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CONSISTENCY OF SPECTRAL CLUSTERING IN STOCHASTIC
BLOCK MODELS

BY JING LEI1 AND ALESSANDRO RINALDO2

Carnegie Mellon University

We analyze the performance of spectral clustering for community ex-
traction in stochastic block models. We show that, under mild conditions,
spectral clustering applied to the adjacency matrix of the network can con-
sistently recover hidden communities even when the order of the maximum
expected degree is as small as logn, with n the number of nodes. This result
applies to some popular polynomial time spectral clustering algorithms and
is further extended to degree corrected stochastic block models using a spher-
ical k-median spectral clustering method. A key component of our analysis
is a combinatorial bound on the spectrum of binary random matrices, which
is sharper than the conventional matrix Bernstein inequality and may be of
independent interest.

1. Introduction. Network analysis is concerned with describing and model-
ing the joint occurrence of random interactions among actors in a given population
of interest. In its simplest form, a network dataset over n actors is a simple undi-
rected random graph on n nodes, where the edges encode the realized binary inter-
actions among the nodes. Examples include social networks (friendship between
Facebook users, blog following, twitter following, etc.), biological networks (gene
network, gene-protein network), information network (email network, World Wide
Web) and many others. A review of modeling and inference on network data can
be found in Kolaczyk (2009), Newman (2010) and Goldenberg et al. (2010).

Among the many existing statistical models for network data, the stochastic
block model, henceforth SBM, of Holland, Laskey and Leinhardt (1983) stands
out for both its simplicity and expressive power. In a SBM, the nodes are parti-
tioned into K < n disjoint groups, or communities, according to some latent ran-
dom mechanism. Conditionally on the realized but unobservable community as-
signments, the edges then occur independently with probabilities depending only
on the community membership of the nodes, so that nodes from the same commu-
nity will have higher average degree of connectivity among themselves than com-
pared to the remaining nodes (see Section 2.1 for details). Because of its simple
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analytic form and its ability to capture the emergence of communities, a feature
commonly observed in real network data, the SBM is certainly among the most
popular models for network data.

Within the SBM framework, the most important inferential task is that of re-
covering the community membership of the nodes from a single observation of
the network. To solve this problem, in recent years researchers have proposed a
variety procedures, which vary greatly in their degrees of statistical accuracy and
computational complexity. See, in particular, modularity maximization [Newman
and Girvan (2004)], likelihood methods [Amini et al. (2012), Bickel and Chen
(2009), Celisse, Daudin and Pierre (2012), Choi, Wolfe and Airoldi (2012), Zhao,
Levina and Zhu (2012)], method of moments [Anandkumar et al. (2013)], belief
propagation [Decelle et al. (2011)], convex optimization [Chen, Sanghavi and Xu
(2012)], spectral clustering [Balakrishnan et al. (2011), Fishkind et al. (2013), Jin
(2012), Rohe, Chatterjee and Yu (2011), Sarkar and Bickel (2013)] and its variants
[Chaudhuri, Chung and Tsiatas (2012), Coja-Oghlan (2010)] and spectral embed-
dings [Sussman et al. (2012), Lyzinski et al. (2013)].

Spectral clustering [see, e.g., von Luxburg (2007)] is arguably one of the most
widely used methods for community recovery. Broadly speaking, this procedure
first performs an eigen-decomposition of the adjacency matrix or the graph Lapla-
cian. Then the community membership is inferred by applying a clustering algo-
rithm, typically k-means, to the (possibly normalized) rows of the matrix formed
by the first few leading eigenvectors. Spectral clustering is easier to implement and
computationally less demanding than many other methods, most of which amount
to computationally intractable combinatorial searches. From a theoretical stand-
point, spectral clustering has been shown to enjoy good theoretical properties in
denser stochastic block models where the average degree grows faster than logn;
see, for example, Jin (2012), Rohe, Chatterjee and Yu (2011), Sarkar and Bickel
(2013). In addition, spectral clustering has been empirically observed to yield good
performance even in sparser regimes. For example, it is recommended as the initial
solution for a search based procedure in Amini et al. (2012). In computer science
literature, spectral clustering is also a standard procedure for graph partitioning
and for solving the planted partition model, a special case of the SBM [see, e.g.,
Ng et al. (2002)].

Despite its popularity and simplicity, the theoretical properties of spectral clus-
tering are still not well understood in sparser SBM settings where the magnitude
of the maximum expected node degree can be as small as logn. This regime of
sparsity is in fact not covered by existing analyses of the performance of spec-
tral clustering for community recovery, which postulate a denser network. Indeed,
Fishkind et al. (2013), Rohe, Chatterjee and Yu (2011) require the expected node
degree to be almost linear in n, while Jin (2012) requires polynomial growth. Anal-
ogous conditions can be found elsewhere; see, for example, Sussman et al. (2012)
and Balakrishnan et al. (2011).
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In this paper, we derive new error bounds for spectral clustering for the purpose
of community recovery in moderately sparse stochastic block models and degree
corrected stochastic block models [see, e.g., Karrer and Newman (2011)], where
the maximum expected node degree is of order logn or higher. Our main contribu-
tion is to show that the most basic form of spectral clustering is successful in recov-
ering the latent community memberships under conditions on the network sparsity
that are weaker than the ones used in most of literature. Our results yield some
sharpening of existing analyses of spectral clustering for community recovery, and
provide a theoretical justification for the effectiveness of this procedure in mod-
erately sparse networks. We take note that there are competing methods yielding
consistent community recovery under even milder conditions on the rate of growth
of the node degrees, but they either rely on combinatorial methods that are compu-
tationally demanding [Bickel and Chen (2009)] or are guaranteed to be successful
provided that they are given good starting points [Amini et al. (2012)], which are
typically unknown. Other computationally efficient procedures with strong theo-
retical guarantees, which include in particular the ones proposed and analyzed in
Channarond, Daudin and Robin (2012), Chen, Sanghavi and Xu (2012), McSherry
(2001), Sarkar and Bickel (2013), require instead the degrees to be of larger order
than logn. More detailed comparisons with some of these contributions will be
given after the statement of main results as more technical background is intro-
duced. Finally, it is also known that in the ultra-sparse case, where the maximum
degree is of order O(1), consistent community recovery is impossible and one can
only hope to recover the communities up to a constant fraction [see Coja-Oghlan
(2010), Decelle et al. (2011), Krzakala et al. (2013), Massoulie (2013), Mossel,
Neeman and Sly (2012, 2013)].

The contributions of this paper are as follows. We prove that a simplest form
of spectral clustering, consisting of applying approximate k-means algorithms to
the rows of the matrix formed by the leading eigenvectors of the adjacency matrix,
allows to recover the community membeships of all but a vanishing fraction of the
nodes in stochastic block models with expected degree as small as logn, with high
probability. We also extend this result to degree corrected stochastic block models
by analyzing an approximate spherical k-median spectral clustering algorithm. The
algorithms we consider are among the most practical and computationally afford-
able procedures available. Yet the theoretical guarantees we provide hold under
rather general assumptions of sparsity that are weaker than the ones used in algo-
rithms of similar complexity. Our arguments extend those in Rohe, Chatterjee and
Yu (2011) and Jin (2012) by combining a principal subspace perturbation analy-
sis (Lemma 5.1), a deterministic performance guarantee of approximate k-means
clustering (Lemma 5.3) and a sharp bound on the spectrum of binary random ma-
trices (Theorem 5.2), which may be of independent interest. These techniques give
sharper results under weaker conditions. In particular, the subspace perturbation
analysis allows us to avoid the individual eigengap condition. On the other hand,
the spectral bound gives a better large deviation result that cannot be obtained by
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the matrix Bernstein inequality [Chung and Radcliffe (2011), Tropp (2012)] and
leads to a simple extension to the degree corrected stochastic block model.

The article is organized as follows. In Section 2 we give formal introduction to
the stochastic block model and spectral clustering. The main results are presented
and compared to related works in Section 3 for regular SBM’s and in Section 4
for degree corrected block models. Section 5 presents the proofs of main results,
including a general, highly modular scheme of analyzing performance of spectral
clustering algorithms. Concluding remarks are given in Section 6.

Notation. For a matrix M and index sets I,J ⊆ [n], let MI∗ and M∗J be
the submatrix of M consisting the corresponding rows and columns. Let Mn,K

be the collection of all n × K matrices where each row has exactly one 1 and
(K − 1) 0’s. For any � ∈ Mn,K , we call � a membership matrix, and the com-
munity membership of a node i is denoted by gi ∈ {1, . . . ,K}, which satisfies
�igi

= 1. Let Gk = Gk(�) = {1 ≤ i ≤ n :gi = k} and nk = |Gk| for all 1 ≤ k ≤ K .
Let nmin = min1≤k≤K nk , nmax = max1≤k≤K nk , and n′

max be the second largest
community size. We use ‖ · ‖ to denote both the Euclidean norm of a vector and
the spectral norm of a matrix. ‖M‖F = (trace(MT M))1/2 denotes the Frobenius
norm of a matrix M . The �0 norm ‖M‖0 simply counts the number of nonzero
entries in M . For any square matrix M , diag(M) denotes the matrix obtained by
setting all off-diagonal entries of M to 0. For two sequences of real numbers {xn}
and {yn}, we will write xn = o(yn) if limn xn/yn = 0, xn = O(yn) if |xn/yn| ≤ C

for all n and some positive C and xn = �(yn) if |xn/yn| > C for all n and some
positive C.

2. Preliminaries.

2.1. Model setup. A stochastic block model with n nodes and K communities
is parameterized by a pair of matrices (�,B), where � ∈ Mn,K is the membership
matrix and B ∈ R

K×K is a symmetric connectivity matrix. For each node i, let gi

(1 ≤ gi ≤ K) be its community label, such that the ith row of � is 1 in column
gi and 0 elsewhere. On the other hand, the entry Bk� in B is the edge probability
between any node in community k and any node in community �. Given (�,B),
the adjacency matrix A = (aij )1≤i,j≤n is generated as

aij =
⎧⎪⎨
⎪⎩

independent Bernoulli(Bgigj
), if i < j,

10, if i = j,

aji, if i > j.

The goal of community recovery is to recover the membership matrix � up to
column permutations. Throughout this article, we assume that the number of com-
munities, K , is known. For an estimate �̂ ∈ Mn,K of the node memberships, we
consider two measures of estimation error. The first one is an overall relative error

L(�̂,�) = n−1 min
J∈EK

‖�̂J − �‖0,
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where EK is the set of all K × K permutation matrices. Because both �̂J and
� are membership matrices, we have ‖�̂J − �‖0 = ‖�̂J − �‖2

F . This quantity
measures the overall proportion of mis-clustered nodes.

The other performance criterion measures the worst case relative error over all
communities:

L̃(�̂,�) = min
J∈EK

max
1≤k≤K

n−1
k

∥∥(�̂J )Gk∗ − �Gk∗
∥∥

0.

It is obvious that 0 ≤ L(�̂,�) ≤ L̃(�̂,�) ≤ 2. Thus, L̃ is a stronger criterion than
L in that it requires the estimator to do well for all communities, while an estimator
�̂ with small L(�̂,�) may have large relative errors for some small communities.

2.2. Spectral clustering. Spectral clustering is a simple method for commu-
nity recovery [Jin (2012), Rohe, Chatterjee and Yu (2011), von Luxburg (2007)].
In a SBM, the heuristic of spectral clustering is to relate the eigenvectors of A to
those of P := �B�T using the fact that E(A) = P − diag(P ). Let P = UDUT

be the eigen-decomposition of P with UT U = IK and D ∈ R
K×K diagonal, then

it is easy to see that U has only K distinct rows since P has only K distinct rows.
Under mild conditions, it is also the case that two nodes are in the same commu-
nity if and only if their corresponding rows in U are the same. This is formally
stated in the following lemma.

LEMMA 2.1 (Basic eigen-structure of SBMs). Let the pair (�,B)

parametrize a SBM with K communities, where B is full rank. Let UDUT be
the eigen-decomposition of P = �B�T . Then U = �X where X ∈ R

K×K and

‖Xk∗ − X�∗‖ =
√

n−1
k + n−1

� for all 1 ≤ k < � ≤ K .

PROOF. Let � = diag(
√

n1, . . . ,
√

nK) then

P = �B� = ��−1�B�
(
��−1)T

.(2.1)

It is straightforward to verify that ��−1 is orthonormal. Let ZDZT = �B�

be the eigen-decomposition of �B�. Thus, we have P = UDUT where U =
��−1Z. The claim follows by letting X = �−1Z and realizing that the rows of
�−1Z are perpendicular to each other and the kth row has length ‖(�Z)k∗‖ =√

1/nk . �

Based on this observation, spectral clustering tries to estimate U and its row
clustering using a spectral decomposition of A. The intuition for the procedure is
as follows. Consider the difference between A and P :

A − P = (
A −E(A)

) − diag(P ),

which is a symmetric noise matrix plus a diagonal matrix. Intuitively, the eigenvec-
tors of A will be close to those of P because the eigenvalues of P scales linearly
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Algorithm 1: Spectral clustering with approximate k-means
Input: Adjacency matrix A; number of communities K ; approximation
parameter ε.
Output: Membership matrix �̂ ∈ Mn,K .

1. Calculate Û ∈ R
n×K consisting of the leading k eigenvectors (ordered

in absolute eigenvalue) of A.
2. Let (�̂, X̂) be an (1 + ε)-approximate solution to the k-means problem

(2.3) with K clusters and input matrix Û .
3. Output �̂.

with n while the noise matrix (A−E(A)) has operator norm on the scale of
√

n and
diag(P ) is like a constant. Therefore, letting A = ÛD̂ÛT be the K-dimensional
eigen-decomposition of A corresponding to the K largest absolute eigenvalues,
we can see that Û should have roughly K distinct rows because they are slightly
perturbed versions of the rows in U . Then one should be able to obtain a good
community partition by applying a clustering algorithm on the rows of Û . In this
paper we consider the k-means clustering, defined as

(�̂, X̂) = arg min
�∈Mn,K ,X∈RK×K

‖�X − Û‖2
F .(2.2)

It is known that finding a global minimizer for the k-means problem (2.2) is NP-
hard [see, e.g., Aloise et al. (2009)]. However, efficient algorithms exist for finding
an approximate solution whose value is within a constant fraction of the optimal
value [Kumar, Sabharwal and Sen (2004)]. That is, there are polynomial time al-
gorithms that find

(�̂, X̂) ∈ Mn,K ×R
K×K

(2.3)
s.t. ‖�̂X̂ − Û‖2

F ≤ (1 + ε) min
�∈Mn,K ,X∈RK×K

‖�X − Û‖2
F .

The spectral clustering algorithm we consider here is summarized in Algorithm 1.

2.3. Sparsity scaling. Real-world large scale networks are usually sparse, in
the sense that the number of edges from a node (the node degree) are very small
compared to the total number of nodes. Generally speaking, community recov-
ery is hard when data is sparse. As a result, an important criterion of evaluating a
community recovery method is its performance under different levels of sparsity
(usually measured in the error rate as a function of the average/maximum degree).
The following prototypical example exemplifies well the roles played by network
sparsity as well as other model parameters in determining the hardness of commu-
nity recovery.
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EXAMPLE 2.2. Consider a SBM with K communities parameterized by
(�,B) where

B = αnB0; B0 = λIK + (1 − λ)1K1T
K, 0 < λ < 1,(2.4)

IK is the K × K identity matrix, and 1K is the K × 1 vector of 1’s.

Example 2.2 assumes that the edge probability between any pair of nodes de-
pends only on whether they belong to the same community. In particular, the edge
probability is αn within community and αn(1 −λ) between community. The quan-
tity λ reflects the relative difference in connectivity between communities and
within communities. The network sparsity is captured by αn, where nαn provides
an upper bound on the average (and maximum in this example) expected node de-
gree. It can be easily seen that if αn or λ are close to 0 then it is hard to identify
communities.

The hardness of community reconstruction also depends on the number of com-
munities and the community size imbalance. For example, the famous planted
clique problem concerns community recovery under a SBM with K = 2 and

B =
(

1 1/2
1/2 1/2

)
.(2.5)

In the planted clique problem, it is known that community recovery is easy if
n1 ≥ c

√
n for a constant c [see Deshpande and Montanari (2013) and references

therein] and on the other hand no polynomial time algorithms have been found to
succeed when n1 = o(

√
n).

REMARK. The primary concern of this paper is the effect of αn on the per-
formance of spectral clustering. Nevertheless, our results explicitly keep track of
other quantities such as K , λ, nmax and nmin, all of which are allowed to change
with n in a nontrivial manner. The dependence of recovery error bound on some
of these quantities, such as K and λ, is concerned by some authors, such as
Anandkumar et al. (2013), Chaudhuri, Chung and Tsiatas (2012), Chen, Sanghavi
and Xu (2012). For ease of readability, we do not always make this dependence
on n explicit in our notation.

3. Stochastic block models. Our main result provides an upper bound on rel-
ative community reconstruction error of spectral clustering for a SBM (�,B) in
terms of several model parameters.

THEOREM 3.1. Let A be an adjacency matrix generated from a stochastic
block model (�,B). Assume that P = �B�T is of rank K , with smallest absolute
nonzero eigenvalue at least γn and maxk,� Bk� ≤ αn for some αn ≥ logn/n. Let
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�̂ be the output of spectral clustering using (1 + ε)-approximate k-means (Algo-
rithm 1). There exists an absolute constant c > 0, such that, if

(2 + ε)
Knαn

γ 2
n

< c,(3.1)

then, with probability at least 1 − n−1, there exist subsets Sk ⊂ Gk for k =
1, . . . ,K , and a K × K permutation matrix J such that �̂G∗J = �G∗, where
G = ⋃K

k=1(Gk \ Sk), and
n∑

k=1

|Sk|
nk

≤ c−1(2 + ε)
Knαn

γ 2
n

.(3.2)

The proof of Theorem 3.1, given in Section 5, is modular, and can be derived
from several relatively independent lemmas.

The sets Sk (1 ≤ k ≤ K) consist of nodes in Gk for which the clustering cor-
rectness cannot be guaranteed. The permutation matrix J in the above theorem
leads to an upper bound on reconstruction error L̃(�̂,�) [and hence on L(�̂,�)]
through equation (3.2).

Condition (3.1) specifies the range of model parameters (K,n, γn,αn) for which
the result is applicable. It is included only for technical reasons, because it holds
whenever the bound in (3.2) vanishes and, therefore, implies consistency. In par-
ticular, as discussed after Corollary 3.2, we have Knαn/γ

2
n = o(1) in many inter-

esting cases. The constant c in (3.1) can be written as c = 1/(64C2) where C is
an absolute constant defined in Theorem 5.2 and can be explicitly tracked in the
proof presented in the supplementary material [Lei and Rinaldo (2014)]. The as-
sumption of αn ≥ logn/n can be changed to αn ≥ c0 logn/n for any c0 > 0, and
also the probability bound 1 − n−1 can be changed to 1 − n−r for any r > 0, with
a different constant c = c(c0, r) in (3.1) and (3.2).

While Theorem 3.1 provides a general error bound for spectral clustering, the
quantities involved are not in the most transparent form. For example, the bound
does not clearly reflect the intuition that the error should increase when αn de-
creases. This is because the quantity γn contains the parameter αn. Also the de-
pendence on the community size imbalance as well as the community separation
(which corresponds to the parameter λ in Example 2.2) remains unclear. The next
corollary illustrates the error bound in terms of these model parameters.

COROLLARY 3.2. Let A be an adjacency matrix from the SBM (�,B), where
B = αnB0 for some αn ≥ logn/n and with B0 having minimum absolute eigen-
value ≥ λ > 0 and maxk� B0(k, �) = 1. Let �̂ be the output of spectral clustering
using (1 + ε)-approximate k-means (Algorithm 1). Then there exists an absolute
constant c such that if

(2 + ε)
Kn

n2
minλ

2αn

< c(3.3)
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then with probability at least 1 − n−1,

L̃(�̂,�) ≤ c−1(2 + ε)
Kn

n2
minλ

2αn

and

L(�̂,�) ≤ c−1(2 + ε)
Kn′

max

n2
minλ

2αn

.

In the special case of a balanced community sizes [i.e., nmax/nmin = O(1)]
and constant λ, if αn = �(logn/n), then L(�̂,�) = OP (K2(nαn)

−1) = OP (K2/

logn). Thus L(�̂,�) = oP (1) if K = o(
√

logn). This improves the results in
Rohe, Chatterjee and Yu (2011) where αn needs to be of order 1/ logn for a similar
result.

In Example 2.2, the smallest nonzero eigenvalue of B0 is λ. Recall that λ is the
relative difference of within- and between-community edge probabilities. Corol-
lary 3.2 then implies that when this relative difference stays bounded away from
zero, the communities can be consistently recovered by simple spectral clustering
as long as the expected node degrees are no less than logn. On the other hand,
when αn is constant and λ = λn varies with n, spectral clustering can recover the
communities when the relative edge probability gap grows faster than 1/

√
n.

In the planted clique problem, L(�̂,�) has limited meaning because a trivial
clustering putting all nodes in one cluster achieves L(�̂,�) = 2nmin/n which is
o(1) in the most interesting regime. Therefore, it makes more sense to consider
L̃(�̂,�). Now B0 = B is given by (2.5), with minimum eigenvalue > 0.19. Ap-
plying Corollary 3.2 with K = 2, λ = 0.19, αn = 1, and any fixed ε > 0, we have

L̃(�̂,�) < c′ n

n2
min

,

provided that c′n/n2
min < 1, where c′ is a different absolute constant. Therefore,

when nmin ≥ √
an for some a > c′, �̂ recovers the hidden clique with a relative

error no larger than c′/a. Thus, our result reaches the well believed computation
barrier [up to constant factor, see Deshpande and Montanari (2013) and references
therein] of the planted clique problem.

There are spectral methods other than spectral clustering that can provide con-
sistent community recovery. One such well-known method is the procedure an-
alyzed by McSherry (2001). The planted partition problem in that setting corre-
sponds to the problem of recovering the community memberships in the SBM. To
simplify the presentation and focus on the dependence of network sparsity, we con-
sider the SBM in Example 2.2 with two equal-sized communities and a constant
λ ∈ (0,1). According to Theorem 4 in McSherry (2001), that method can recover
the true communities with probability at least 1 − n−1 provided that, after some
simplification,

λ2α2
nn > cσ 2

n logn and σ 2
n > (logn)6/n,(3.4)
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for some constant c, where σ 2
n is an upper bound on the maximal variance of the

edges. Therefore, the condition (3.4) implies that αn >
√

cλ−1(logn)3.5/n, which
is stronger than the condition in our Corollary 3.2.

4. Degree corrected stochastic block models. The degree corrected block
model [DCBM, Karrer and Newman (2011)] extends the standard SBM by intro-
ducing node specific parameters to allow for varying degrees even within the same
community. A DCBM is parameterized by a triplet (�,B,ψ), where, in addition
to the membership matrix � and connectivity matrix B , the vector ψ ∈ R

n is in-
cluded to model additional variability of the edge probabilities at the node level.
Given (�,B,ψ), the edge probability between nodes i and j is ψiψjBgigj

(recall
that gi is the community label of node i). Similar to the SBM, the DCBM also
assumes independent edge formation given (�,B,ψ). The inclusion of ψ raises
an issue of identifiability. So we assume that maxi∈Gk

ψi = 1 for all k = 1, . . . ,K .
The SBM can be viewed as a special case of DCBM with ψi = 1 for all i. The
DCBM greatly enhances the flexibility of modeling degree heterogeneity and is
able to fit network data with arbitrary degree distribution. Successful application
and theoretical developments can be found in Zhao, Levina and Zhu (2012) for
likelihood methods, and in Chaudhuri, Chung and Tsiatas (2012), Jin (2012) for
spectral methods.

Additional notation about the degree heterogeneity. Let φk be the n × 1 vector
that agrees with ψ on Gk and zero otherwise. Define φ̃k = φk/‖φk‖ and ψ̃ =∑K

k=1 φ̃k . Let �̃ be a normalized membership matrix such that �̃(i, k) = ψ̃i if
i ∈ Gk and �̃(i, k) = 0 otherwise. We also define effective community size ñk :=
‖φk‖2. Let ñmin = mink ñk and ñmax = maxk ñk .

The spectral clustering heuristic can be extended to DCBMs by considering the
eigen-decomposition P = UDUT where P = diag(ψ)�B�T diag(ψ). Now the
matrix U may have more than K distinct rows due to the effect of ψ . However,
the rows of U point to at most K distinct directions [Jin (2012)]. The following
lemma is the analogue of Lemma 2.1 for DCBMs.

LEMMA 4.1 (Spectral structure of mean matrix in DCBM). Let UDUT be the
eigen-decomposition of P = diag(ψ)�B�T diag(ψ) in a DCBM parameterized
by (�,B,ψ). Then there exists a K × K orthogonal matrix H such that

Ui∗ = ψ̃iHk∗ ∀1 ≤ k ≤ K, i ∈ Gk.

PROOF. First, realize that diag(ψ)� = �̃ , where  = diag(‖φ1‖, . . . ,
‖φK‖).

P = diag(ψ)�B�T diag(ψ) = �̃B�̃T = �̃HD(�̃H)T ,(4.1)

where B = HDHT is the eigen-decomposition of B . Note that �̃T �̃ =
IK so �̃HD(�̃H)T is an eigen-decomposition of P . �
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As a result, finding the true community partition corresponds to clustering the
directions of the row vectors in U , where some form of normalization must be
employed in order to filter out the nuisance parameter ψ . In particular, we con-
sider spherical clustering, which looks for a cluster structure among the rows of a
normalized matrix U ′ with U ′

i∗ = Ui∗/‖Ui∗‖.
In addition to the overall sparsity, the difficulty of community recovery in a

DCBM is also affected by small entries of ψ . Intuitively, if ψi ≈ 0, then it is hard
to identify the community membership of node i because few edges are observed
for this node. However, the interaction between small entries of ψ and the overall
network sparsity (the maximum/average degree) has not been well understood. In
the analysis of profile likelihood methods, Zhao, Levina and Zhu (2012) assume
that the entries of ψ are fixed constants. In spectral clustering, Jin (2012) allows
milder conditions on ψ but needs the average degree to be polynomial in n.

Our analysis uses the following quantity as a summarizing measure of node
heterogeneity in each community Gk :

νk := n−2
k

∑
i∈Gk

ψ̃−2
i , k = 1,2, . . . ,K.

By definition νk ∈ [1,∞) and a larger νk indicates a stronger heterogeneity in the
kth community. On the other hand, νk = 1 indicates within-community homogene-
ity (ψi = 1 for all i ∈ Gk).

The argument developed for SBMs in previous sections can be extended to
cover very general degree corrected models. In particular, let Û ∈ R

n×K consist
the K leading eigenvectors of A. We consider the following spherical k-median
spectral clustering:

minimize�∈Mn,K,X∈RK×K

∥∥�X − Û ′∥∥
2,1,(4.2)

where Û ′ is the row-normalized version of Û and ‖M‖2,1 = ∑
i=1 ‖Mi∗‖ is the

matrix (2,1)-norm. We will not require to solve (4.2) exactly but instead we con-
sider a (1 + ε) approximation (�̂, X̂) to the k-median problem, which can be
solved in polynomial time when ε >

√
3 [Charikar et al. (1999), Li and Svens-

son (2013)]. The practical procedure will also take care of the possible zero rows
in Û and is described in detail in Algorithm 2.

4.1. Analysis of spherical k-median spectral clustering for DCBM. We have
the following main theorem for spherical k-median spectral clustering in DCBMs.
It is proved in Appendix A.3.

THEOREM 4.2 (Main result for DCBM). Consider a DCBM (�,B,ψ) with
K communities, where P = diag(ψ)�B�T diag(ψ) has rank K , the smallest
nonzero absolute eigenvalue at least γn, and the maximum entry bounded from



226 J. LEI AND A. RINALDO

Algorithm 2: Spherical k-median spectral clustering
Input: Adjacency matrix A; number of communities K ; approximation
parameter ε.
Output: Membership matrix �̂ ∈ Mn,K .

1. Calculate Û ∈ R
n×K consisting of the leading k eigenvectors (ordered

in absolute eigenvalue) of A.
2. Let I+ = {i :‖Ûi∗‖ > 0} and Û+ = (ÛI+∗).
3. Let Û ′ be row-normalized version of Û+.
4. Let (�̂+, X̂) be an (1 + ε)-approximate solution to the k-median prob-

lem with K clusters and input matrix Û ′.
5. Output �̂ with �̂i∗ being the corresponding row in �̂+ if i ∈ I+, and

�̂i∗ = (1,0, . . . ,0) if i /∈ I+.

above by αn ≥ logn/n. There exists an absolute constant c > 0 such that if

(2.5 + ε)

√
Knαn

γn

< c
nmin√∑K
k=1 n2

kνk

(4.3)

then, with probability at least 1 − n−1,

L(�̂,�) ≤ c−1(2.5 + ε)

√√√√ K∑
k=1

n2
kνk

√
Kαn

γn

√
n

.(4.4)

REMARK. The constant c equals 1/(8C) where C is the universal constant in
Theorem 5.2. The condition on αn and probability guarantee can also be changed
to α0 ≥ c0 logn/n and 1 − n−r , respectively, with a different constant c = c(c0, r)

in equations (4.3) and (4.4).

Theorem 4.2 immediately implies a counterpart of Corollary 3.2 under more
explicit scaling of the model parameters.

COROLLARY 4.3. Let A be an adjacency matrix from DCBM (�,B,ψ), such
that B = αnB0 for some αn ≥ logn/n where B0 has minimum absolute eigenvalue
λ > 0 and maxk� B0(k, �) = 1. Let (�̂, X̂) be an (1 + ε)-approximate solution to
the spherical k-median algorithm (Algorithm 2). There exists an absolute constant
c such that if

(2.5 + ε)

√
Kn

ñminλ
√

αn

< c
nmin√∑K
k=1 n2

kνk

,
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then, with probability at least 1 − n−1,

L(�̂,�) ≤ c−1(2.5 + ε)

√
K

ñminλ
√

nαn

√√√√ K∑
k=1

n2
kνk.

Comparing with Theorem 3.1 and Corollary 3.2, the results for DCBM are dif-
ferent in two major aspects. First, the DCBM condition (4.3) involves the term
n2

min/
∑K

k=1 n2
kνk which is smaller than 1 (indeed smaller than 1/K). This makes

(4.3) more stringent than (3.1). Also the upper bound on L(�̂,�) is different in
the same manner. Furthermore, the argument used to prove Theorem 4.2 is not
likely to provide a sharp upper bound on L̃(�̂,�). We believe this has to do with
the additional normalization step used in the spherical k-median algorithm as well
as the specific strategy used in our proof.

To better understand this result, consider Example 2.2 with balanced community
size: nmax/nmin = O(1). To work with a DCBM, assume in addition that the node
degree vector ψ has comparable degree heterogeneity across communities: c1ν ≤
νk ≤ c2ν for constants c1, c2. Then Corollary 4.3 implies an overall relative error
rate

L(�̂,�) = OP

( √
ν

ñminλ
√

nαn

)
.(4.5)

Several observations are worth mentioning. First, the error rate depends on ν, the
degree heterogeneity measure, in a simple manner. Second, the community size
nmin that appears in Corollary 3.2 is replaced by ñmin = mink ‖φk‖, the minimum
effective sample size. Roughly speaking, ñmin � nmin as long as a constant fraction
of nodes have their ψi’s bounded away from zero (but the rest should not be too
small in order to keep ν small). Third, if there is no degree heterogeneity (νk ≡ 1
and ñmin = nmin), then the rate in (4.5) is the square root of that given by Corol-
lary 3.2. This is due to the additional normalization step (which is not necessary
since ν = 1) involved in spherical k-median and the different argument used to
analyze the spherical k-median algorithm. Moreover, the relative error can still be
oP (1) even when αn is as small as logn/n, provided that 1/ν, ñmin/n, and λ stay
bounded away from zero or approach zero sufficiently slowly.

Comparisons with existing work. There are relatively fewer results for com-
munity recovery in degree corrected block models that allow the maximum node
degree to be of order o(n). Chaudhuri, Chung and Tsiatas (2012) extended the
method of McSherry (2001) to degree corrected block models. In the setting of
Example 2.2 with equal community size, their main result (Theorems 2 and 3 in
their paper) requires αn to be at least of order 1/

√
n. A similar requirement of a

polynomial growth of expected average degree is implicitly imposed in Jin (2012),
who first studied the performance of normalized k-means spectral clustering in
degree corrected block models.
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5. Proof of the main results. In this section, we present a general scheme to
prove error bounds for spectral clustering. It contains the SBM as a special case
and can be easily extended to the degree corrected block model. Our argument
consists of three parts: (1) control the perturbation of principal subspaces for gen-
eral symmetric matrices, (2) bound the spectrum of random binary matrices, and
(3) error bound of k-mean and spherical k-median clustering.

5.1. Principal subspace perturbation. The first ingredient of our proof is to
bound the difference between the eigenvectors of A and those of P , where A can
be viewed as a noisy version of P .

LEMMA 5.1 (Principal subspace perturbation). Assume that P ∈ R
n×n is a

rank K symmetric matrix with smallest nonzero singular value γn. Let A be any
symmetric matrix and Û ,U ∈ R

n×K be the K leading eigenvectors of A and P ,
respectively. Then there exists a K × K orthogonal matrix Q such that

‖Û − UQ‖F ≤ 2
√

2K

γn

‖A − P‖.

Lemma 5.1 is proved in Appendix A.1, which is based on an application of the
Davis–Kahan sin� theorem [Theorem VII.3.1 of Bhatia (1997)]. The presence of
a K × K orthonormal matrix Q in the statement of Lemma 5.1 is to take care of
the situation where some leading eigenvalues have multiplicities larger than one.
In this case, the eigenvectors are determined only up to a rotation.

5.2. Spectral bound of binary symmetric random matrices. The next theorem
provides a sharp probabilistic upper bound on ‖A − P‖ when A is a random adja-
cency matrix with E(aij ) = pij .

THEOREM 5.2 (Spectral bound of binary symmetric random matrices). Let
A be the adjacency matrix of a random graph on n nodes in which edges occur
independently. Set E[A] = P = (pij )i,j=1,...,n and assume that nmaxij pij ≤ d for
d ≥ c0 logn and c0 > 0. Then, for any r > 0 there exists a constant C = C(r, c0)

such that

‖A − P‖ ≤ C
√

d

with probability at least 1 − n−r .

This result does not follow conventional matrix concentration inequalities such
as the matrix Bernstein inequality (which will only give

√
d logn). Lu and Peng

(2012) use a path counting technique in random matrix theory to prove a bound of
the same order but require a maximal degree d ≥ c0(logn)4.
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The proof of Theorem 5.2 is technically involved, as it uses combinatorial argu-
ments in order to derive spectral bounds for sparse random matrices. Our proof is
based on techniques developed by Feige and Ofek (2005) for bounding the second
largest eigenvalue of an Erdös–Réyni random graph with edge probability d/n.
The full proof is provided in Lei and Rinaldo (2014). Here we give a brief outline
of the three major steps.

Step 1: Discretization. We first reduce controlling ‖A − P‖ to the problem of
bounding the supremum of |xT (A − P)y| over all pairs of vectors x, y in a finite
set of grid points. For any given pair (x, y) in the grid, the quantity xT (A − P)y

is decomposed into the sum of two parts. The first part corresponds to the small
entries of both x and y, called light pairs, the other part corresponds to the larger
entries of x or y, the heavy pairs.

Step 2: Bounding the light pairs. The next step is to use Bernstein’s inequality
and the union bound to control the contribution of the light pairs, uniformly over
the points in the grid.

Step 3: Bounding the heavy pairs. In the final step, the contribution from the
heavy pairs, which cannot be simply bounded by conventional Bernstein’s inequal-
ity, will be bounded using a combinatorial argument on the event that the edge
numbers in a collection of subgraphs do not deviate much from their expectation.
A sharp large deviation bound for sums of independent Bernoulli random variables
[Corollary A.1.10 of Alon and Spencer (2004)] is used to achieve better rate than
standard Bernstein’s inequality.

5.3. Error bound of k-means/k-median on perturbed eigenvectors. Spectral
clustering (or spherical spectral clustering) applies a clustering algorithm to a ma-
trix consisting of the eigenvectors of A, which is close (in view of Lemma 5.1 and
Theorem 5.2) to a matrix whose rows can be perfectly clustered. We would like to
bound the clustering error in terms of the closeness between the real input matrix
Û and the ideal input matrix U .

The next lemma generalizes an argument used in Jin (2012) and provides an
error bound for any (1 + ε)-approximate k-means solution.

LEMMA 5.3 (Approximate k-means error bound). For ε > 0 and any two ma-
trices Û ,U ∈ R

n×K such that U = �X with � ∈ Mn,K , X ∈ R
K×K , let (�̂, X̂)

be a (1 + ε)-approximate solution to the k-means problem in equation (2.2) and
Ū = �̂X̂. For any δk ≤ min� �=k ‖X�∗ − Xk∗‖, define Sk = {i ∈ Gk(�) :‖Ūi∗ −
Ui∗‖ ≥ δk/2} then

K∑
k=1

|Sk|δ2
k ≤ 4(4 + 2ε)‖Û − U‖2

F .(5.1)

Moreover, if

(16 + 8ε)‖Û − U‖2
F /δ2

k < nk for all k,(5.2)



230 J. LEI AND A. RINALDO

then there exists a K × K permutation matrix J such that �̂G∗ = �G∗J , where
G = ⋃K

k=1(Gk \ Sk).

Lemma 5.3 provides a performance guarantee for approximate k-means clus-
tering under a deterministic Frobenius norm condition on the input matrix. As
suggested by a referee, the proof of Lemma 5.3 shares some similarities with the
proof of Theorem 3.1 in Awasthi and Sheffet (2012) [see also Kumar and Kan-
nan (2010)], though our assumptions are slightly different. For completeness we
provide a short and self-contained proof of Lemma 5.3 in Appendix A.2, giving
explicit constant factors in the result.

5.4. Proof of main results for SBM. We first prove Theorem 3.1.

PROOF OF THEOREM 3.1. Combining Lemma 5.1 and Theorem 5.2, we ob-
tain that, for some K-dimensional orthogonal matrix Q,

‖Û − UQ‖F ≤ 2
√

2K

γn

‖A − P‖ ≤ 2
√

2K

γn

C
√

nαn,(5.3)

with probability at least 1 − n−1, where C is the absolute constant involved in
Theorem 5.2. (Notice that the term d in Theorem 5.2 becomes nαn in the current
setting.)

The main strategy for the rest of the proof is to apply Lemma 5.3 to Û and UQ.
To that end, Lemma 2.1 implies that UQ = �XQ = �X′ where ‖X′

k∗ − X′
�∗‖ =√

1
nk

+ 1
n�

. As a result, we can choose δk =
√

1/nk + 1
max{n�:� �=k} in Lemma 5.3 and

hence nkδ
2
k ≥ 1 for all k. Using (5.3), a sufficient condition for (5.2) to hold is

(16 + 8ε)8C2K
nαn

γ 2
n

≤ 1 ≤ min
1≤k≤K

nkδ
2
k ,(5.4)

so that (3.1) indeed implies (5.2) by setting c = 1
64C2 . In detail, the choice of δk =

1/
√

nk together with (5.1) yields that

K∑
k=1

|Sk|
(

1

nk

+ 1

max{n� : � �= k}
)

=
K∑

k=1

|Sk|δ2
k ≤ 4(4 + 2ε)‖Û − UQ‖2

F ,

which, combined with (5.3), gives (3.2):

K∑
k=1

|Sk|
nk

≤ 4(4 + 2ε)8C2 Knαn

γ 2
n

= c−1(2 + ε)
Knαn

γ 2
n

.

Since Lemma 5.3 ensures that the membership is correctly recovered outside of⋃
1≤k≤K Sk , the claim follows. �
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PROOF OF COROLLARY 3.2. It is easy to see, for example, from (2.1), that
in this specific stochastic block model setting, γn = nminαnλ. Then the proof of
Theorem 3.1 applies with γn = nminαnλ and gives

K∑
k=1

|Sk|
(

1

nk

+ 1

max{n� : � �= k}
)

≤ 64C2(2 + ε)
Kn

n2
minλ

2αn

,

which implies that

L̃(�̂,�) ≤ max
1≤k≤K

|Sk|
nk

≤ ∑
1≤k≤K

|Sk|
nk

≤ 64C2(2 + ε)
Kn

n2
minλ

2αn

,

and, recalling that n′
max is the second largest community size,

L(�̂,�) ≤ 1

n

K∑
k=1

|Sk| ≤ 64C2(2 + ε)
Kn′

max

n2
minλ

2αn

.
�

6. Concluding remarks. The analysis in this paper applies directly to the
eigenvectors of the adjacency matrix, by combining tools in subspace perturbation
and spectral bounds of binary random graphs. In the literature, spectral cluster-
ing using the graph Laplacian or its variants is very popular and can sometimes
lead to better empirical performance [Rohe, Chatterjee and Yu (2011), Sarkar and
Bickel (2013), von Luxburg (2007)]. An important future work would be to ex-
tend some of the results and techniques in this paper to spectral clustering using
the graph Laplacian. The graph Laplacian normalizes the adjacency matrix by the
node degree, which can introduce extra noise if the network is sparse and many
node degrees are small. In several recent works, Chaudhuri, Chung and Tsiatas
(2012), Qin and Rohe (2013) studied graph Laplacian based spectral clustering
with regularization, where a small constant is added to all node degrees prior to
the normalization. Further understanding the bias-variance trade off would be both
important and interesting.

For degree corrected block models, regularization methods may also lead to
error bounds with better dependence on small entries of ψ . The intuition is that
νk can be very large even when only one ψi is very close to zero. In this case,
one should be able to simply discard nodes like this and work on those with large
enough degrees. Finding the correct regularization to diminish the effect of small-
degree nodes and analyzing the new algorithm will be pursued in future work.

This paper aims at understanding the performance of spectral clustering in
stochastic block models. While our main focus is the performance of spectral
clustering as the network sparsity changes, the resulting error bounds explicitly
keep track of five independent model parameters (K , αn, λ, nmin, nmax). Existing
results usually develop error bounds depending on a subset of these parameters,
keeping others as constant [see, e.g., Bickel and Chen (2009), Chen, Sanghavi and
Xu (2012), Zhao, Levina and Zhu (2012)]. In the planted clique model, our result
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implies that spectral clustering can find the hidden clique when its size is at least
c
√

n for some large enough constant c. Our result also provides good insight in
understanding the impact of the number of clusters and separation between com-
munities. For instance, in Example 2.2, let αn ≡ 1, nmax = nmin = n/K . Then
Corollary 3.2 implies that spectral clustering is consistent if K2/(nλ2) → 0. More
generally, the guarantees of Corollary 3.2 compares favorably against most exist-
ing results as summarized in Chen, Sanghavi and Xu (2012), in terms of allowable
cluster size, density gap and overall sparsity. It would be interesting to develop
a unified theoretical framework (e.g., minimax theory) such that all methods and
model parameters can be studied and compared together.

APPENDIX: TECHNICAL PROOFS

For any two matrices A and B of the same dimension, we use the notation
〈A,B〉 = trace(AT B) for the standard matrix inner product.

A.1. Proof of Lemma 5.1. By Proposition 2.2 of Vu and Lei (2013), there
exists a K-dimensional orthogonal matrix Q such that

1√
2K

‖Û − UQ‖F ≤ 1√
K

∥∥(
I − Û ÛT )

UUT
∥∥
F ≤ ∥∥(

I − Û ÛT )
UUT

∥∥.
Next, we establish that ‖(I − Û ÛT )UUT ‖ ≤ 2‖A−P‖

γn
. If ‖A − P‖ ≤ γn/2, then

by Davis–Kahan sin� theorem, we have

∥∥(
I − Û ÛT )

UUT
∥∥ ≤ ‖A − P‖

γn − ‖A − P‖ ≤ 2
‖A − P‖

γn

.

If ‖A − P‖ > γn/2, then

∥∥(
I − Û ÛT )

UUT
∥∥ ≤ 1 ≤ 2

‖A − P‖
γn

.

A.2. Proof of Lemma 5.3. First, by the definition of Ū and the fact that U is
feasible for problem (2.2), we have ‖Ū − U‖2

F ≤ 2‖Ū − Û‖2
F + 2‖Û − U‖2

F ≤
(4 + 2ε)‖Û − U‖2

F . Then

K∑
k=1

|Sk|δ2
k/4 ≤ ‖Ū − U‖2

F ≤ (4 + 2ε)‖Û − U‖2
F ,(A.1)

which concludes the first claim of the lemma.
Under the assumption described in the second part of the lemma, equation (A.1)

further implies that

|Sk| ≤ (16 + 8ε)‖Û − U‖2
F /δ2

k < nk for all k.
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Therefore, Tk ≡ Gk \ Sk �= ∅, for each k. If i ∈ Tk and j ∈ T� with k �= �, then
Ūi∗ �= Ūj∗ because otherwise max(δk, δ�) ≤ ‖Ui∗ −Uj∗‖ ≤ ‖Ui∗ − Ūi∗‖+‖Uj∗ −
Ūj∗‖ < δk/2 + δ�/2, which is impossible. This further implies that Ū has exactly
K distinct rows, because the number of distinct rows is no larger than K as part of
the constraints of the optimization problem (2.2).

On the other hand, if i and j are both in Tk , for some k, then Ūi∗ = Ūj∗ because
otherwise there would be more than K distinct rows since there are at least K − 1
other rows occupied by members in T� for � �= k.

As a result, Ūi∗ = Ūj∗ if i, j ∈ Tk for some k, and Ūi∗ �= Ūj∗ if i ∈ Tk , j ∈ T�

with k �= �. This gives a correspondence of clustering between the rows in ŪT ∗
and those in UT ∗ where T = ⋃K

k=1 Tk .

A.3. Proofs for degree corrected block models. The argument fits very well
in the general argument developed in Section 5. Then Lemma 5.1 and Theorem 5.2
still apply and

P

[
‖Û − UQ‖F ≤ 2

√
2C

√
Knαn

γn

for some QQT = IK

]
≥ 1 − n−1,(A.2)

where C is the constant in Theorem 5.2.
For presentation simplicity, in the following argument we will work with Q =

IK . The general case can be handled in the same manner with more complicated
notation (simply substitute U by UQ).

To prove Theorem 4.2, we first give a bound on the zero rows in Û . Recall that
I+ = {i : Ûi∗ �= 0}. Define I0 = I c+.

LEMMA A.1 (Number of zero rows in Û ). In a DCBM (�,B,ψ) satisfying
the conditions of Theorem 4.2, let Û and U be the leading eigenvectors of A and P ,
respectively. Then

|I0| ≤
√√√√ K∑

k=1

n2
kνk‖Û − U‖F .

PROOF. Use Cauchy–Schwarz:

‖Û − U‖2
F ≥

n∑
i=1

1(Ûi∗ = 0)‖Ui∗‖2 ≥ (
∑n

i=1 1(Ûi∗ = 0))2∑n
i=1 ‖Ui∗‖−2 = |I0|2∑K

k=1 n2
kνk

.
�

We also need the following simple fact about the distance between normalized
vectors.

FACT. For two nonzero vectors v1, v2 of same dimension, we have ‖ v1‖v1‖ −
v2‖v2‖‖ ≤ 2 ‖v1−v2‖

max(‖v1‖,‖v2‖) .
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PROOF. Without loss of generality, assume ‖v1‖ ≥ ‖v2‖. Then∥∥∥∥ v1

‖v1‖ − v2

‖v2‖
∥∥∥∥ =

∥∥∥∥ v1

‖v1‖ − v2

‖v1‖ + v2

‖v1‖ − v2

‖v2‖
∥∥∥∥

≤ ‖v1 − v2‖
‖v1‖ + ‖v2‖|‖v1‖ − ‖v2‖|

‖v1‖‖v2‖ ≤ 2
‖v1 − v2‖

‖v1‖ . �

PROOF OF THEOREM 4.2. Recall that U ′ is the row-normalized version of U .
Let U ′′ = U ′

I+∗ be the sub-matrix of U ′ corresponding to the nonzero rows in Û .
Then

∥∥Û ′ − U ′′∥∥
2,1 ≤ 2

n∑
i=1

‖Ûi∗ − Ui∗‖
‖Ui∗‖

≤ 2

√√√√ n∑
i=1

‖Ûi∗ − Ui∗‖2
n∑

i=1

‖Ui∗‖−2 ≤ 2

√√√√‖Û − U‖2
F

K∑
k=1

n2
kνk.

Now we can bound the (2,1) distance between an approximate solution of k-
median problem (4.2) and the targeted solution U ′′.∥∥�̂+X̂ − U ′′∥∥

2,1 ≤ ∥∥�̂+X̂ − Û ′∥∥
2,1 + ∥∥Û ′ − U ′′∥∥

2,1

≤ (2 + ε)
∥∥Û ′ − U ′′∥∥

2,1.

Let S = {i ∈ I+ :‖�̂i∗X̂ − U ′
i∗‖ ≥ 1√

2
}. The size of S can be bounded using a

similar argument as in the proof of Lemma A.1.

|S| 1√
2

≤ ∥∥�̂+X̂ − U ′′∥∥
2,1 ≤ (2 + ε)

∥∥Û ′ − U ′′∥∥
2,1

≤ 2(2 + ε)

√√√√ K∑
k=1

n2
kνk‖Û − U‖F ,

which implies

|S| ≤ 2
√

2(2 + ε)

√√√√ K∑
k=1

n2
kνk‖Û − U‖F .(A.3)

On the event in (A.2) (recall that we assume Q = I ), (A.3) and Lemma A.1
implies

|S| + |I0| ≤ (2.5 + ε)8C

√
Knαn

γn

√√√√ K∑
k=1

n2
kνk.(A.4)

Combining this with condition (4.3) implies |S| + |I0| < nk for all k and hence
Gk ∩ (I+ \ S) �= ∅. Therefore, for any two rows in G := I+ \ S, if they are in
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different clusters of � then they must be in different clusters of �̂ (otherwise,
‖U ′

i∗ − U ′
j∗‖ ≤ ‖U ′

i∗ − �̂i∗X̂‖ + ‖�̂j∗X̂ − U ′
j∗‖ <

√
2).

As a consequence, the mis-clustered nodes are no more than I0 ∪ S, and the
number is bounded by the right-hand side of (A.4). The claimed result follows by
choosing c = 8C. �
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