U ′).

PROOF. Part 1: It is obvious from Proposition 8 that U ′
nf = λf implies L′

nv =
λv. Note also that part 2 shows that v is not the constant 0 vector.
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Part 2: Follows directly from solving the eigenvalue equation.
Part 3: Define f as in equation (1). It is well defined because v is an eigenvector

of 1
n
Ln, and f is an eigenfunction of Un with eigenvalue λ.

Part 4: According to Proposition 8, T̂n is a compact integral operator, and its
essential spectrum is at most {0}. The spectrum σ(U ′

n) of U ′
n = I − T̂n is given by

1 − σ(T̂n). The statements about the eigenvalues of U ′
n follow from the properties

of the eigenvalues of L′
n and parts 1–3 of the proposition. An analogous reasoning

leads to the statements for U ′. �

This proposition establishes a one-to-one correspondence between the eigen-
values and eigenvectors of L′

n and U ′
n, provided they satisfy λ �= 1. The condition

λ �= 1 needed to ensure that the denominator of equation (1) does not vanish. As
a side remark, note that the set {1} is the essential spectrum of U ′

n. Thus, the con-
dition λ �= 1 can also be written as λ /∈ σess(U

′
n), which will be analogous to the

condition on the eigenvalues in the unnormalized case. This condition ensures that
λ is isolated in the spectrum.

5.4. Step 3: Compact convergence. In this section we want to prove that the
sequence of random operators U ′

n converges compactly to U ′ almost surely. First
we will prove pointwise convergence. Note that on the space C(X), the pointwise
convergence of a sequence U ′

n of operators is defined as ‖U ′
nf −U ′f ‖∞ → 0, that

is, for each f ∈ C(X), the sequence (U ′
nf )n has to converge uniformly over X. To

establish this convergence, we will need to show that several classes of functions
are “not too large,” that is, they are Glivenko–Cantelli classes. For convenience,
we introduce the following notation:

DEFINITION 10 (Particular sets of functions). Let k :X × X → R be a simi-
larity function, h :X × X → R the corresponding normalized similarity function
as introduced above and g ∈ C(X) an arbitrary function. We use the shorthand
notation k(x, ·), g(·)k(x, ·) and h(x, ·)h(y, ·) to denote the functions z �→ k(x, z),
z �→ g(z)k(x, z) and z �→ h(x, z)h(y, z). We define the following:

K := {k(x, ·);x ∈ X}, H := {h(x, ·);x ∈ X},
g · H := {g(·)h(x, ·);x ∈ X}, H · H := {h(x, ·)h(y, ·);x, y ∈ X}.

PROPOSITION 11 (Glivenko–Cantelli classes). Under the general assump-
tions, the classes K , H and g ·H [for arbitrary g ∈ C(X)] are Glivenko–Cantelli
classes.

PROOF. As k is a continuous function defined on a compact domain, it is
uniformly continuous. In this case it is easy to construct, for each ε > 0, a finite
ε-cover with respect to ‖ ·‖∞ of K from a finite δ-cover of X. Hence, K has finite
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‖ · ‖∞-covering numbers. Then it is easy to see that K also has finite ‖ · ‖L1(P )-
bracketing numbers (cf. van der Vaart and Wellner [45], page 84). Now the state-
ment about the class K follows from Theorem 2.4.1 of van der Vaart and Wellner
[45]. The statements about the classes H and g · H can be proved in the same
way, hereby observing that h is continuous and bounded as a consequence of the
general assumptions. �

Note that it is a direct consequence of this proposition that the empirical degree
function dn converges uniformly to the true degree function d , that is,

‖dn − d‖∞ = sup
x∈X

|dn(x) − d(x)| = sup
x∈X

|Pnk(x, ·) − Pk(x, ·)| → 0 a.s.

PROPOSITION 12 (T̂n converges pointwise to T a.s.). Under the general as-

sumptions, T̂n
p→T almost surely.

PROOF. For arbitrary f ∈ C(X), we have

‖T̂nf − Tf ‖∞ ≤ ‖T̂nf − Tnf ‖∞ + ‖Tnf − Tf ‖∞.

The second term can be written as

‖Tnf − Tf ‖∞ = sup
x∈X

|Pn(h(x, ·)f (·)) − P(h(x, ·)f (·))| = sup
g∈f ·H

|Png − Pg|,

which converges to 0 a.s. by Proposition 11. The first term can be bounded by

‖Tnf − T̂nf ‖∞ ≤ ‖f ‖∞‖k‖∞ sup
x,y∈X

∣∣∣∣ 1√
dn(x)dn(y)

− 1√
d(x)d(y)

∣∣∣∣
= ‖f ‖∞

‖k‖∞
l2 sup

x,y∈X

|dn(x)dn(y) − d(x)d(y)|√
dn(x)dn(y) + √

d(x)d(y)

≤ ‖f ‖∞
‖k‖∞

2l3 sup
x,y∈X

|dn(x)dn(y) − d(x)d(y)|

≤ ‖f ‖∞
‖k‖2∞

l3 |dn(x) − d(x)| ≤ ‖f ‖∞
‖k‖2∞

l3 sup
g∈K

|Png − Pg|.

Together with Proposition 11 this finishes the proof. �

PROPOSITION 13 (T̂n converges collectively compactly to T a.s.). Under the
general assumptions, T̂n

cc→T almost surely.

PROOF. We have already seen the pointwise convergence T̂n
p→T in Proposi-

tion 12. Next we have to prove that, for some N ∈ N, the sequence of operators
(T̂n − T )n>N is collectively compact a.s. As T is compact itself, it is enough to
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show that (T̂n)n>N is collectively compact a.s. This will be done using the Arzela–
Ascoli theorem (e.g., Section I.6 of Reed and Simon [41]). First we fix the random
sequence (Xn)n and, hence, the random operators (T̂n)n. By Proposition 8, we
know that ‖T̂n‖ ≤ ‖k‖∞/l for all n ∈ N. Hence, the functions in

⋃
n T̂nB are uni-

formly bounded by supn∈N,f ∈B ‖T̂nf ‖∞ ≤ ‖k‖∞/l. To prove that the functions
in

⋃
n>N T̂nB are equicontinuous, we have to bound the expression |g(x) − g(x′)|

in terms of the distance between x and x′, uniformly in g ∈ ⋃
n T̂nB . For fixed

sequence (Xn)n∈N and all n ∈ N, we have that for all x, x′ ∈ X,

sup
f ∈B,n∈N

|T̂nf (x) − T̂nf (x′)| = sup
f ∈B,n∈N

∣∣∣∣ ∫ (
hn(x, y) − hn(x

′, y)
)
f (y) dPn(y)

∣∣∣∣
≤ sup

f ∈B,n∈N

‖f ‖∞
∫

|hn(x, y) − hn(x
′, y)|dPn(y)

≤ ‖hn(x, ·) − hn(x
′, ·)‖∞.

Now we have to prove that the right-hand side gets small whenever the distance
between x and x′ gets small:

sup
y

|hn(x, y) − hn(x
′, y)|

≤ 1

l3/2

(∥∥√
dn

∥∥∞‖k(x, ·) − k(x′, ·)‖∞ + ‖k‖∞
∣∣√dn(x) − √

dn(x′)
∣∣)

≤ 1

l3/2

(
‖k‖1/2∞ ‖k(x, ·) − k(x′, ·)‖∞ + ‖k‖∞

2l1/2 |dn(x) − dn(x
′)|

)
≤ C1‖k(x, ·) − k(x′, ·)‖∞ + C2|d(x) − d(x′)| + C3‖dn − d‖∞.

As X is a compact space, the continuous functions k (on the compact space
X × X) and d are in fact uniformly continuous. Thus, the first two (determin-
istic) terms ‖k(x, ·) − k(x′, ·)‖∞ and |d(x) − d(x′)| can be made arbitrarily small
for all x, x′ whenever the distance between x and x′ is small. For the third term
‖dn − d‖∞, which is a random term, we know by the Glivenko–Cantelli proper-
ties of Proposition 11 that it converges to 0 a.s. This means that for each given
ε > 0 there exists some N ∈ N such that, for all n > N , we have ‖dn − d‖∞ ≤ ε

a.s. Together, these arguments show that
⋃

n>N T̂nB is equicontinuous a.s. By the
Arzela–Ascoli theorem, we then know that

⋃
n>N T̂nB is relatively compact a.s.,

which concludes the proof. �

PROPOSITION 14 (U ′
n converges compactly to U ′ a.s.). Under the general

assumptions, U ′
n

c→U ′ a.s.

PROOF. This follows directly from the facts that collectively compact con-
vergence implies compact convergence, the definitions of U ′

n to U ′, and Proposi-
tion 13. �
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5.5. Assembling all pieces. Now we have collected all ingredients to state and
prove our convergence result for normalized spectral clustering. The following
theorem is the precisely formulated version of the informal Result 1 of the intro-
duction:

THEOREM 15 (Convergence of normalized spectral clustering). Assume that
the general assumptions hold. Let λ �= 1 be an eigenvalue of U ′ and M ⊂ C an
open neighborhood of λ such that σ(U ′) ∩ M = {λ}. Then:

1. Convergence of eigenvalues: The eigenvalues in σ(L′
n) ∩ M converge to λ in

the sense that every sequence (λn)n∈N with λn ∈ σ(L′
n) ∩ M satisfies λn → λ

almost surely.
2. Convergence of spectral projections: There exists some N ∈ N such that, for

n > N , the sets σ(U ′
n) ∩ M are isolated in σ(U ′

n). For n > N , let Pr′n be the
spectral projections of U ′

n corresponding to σ(U ′
n) ∩ M , and Pr the spectral

projection of U for λ. Then Pr′n
p→Pr a.s.

3. Convergence of eigenvectors: If λ is a simple eigenvalue, then the eigenvec-
tors of L′

n converge a.s. up to a change of sign: if vn is the eigenvector of
L′

n with eigenvalue λn, vn,i its ith coordinate, and f the eigenfunction of
eigenvalue λ, then there exists a sequence (an)n∈N with ai ∈ {+1,−1} such
that supi=1,...,n |anvn,i − f (Xi)| → 0 a.s. In particular, for all b ∈ R, the sets
{anfn > b} and {f > b} converge, that is, their symmetric difference satisfies
P({f > b}�{anfn > b}) → 0.

PROOF. In Proposition 9 we established a one-to-one correspondence between
the eigenvalues λ �= 1 of L′

n and U ′
n, and we saw that the eigenvalues λ of U ′ with

λ �= 1 are isolated and have finite multiplicity. In Proposition 14 we proved the
compact convergence of U ′

n to U ′, which according to Proposition 6 implies the
convergence of the spectral projections of isolated eigenvalues with finite multi-
plicity. For simple eigenvalues, this implies the convergence of the eigenvectors
up to a change of sign. The convergence of the sets {fn > b} is a simple conse-
quence of the almost sure convergence of (anfn)n. �

Observe that we only get convergence of the eigenvectors if the eigenvalue of
the limit operator is simple. If this assumption is not satisfied, we only get conver-
gence of the eigenspaces, but not of the individual eigenvectors.

6. Rates of convergence in the normalized case. In this section we want to
prove statements about the rates of convergence of normalized spectral clustering.
Our main result is the following:

THEOREM 16 (Rate of convergence of normalized spectral clustering). Un-
der the general assumptions, let λ �= 0 be a simple eigenvalue of T with eigen-
function u, (λn)n a sequence of eigenvalues of T̂n such that λn → λ, and (un)n a



CONSISTENCY OF SPECTRAL CLUSTERING 573

corresponding sequence of eigenfunctions. Define F = K ∪ (u · H) ∪ (H · H).
Then there exists a constant C ′ > 0 [which only depends on the similarity func-
tion k, on σ(T ) and on λ] and a sequence (an)n of signs an ∈ {+1,−1} such that

‖anun − u‖∞ ≤ C′ sup
f ∈F

|Pnf − Pf |.

This theorem shows that the rate of convergence of normalized spectral cluster-
ing is at least as good as the rate of convergence of the supremum of the empir-
ical process indexed by F . To determine the latter, there exist a variety of tools
and techniques from the theory of empirical processes, such as covering numbers,
VC dimension and Rademacher complexities; see, for example, van der Vaart and
Wellner [45], Dudley [18], Mendelson [34] and Pollard [39]. In particular, it is
the case that “the nicer” the kernel function k is (e.g., k is Lipschitz, or smooth,
or positive definite), the faster the rate of convergence on the right-hand side will
be. As an example we will consider the case of the Gaussian similarity function
k(x, y) = exp(−‖x − y‖2/σ 2), which is widely used in practical applications of
spectral clustering.

EXAMPLE 1 (Rate of convergence for Gaussian kernel). Let X be compact
subset of R

d and k(x, y) = exp(−‖x − y‖2/σ 2). Then the eigenvectors in Theo-
rem 16 converge with rate O(1/

√
n).

For the case of unnormalized spectral clustering, it is possible to obtain simi-
lar results on the speed of convergence, for example, by using Proposition 5.3 in
Chapter 5 of Chatelin [13] instead of the results of Atkinson [5] (note that in the
unnormalized case, the assumptions of Theorem 7 are not satisfied, as we only
have compact convergence instead of collectively compact convergence). As we
recommend to use normalized rather than unnormalized spectral clustering any-
way, we do not discuss this issue any further. The remaining part of this section is
devoted to the proofs of Theorem 16 and Example 1.

6.1. Some technical preparations. Before we can prove Theorem 16 we need
to show several technical propositions.

PROPOSITION 17 (Some technical bounds). Assume that the general condi-
tions are satisfied, and let g ∈ CX. Then the following bounds hold true:

‖T̂n − Tn‖ ≤ ‖k‖2∞
l3 sup

f ∈K
|Pnf − Pf |,

‖(Tn − T )g‖∞ ≤ sup
f ∈g·H

|Pnf − Pf |,

‖(T − Tn)Tn‖ ≤ sup
f ∈H ·H

|Pnf − Pf |.
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PROOF. The first inequality can be proved similarly to Proposition 12, the
second inequality is a direct consequence of the definitions. The third inequality
follows by straight forward calculations similar to the ones in the previous section
and using Fubini’s theorem and the symmetry of h. �

PROPOSITION 18 (Convergence of one-dimensional projections). Let (vn)n
be a sequence of vectors in some Banach space (E,‖ · ‖) with ‖vn‖ = 1, Prn
the projections on the one-dimensional subspace spanned by vn, and v ∈ E with
‖v‖ = 1. Then there exists a sequence (an)n ∈ {+1,−1} of signs such that

‖anvn − v‖ ≤ 2‖v − Prn v‖.
In particular, if ‖v − Prn v‖ → 0, then vn converges to v up to a change of sign.

PROOF. By the definition of Prn, we know that Prn v = cnvn for some cn ∈ R.
Define an := sgn(cn). Then

|an − cn| =
∣∣1 − |cn|

∣∣ = ∣∣‖v‖ − |cn| · ‖vn‖
∣∣ ≤ ‖v − cnvn‖ = ‖v − Prn v‖.

From this, we can conclude that

‖v − anvn‖ ≤ ‖v − cnvn‖ + ‖cnvn − anvn‖ ≤ 2‖v − Prn v‖. �

6.2. Proof of Theorem 16. First we fix a realization of the random variables
(Xn)n. From the convergence of the spectral projections in Theorem 15 we know
that if λ ∈ σ(T ) is simple, so are λn ∈ σ(T̂n) for large n. Then the eigenfunctions
un are uniquely determined up to a change of orientation. In Proposition 18 we
have seen that the speed of convergence of un to u is bounded by the speed of con-
vergence of the expression ‖u − Prn u‖ from Theorem 7. As we already know by
Section 5, the operators T̂n and T satisfy the assumptions in Theorem 7. Accord-
ingly, ‖u−Prn u‖ can be bounded by the two terms ‖(T̂n−T )u‖ and ‖(T − T̂n)T̂n‖.
It will turn out that both terms are easier to bound if we can replace the operator
T̂n by Tn. To accomplish this, observe that

‖(T − T̂n)T̂n‖ ≤ ‖T ‖‖Tn − T̂n‖ + ‖(T − Tn)Tn‖
+ ‖TnTn − TnT̂n‖ + ‖TnT̂n − T̂nT̂n‖

≤ 3
‖k‖∞

l
‖Tn − T̂n‖ + ‖(T − Tn)Tn‖

and also

‖(T̂n − T )u‖∞ ≤ ‖u‖∞‖T̂n − Tn‖ + ‖(Tn − T )u‖∞.

Note that Tn does not converge to T in operator norm (cf. page 197 in Sec-
tion 4.7.4 of Chatelin [13]). Thus, it does not make sense to bound ‖(Tn − T )u‖∞
by ‖Tn −T ‖‖u‖∞ or ‖(T −Tn)Tn‖ by ‖T −Tn‖‖Tn‖. Assembling all inequalities,
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applying Proposition 18 and Theorem 7, and choosing the signs an as in the proof
of Proposition 18, we obtain

‖anun − u‖ ≤ 2‖u − Prλn u‖ ≤ 2C
(‖(T̂n − T )u‖ + ‖(T − T̂n)T̂n‖)

≤ 2C

((
3‖k‖∞

l
+ 1

)
‖Tn − T̂n‖ + ‖(Tn − T )u‖∞ + ‖(T − Tn)Tn‖

)
≤ C′ sup

f ∈K∪(u·H)∪(H ·H)

|Pnf − Pf |.

Here the last step was obtained by applying Proposition 17 and merging all oc-
curring constants to one larger constant C′. As all arguments hold for each fixed
realization (Xn)n of the sample points, they also hold for the random variables
themselves almost surely. This concludes the proof of Theorem 16.

6.3. Rate of convergence for the Gaussian kernel. In this subsection we want
to prove the convergence rate O(1/

√
n) stated in Example 1 for the case of a

Gaussian kernel function k(x, y) = exp(−‖x − y‖2/σ 2). In principle, there are
many ways to compute rates of convergence for terms of the form supf |Pf −Pnf |
(see, e.g., van der Vaart and Wellner [45]). As discussing those methods is not the
main focus of our paper, we choose a rather simple covering number approach
which suffices for our purposes, but might not lead to the sharpest possible bounds.
We will use the following theorem, which is well known in empirical process the-
ory (nevertheless, we did not find a good reference for it; it can be obtained for
example by combining Section 3.4 of Anthony [4], and Theorem 2.34 in Mendel-
son [34]):

THEOREM 19 (Entropy bound). Let (X,A,P ) be an arbitrary probability
space, F a class of real-valued functions on X with ‖f ‖∞ ≤ 1. Let (Xn)n∈N be
a sequence of i.i.d. random variables drawn according to P , and (Pn)n∈N the
corresponding empirical distributions. Then there exists some constant c > 0 such
that, for all n ∈ N with probability at least 1 − δ,

sup
f ∈F

|Pnf − Pf | ≤ c√
n

∫ ∞
0

√
logN(F , ε,L2(Pn)) dε +

√
1

2n
log

2

δ
.

We can see that if
∫ ∞

0
√

logN(F , ε,L2(Pn)) dε < ∞, then the whole expres-
sion scales as O(1/

√
n). As a first step we would like to evaluate this integral for

the function class F := K . To this, end we use bounds on the ‖·‖∞-covering num-
bers of K obtained in Proposition 1 in [51]. There it was proved that for ε < c0 for
a certain constant c0 > 0 only depending to the kernel width σ , and for some con-
stant C which just depends on the dimension of the underlying space, the covering
numbers satisfy

logN(K, ε,‖ · ‖∞) ≤ C

(
log

1

ε

)2

.
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Plugging this into the integral, above we get∫ ∞
0

√
logN(K, ε,L2(Pn)) dε

≤
∫ 2

0

√
logN(K, ε,‖ · ‖∞) dε

≤ √
C

∫ c0

0
log

1

ε
dε +

∫ 2

c0

√
logN(K, ε,‖ · ‖∞) dε

≤ √
Cc0(1 − log c0) + (2 − c0)

√
logN(K, c0,‖ · ‖∞) < ∞.

According to Theorem 16, we have to use the entropy bound not only for the
function class F = K , but for the class F = K ∪ (u · H) ∪ (H · H). To this end,
we will bound the ‖ · ‖∞-covering numbers of K ∪ (u · H) ∪ (H · H) in terms of
the covering numbers of K .

PROPOSITION 20 (Covering numbers). Under the general assumptions, the
following covering number bounds hold true:

N(H , ε,‖ · ‖∞) ≤ N(K, sε,‖ · ‖∞),

N
(
K ∪ (u · H) ∪ (H · H), ε,‖ · ‖∞

) ≤ 3N(K, qε,‖ · ‖∞),

where s = ‖k‖∞+2
√

l‖k‖∞
2l2

, q := min{1,‖u‖∞s,
‖k‖∞

l
s} and u ∈ C(X) arbitrary.

This can be proved by straight forward calculations similar to the ones presented
in the previous sections.

Combining this proposition with the integral bound for the Gaussian kernel as
computed above, we obtain∫ ∞

0

√
logN(F , ε,L2(Pn)) dε ≤

∫ ∞
0

√
log 3N(K, qε,‖ · ‖∞) dε < ∞.

The entropy bound in Theorem 19 hence shows that the rate of convergence of
supf ∈F |Pnf − Pf | is O(1/

√
n), and by Theorem 16, the same now holds for the

eigenfunctions of normalized spectral clustering.

7. The unnormalized case. Now we want to turn our attention to the case
of unnormalized spectral clustering. It will turn out that this case is not as nice as
the normalized case, as the convergence results will hold under strong conditions
only. Moreover, those conditions are often violated in practice. In this case, the
eigenvectors do not contain any useful information about the clustering of the data
space.
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7.1. Convergence of unnormalized spectral clustering. The main theorem
about convergence of unnormalized spectral clustering (which was informally
stated as Result 2 in Section 3) is as follows:

THEOREM 21 (Convergence of unnormalized spectral clustering). Assume
that the general assumptions hold. Let λ /∈ rg(d) be an eigenvalue of U and M ⊂ C

an open neighborhood of λ such that σ(U) ∩ M = {λ}. Then:

1. Convergence of eigenvalues: The eigenvalues in σ( 1
n
Ln) ∩ M converge to λ in

the sense that every sequence (λn)n∈N with λn ∈ σ( 1
n
Ln) ∩ M satisfies λn → λ

almost surely.
2. Convergence of spectral projections: There exists some N ∈ N such that, for

n > N , the sets σ(Un) ∩ M are isolated in σ(Un). For n > N , let Prn be the
spectral projections of Un corresponding to σ(Un) ∩ M , and Pr the spectral

projection of U for λ. Then Prn
p→Pr a.s.

3. Convergence of eigenvectors: If λ is a simple eigenvalue, then the eigenvectors
of 1

n
Ln converge a.s. up to a change of sign: if vn is the eigenvector of 1

n
Ln

with eigenvalue λn, vn,i its ith coordinate, and f the eigenfunction of U with
eigenvalue λ, then there exists a sequence (an)n∈N with ai ∈ {+1,−1} such
that supi=1,...,n |anvn,i − f (Xi)| → 0 a.s. In particular, for all b ∈ R, the sets
{anfn > b} and {f > b} converge, that is, their symmetric difference satisfies
P({f > b}�{anfn > b}) → 0.

This theorem looks very similar to Theorem 15. The only difference is that
the condition λ �= 1 of Theorem 15 is now replaced by λ /∈ rg(d). Note that in
both cases, those conditions are equivalent to saying that λ must be an isolated
eigenvalue. In the normalized case, this is satisfied for all eigenvalues but λ = 1, as
U ′ = I − T ′ where T ′ is a compact operator. In the unnormalized case, however,
this condition can be violated, as the spectrum of U contains a large continuous
spectrum. Later we will see that this indeed leads to serious problems.

The proof of Theorem 7 is very similar to the one we presented in Section 5.
The main difference between both cases is the structure of the spectra of Un and U .
The proposition corresponding to Proposition 9 is the following:

PROPOSITION 22 (Spectrum of Un).

1. If f ∈ C(X) is an eigenfunction of Un with arbitrary eigenvalue λ, then the
vector v = ρnf ∈ R

n is an eigenvector of the matrix 1
n
Ln with eigenvalue λ.

2. Let λ /∈ rg(dn) be an eigenvalue of Un with eigenfunction f ∈ C(X), and v :=
(v1, . . . , vn) := ρnf ∈ R

n. Then f is of the form

f (x) = 1/n
∑

j k(x,Xj )vj

dn(x) − λ
.(2)
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3. If v is an eigenvector of the matrix 1
n
Ln with eigenvalue λ /∈ rg(dn), then f

defined by equation (2) is an eigenfunction of Un with eigenvalue λ.
4. The essential spectrum of Un coincides with the range of the degree function,

that is, σess(Un) = rg(dn). All eigenvalues of Un are nonnegative and can have
accumulation points only in rg(dn). The analogous statements also hold for the
operator U .

PROOF. The first parts can be proved analogously to Proposition 9. For the
last part, remember that the essential spectrum of the multiplication operator Mdn

consists of the range of the multiplier function dn. As Sn is a compact operator,
the essential spectrum of Un = Mdn − Sn coincides with the essential spectrum of
Mdn , as we have already mentioned in the beginning of Section 4. The accumula-
tion points of the spectrum of a bounded operator always belong to the essential
spectrum. Finally, to see the nonnegativity of the eigenvalues, observe that if we
consider the operator Un as an operator on L2(Pn) we have

〈Unf,f 〉 =
∫ ∫ (

f (x) − f (y)
)
f (x)k(x, y) dPn(y) dPn(x)

= 1
2

∫ ∫ (
f (x) − f (y)

)2
k(x, y) dPn(y) dPn(x) ≥ 0.

Thus, U is a nonnegative operator on L2(Pn) and as such only has a nonnegative
eigenvalues. As we have C(X) ⊂ L2(P ) by the compactness of X, the same holds
for the eigenvalues of U as an operator on C(X). �

This proposition establishes a one-to-one relationship between the eigenvalues
of Un and 1

n
Ln, provided the condition λ /∈ rg(dn) is satisfied. Next we need to

prove the compact convergence of Un to U :

PROPOSITION 23 (Un converges compactly to U a.s.). Under the general as-
sumptions, Un

c→U a.s.

PROOF. We consider the multiplication and integral operator parts of Un sep-
arately. Similarly to Proposition 13, we can prove that the integral operators Sn

converge collectively compactly to S a.s., and, as a consequence, also Sn
c→S a.s.

For the multiplication operators, we have operator norm convergence

‖Mdn − Md‖ = sup
‖f ‖∞≤1

‖dnf − df ‖∞ ≤ ‖dn − d‖∞ → 0 a.s.

by the Glivenko–Cantelli Proposition 11. As operator norm convergence implies
compact convergence, we also have Mdn

c→Md a.s. Finally, it is easy to see that
the sum of two compactly converging operators also converges compactly. �

Now Theorem 21 follows by a proof similar to the one of Theorem 15.
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8. Nonisolated eigenvalues. The most important difference between the limit
operators of normalized and unnormalized spectral clustering is the condition un-
der which eigenvalues of the limit operator are isolated in the spectrum. In the
normalized case this is true for all eigenvalues λ �= 1, while in the unnormalized
case this is only true for all eigenvalues satisfying λ /∈ rg(d). In this section we
want to investigate those conditions more closely. We will see that, especially in
the unnormalized case, this condition can be violated, and that in this case spectral
clustering will not yield sensible results. In particular, the condition λ /∈ rg(d) is
not an artifact of our methods, but plays a fundamental role. It is the main reason
why we suggest to use normalized rather than unnormalized spectral clustering.

8.1. Theoretical results. First we will construct a simple example where all
nontrivial eigenvalues λ2, λ3, . . . lie inside the range of the degree function.

EXAMPLE 2 [λ2 /∈ rg(d) violated]. Consider the data space X = [1,2] ⊂ R

and the probability distribution given by a piecewise constant probability den-
sity function p on X with p(x) = s if 4/3 ≤ x < 5/3 and p(x) = (3 − s)/2 oth-
erwise, for some fixed constant s ∈ [0,3] (for example, for s = 0.3, this density
has two clearly separated high density regions). As similarity function, we choose
k(x, y) := xy. Then the only eigenvalue of U outside of rg(d) is the trivial eigen-
value 0 with multiplicity one.

PROOF. In this example, it is straightforward to verify that the degree func-
tion is given as d(x) = 1.5x (independently of s) and has range [1.5,3] on X.
A function f ∈ C(X) is an eigenfunction with eigenvalue λ /∈ rg(d) of U if the
eigenvalue equation is satisfied:

Uf (x) = d(x)f (x) − x

∫
yf (y)p(y) dy = λf (x).(3)

Defining the real number β := ∫
yf (y)p(y) dy, we can solve equation (3) for f (x)

to obtain f (x) = βx
d(x)−λ

. Plugging this into the definition of β yields the condition

1 =
∫

y2

d(y) − λ
p(y) dy.(4)

Hence, λ is an eigenvalue of U if equation (4) is satisfied. For our simple density
function p, the integral in this condition can be solved analytically. It can then be

seen that g(λ) := ∫ y2

d(y)−λ
p(y) dy = 1 is only satisfied for λ = 0, hence, the only

eigenvalue outside of rg(d) is the trivial eigenvalue 0 with multiplicity one. �

In the above example we can see that there indeed exist situations where the op-
erator U does not possess a nonzero eigenvalue with λ /∈ rg(d). The next question
is what happens in this situation.
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PROPOSITION 24 [Clustering fails if λ2 /∈ rg(d) is violated]. Assume that
σ(U) = {0}∪ rg(d) with the eigenvalue 0 having multiplicity 1, and that the proba-
bility distribution P on X has no point masses. Then the sequence of second eigen-
values of 1

n
Ln converges to minx∈X d(x). The corresponding eigenfunction will

approximate the characteristic function of some x ∈ X with d(x) = minx∈X d(x)

or a linear combination of such functions.

PROOF. It is a standard fact (Chatelin [13]) that for each λ inside the continu-
ous spectrum rg(d) of U there exists a sequence of functions (fn)n with ‖fn‖ = 1
such that ‖(U − λI)fn‖ → 0. Hence, for each precision ε > 0, there exists a func-
tion fε such that ‖(U − λI)fε‖ < ε. This means that for a computer with machine
precision ε, the function fε appears to be an eigenfunction with eigenvalue λ.
Thus, with a finite precision calculation, we cannot distinguish between eigenval-
ues and the continuous spectrum of an operator. A similar statement is true for
the eigenvalues of the empirical approximation Un of U . To make this precise, we
consider a sequence (fn)n as follows. For given λ ∈ rg(d), we choose some xλ ∈ X
with d(xλ) = λ. Define Bn := B(xλ,

1
n
) as the ball around xλ with radius 1/n (note

that Bn does not depend on the sample), and choose some fn ∈ C(X) which is
constant 1 on Bn and constant 0 outside Bn−1. It can be verified by straight for-
ward arguments that this sequence has the property that for each machine precision
ε there exists some N ∈ N such that, for n > N , we have ‖(Un − λI)fn‖ ≤ ε a.s.
By Proposition 8 we can conclude that∥∥∥∥(

1

n
Ln − λI

)
(f (X1), . . . , f (Xn))

t

∥∥∥∥ ≤ ε a.s.

Consequently, if the machine precision of the numerical eigensolver is ε, then this
expression cannot be distinguished from 0, and the vector (f (X1), . . . , f (Xn))

t

appears to be an eigenvector of 1
n
Ln with eigenvalue λ. As this construction holds

for each λ ∈ rg(d), the smallest nonzero “eigenvalue” discovered by the eigen-
solver will be λ2 := minx∈X d(x). If xλ2 is the unique point in X with d(xλ2) = λ2,
then the second eigenvector of 1

n
Ln will converge to the delta-function at xλ2 . If

there are several points x ∈ X with d(x) = λ2, then the “eigenspace” of λ2 will
be spanned by the delta-functions at all those points. In this case, the eigenvec-
tors of 1

n
Ln will approximate one of those delta-functions, or a linear combination

thereof. �

As a side remark, note that as the above construction holds for all elements
λ ∈ rg(d), eventually the whole interval rg(d) will be populated by eigenvalues of
1
n
Ln.
So far we have seen that there exist examples where the assumption λ /∈ rg(d)

in Theorem 21 is violated, and that in this case the corresponding eigenfunction
does not contain any useful information for clustering. This situation is aggravated
by the fact that the condition λ /∈ rg(d) can only be verified if the operator U , and
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hence, the probability distribution P on X, is known. As this is not the case in
the standard setting of clustering, it is impossible to know whether the condition
λ /∈ rg(d) is true for the eigenvalues in consideration or not. Consequently, not only
spectral clustering can fail in certain situations, but we are unable to check whether
this is the case for a given application of clustering or not. The least thing one
should do if one really wants to use unnormalized spectral clustering is to estimate
the critical region rg(d) by [mini di/n,maxi di/n] and check whether the relevant
eigenvalues of 1

n
Ln are inside or close to this interval or not. This observation then

gives an indication whether the results obtained can considered to be reliable or
not.

Finally, we want to show that such problems as described above do not only
occur in pathological examples, but they can come up for many similarity functions
which are often used in practice.

PROPOSITION 25 (Finite discrete spectrum for analytic similarity). Assume
that X is a compact subset of R

n, and the similarity function k is analytic in a
neighborhood of X × X. Let P be a probability distribution on X which has an
analytic density function. Assume that the set {x∗ ∈ X;d(x∗) = minx∈X d(x)} is
finite. Then σ(U) has only finitely many eigenvalues outside rg(d).

This proposition is a special case of results on the discrete spectrum of the
generalized Friedrichs model which can be found, for example, in Lakaev [32],
Abdullaev and Lakaev [1] and Ikromov and Sharipov [26]. In those articles, the
authors only consider the case where P is the uniform distribution, but their proofs
can be carried over to the case of analytic density functions.

8.2. Empirical results. To illustrate what happens for unnormalized spectral
clustering if the condition λ /∈ rg(d) is violated, we want to analyze empirical
examples and compare the eigenvectors of unnormalized and normalized graph
Laplacians. Our goal is to show that problems can occur in examples which are
highly relevant to practical applications. As data space, we choose X = R with
a density which is a mixture of four Gaussian with means 2, 4, 6 and 8, and the
same standard deviation 0.25. This density consists of four very well separated
clusters, and it is so simple that every clustering algorithm should be able to iden-
tify the clusters. As similarity function we choose the Gaussian kernel function
k(x, y) = exp(−‖x − y‖2/σ 2), which is the similarity function most widely used
in applications of spectral clustering. It is difficult to prove analytically how many
eigenvalues will lie below rg(d); by Proposition 25, we only know that they are
finitely many. However, in practice, it turns out that “finitely many” often means
“very few,” for example, two or three.

In Figures 1 and 2 we show the eigenvalues and eigenvectors of the normalized
and unnormalized Laplacians, for different values of the kernel width parameter σ .
To obtain those plots, we drew 200 data points at random from the mixture of
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FIG. 1. Eigenvalues and eigenvectors of the unnormalized Laplacian. Eigenvalues within rg(dn)

and the trivial first eigenvalue 0 are plotted as stars, the “informative” eigenvalues below rg(dn) are
plotted as diamonds. The dashed line indicates mindn(x). The parameters are σ = 1 (first row),
σ = 2 (second row) σ = 5 (third row), and σ = 50 (fourth row).

Gaussians, computed the graph Laplacians based on the Gaussian kernel function,
and computed its eigenvalues and eigenvectors. In the unnormalized case we show
the eigenvalues and vectors of Ln, in the normalized case those of the matrix Ln.
In each case we then plot the first 10 eigenvalues ordered by size (i.e., we plot i

vs. λi ), and the eigenvectors as functions on the data space (i.e., we plot Xi vs.
vi ). In Figure 1 we show the behavior of the unnormalized graph Laplacian for
various values of σ . We can observe that the larger the value of σ is, the more
the eigenvalues move toward the range of the degree function. For eigenvalues
which are safely below this range, the corresponding eigenvectors are nontrivial,
and thresholding them at 0 leads to a correct split between different clusters in the
data (recall that the clusters are centered around 2, 4, 6 and 8). For example, in case
of the plots in the first row of Figure 1, thresholding Eigenvector 2 at 0 separates
the first two from the second two clusters, thresholding Eigenvector 3 separates
clusters 1 and 4 from the clusters 2 and 3, and Eigenvector 4 separates clusters 1
and 3 from clusters 2 and 4. However, for eigenvalues which are very close to or
inside rg(dn), the corresponding eigenvector is close to a Dirac vector. In Figure 2
we show eigenvalues and eigenvectors of the normalized Laplacian. We can see
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FIG. 2. Eigenvalues and vectors of the normalized Laplacian for σ = 1, σ = 5 and σ = 50.

that, for all values of σ , all eigenvectors are informative about the clustering, and
no eigenvector has the form of a Dirac function. This is even the case for extreme
values as σ = 50.

9. Conclusion. In this article we investigated the consistency of spectral clus-
tering algorithms by studying the convergence of eigenvectors of the normalized
and unnormalized Laplacian matrices on random samples. We proved that, under
standard assumptions, the first eigenvectors of the normalized Laplacian converges
to eigenfunctions of some limit operator. In the unnormalized case, the same is
only true if the eigenvalues of the limit operator satisfy certain properties, namely,
if these eigenvalues lie below the continuous part of the spectrum. We showed that
in many examples this condition is not satisfied. In those cases, the information
provided by the corresponding eigenvector is misleading and cannot be used for
clustering.

This leads to two main practical conclusions about spectral clustering. First,
from a statistical point of view, it is clear that normalized rather than unnormal-
ized spectral clustering should be used whenever possible. Second, if for some
reason one wants to use unnormalized spectral clustering, one should try to check
whether the eigenvalues corresponding to the eigenvectors used by the algorithm
lie significantly below the continuous part of the spectrum. If that is not the case,
those eigenvectors need to be discarded, as they do not provide information about
the clustering.



584 U. VON LUXBURG, M. BELKIN AND O. BOUSQUET

REFERENCES

[1] ABDULLAEV, Z. and LAKAEV, S. (1991). On the spectral properties of the matrix-valued
Friedrichs model. In Many-Particle Hamiltonians: Spectra and Scattering. Adv. Soviet
Math. 5 1–37. Amer. Math. Soc., Providence, RI. MR1130183

[2] ALPERT, C. J. and YAO, S.-Z. (1995). Spectral partitioning: The more eigenvectors, the better.
In Proceedings of the 32nd ACM/IEEE Conference on Design Automation 195–200. ACM
Press, New York.

[3] ANSELONE, P. (1971). Collectively Compact Operator Approximation Theory. Prentice-Hall,
Englewood Cliffs, NJ. MR0443383

[4] ANTHONY, M. (2002). Uniform Glivenko–Cantelli theorems and concentration of measure in
the mathematical modelling of learning. Research Report LSE-CDAM-2002-07.

[5] ATKINSON, K. (1967). The numerical solution of the eigenvalue problem for compact integral
operators. Trans. Amer. Math. Soc. 129 458–465. MR0220105

[6] BAI, Z. D. (1999). Methodologies in spectral analysis of large dimensional random matrices.
Statist. Sinica 9 611–677. MR1711663

[7] BAKER, C. (1977). The Numerical Treatment of Integral Equations. Clarendon Press, Oxford.
MR0467215

[8] BARNARD, S., POTHEN, A. and SIMON, H. (1995). A spectral algorithm for envelope reduc-
tion of sparse matrices. Numer. Linear Algebra Appl. 2 317–334. MR1349276

[9] BARTLETT, P., LINDER, T. and LUGOSI, G. (1998). The minimax distortion redundancy in
empirical quantizer design. IEEE Trans. Inform. Theory 44 1802–1813. MR1664098

[10] BELKIN, M. and NIYOGI, P. (2003). Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Comput. 15 1373–1396. MR0203473

[11] BEN-DAVID, S. (2004). A framework for statistical clustering with constant time approxima-
tion algorithms for K-median clustering. In Proceedings of the 17th Annual Conference
on Learning Theory (COLT) (J. Shawe-Taylor and Y. Singer, eds.) 415–426. Springer,
Berlin. MR2177925

[12] BENGIO, Y., VINCENT, P., PAIEMENT, J.-F., DELALLEAU, O. M. OUIMET, and LE ROUX,
N. (2004). Learning eigenfunctions links spectral embedding and kernel PCA. Neural
Comput. 16 2197–2219.

[13] CHATELIN, F. (1983). Spectral Approximation of Linear Operators. Academic Press, New
York. MR0716134

[14] CHUNG, F. (1997). Spectral Graph Theory. Conference Board of the Mathematical Sciences,
Washington. MR1421568

[15] DHILLON, I. (2001). Co-clustering documents and words using bipartite spectral graph par-
titioning. In Proceedings of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD) 269–274. ACM Press, New York.

[16] DING, C., HE, X., ZHA, H., GU, M. and SIMON, H. (2001). A min–max cut algorithm for
graph partitioning and data clustering. In Proceedings of the First IEEE International
Conference on Data Mining (ICDM) 107–114. IEEE Computer Society, Washington, DC.

[17] DONATH, W. E. and HOFFMAN, A. J. (1973). Lower bounds for the partitioning of graphs.
IBM J. Res. Develop. 17 420–425. MR0329965

[18] DUDLEY, R. M. (1999). Uniform Central Limit Theorems. Cambridge Univ. Press.
MR1720712

[19] FIEDLER, M. (1973). Algebraic connectivity of graphs. Czechoslovak Math. J. 23 298–305.
MR0318007

[20] GUATTERY, S. and MILLER, G. (1998). On the quality of spectral separators. SIAM J. Matrix
Anal. Appl. 19 701–719. MR1611179

[21] HAGEN, L. and KAHNG, A. (1992). New spectral methods for ratio cut partitioning and clus-
tering. IEEE Trans. Computer-Aided Design 11 1074–1085.

http://www.ams.org/mathscinet-getitem?mr=1130183
http://www.ams.org/mathscinet-getitem?mr=0443383
http://www.ams.org/mathscinet-getitem?mr=0220105
http://www.ams.org/mathscinet-getitem?mr=1711663
http://www.ams.org/mathscinet-getitem?mr=0467215
http://www.ams.org/mathscinet-getitem?mr=1349276
http://www.ams.org/mathscinet-getitem?mr=1664098
http://www.ams.org/mathscinet-getitem?mr=0203473
http://www.ams.org/mathscinet-getitem?mr=2177925
http://www.ams.org/mathscinet-getitem?mr=0716134
http://www.ams.org/mathscinet-getitem?mr=1421568
http://www.ams.org/mathscinet-getitem?mr=0329965
http://www.ams.org/mathscinet-getitem?mr=1720712
http://www.ams.org/mathscinet-getitem?mr=0318007
http://www.ams.org/mathscinet-getitem?mr=1611179


CONSISTENCY OF SPECTRAL CLUSTERING 585

[22] HARTIGAN, J. (1981). Consistency of single linkage for high-density clusters. J. Amer. Statist.
Assoc. 76 388–394. MR0624340

[23] HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Elements of Statistical Learning.
Springer, New York. MR1851606

[24] HENDRICKSON, B. and LELAND, R. (1995). An improved spectral graph partitioning algo-
rithm for mapping parallel computations. SIAM J. Sci. Comput. 16 452–469. MR1317066

[25] HIGHAM, D. and KIBBLE, M. (2004). A unified view of spectral clustering. Mathematics
Research Report 2, Univ. Strathclyde.

[26] IKROMOV, I. and SHARIPOV, F. (1998). On the discrete spectrum of the nonanalytic matrix-
valued Friedrichs model. Funct. Anal. Appl 32 49–50. Available at http://www.arxiv.org/
pdf/funct-an/9502004. MR1627263

[27] JAIN, A. K., MURTY, M. N. and FLYNN, P. J. (1999). Data clustering: A review. ACM Com-
put. Surv. 31 264–323.

[28] KANNAN, R., VEMPALA, S. and VETTA, A. (2000). On clusterings—good, bad and spectral.
In 41st Annual Symposium on Foundations Of Computer Science (Redondo Beach, CA,
2000) 367–377. IEEE Comput. Soc. Press, Los Alamitos, CA. MR1931834

[29] KATO, T. (1966). Perturbation Theory for Linear Operators. Springer, Berlin.
[30] KOLTCHINSKII, V. (1998). Asymptotics of spectral projections of some random matrices

approximating integral operators. In Progr. Probab. 43 191–227. Birkhäuser, Basel.
MR1652327

[31] KOLTCHINSKII, V. and GINÉ, E. (2000). Random matrix approximation of spectra of integral
operators. Bernoulli 6 113–167. MR1781185

[32] LAKAEV, S. N. (1979). The discrete spectrum of a generalized Friedrichs model. Dokl. Akad.
Nauk UzSSR 4 9–10. MR0539360

[33] MEILA, M. and SHI, J. (2001). A random walks view of spectral segmentation. In 8th Inter-
national Workshop on Artificial Intelligence and Statistics (AISTATS).

[34] MENDELSON, S. (2003). A few notes on statistical learning theory. Advanced Lectures in Ma-
chine Learning. Lecture Notes in Comput. Sci. 2600 1–40. Springer, Berlin.

[35] MOHAR, B. (1991). The Laplacian spectrum of graphs. In Graph Theory, Combinatorics, and
Applications 2 (Kalamazoo, MI, 1988) 871–898. Wiley, New York. MR1170831

[36] NG, A., JORDAN, M. and WEISS, Y. (2002). On spectral clustering: Analysis and an algo-
rithm. In Advances in Neural Information Processing Systems (T. Dietterich, S. Becker
and Z. Ghahramani, eds.) 14 849–856. MIT Press.

[37] NIYOGI, P. and KARMARKAR, N. K. (2000). An approach to data reduction and clustering
with theoretical guarantees. In Proceedings of the Seventeenth International Conference
on Machine Learning (P. Langley, ed.) 679–686. Morgan Kaufmann, San Francisco, CA.

[38] POLLARD, D. (1981). Strong consistency of k-means clustering. Ann. Statist. 9 135–140.
MR0600539

[39] POLLARD, D. (1984). Convergence of Stochastic Processes. Springer, New York. MR0762984
[40] POTHEN, A., SIMON, H. D. and LIOU, K. P. (1990). Partitioning sparse matrices with eigen-

vectors of graphs. SIAM J. Matrix Anal. Appl. 11 430–452. MR1054210
[41] REED, M. and SIMON, B. (1980). Functional Analysis. I, 2nd ed. Academic Press, New York.

MR0751959
[42] SHAWE-TAYLOR, J., WILLIAMS, C., CRISTIANINI, N. and KANDOLA, J. (2002). On

the eigenspectrum of the Gram matrix and its relationship to the operator eigenspec-
trum. In Proceedings of the 13th International Conference on Algorithmic Learning
Theory (N. Cesa-Bianchi, M. Numao and R. Reischuk, eds.) 23–40. Springer, Berlin.
MR2071605

[43] SHI, J. and MALIK, J. (2000). Normalized cuts and image segmentation. IEEE Trans. Pattern
Analysis and Machine Intelligence 22 888–905.

http://www.ams.org/mathscinet-getitem?mr=0624340
http://www.ams.org/mathscinet-getitem?mr=1851606
http://www.ams.org/mathscinet-getitem?mr=1317066
http://www.arxiv.org/pdf/funct-an/9502004
http://www.ams.org/mathscinet-getitem?mr=1627263
http://www.ams.org/mathscinet-getitem?mr=1931834
http://www.ams.org/mathscinet-getitem?mr=1652327
http://www.ams.org/mathscinet-getitem?mr=1781185
http://www.ams.org/mathscinet-getitem?mr=0539360
http://www.ams.org/mathscinet-getitem?mr=1170831
http://www.ams.org/mathscinet-getitem?mr=0600539
http://www.ams.org/mathscinet-getitem?mr=0762984
http://www.ams.org/mathscinet-getitem?mr=1054210
http://www.ams.org/mathscinet-getitem?mr=0751959
http://www.ams.org/mathscinet-getitem?mr=2071605
http://www.arxiv.org/pdf/funct-an/9502004


586 U. VON LUXBURG, M. BELKIN AND O. BOUSQUET

[44] SPIELMAN, D. and TENG, S. (1996). Spectral partitioning works: planar graphs and finite ele-
ment meshes. In 37th Annual Symposium on Foundations of Computer Science (Burling-
ton, VT, 1996) 96–105. IEEE Comput. Soc. Press, Los Alamitos, CA. MR1450607

[45] VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak Convergence and Empirical
Processes. Springer, New York. MR1385671

[46] VAN DRIESSCHE, R. and ROOSE, D. (1995). An improved spectral bisection algorithm and its
application to dynamic load balancing. Parallel Comput. 21 29–48. MR1314376

[47] VON LUXBURG, U. (2004). Statistical learning with similarity and dissimilarity functions.
Ph.D. thesis, Technical Univ. Berlin.

[48] VON LUXBURG, U. (2007). A tutorial on spectral clustering. Stat. Comput. 17. To appear.
[49] WEISS, Y. (1999). Segmentation using eigenvectors: A unifying view. In Proceedings of the

International Conference on Computer Vision 975–982.
[50] WILLIAMS, C. K. I. and SEEGER, M. (2000). The effect of the input density distribution on

kernel-based classifiers. In Proceedings of the 17th International Conference on Machine
Learning (P. Langley, ed.) 1159–1166. Morgan Kaufmann, San Francisco.

[51] ZHOU, D.-X. (2002). The covering number in learning theory. J. Complexity 18 739–767.
MR1928805

U. VON LUXBURG

MAX PLANCK INSTITUTE

FOR BIOLOGICAL CYBERNETICS

SPEMANNSTR. 38
72076 TÜBINGEN

GERMANY

E-MAIL: ulrike.luxburg@tuebingen.mpg.de

M. BELKIN

DEPARTMENT OF COMPUTER SCIENCE

AND ENGINEERING

OHIO STATE UNIVERSITY

2015 NEIL AVENUE

COLUMBUS, OHIO 43210
USA
E-MAIL: mbelkin@cse.ohio-state.edu

O. BOUSQUET

PERTINENCE

32 RUE DES JEÛNEURS

F-75002 PARIS

FRANCE

E-MAIL: olivier.bousquet@pertinence.com

http://www.ams.org/mathscinet-getitem?mr=1450607
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=1314376
http://www.ams.org/mathscinet-getitem?mr=1928805
mailto:ulrike.luxburg@tuebingen.mpg.de
mailto:mbelkin@cse.ohio-state.edu
mailto:olivier.bousquet@pertinence.com

	Introduction
	Spectral clustering
	Informal statement of our results
	Prerequisites and notation
	Convergence of normalized spectral clustering
	Overview over the methods
	Step 1: Construction of the operators on C(X)
	Step 2: Relations between the spectra
	Step 3: Compact convergence
	Assembling all pieces

	Rates of convergence in the normalized case
	Some technical preparations
	Proof of Theorem 16
	Rate of convergence for the Gaussian kernel

	The unnormalized case
	Convergence of unnormalized spectral clustering

	Nonisolated eigenvalues
	Theoretical results
	Empirical results

	Conclusion
	References
	Author's Addresses

