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Abstract

Many nonlinear time series models have been proposed in the last decades. Among them, the mod-
els with regime switchings provide a class of versatile and interpretable models which have received a
particular attention in the literature. In this paper, we consider a large family of such models which
generalize the well known Markov-switching AutoRegressive (MS-AR) by allowing non-homogeneous
switching and encompass Threshold AutoRegressive (TAR) models. We prove various theoretical
results related to the stability of these models and the asymptotic properties of the Maximum Like-
lihood Estimates (MLE). The ability of the model to catch complex nonlinearities is then illustrated
on various time series.

Keywords: Markov-switching autoregressive process, non-homogeneous hidden Markov process,
maximum likelihood, consistency, stability, lynx data, wind direction

Introduction

Recent decades have seen extensive interest in time series models with regime switchings. One of the
most influential paper in this field is the one by Hamilton in 1989 (see [?]) where Markov-Switching
AutoRegressive (MS-AR) models were introduced. It became one of the most popular nonlinear time
series model. MS-AR models combine several autoregressive models to describe the evolution of the
observed process {Yk} at different periods of time, the transition between these autoregressive models
being controlled by a hidden Markov chain {Xk}. In most applications, it is assumed that {Xk} is an
homogeneous Markov chain. In this work, we relax this assumption and let the evolution of {Xk} depend
on lagged values of {Yk} and exogenous covariates.

More formally, we assume that Xk takes its values in a compact metric space E endowed with a finite
Borel measure mE and that Yk takes its values in a complete separable metric space K endowed with
a non-negative Borel σ-finite measure mK and we set µ0 := mE × mK . It will be useful to denote
Y k+`
k := (Yk, ..., Yk+`), y

k+`
k := (yk, ..., yk+`) (and to use analogous notations Xk+`

k , xk+`
k ) for integer k

and ` ≥ 0. The Non-Homogeneous Markov-Switching AutoRegressive (NHMS-AR) model of order s > 0
considered in this work is characterized by Hypothesis 1 below.

Hypothesis 1. The sequence {Xk, Yk}k is a Markov process of order s with values in E ×K such that,
for some parameter θ belonging to some subset Θ of Rd,

• the conditional distribution of Xk (wrt mE) given the values of {Xk′ = xk′}k′<k and {Yk′ = yk′}k′<k
only depends on xk−1 and yk−1

k−s and this conditional distribution has a probability density function
(pdf) denoted

p1,θ(xk|xk−1, y
k−1
k−s)

with respect to mE.
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• the conditional distribution of Yk given the values of {Yk′ = yk′}k′<k and {Xk′ = xk′}k′≤k only
depends on xk and yk−1

k−s and this conditional distribution has a pdf

p2,θ

(
yk|xk, yk−1

k−s
)

with respect to mK .

Let us write qθ(·|xk−1, y
k−1
k−s) for the conditional pdf (with respect to µ0) of (Xk, Yk) given (Xk−1 =

xk−1, Y
k−1
k−s = yk−1

k−s). Hypothesis 1 implies that

qθ(x, y|xk−1, y
k−1
k−s) = p1,θ(x|xk−1, y

k−1
k−s)p2,θ(y|x, yk−1

k−s).

The various conditional independence assumptions of Hypothesis 1 are summarized by the directed acyclic
graph (DAG) below when s = 1.

Hidden Regime · · · → Xk−1 → Xk → Xk+1 → · · ·
↓ ↗ ↓ ↗ ↓

Observed time series · · · → Yk−1 → Yk → Yk+1 → · · ·

This defines a general family of model which encompasses the most usual models with regime switchings.

• When p1,θ(xk|xk−1, y
k−1
k−s) does not dependent on yk−1

k−s , the evolution of the hidden Markov chain
{Xk} is homogeneous and independent of the observed process and we retrieve the usual MS-AR
models. If we further assume that p2,θ

(
yk|xk, yk−1

k−s
)

does not depend of yk−1
k−s , we obtain the Hidden

Markov Models (HMMs).

• When p1,θ(xk|xk−1, y
k−1
k−s) does not dependent on xk−1 and is parametrized using indicator functions,

we obtain the Threshold AutoRegressive (TAR) models which is an other important family of models
with regime switching in the literature (see e.g. [?]).

HMMs, MS-AR and TAR models have been used in many fields of applications and their theoretical
properties have been extensively studied (see e.g. [?], [?] and [?]).

Models with non-homogeneous Markov switchings have also been considered in the literature. In par-
ticular, they have been used to describe breaks associated with events such as financial crises or abrupt
changes in government policy in econometric time series (see [?] and references therein). They are also
popular for meteorological applications (see e.g. [?], [?], [?]) with the regimes describing the so-called
”weather types”. In most cases it is assumed that the evolution of {Xk} depends not only on lagged
values of the process of interest but also on strictly exogenous variables. In order to handle such situation,
we will denote Yk = (Zk, Rk) with {Zk} the time series of covariates and {Rk} the output time series to
be modeled. Besides Hypothesis 1, various supplementary conditional independence assumptions can be
made for specific applications. For example, in [?] it is assumed that the switching probabilities of {Xk}
only depend on the exogenous covariates

p1,θ(xk|xk−1, r
k−1
k−s , z

k−1
k−s) = p1,θ(xk|xk−1, zk−1)

that the evolution of {Zk} is independent of {Xk} and {Rk} and that Rk is conditionally independent
of Zkk−s and Rk−1

k−s given Xk

p2,θ

(
zk, rk|xk, zk−1

k−s , r
k−1
k−s
)

= pR,θ (rk|xk) pZ
(
zk|zk−1

k−s
)
.

This model, which dependence structure is summarized by the DAG below when s = 1 is often referred
as Non-Homogeneous Hidden Markov Models (NHMMs) in the literature.

Covariates · · · → Zk−1 → Zk → Zk+1 → · · ·
↘ ↘ ↘

Hidden Regime · · · → Xk−1 → Xk → Xk+1 → · · ·
↓ ↓ ↓

Output time series · · · Rk−1 Rk Rk+1 · · ·
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The most usual method to fit such models consists in computing the Maximum Likelihood Estimates
(MLE). It is indeed relatively straightforward to adapt the standard numerical estimation procedure which
are available for the homogeneous models, such as the forward-backward recursions or the EM algorithm,
to the non-homogeneous models (see e.g. [?], [?], [?]). However, we could not find any theoretical results
on the asymptotic properties of the MLE for these models and this paper aims at filling this gap.

The paper is organized as follows. In Section 1, we give general conditions ensuring the consistency of the
MLE. They include conditions on the ergodicity of the model and the identifiability of the parameters.
This is further discussed in Section 2 where we show that our general conditions apply to various specific
but representative NHMS-AR models. In Section 3, we discuss the results obtained with the model on
several time series in order to illustrate that NHMS-AR provide a wide class of flexible and interpretable
models which is able to reproduce complex features of real data sets. The proofs of some results are given
in the appendices.

1 A general consistency result of MLE for NHMS-AR models

We aim at estimating the true parameter θ∗ ∈ Θ of a NHMS-AR process (Xk, Yk)k for which only the

component {Yk} is observed. For that we consider the Maximum Likelihood Estimator (MLE) θ̂n,x0

which is defined as the maximizer of θ 7→ `n(θ, x0) for a fixed x0 ∈ E with

`n(θ, x0) = log pθ(Y
n
1 |X0 = x0, Y

0
−s+1) =

n∑
k=1

log
pθ(Y

k
1 |X0 = x0, Y

0
−s+1)

pθ(Y
k−1
1 |X0 = x0, Y 0

−s+1)
,

where pθ(Y
k
1 |X0 = x0, Y

0
−s+1) is the conditional pdf of Y k1 given (X0 = x0, Y

0
−s+1) evaluated at Y k1 , i.e.

pθ(Y
k
1 |X0 = x0, Y

0
−s+1) :=

∫
Ek

k∏
`=1

qθ(x`, Y`|x`−1, Y
`−1
`−s ) dm⊗kE (xk1).

Before stating our main result, let us precise some notations. As usual, we define the associated transition
operator Qθ as an operator acting on the set of bounded measurable functions of E ×Ks (it may also
act on other Banach spaces B) by

Qθg(x0, y
0
−s+1) = Eθ[g(X1, Y

1
−s+2)|X0 = x0, Y

0
−s+1 = y0

−s+1]

=

∫
E×K

g(x1, y
1
−s+2)qθ(x1, y1|x0, y

0
−s+1) dµ0(x1, y1).

We denote by Q∗θ the adjoint operator of Qθ defined on B′ the dual space of B (if Qθ acts on B) by

∀ν ∈ B′, ∀f ∈ B, Q∗θ(ν)(f) = ν(Qθ(f)).

For every integer k ≥ 0, the measure (Q∗θ)
k(ν) corresponds to the distribution of (Xk, Y

k
k−s+1) if {Xl, Yl}l

is the Markov chain with transition operator Qθ such that the distribution of (X0, Y
0
−s+1) is ν.

If ν ∈ B′ has a pdf h with respect to µ := mE×m⊗sK , then Q∗θν is also absolutely continuous with respect
to µ and its pdf, written Q∗θh, is given by

Q∗θh(x0, y
0
−s+1) :=

∫
E×K

qθ(x0, y0|x−1, y
−1
−s)h(x−1, y

−1
−s) dµ0(x−1, y−s).

Observe that, due to the particular form of qθ, for every integer k ≥ s and every P = (x−k, y
−k
−k−s+1) ∈

E×Ks, the measure (Q∗θ)
kδP (where δP is the Dirac measure at P ) is absolutely continuous with respect

to µ := mE ×m⊗sK ; its pdf Q∗kθ (·|P ) is given by

Q∗kθ (x0, y
0
−s+1|P ) =

∫
Ek−1×Kk−s

0∏
i=1−k

qθ(xi, yi|xi−1, y
i−1
i−s) dm

⊗(k−1)
E (x−1

−k+1)dm
⊗(k−s)
K (y−s−k+1).
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More generally, for every initial measure ν and every k ≥ s, Q∗kθ ν is absolutely continuous with respect
to µ and its pdf [Q∗kθ ν] is given by

[Q∗kθ ν](·) =

∫
E×Ks

Q∗kθ (·|P ) dν(P ). (1)

We suppose that, for every θ ∈ Θ, there exists an invariant probability measure ν̄θ for Q∗θ. Observe that,
due to (1), ν̄θ admits a pdf hθ with respect to µ.

We identify (Xk, Yk)k with the canonical Markov chain {(X0, Y0) ◦ τk}k defined on Ω+ := (E ×K)N by
X0((xk, yk)k) = x0, Y0((xk, yk)k) = y0, τ+ being the shift (τ+((xk, yk)k) = (xk+1, yk+1)k). We endow Ω+

with its Borel σ-algebra F+. We denote by P̄θ the probability measure on (Ω+,F+) associated to the
invariant measure ν̄θ and by Ēθ the corresponding expectation.

The question of consistency of the MLE has been studied by many authors in the context of usual HMMs
(see e.g. [?, ?, ?]) and MS-AR models (see [?] and references therein). The aim of this section is to state
consistency results of MLE for general NHMS-AR. The proof of the following theorem is a direct but
careful adaptation of the proof of [?, Thm. 1 & 5]. This proof is given in appendix A.

Theorem 2. Assume that Θ is compact, that (Ω,F , P̄θ∗ , τ) is ergodic, that there exists an invariant
probability measure for every θ ∈ Θ, that P̄θ∗ is absolutely continuous with respect to P̄θ for every θ ∈ Θ,
that p1 and p2 are continuous in θ. Assume also that the following conditions hold true

0 < p1,− := inf
θ,x1,x0,y0

p1,θ(x1|x0, y0) ≤ p1,+ := sup
θ,x1,x0,y0

p1,θ(x1|x0, y0) <∞, (2)

B− := Ēθ∗
[∣∣∣∣log

(
inf
θ

∫
E

p2,θ(Y0|x0, Y
−1
−s ) dmE(x0)

)∣∣∣∣] <∞, (3)

B+ := Ēθ∗
[∣∣∣∣log

(
sup
θ

∫
E

p2,θ(Y0|x0, Y
−1
−s ) dmE(x0)

)∣∣∣∣] <∞, (4)

∀θ ∈ Θ, sup
y−1
−s

∫
E

p2,θ(Y0|x, y−1
−s) dmE(x) <∞, P̄θ∗ − a.s, (5)

∀θ ∈ Θ, for µ− a.e. P ∈ E ×Ks, lim
k→+∞

||Q∗kθ (P ′|P )− hθ(P ′)||L1(µ) = 0. (6)

Then, for every x0 ∈ E, the limit values of (θ̂n,x0)n are P̄θ∗-almost surely contained in {θ ∈ Θ : P̄Yθ =
P̄Yθ∗}.

If, moreover, Qθ∗ is positive Harris recurrent and aperiodic, then, for every x0 ∈ E and every initial
probability ν, the limit values of (θ̂n,x0)n are almost surely contained in {θ ∈ Θ : P̄Yθ = P̄Yθ∗}.

Our hypotheses are very close to those of [?]. Let us point out the main differences. First, in [?]
p1,θ(x|x′, y′) does not depend on y′. Second, (4) and (5) are slightly weaker than

sup
θ,y−1
−s ,y0,x

p2,θ(y0|x, y−1
−s) <∞

assumed in [?]. This is illustrated below in Section 2.3 where the parametrization of p2 uses Gamma pdf
which may not be bounded close to the origin depending on the values of the parameters. The results
given in [?] do not apply directly to this model whereas we will show that (4) applies. Third, to prove
the result in the stationary case, we replace Harris recurrence by (6) which is equivalent to each one of
the two following properties

• for any initial measure ν on E ×Ks, we have limn→+∞ ‖Q∗nθ ν − νθ‖TV = 0, where ‖ · ‖TV stands
for the total variation norm,

• for any initial measure ν on E×Ks, we have limn→+∞ supν∈P(E×K) ||[Q∗nθ ν]−hθ||L1(mE×ms
K) = 0,

with P(E ×K) the set of probability measures on E ×K.
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Remark 3. Observe that, if qθ > 0 and if νθ exists for every θ ∈ Θ, then the pdf hθ of νθ satisfies hθ > 0
(µ-a.e.). In this case, P̄θ∗ is absolutely continuous with respect to P̄θ for every θ ∈ Θ.

Observe also that the ergodicity of the dynamical system (Ω,F , P̄θ∗ , τ) is satisfied as soon as the transition
operator is strongly ergodic with respect some Banach space B satisfying general assumptions (see for
example [?, Proposition 2.2]).

2 Ergodicity and consistency of MLE for specific NHMS-AR
models

In this section, we discuss how the general results given in the previous section apply to specific but
typical NHMS-AR models. We discuss in particular the recurrent and ergodic properties of the models
since it is a key step to prove the consistence of the MLE (see Theorem 2).

2.1 NHMS-AR model with gaussian linear autoregressive models

2.1.1 Model

In this section, we focus on a simple NHMS-AR model with only two regimes and linear Gaussian
autoregressive models. The model has no exogenous variable but the transition kernel depends on lagged
values of the observed process as in the Self Exciting Threshold AutoRegressive (SETAR) models. The
model is introduced more formally below.

Hypothesis 4. We assume that E = {1, 2} (endowed with the counting measure), K = R (endowed with
the Lebesgue measure) and {Yk} satisfies

Yk = β
(xk)
0 +

s∑
`=1

β
(xk)
` Yk−` + σ(xk)εk

with {εk} an iid sequence of standard Gaussian random variables, with σ(x) > 0 and β
(x)
l ∈ R for every

` ∈ {0, ..., s} and every x ∈ {1, 2},

i.e. p2,θ(yk|xk, yk−1
k−s) = N

(
yk;β

(xk)
0 +

s∑
`=1

β
(xk)
` yk−`, σ

(xk)

)
,

where N (·;m,σ) stands for the gaussian pdf with mean m and standard deviation σ.

The transition probabilities of {Xk} are parametrized using the logistic function as follows when xk = xk−1

p1,θ(xk|xk−1, y
k−1
k−s) = π

(xk−1)
− +

1− π(xk−1)
− − π(xk−1)

+

1 + exp
(
λ

(xk−1)
0 + λ

(xk−1)
1 yk−r

) (7)

with r ≤ s a positive integer and the unknown parameters π
(x)
− , π

(x)
+ , λ

(x)
0 , λ

(x)
1 for x ∈ {1, 2}.

The unknown parameter θ corresponds to

θ =
(

(β
(x)
i ), (σ(x)), (π

(x)
− ), (π

(x)
+ ), (λ

(x)
i )
)
.

We write Θ̃ for the set of such parameters θ satisfying, for every x ∈ {1, 2}, σ(x) > 0 and 0 < π
(x)
− <

1− π(x)
+ < 1 (this last constraint is added in order to ensure that (2) holds).

Although very simple, this model encompasses the homogeneous gaussian MS-AR model when λ
(1)
1 =

λ
(2)
1 = 0 and the SETAR model with two regimes (SETAR(2)) as a limit case. Indeed, if s = −λ

(x)
0

λ
(x)
1

is
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fixed for x ∈ {1, 2}, λ(1)
1 → +∞, λ

(2)
1 → −∞, π

(x)
− → 0 and π

(x)
+ → 0 then

p1(Xk = 1|xk−1, y
k−1
k−s)→ 1l(yk−r ≤ s) and p1(Xk = 2|xk−1, y

k−1
k−s)→ 1l(yk−r ≥ s)

Both models have been extensively studied in the literature.

The model can be generalized in several ways to handle M ≥ 3 regimes or include covariates, for example
through a linear function in the logistic term (see e.g. [?]). Other link functions such as the probit model
used in [?] or a Gaussian kernel (see (18)) could also be considered.

2.1.2 Properties of this Markov chain

Various authors have studied the ergodicity of MS-AR ([?], [?], [?]) and TAR ([?], [?]) models. A classical
approach to prove the ergodicity of a non-linear time series consists in establishing a drift condition. Here
we will use a strict drift condition. Let ‖ · ‖ be some norm on Rs. For any R > 0, we consider the set
ER := {(x, y0

−s+1) : ‖y0
−s+1‖ ≤ R}. Recall that µ is here the product of the counting measure on E and

of the Lebesgue measure on Rs.

Proposition 5. Assume hypothesis 4.

The Markov chain is ψ-irreducible (with ψ = µ).

Let R > 0. The set ER is νs-small and νs+1-small with νs and νs+1 equivalent to µ. Hence, the markov
chain is aperiodic.

Proof. The ψ-irreducibility comes from the positivity of qθ.

Let us prove that ER is νs-small with νs = hs · µ and

hs(xs, y
s
1) = inf

(x0,y0−s+1)∈ER

∫
Es

s∏
`=1

qθ(x`, y`|x`−1, y
`−1
`−s) dxs−1

1 > 0.

Indeed p1,θ is uniformly bounded from below by some p1,−, σ(x) are uniformly bounded from above by
some σ+ and from below by some σ− and, for every ` ∈ {1, ..., s}, we have

∀Z ∈ R, g`(Z) := sup
(x`,y0−s+1)∈ER

∣∣∣∣∣∣Z − β(x`)
0 −

s∑
j=`

β
(x`)
j y`−j

∣∣∣∣∣∣
2

<∞.

So

hs(xs, y
s
1) ≥ inf

x1,...,xs∈{1,2}

(p1,−)s

(2πσ−)
s
2

exp

− 1

2σ+

s∑
`=1

g`

y` − `−1∑
j=1

β
(x`)
j y`−j

 .

The proof of the νs+1-smallness of ER (with νs+1 equivalent to µ) uses the same ideas.

Now, to obtain the other properties related to the ergodicity of the process for practical applications (see
Section 3.1 for an example), we can use the following strict drift property.

Hypothesis 6. There exist three real numbers K < 1, L > 0 and R > 0 such that, for every (x0, y
0
−s+1) ∈

{1, 2} × Rs,
E[
∥∥Y 1
−s+2

∥∥2 |Y 0
−s+1 = y0

−s+1, X0 = x0] ≤ K
∥∥y0
−s+1

∥∥2
+ L1lER

(y0
−s+1). (8)

Recall that this property has several classical consequences (see [?, Chapters 11 and 15] for more details).
Hypothesis 6 (combined with the irreducibility and aperiodicity coming from Hypothesis 4) implies in
particular

• the existence of a (unique) stationary measure admitting a moment of order 2;
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• the V -geometric ergodicity with V (x, y0
−s+1) = ‖y0

−s+1‖2 and so the ergodicity of the Markov chain
(see for example [?, Proposition 2.2] for this last point);

• the positive Harris recurrence.

We end this section with some comments on (8). Let us write

Λ(x) =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 0 · · · 1

β
(x)
s β

(x)
s−1 · · · · · · · · · β

(x)
1


for the companion matrix associated to the AR model in regime x,

Φ(x) :=


0
0
...
0

β
(x)
0

 , Σ(x) =


0 · · · 0 0
...

...
...

...
0 · · · 0 0
0 · · · 0 σ(x)

 and ε :=


0
0
...
0
ε1

 .

There exist A,B > 0 such that, for every (x0, y
0
−s+1) ∈ {1, 2} × Rs, we have

E[
∥∥Y 1
−s+2

∥∥2 |Y 0
−s+1 = y0

−s+1, X0 = x0] =

M∑
x1=1

p1,θ(x1|x0, y
0
−s+1)E[

∥∥∥Λ(x1)y0
−s+1 + Φ(x1) + Σ(x1)ε

∥∥∥2

]

≤
M∑
x1=1

p1,θ(x1|x0, y
0
−s+1)

∥∥∥Λ(x1)
∥∥∥2 ∥∥y0

−s+1

∥∥2
+A

∥∥y0
−s+1

∥∥+B

where ‖.‖ denotes abusively the matrix norm associated to the vector norm. We deduce the following.

Remark 7. The strict drift condition (8) is satisfied when there exists R > 0 such that for all x0 ∈ {1, 2}
and all y0

−s+1 ∈ Rs

‖y0
−s+1‖ > R ⇒

2∑
x1=1

p1,θ(x1|x0, y
0
−s+1)

∥∥∥Λ(x1)
∥∥∥2

< 1. (9)

This is true in particular if

∀x ∈ E,
∥∥∥Λ(x)

∥∥∥ < 1. (10)

The use of condition (10) will be illustrated on a specific example in Section 3.1. It implies that all the
regimes are stable. However, it is also possible to construct models which satisfy (9) with some unstable
regimes if the instability is controlled by the dynamics of {Xk}.

2.1.3 Consistency of MLE

The results given in this section generalize the results given in [?, ?] for homogeneous MS-AR models
with linear Gaussian autoregressive models.

Corollary 8. Assume that Hypotheses 4 and 6 hold true for every θ. Let Θ be a compact subset of Θ̃.
Then, for all θ ∈ Θ there exists a unique invariant probability distribution and, for every x0 ∈ {1, 2}
and every initial probability distribution ν, the limit values of (θ̂n,x0)n are P̄θ∗-almost surely contained in
{θ ∈ Θ : P̄θ = P̄θ∗}.
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Proof. This corollary is a direct consequence of Theorem 2 and of the previous section. As already noticed
in section 1, the invariant measure has a positive pdf with respect to µ. As seen in the previous section,
the Markov chain is aperiodic positive Harris recurrent (which implies (6)) and the stationary process
is square integrable, which implies (3) and (4). In this example, p2,θ is bounded from above and so (5)
holds.

In the sequel, we explicit the limit set {θ ∈ Θ : P̄θ = P̄θ∗} under the supplementary condition(
β

(1)
0 , β

(1)
1 , ..., β(1)

s , σ(1)
)
6=
(
β

(2)
0 , β

(2)
1 , ..., β(2)

s , σ(2)
)

(11)

that the dynamics in the two regimes are distinct. Note that this condition is not sufficient in order to
ensure identifiability. First, it can be easily seen that the homogeneous MS-AR model can be written in
many different ways using the parametrization (7). It led us to add one of the following constraints on
the parameters

∀x ∈ {1, 2}, λ(x)
1 6= 0 (12)

which does not include the homogeneous model as a particular case or

∀x ∈ {1, 2}, π(x)
− = π

(x)
+ = π0 where 0 < π0 < 1/2 is a fixed constant (13)

in order to solve this problem. A practical motivation for (13) is given in Section 3.1. Let Θ′ be the
set of θ ∈ Θ̃ satisfying (12) and let Θ′′ be the set of θ ∈ Θ̃ satisfying (13). Then, a permutation of the
two states also leads different parameters values but to the same model. This problem can be solved by
ordering the regimes or by allowing a permutation of the states as discussed below.

Proposition 9 (Identifiability). Let θ1 and θ2 belong to Θ′ (resp. Θ′′) with θi =
(
θ

(1)
i , θ

(2)
i

)
and

θ
(x)
i =

(
(β

(x)
j,(i))j∈{0,...s}, σi, (λ

(x)
j,(i))j∈{0,1}

)
the parameters associated with the regime x ∈ {1, 2}.

Assume that θ1 satisfies (11). Then P̄Yθ1 = P̄Yθ2 if and only if θ1 and θ2 define the same model up to a
permutation of indices, i.e. there exists a permutation τ of {1, 2} such that

θ
(x)
1 = θ

(τ(x))
2

The proof of Proposition 9 is postponed to appendix C.

Now due to Corollary 8 and Proposition 9, we directly get Theorem 10.

Theorem 10. Assume that Hypotheses 4 and 6 hold true for every θ. Let Θ be a compact subset of Θ′

or Θ′′. Assume that θ∗ satisfies (11). Then, for every x0 ∈ {1, 2} and any initial probability distribution

ν, on a set of probability one, the limit values θ of the sequence of random variables (θ̂n,x0
)n are equal to

θ∗ up to a permutation of indices.

2.2 NHMS-AR with von Mises autoregressive models

2.2.1 Model

The motivations which led us to consider the NHMS-AR model introduced below are given in Section
3.2.

Hypothesis 11. Let M be a positive integer. We suppose that E = {1, ...,M} (endowed with the counting
measure) and K = T = R/(2πZ) (endowed with the Lebesgue measure), that p1,θ and p2,θ are given by

p1,θ(xk|xk−1, y
k−1
k−s) =

qxk−1,xk

∣∣∣exp
(
λ̃xk−1,xk

e−iyk−1

)∣∣∣∑M
x′′=1 qxk−1,x′′

∣∣∣exp
(
λ̃xk−1,x′′e

−iyk−1

)∣∣∣ (14)
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and

p2,θ(yk|xk, yk−1
k−s) =

1

b(xk, y
k−1
k−s)

∣∣∣∣∣exp

(
(γ

(xk)
0 +

s∑
`=1

γ
(xk)
` eiyk−`)e−iyk

)∣∣∣∣∣ .
with respect to the Lebesgue measure m on T and with

b(xk, y
k−1
k−s) :=

1

2π

∫
T

exp

(∣∣∣∣∣γ(xk)
0 +

s∑
`=1

γ
(xk)
` eiyk−`

∣∣∣∣∣ cos(y)

)
dy.

The parameter θ belongs to the set Θ̃ of θ = (γ,Q, λ̃) with

γ := (γ
(x)
0 , ..., γ(x)

s )x∈{1,...,M}, Q := (qx,x′)x,x′∈{1,...,M}, λ̃ = (λ̃x,x′)x,x′∈{1,...,M},

such that for every x, x′ ∈ E, γ
(x)
j ∈ C, qx,x′ > 0,

∑
x′′ qx,x′′ = 1, λ̃x,x′ ∈ C.

2.2.2 Properties of this Markov chain

Assume Hypothesis 11 holds. This model defines an ergodic process for any parameters values. Since,
for every (θ, x, y) ∈ Θ̃× E ×K, qθ(x, y|·, ·) is continuous on the compact set E ×Ks, we have

α =

∫
E×K

γ(x, y) dµ0(x, y) > 0, with γ(x, y) := inf
x′,y−1

−s

qθ(x, y|x′, y−1
−s).

Now we consider the pdf (w.r.t. µ0) β given by

β(x, y) :=
γ(x, y)

α
.

For every x0, x−1 ∈ E and every y0
−s ∈ Ks+1, we have

qθ(x0, y0|x−1, y
−1
−s) ≥ αβ(x0, y0).

Due to classical results [?], this implies the ψ-irreducibility, the strong aperiodicity (the whole space is
νs-small and νs+1-small, with νs and νs+1 equivalent to µ), the Harris recurrence (since we can decompose
the whole set in a union of uniformly accessible sets from the whole set), positive (the invariant measure
being unique and finite).

2.2.3 Consistency of MLE

The aperiodicity and positive recurrence imply (6). The positivity of qθ implies that the invariant
distribution is equivalent to µ. Since p1,θ(x1|x0, y0) and p2,θ(y0|x0, y−1) are continuous in (θ, x1, x0, y0)
and in (θ, x0, y0, y−1) (respectively), assumptions ((2), (3), (4) and (5)) of Theorem 2 are satisfied for
any compact subset of Θ̃. Hence, due to Theorem 2, we have the following corollary.

Corollary 12. Assume that Hypothesis 11 holds true. Assume that Θ is a compact subset of Θ̃. Then,
for all θ ∈ Θ, there exists a unique invariant probability and, for every x0 ∈ E and every initial probability
distribution ν, the limit values of (θ̂n,x0

)n are P̄θ∗-almost surely contained in {θ ∈ Θ : P̄θ = P̄θ∗}.

Observe that the replacement of (λ̃x,x′)x,x′ with (λ̃x,x′ −aθ,x)x,x′ (for some (aθ,x)x) does not change p1,θ.

Therefore, to ensure parameter identifiability, we assume that θ = (γ,Q, λ̃) satisfies (with the notations
of Hypothesis 11) one of the following assumptions

∀x ∈ E, λ̃x,x = 0 (15)

or
∀x ∈ E,

∑
x′∈E

λ̃x,x′ = 0. (16)

9



Let Θ′ be the set of θ ∈ Θ̃ satisfying (15) and let Θ′′ be the set of θ ∈ Θ̃ satisfying (16).

The proposition below states that these conditions ensure the identifiability of the model ”up to a per-
mutation of indices” if the parameters are distinct in the different regimes.

Proposition 13 (Identifiability). Let θ1 and θ2 belong to Θ′ (resp. Θ′′) with

θi =
(

(γ
(x)
j,(i))j,x, (qx,x′,(i))x,x′ , (λ̃x,x′,(i))x,x′

)
.

Assume that
x 6= x′ ⇒ (γ

(x)
0,(1), ..., γ

(x)
s,(1)) 6= (γ

(x′)
0,(1), ..., γ

(x′)
s,(1)). (17)

Then P̄Yθ1 = P̄Yθ2 if and only θ1 and θ2 are equal up to a permutation of indices, i.e. there exists a
permutation τ of {1, ...,M} such that, for every x, x′ ∈ {1, ...,M}, for every j = 0, ..., s, the following
relations hold true

γ
(x)
j,(1) = γ

(τ(x))
j,(2) , qx,x′,(1) = qτ(x),τ(x′),(2) and λ̃x,x′,(1) = λ̃τ(x),τ(x′),(2).

The proof of Proposition 13 is postponed to appendix B. Now due to Corollary 12 and Proposition 13,
we directly get Theorem 14.

Theorem 14. Assume Hypothesis 11. Assume that Θ is a compact subset of Θ′ or of Θ′′ and that θ∗

satisfies (17). Then, for every x0 ∈ {1, ...,M} and any initial probability distribution ν on {1, ...,M}×Ts,
on a set of probability one, the limit values θ = (γ,Q, λ̃) of the sequence of random variables (θ̂n,x0)n are

equal to θ∗ = (γ∗, Q∗, λ̃∗) up to a permutation of indices.

2.3 Non-homogeneous Hidden Markov Models with exogenous variables

2.3.1 Model

In this part, we consider a typical example of NHMM with finite hidden state space and strictly exogenous
variables and show that the theoretical results proven in this paper apply to this model. We focus on a
model initially introduced in [?] for downscaling rainfall. It is an extension of the model proposed in [?]
(see also [?] for more recent references). The results given in this section can be adapted to other NHMM
with finite hidden state space such as the one proposed in [?] which is widely used in econometrics.

The model is described more precisely hereafter.

Hypothesis 15. Let M be a positive integer and Σ be a m × m positive definite symmetric matrix.
We suppose that E = {1, ...,M} (endowed with the counting measure mE on E) and that the observed
process has two components Yk = (Zk, Rk). For every time k, Zk ∈ Z ⊆ Rm is a vector of m large scale
atmospheric variables (covariates) and Rk ∈ ([0,+∞[)` is the daily accumulation of rainfall measured at
` meteorological stations (output time series) with the value 0 corresponding to dry days. The model aims
at describing the conditional distribution of {Rk} given {Zk}. For this, we assume that

p1,θ(xk|xk−1, yk−1) =
qxk−1,xk

exp
(
−1/2

(
zk−1 − µxk−1,xk

)′
Σ−1

(
zk−1 − µxk−1,xk

))
∑M
x”=1 qxk−1,x” exp

(
−1/2

(
zk−1 − µxk−1,x”

)′
Σ−1

(
zk−1 − µxk−1,x”

)) , (18)

with qx,x′ > 0, µx,x′ ∈ Rm and

p2,θ(yk|xk, yk−1
k−s) = pZ (zk|zk−1) pR,θ (rk|xk)

with respect to mZ ⊗m⊗`0 , where mZ is the Lebesgue measure on Z and where m0 is the sum of the Dirac
measure δ0 and of the Lebesgue measure on (0,+∞[. We observe that {Zk}k is a Markov chain which
transition kernel depends neither on the current weather type nor on the unknown parameter θ (typically
Zk is the output of an atmospheric model and is considered as an input to the Markov switching model)
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and that the conditional distribution of Rk given Xk and {Yk′}k′<k only depends on Xk as in usual
HMMs. Finally the rainfall at the different locations is assumed to be conditionally independent given the
weather type

pR,θ (rk(1), ..., rk(l)|xk) =
∏̀
i=1

pRi,θ (rk(i)|xk)

and the rainfall at the different locations is given by the product of Bernoulli and Gamma variables

pRi,θ(rk(i)|xk) =

{
1− π(xk)

i (rk(i) = 0)

π
(xk)
i γ(rk(i);α

(xk)
i , β

(xk)
i ) (rk(i) > 0)

(19)

where 0 < π
(x)
i < 1, α

(x)
i > 0, β

(x)
i > 0 and γ(.;α, β) denotes the pdf of a Gamma distribution with

parameters α, β:

γ(r;α, β) = rα−1 β
αe−βr

Γ(α)
.

The parameter θ corresponds to

θ =
(

(qx,x′), (µx,x′), (π
(x)
i ), (α

(x)
i ), (β

(x)
i )
)
.

We write Θ̃ for the set of such parameters θ satisfying, for every x ∈ {1, ...,M} and every i ∈ {1, ..., `},

M∑
x′=1

qx,x′ = 1, 0 < qx,x′ < 1,

M∑
x′=1

µx,x′ = 0, 0 < π(x) < 1, α
(x)
i > 0, and β

(x)
i > 0.

The conditions
∑M
x′=1 qx,x′ = 1 and

∑M
x′=1 µx,x′ = 0 come from [?]. These conditions are not restrictive.

Indeed, qθ is unchanged if we replace µx,x′ by µx,x′ −
∑
x” µx,x” and qx,x′ by

qx,x′ exp(−(µx,x′ )Σ
−1µx)∑

x” qx,x” exp(−(µx,x”)Σ−1µx)

(with µx :=
∑
x” µx,x”).

Observe that the fact that, if µx,x′ = 0 for every x, x′, then {Xk}k is an homogeneous Markov chain and
{Zk}k does not plays any role in the dynamics of {Xk, Rk}k.

2.3.2 Properties of this Markov chain

We start by recalling a classical result ensurig (6) in the context of HMM (a proof of this result is given
in Appendix E for completness).

Lemma 16 (HMM). Fix θ. Assume that p1,θ(x|x′, y′) = p1,θ(x|x′) does not depend on y′, {Xk}k is a
Markov chain with transition kernel Q1,θ admitting an invariant pdf h1,θ (wrt mE) such that

lim
n→+∞

sup
ν∈P(E)

||[Q∗n1,θν]− h1,θ||L1(mE) = 0.

Assume moreover that s = 0 (this means that we can take s = 1 with p2,θ(y|x, y′) = p2,θ(y|x)). Then
there exists an invariant measure νθ with pdf hθ (wrt mE×mK) given by hθ(x, y) := h1,θ(x)p2,θ(y|x) and

lim
n→+∞

sup
ν∈P(E×K)

||[Q∗nθ ν]− hθ||L1(mE×mK) = 0.

Moreover, if p2,θ > 0 and if {Xk}k is an aperiodic positive Harris recurrent Markov chain, then the
Markov chain {Xk, Yk}k is positive Harris recurrent and aperiodic.

Due to this lemma, assumption (6) holds true and {Xk, Yk}k is aperiodic positive Harris recurrent as
soon as {Xk, Zk}k is aperiodic positive Harris recurent.

The ergodicity of {Xk, Yk}k will also follow from the ergodicity of {Xk, Zk}k.
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2.3.3 Consistency of MLE

Corollary 17. Assume Hypothesis 15. Assume that Θ is a compact subset of Θ̃ and that, for every
θ ∈ Θ, the transition kernel Q0,θ of the Markov chain {Xk, Zk}k admits an invariant pdf h0,θ > 0 (wrt
mE ×mZ) such that

lim
n→+∞

sup
ν∈P(E×Z)

‖[Q∗n0,θν]− h0,θ‖L1(mE×mZ) = 0. (20)

Assume moreover that Z is compact, that

∀z ∈ Z, sup
z−1∈Z

pZ(z|z−1) <∞ (21)

and that
Ēθ∗ [| log pZ(Z0|Z−1)|] <∞. (22)

Then, for every x0 ∈ {1, ...,M}, on a set of probability one (for P̄θ∗), the limit values θ of the sequence

of random variables (θ̂n,x0
)n are P̄θ∗-almost surely contained in {θ ∈ Θ : P̄θ = P̄θ∗}.

If, moreover, {Xk, Zk}k is aperiodic and positive Harris recurrent then this result holds true for any
initial probability distribution.

Proof. Due to the previous section, we know that (20) implies (6) and that the aperiodicity and positive
Harris recurrence of {Xk, Zk}k implies the positive Harris recurrence of {Xk, Yk}k.

The fact that Θ is a compact subset of Θ̃ directly implies (2).

Assumption (5) holds true since E is finite, since pR,θ(r|x) <∞ for every (x, y) ∈ E ×K and according
to (21).

Now according to (22), (3) and (4) will follow from the fact that, for every x0 ∈ X and every i ∈ {1, ..., `},

Ēθ∗
[∣∣∣∣log

(
inf
θ
pRi,θ(Ri|x0)

)∣∣∣∣]+ Ēθ∗
[∣∣∣∣log

(
sup
θ
pRi,θ(Ri|x0)

)∣∣∣∣] <∞.
Now we observe that if Ri = 0, then

0 < 1− π+ ≤ pRi,θ(Ri|x0) ≤ 1− π−,

where π− and π+ are the minimal and maximal possible values of π
(x)
i (for x ∈ X, i ∈ {1, ..., `} and θ

in the compact set Θ). Analogously, let us write α−, α+ for the minimal and maximal possible values

of α
(x)
i and β−, β+ for the minimal and maximal possible values of β

(x)
i . Since, all this quantities are

positive and finite, due to the expression of log(pRi,θ(Ri|x0)), to prove (3) and (4), it is enough to prove
that

Ēθ∗ [Ri] <∞ and Ēθ∗ [| log(Ri)|1{Ri>0}] <∞.
Observe that, under the stationary distribution, the pdf hi of Ri satisfies:

∀r > 0, hi(r) ≤ (rα−−11{r≤1} + rα+−11{r>1})
max(β

α+

+ , β
α−
+ )e−rβ−

Γ(α−)
.

Therefore, (3) and (4) come from the facts that r 7→ rα+−1e−rβ− is integrable at +∞ (since β− > 0) and
that r 7→ | log r|rα−−1 is integrable at 0 (since α− > 0).

Now we will add an asumption on θ to ensure the identifiability of the parameter. If we assume π
(x)
i = 0

for every i and every x, then identifiability follows easily if we assume moreover that

x 6= x′ ⇒ (α
(x)
i , β

(x)
i )i 6= (α

(x′)
i , β

(x′)
i )i. (23)

But, if we do not assume π
(x)
i = 0, (23) does not ensure identifiability anymore. We give now an explicit

counter-example.
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Remark 18. Assume M = ` = 2. We consider two models A1 and A2 associated to θ1 and θ2 respectively,
with

θj =
(

(qx,x′,(j)), (µx,x′,(j)), (π
(x,(j))
i ), (α

(x,(j))
i ), (β

(x,(j))
i )

)
,

and

• qx,x′,(1) = 0.5, µx,x′,(1) = 0, π
(x,(1))
i = 0.5, α

(x,(1))
i = 1, β

(x,(1))
1 = 1, β

(1,(1))
2 = 2, β

(2,(1))
2 = 3,

• qx,1,(2) = 0.6, qx,2,(2) = 0.4, µx,x′,(2) = 0, π
(x,(2))
1 = 0.5, π

(1,(2))
2 = 0.25

0.6 , π
(2,(2))
2 = 0.25

0.4 , α
(x,(2))
i = 1,

β
(x,(1))
1 = 1, β

(1,(1))
2 = 2, β

(2,(1))
2 = 3.

For model A1 (under the stationary measure), {Xk} is an iid sequence on {1, 2} with P(X1 = 1) = 0.5 and
the distribution of Rk given {Xk = 1} is (0.5δ0 +0.5Γ(1, 1))⊗ (0.5δ0 +0.5Γ(1, 2)) whereas the distribution
of Rk taken {Xk = 2} is (0.5δ0 + 0.5Γ(1, 1))⊗ (0.5δ0 + 0.5Γ(1, 3)). Hence, for the model A1, the Rk are
iid with distribution

(0.5δ0 + 0.5Γ(1, 1))⊗ (0.5δ0 + 0.25Γ(1, 2) + 0.25Γ(1, 3)). (24)

For model A2 (under the stationary measure), {Xk}is an iid sequence on {1, 2} with P(X1 = 1) = 0.6
and the distribution of Rk given {Xk = 1} is (0.5δ0 + 0.5Γ(1, 1)) ⊗

(
(1− 0.25

0.6 )δ0 + 0.25
0.6 Γ(1, 2)

)
whereas

the distribution of Rk taken {Xk = 2} is (0.5δ0 + 0.5Γ(1, 1)) ⊗
(
(1− 0.25

0.4 )δ0 + 0.25
0.4 Γ(1, 3)

)
. Hence, for

the model A2, the Rk are iid with distribution (24).

Observe that the distribution of {Yk} under the stationary measure is the same for models A1 and A2.

The next result (proved in appendix D) states that the following condition ensures identifiability

x 6= x′ ⇒ ∀i ∈ {1, ..., `}, (α
(x)
i,θ1

, β
(x)
i,θ1

) = (α
(x′)
i,θ1

, β
(x′)
i,θ1

). (25)

Proposition 19. Assume Hypothesis 15. Let θ1 and θ2 in Θ̃, with

θj =
(

(qx,x′,(j)), (µx,x′,(j)), (π
(x,(j))
i ), (α

(x,(j))
i ), (β

(x,(j))
i )

)
.

Assume that θ1 satisfies (25).

Then P̄Yθ1 = P̄Yθ2 if and only θ1 and θ2 are equal up to a permutation of indices, i.e. there exists a
permutation τ of {1, ...,M} such that, for every x, x′ ∈ {1, ...,M} and every i ∈ {1, ..., `}, we have

qx,x′,(1) = qτ(x),τ(x′),(2), µx,x′,(1) = µτ(x),τ(x′),(2), π
(x,(1))
i = π

(τ(x),(2))
i , α

(x,(1))
i = α

(τ(x),(j))
i , β

(x,(1))
i =

β
(τ(x),(2))
i .

Now the following result is a direct consequence of Corollary 17 and Proposition 19.

Theorem 20. Assume Hypothesis 15. Assume that Θ is a compact subset of Θ̃ and that, for every θ ∈ Θ,
the transition kernel Q0,θ of the Markov chain (Xk, Zk)k admits an invariant pdf h0,θ (wrt mE ×mZ)
satisfying (20). Assume that θ∗ satisfies (25). Assume moreover that Z is compact, that (21) and (22)
hold true. Then, for every x0 ∈ {1, ...,M}, on a set of probability one (for P̄θ∗), the limit values θ of the

sequence of random variables (θ̂n,x0)n are equal to θ∗ up to a permutation of indices.

If, moreover, (Xk, Zk)k is aperiodic and positive Harris recurrent then this result holds true for any initial
probability distribution.

3 Applications to real data

3.1 MacKenzie River Lynx Data

In this section we discuss the results obtained when fitting the model introduced in Subsection 2.1 to the
annual number of Canadian lynx trapped in the Mackenzie River district of northwest Canada from 1821
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to 1934. This time series is a benchmark dataset to test nonlinear time series model (see e.g. [?], [?]). In
order to facilitate the comparison with the other works on this time series, we analyze the data at the
logarithm scale with the base 10 shown on Figure 1. This time series exhibits periodic fluctuations (it
may be due to the competition between several species, predator-prey interaction,...) with asymmetric
cycles (increasing phase are slower than decreasing phase) which makes it challenging to model.

2 3 4
1.5

2

2.5

3

3.5

4

yk−1

y k
2 3 4

1.5

2

2.5

3

3.5

4

yk−1
y k

Figure 1: Top left panel: time plot of log Canadian lynx data. The color indicates the most likely regimes
identified by the fitted NHMS-AR model. The first [resp. second] regime is the most likely when the color is white
[resp. gray]. Top right panel: directed scatter plot of log Canadian lynx data. Bottom left panel: time plot of a
sequence simulated with the fitted NHMS-AR model data. The color indicates the simulated regime (first regime
in white, second regime in gray). Bottom right panel: directed scatter plot of the simulated sequence shown on
the bottom left panel.

In [?], it was proposed to fit a SETAR(2) model to this time series. The fitted model is the following

Yk =

{
0.51 + 1.23Yk−1 − 0.37Yk−2 + 0.18εk (Yk−2 ≤ 3.15)
2.32 + 1.53Yk−1 − 1.27Yk−2 + 0.23εk (Yk−2 > 3.15)

. (26)

The two regimes have a nice biological interpretation in terms of prey-predator interaction, with the
upper regime (Yt−2 > 3.15) corresponding to a population decrease whereas the population tends to
increase in the lower regime.

A NHMS-AR model has been fitted to this time series. In practice, we have used the EM algorithm
to compute the MLE. The recursions of this algorithm are relatively similar to the ones of the MS-AR
model (see [?], [?]). To facilitate the comparison with (26), we have also considered AR models of order
s = 2 and a lag r = 2 for the transition probabilities. The fitted model is the following

Yk =


0.54 +1.11 Yk−1 −0.24 Yk−2 +0.14 εt (Xk = 1)
(0.31,0.80) (0.96,1.27) (-0.43,-0.05) (0.11,0.17)
1.03 +1.49 Yk−1 −0.87 Yk−2 +0.22 εt (Xk = 2)
(-0.12,1.86) (1.23,1.69) (-1.20,-0.39) (0.14,0.26)

(27)
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with

P (Xk = i|Xk−1 = i, Yk−2 = yk−2) =


(1 + exp( −42.4 +12.8 yk−2))−1 (Xk = 1)

(-587,-16.3) (4.77,176)
(1 + exp( 9.07 −3.33 yk−2))−1 (Xk = 2)

(2.25,178) (-64.1,-1.12)
(28)

where the italic values in parenthesis below the parameter values correspond to 95% confidence intervals

computed using parametric bootstrap (see e.g. [?]). The estimate of π
(x)
− and π

(x)
+ are not given because

they are very close to 0. It means that these technical parameters have no practical importance and
can be fixed equal to an arbitrary small value (here we used the machine epsilon 2−52). There are
small differences between the AR coefficients (26) and (27) but the dynamics inside the regimes of the
SETAR(2) and NHMS-AR models are broadly similar. The models differ mainly in the mechanism used
to govern the switchings between the two regimes. For the SETAR model the regime is a deterministic
function of a lagged value of the observed process. The NHMS-AR model can be seen as a fuzzy extension
of the SETAR model where the regime has its own Markovian evolution influenced by the lagged value
of the observed process. This is illustrated on Figure 2 which shows the transition probabilities (28)
and the threshold of the SETAR(2) model. According to this figure, it seems reasonable to model the
transition from regime 1 to regime 2 by a step function at the level yk−2 ≈ 3.15 but the values of yk−2

for which the transition from regime 2 to regime 1 occurs seem to be more variable and the step function
approximation less realistic.

The asymmetries in the cycle imply that the system spends less time in the second regime (decreasing
phase) than in the first one. It may explain the larger confidence intervals in the second regime compared
to the first one (see (27)). Figure 2 shows that there is an important sampling variability in the estimate
of the transition kernel of the hidden process. This is probably due to the low number of transitions
among regimes (see Figure 1) which makes it difficult to estimate the associated parameters. A similar
behavior has been observed when fitting the model to other time series.
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Figure 2: Transition probabilities P (Xk = j|Xk−1 = i, Yk−2 = yk−2) as a function of yk−2. The dotted lines
correspond to 95% confidence intervals computed using parametric bootstrap. The dashed vertical line corresponds
to the threshold (3.15) of the SETAR(2) model.

Table 1 gives the AIC and BIC values defined as

AIC = −2logL+ 2npar, BIC = −2logL+ npar log(N)

and L is the likelihood of the data, npar is the number of parameters and N is the number of observations.
The values for the NHMS-AR and SETAR models are relatively similar. The NHMS-AR models has a

15



slightly better AIC value but BIC selects the SETAR model. As expected, these two models clearly
outperform the homogeneous MS-AR which does not include information on the past values in the
switching mechanism.

AIC BIC npar
SETAR (s = 2) -28.33 -3.70 9
MS-AR (s = 2) -0.2063 27.15 10

NHMS-AR (r = s = 2) -30.83 2.00 12

Table 1: AIC and BIC values for the fitted SETAR, homogeneous MS-AR and NHMS-AR models

The simulated sequence shown on Figure 1 exhibits a similar cyclical behavior than the data. A more
systematic validation was performed but the results are hard to analyze because of the low amount of
data available. Note that the fitted model is stable since it satisfies (10) for the matrix norm defined as

‖A‖ =
∥∥P−1AP

∥∥
∞

with P the matrix containing the eigenvectors of the companion matrix for the second regime and ‖.‖∞
the infinity norm.

A more systematic validation is performed on a longer time series in the next section.

3.2 Wind direction

Various approaches have been proposed in the literature for modeling time series of wind speed (see [?]
and references therein). In comparison, there exist only very few models for time series of wind direction
which is an important meteorological parameter for many applications. Some models have been proposed
in the literature for circular time series (see [?], [?],[?], [?]) and some of them have been applied to time
series of wind direction. However they are not able to catch the complex features of the time series of
wind direction considered in this work.

We use data from the ERA-40 data set which consists in a global reanalysis with 6-hourly data covering
the period from 1958 to 2001. It can be freely downloaded and used for scientific purposes at the URL:
http://data.ecmwf.int/data
We have extracted the wind data for the point with geographical coordinates (47.50 N, 50 W) from this
data set. It is located off the Brittany coast (northwest of France).

It leads to a long time series which is non-stationary since it exhibits an important seasonal component
but also diurnal and interannual components. A classical approach for treating seasonality in meteoro-
logical time series consists in blocking the data, typically by period ranging from a month to a trimester
depending on the amount of data available, and in fitting a separate model for each period in the year.
This approach is used in the present paper and we have chosen to focus on the months of January. It
leads to 44 time series of length 124 (31 days with 4 observations per day), each time series describing
the wind conditions during the months of January for a particular year. In the sequel, we assume that
these time series are independent realizations of a stationary process. It seems realistic according to the
results given in [?] for the wind speed at the same location since the diurnal components can be neglected
during the winter season. Following [?], another approach would consist in letting some of the coefficients
of the model introduced below to evolve in time with periodic functions for the diurnal and seasonal
components and eventually a trend.

The marginal distribution of the time series of wind direction considered in this work is shown on Figure
3. It clearly exhibits two modes, each one corresponding to a meteorological regime: the prevailing mode
corresponds to westerlies cyclonic conditions with low pressure systems coming from the Atlantic ocean
whereas the second mode is associated to anticyclonic conditions and wind blowing from the east. This
is an usual feature of meteorological time series. A classical approach for modeling these meteorological
regimes (or ”weather types”) consists in introducing a hidden (or latent) variable. This idea goes back
to [?] where HMMs were proposed for modelling the space-time evolution of daily rainfall (see [?] for
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Figure 3: Wind direction for the month of January 1968 (left panel) and rose plot (right panel) of the marginal
distribution of the wind direction in January (results obtained with the 44 years of data).

more recent references on this topic). HMMs have also been proposed for modeling time series of wind
direction (see [?], [?]). However HMMs assume that successive observations are conditionally independent
given the latent weather type and fail in reproducing the strong relation which exists between the wind
conditions at successive time steps (see Figure 3).

Several autoregressive models have been proposed in the literature for directional time series (see [?]
and references therein). They are all candidates to model the dynamics of the wind direction in the
weather types but in this work we have chosen to focus on the von Mises process initially introduced in
[?]. It is based on the von Mises distribution which is a natural distribution for circular variables (see
[?]) admitting a pdf fγ (with respect to the Lebesgue measure on T) given by

∀y ∈ T, fγ(y) =
1

2πI0(κ)
exp (κ cos(y − φ)) =

1

2πI0(κ)

∣∣∣eγe−iy
∣∣∣ , (29)

for some complex parameter γ := κeiφ (with κ ≥ 0 and φ ∈ T), where I0 denotes the modified Bessel
function of order 0 defined as

I0(κ) :=
1

2π

∫
T

exp(κ cos(y)) dy.

In (29), φ ∈ T corresponds to the circular mean of the distribution and κ ≥ 0 describes the concentration
of the distribution: when κ = 0 we get the uniform distribution whereas when κ increases the distribution
is more and more concentrated around φ. We assume that

p2(yk|xk, yk−1
k−s) = f

γ
(xk)

0 +
∑s

`=1 γ
(xk)

` eiyk−`
(yk) (30)

with γ0 = κ0e
iφ0 ∈ C. In [?], the autoregressive parameters γ

(xk)
` for ` ≥ 1 are assumed to have real

values. In this work, we extend this model by assuming that γ
(x)
` = κ

(x)
` eiφ

(x)
` ∈ C. We will see in the

sequel that it helps modeling the prevailing clockwise rotation of the wind direction.

The parametrization used to model the dependence of the weather change with the previous wind direction
is also based on the pdf of von Mises distribution since we assume that

p1(xk|xk−1
k−s, yt−1) ∝ qxk−1,xk

exp
(
λxk−1,xk

cos
(
yk−1 − ψxk−1,xk

))
, (31)

where Q = (qx,x′)x,x′∈{1,...,M} is a stochastic matrix and, for x, x′ ∈ {1, ...,M}, λx,x′ ≥ 0 and ψx,x′ ∈ T
are unknown parameters. Loosely speaking, the probability that the hidden Markov chain {Xt} switches
from x to x′ will increase when the wind direction yk−1 is close to ψx,x′ and λx,x′ models the directional
spreading in which this transition is likely to occur. When λx,x′ = 0 for every x, x′ ∈ {1, ...,M} then
p1(xk|xk−1, yk−1) = qxk−1,xk

does not dependent on yk−1 and we obtain again the homogeneous MS-AR

models. Observe that (31) is the same as (14) with λ̃x,x′ = λx,x′e
iψx,x′ .

The model, which theoretical properties are discussed in Section 2.2, was fitted using the EM algorithm
with a number of regimes M varying from 1 to 6. We also varied the order s of the autoregressive
models from s = 0 to s = 5 and considered various reduced models. The BIC values together with
various diagnostic plots (see discussion below) led us to focus on the model with M = 4 regimes and
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autoregressive models of order s = 2. The results discussed below have been obtained with (15) and the
additional constraints

• λ̃x,x′′ = λ̃x′,x′′ for every x, x′, x′′ ∈ {1, ...,M} such that x 6= x′′ and x′ 6= x′′

• φ(x)
` = φ

(x)
1 for every ` ≥ 2, x ∈ {1, ...,M}

These two constraints were considered in order to get more parsimonious and interpretable models and
are justified a posteriori by the AIC and BIC criteria. The consistency results of section 2.2 remain valid
with these constraints.

The BIC and AIC values for a few representative models which have been fitted are given in Table 2.
These criteria clearly select the most sophisticated NHMS-AR model with an important improvement
against the HMM and AR models which were proposed before in the literature. There is also a small
improvement over the homogeneous MS-AR model. This is further discussed below.

M s Constraints for ` ≥ 1, BIC AIC npar
x, x′ ∈ {1, ...,M}

HMM 4 0 γ
(x)
` = 0 λx,x′ = 0 11619 11751 20

NHMM 4 0 γ
(x)
` = 0 10289 10474 28

AR 1 2 7528 7568 4
MS-AR 4 2 λx,x′ = 0, 5724 5918 28

NHMS-AR 4 2 5607 5854 36

Table 2: BIC and AIC values for the NHMS-AR model and various reduced models.

The main motivation of this work is to develop stochastic models which can be used to generate realistic
time series of wind direction (stochastic weather generators). In this context, it seems natural to validate
the model by simulating a large number of artificial sequences of the model and comparing the statistical
properties of these simulations with the ones of the original data. According to Figure 4, the NHMS-AR
model clearly improves the description of the marginal distribution of the process compared to the MS-AR
model which is not able to reproduce the second mode of the distribution associated to easterlies. There
are also important improvements as concerns the description of the dynamics of the process although it
remains some significant discrepancies. In particular, the fitted NHMS-AR model slightly underestimates
the circular autocorrelation function defined as (see [?])

ρ(k) =
E[cos(Y0) cos(Yk)] + E[sin(Y0) sin(Yk)]− E[sin(Y0) cos(Yk)]− E[cos(Y0) sin(Yk)]

E[cos(Y0)2]E[sin(Y0)2]− E[sin(Y0) cos(Y0)]2

for lags between 2 and 5 days and some coefficients of the cross-correlation function between {cos(Yk)}
and {sin(Yk)}. The sample cross-correlation function computed on the data is at its maximum value
for a lag between 18 hours and 24 hours, with the time series {sin(Yt)} being in advance of the time
series {cos(Yt)} because of the prevailing clockwise rotation of the wind direction. The NHMS-AR
model is able to reproduce the shape of this cross-correlation function but slightly underestimates the
maximum correlation. Similar plots were done for the more usual HMM and AR models and we obtained
substantially less good results compared to MS-AR and NHMS-AR models.

A Consistency : proof of Theorem 2

We follow the proof of [?, Thm. 1] with slight modifications due to our assumptions

(see Lemmas 28 and 29). We do not give all the details of the proofs since some of them are a direct
rewriting of [?]. First, we consider the stationary case. Let τ be the full shift on Ω := (E ×K)Z. For
every k ∈ Z, we identify Xk with X0 ◦ τk and Yk with Y0 ◦ τk, where X0((xm, ym)m∈Z) := x0 and
Y0((xm, ym)m∈Z) = y0.
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Figure 4: Rose plot of the marginal distribution (left panels), circular autocorrelation functions (middle panels),
cross-correlation functions between the time series {cos(Yt)} and {sin(Yt)} for the fitted MS-AR (top panels) and
NHMS-AR models (bottom panels). The full grey line corresponds to the sample functions and the dashed line to
the fitted model with a 95% prediction intervals (dotted line). The distribution for the fitted model was obtained
by simulation.

A.1 Likelihood and stationary likelihood

We start by recalling a classical fact in the context of Markov chains (and the proof of which is direct).

Fact 21. Let m and n belong to Z with m ≤ n. Under P̄θ, conditionally to (Y nm−s+1), (Xk)k∈{m,...,n}
is a (possibly nonhomogeneous) Markov chain. Moreover, under P̄θ, the conditional pdf (wrt mE) of Xk

given (Xk−1
m , Y nm−s+1) is given by

pθ(Xk = xk|Xk−1
m , Y nm−s+1) =

pθ(Y
n
k , Xk = xk|Xk−1, Y

k−1
k−s )

pθ(Y nk |Xk−1, Y
k−1
k−s )

P̄θ − a.s., (32)

with

pθ(Y
n
k , Xk = xk|Xk−1 = xk−1, Y

k−1
k−s ) :=

∫
En−k

n∏
j=k

qθ(xj , Yj |xj−1, Y
j−1
j−s ) dm

⊗(n−k)
E (xnk+1) (33)

and

pθ(Y
n
k |Xk−1, Y

k−1
k−s ) :=

∫
E

pθ(Y
n
k , Xk = xk|Xk−1, Y

k−1
k−s ) dmE(xk). (34)

Using (2), (3) and (4), we observe that the quantities appearing in this fact are well-defined. Due to Fact
21, the quantity p̄θ(Xk = xk|Xk−1, Y

n
m−s+1) is equal to∫

En−k+1(
∏n
j=k+1 aj)p1,θ(x̃k|Xk−1, Y

k−1
k−s )p2,θ(Yk|x̃k, Y k−1

k−s ) dδxk
(x̃k) dm

⊗(n−k)
E (x̃nk+1)∫

En−k+1(
∏n
j=k+1 aj)p1,θ(x̃k|Xk−1, Y

k−1
k−s )p2,θ(Yk|x̃k, Y k−1

k−s ) dm
⊗(n−k+1)
E (x̃nk )

,

with aj := qθ(x̃j , Yj |x̃j−1, Y
j−1
j−s ). Therefore

p̄θ(Xk = xk|Xk−1, Y
n
m−s+1) ≥ p1,−

p1,+
β(xk), with β(xk) :=

pθ(Y
n
k |Xk = xk, Y

k−1
k−s )∫

E
pθ(Y nk |Xk = x̃k, Y

k−1
k−s ) dmE(x̃k)

. (35)

From this last inequality (since 0 < p1,− < p1,+ <∞), we directly get the following (from [?]).
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Corollary 22. (as [?, Cor. 1]) For all m ≤ k ≤ n and every probability measures m1 and m2 on E, we
have, P̄θ − a.s.∥∥∥∥∫

E

P̄θ(Xk ∈ ·|Xm = xm, Y
n
m−s+1) dm1(xm)−

∫
E

P̄θ(Xk ∈ ·|Xm = xm, Y
n
m−s+1) dm2(xm)

∥∥∥∥
TV

≤ ρk−m,

with ρ := 1− p1,−
p1,+

.

Observe that the log-likelihood `n(θ, x0) satisfies

`n(θ, x0) =

n∑
k=1

log pθ(Yk|X0 = x0, Y
k−1
−s+1) P̄θ − a.s.,

with

pθ(Yk|X0 = x0, Y
k−1
−s+1) :=

pθ(Y
k
1 |X0 = x0, Y

0
−s+1)

pθ(Y
k−1
1 |X0 = x0, Y 0

−s+1)

=

∫
E2

qθ(xk, Yk|xk−1, Y
k−1
k−s )pθ(Xk−1 = xk−1|X0 = x0, Y

k−1
−s+1) dm⊗2

E (xk, xk−1).

Let us now define the stationary log-likelihood `n(θ) by

`n(θ) :=

n∑
k=1

log p̄θ(Yk|Y k−1
−s+1),

with

p̄θ(Yk|Y k−1
−s+1) :=

∫
E2

qθ(xk, Yk|xk−1, Y
k−1
k−s )p̄θ(Xk−1 = xk−1|Y k−1

−s+1) dm⊗2
E (xk, xk−1)

and

p̄θ(Xk−1 = xk−1|Y k−1
−s+1) :=

∫
E

pθ(Xk−1 = xk−1|X0 = x0, Y
k−1
−s+1)p̄θ(X0 = x0|Y k−1

−s+1) dmE(x0).

Lemma 23. (as [?, Lem. 2]) We have

sup
x0∈E

sup
θ∈Θ
|`n(θ, x0)− `n(θ)| ≤ 1

(1− ρ)2
P̄θ∗ − a.s., (36)

Proof. We have

sup
x0∈E

|pθ(Yk|X0 = x0, Y
k−1
−s+1)− p̄θ(Yk|Y k−1

−s+1)| ≤

≤ p1,+

∫
E3

p2,θ(Yk|xk, Y k−1
k−s )D(xk−1, x0, x)p̄θ(X0 = x|Y k−1

−s+1) dm⊗3
E (x, xk−1, xk),

with D(xk−1, x0, x) := |pθ(Xk−1 = xk−1|X0 = x0, Y
k−1
−s+1) − pθ(Xk−1 = xk−1|X0 = x, Y k−1

−s+1)|. Due to
Corollary 22, we have

|pθ(Yk|X0 = x0, Y
k−1
−s+1)− p̄θ(Yk|Y k−1

−s+1)| ≤ p1,+ρ
k−1

∫
E

p2,θ(Yk|xk, Y k−1
k−s ) dmE(xk).

Since |pθ(Yk|X0, Y
k−1
−s+1)| and |pθ(Yk|Y k−1

−s+1)| are both larger than or equal to

p1,−

∫
E

p2,θ(Yk|xk, Y k−1
k−s ) dmE(xk),

we obtain that∣∣log pθ(Yk|X0 = x0, Y
k−1
−s+1)− log p̄θ(Yk|Y k−1

−s+1)
∣∣ ≤ |pθ(Yk|X0 = x0, Y

k−1
−s+1)− p̄θ(Yk|Y k−1

−s+1)|
p1,−

∫
E
p2,θ(Yk|xk, Y k−1

k−s ) dmE(xk)

≤ ρk−1 p1,+

p1,−
=
ρk−1

1− ρ
P̄θ − a.s. (37)

and so (36) since P̄θ∗ is absolutely continuous with respect to P̄θ (for all θ).
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A.2 Asymptotic behavior of the log-likelihood

The idea is to approximate n−1`n(θ) by n−1
∑n
k=1 log pθ(Yk|Y k−1

−∞ ). To this end, we define, for any k ≥ 0,
any m ≥ 0 and any x0 ∈ E, the following quantities

∆k,m,x(θ) := log p̄θ(Yk|Y k−1
−m−s+1, X−m = x) and ∆k,m(θ) := log p̄θ(Yk|Y k−1

−m−s+1).

With these notations, we have

`n(θ) =

n∑
k=1

∆k,0(θ) and `n(θ, x0) =

n∑
k=1

∆k,0,x0(θ). (38)

Lemma 24. (as [?, Lemma 3]) With the notation ρ introduced in Corollary 22, we have P̄θ∗-almost
surely

∀m,m′ ≥ 0, sup
θ∈Θ

sup
x,x′∈E

|∆k,m,x(θ)−∆k,m′,x′(θ)| ≤ ρk+min(m,m′)−1/(1− ρ) (39)

∀m ≥ 0, sup
θ∈Θ

sup
x∈E
|∆k,m,x(θ)−∆k,m(θ)| ≤ ρk+m−1/(1− ρ) (40)

sup
θ

sup
m≥0

sup
x∈E
|∆k,m,x(θ)| ≤ max(| log(p1,+b+(Y kk−s))|, | log(p1,−b−(Y kk−s))|) (41)

with

b−(ykk−s) := inf
θ

∫
E

p2,θ(yk|x, yk−1
k−s) dmE(x)

and

b+(ykk−s) := sup
θ

∫
E

p2,θ(yk|x, yk−1
k−s) dmE(x).

Proof. Assume that m ≤ m′. We have

e∆k,m,x(θ) =

∫
E2

qθ(xk, Yk|xk−1, Y
k−1
k−s )pθ(Xk−1 = xk−1|X−m = x, Y k−1

−m−s+1) dm⊗2
E (xk, xk−1).

Observe moreover that, due to Fact 21, we have

e∆k,m′,x′ (θ) =

∫
E

e∆k,m,x′′ (θ)pθ(X−m = x′′|X−m′ = x′, Y k−1
−m′−s+1) dmE(x′′).

Therefore, according to Corollary 22, we obtain∣∣∣e∆k,m,x(θ) − e∆k,m′,x′ (θ)
∣∣∣ ≤ sup

x”∈E
|e∆k,m,x(θ) − e∆k,m,x”(θ)|

≤ p1,+ρ
k+m−1

∫
E

p2,θ(Yk|xk, Y k−1
k−s ) dmE(xk).

Since ∣∣∣e∆k,m,x(θ)
∣∣∣ ≥ p1,−

∫
E

p2,θ(Yk|xk, Y k−1
k−s ) dmE(xk),

we get the first point. The proof of the second point follows exactly the same scheme with the use of the
following formula

e∆k,m(θ) =

∫
E

e∆k,m,x−m
(θ)p̄θ(X−m = x−m|Y k−1

−m−s+1) dmE(x−m).

The last point comes from the fact that

p1,−

∫
E

p2,θ(Yk|xk, Y k−1
k−s ) dmE(xk) ≤ e∆k,m,x(θ) ≤ p1,+

∫
E

p2,θ(Yk|xk, Y k−1
k−s ) dmE(xk).
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Due to (39), we get that, P̄θ∗ -a.s., (∆k,m,x(θ))m is a (uniform in (k, x, θ)) Cauchy sequence and so
converges uniformly in (k, x, θ) to some ∆k,∞,x(θ).

Due to (39) and (40), ∆k,∞,x(θ) does not depend on x and will be denoted by ∆k,∞(θ). Moreover we
have ∆k,∞(θ) = ∆0,∞(θ) ◦ τk.

Due to (41), (2), (3) and (4), (∆k,m,x(θ))k,m,x is uniformly bounded in L1(P̄θ∗). Therefore ∆k,∞(θ) is in
L1(P̄θ∗). Let us write

`(θ) := Ēθ∗ [∆0,∞(θ)].

Since (Ω,F , P̄θ∗ , τ) is ergodic, from the Birkhoff-Khinchine ergodic theorem, we have

lim
n→+∞

n−1
n∑
k=1

∆k,∞(θ) = `(θ) P̄θ∗ − a.s. and in L1(P̄θ∗). (42)

Now, due to (39) and (40) applied with m = 0, we obtain

n∑
k=1

sup
θ
|∆k,0(θ)−∆k,∞(θ)| ≤ 2

(1− ρ)2
P̄θ∗ − a.s.. (43)

Now, putting together (38), (40), (42) and (43), we have

Corollary 25.
lim

n→+∞
n−1`n(θ, x0) = lim

n→+∞
n−1`n(θ) = `(θ), P̄θ∗ − a.s..

Still following [?], we have the next lemma insuring the continuity of θ 7→ `(θ).

Lemma 26. (as [?, Lemma 4]) For all θ ∈ Θ,

lim
δ→0

Ēθ∗ [ sup
|θ−θ′|≤δ

|∆0,∞(θ)−∆0,∞(θ′)|] = 0.

Proof. We recall that ∆0,∞ = limm→∞∆0,m,x(θ) (for every x ∈ E) with

∆0,m,x(θ) = log

∫
Em

∏0
`=−m+1 qθ(x`, Y`|x`−1, Y

`−1
`−s ) dm⊗mE (x0

−m+1) dδx(x−m)∫
Em−1

∏−1
`=−m+1 qθ(x`, Y`|x`−1, Y

`−1
`−s ) dm

⊗(m−1)
E (x−1

−m+1) dδx(x−m)
.

Since the maps θ 7→ qθ(x`, y`|x`−1, y
`−1
`−s , y`) are continuous, ∆0,m,x is P̄θ∗ -almost surely continuous. The

uniform convergence result proved above insures that ∆0,∞ is also P̄θ∗ -almost surely continuous. Hence

∀θ, lim
δ→0

sup
θ′:|θ−θ′|≤δ

|∆0,∞(θ)−∆0,∞(θ′)| = 0 P̄θ∗ − a.s..

Now, the result follows from the Lebesgue dominated convergence theorem, due to (41), (2), (3) and
(4).

Lemma 27. (as [?, Prop. 2]) We have

lim
n→+∞

sup
θ∈Θ
|n−1`n(θ, x0)− `(θ)| = 0, P̄θ∗ − a.s..

Lemma 27 can be deduced exactly as in the proof of [?, Prop. 2]. We do not rewrite the proof, but
mention that it uses (36), the compacity of Θ, the continuity of `, (43), the ergodicity of P̄θ∗ and Lemma
26.

Lemma 28. (as [?, Lemma 5]) For every k ≤ `, we have

lim
j→−∞

sup
i≤j
|p̄θ(Y `k |Y

j
i−s+1)− p̄θ(Y `k )| = 0 in P̄θ∗ − probability.
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Proof. Let us write G(y0
−s) :=

∫
E
p2,θ(y0|x, y−1

−s) dmE(x) and G̃(y0) := supy−1
−s
G(y0

−s). As in the proof of

[?, Lemma 5], we observe that, by stationarity, it is enough to prove that

∀` > 0, lim
k→+∞

sup
i≥0

∣∣p̄θ(Y k+`
k |Y 0

−i−s+1)− p̄θ(Y k+`
k )

∣∣ = 0 in P̄θ∗ − probability

and we write∣∣p̄θ(Y k+`
k |Y 0

−i−s+1)− p̄θ(Y k+`
k )

∣∣ =

∣∣∣∣∫
E2×K2s

Ak(B′k −B′′k )Ci dm
⊗2
E (xs, xk−1)dm⊗2s

K (ys1, y
k−1
k−s)

∣∣∣∣ ,
with

Ak := pθ(Y
k+`
k |Xk−1 = xk−1, Y

k−1
k−s = yk−1

k−s) ≤ Ãk := p`+1
1,+

k+∏̀
j=k+s

G(Y jj−s)

k+s−1∏
j=k

G̃(Yj),

(due to (34) and to (2)) with

B′k := pθ(Xk−1 = xk−1, Y
k−1
k−s = yk−1

k−s |Xs = xs, Y
s
1 = ys1) = Q

∗(k−s−1)
θ (xk−1, y

k−1
k−s |xs, y

s
1),

with
B′′k := p̄θ(Xk−1 = xk−1, Y

k−1
k−s = yk−1

k−s) = hθ(xk−1, y
k−1
k−s)

and with
Ci := p̄θ(Xs = xs, Y

s
1 = ys1|Y 0

−i−s+1).

Let us write

Bk :=

∫
E×Ks

|B′k −B′′k | dµ(xk−1, y
k−1
k−s).

We have ∣∣p̄θ(Y k+`
k |Y 0

i−s+1)− p̄θ(Y k+`
k )

∣∣ ≤ Ãk ∫
E×Ks

BkCi dµ(xs, y
s
1).

On the one hand, due to (6), Bk = Bk(xs, y
s
1) converges to 0 as k goes to infinity, for µ-almost every

(xs, y
s
1) (and this quantity is bounded by 1). On the other hand, on {Y 0

−i−s+1 = y0
−i−s+1}, we have

Ci =

∫
Es

s∏
j=1

qθ(xj , yj |xj−1, y
j−1
j−s)p̄θ(X0 = x0|Y 0

−i−s+1 = y0
−i−s+1) dm⊗sE (xs−1

0 )

≤ p1,+H(xs, y
s
−s+1),

with

H(xs, y
s
−s+1) :=

∫
Es−1

s∏
j=2

p1,θ(xj |xj−1, yj−1)

s∏
j=1

p2,θ(yj |xj , yj−1
j−s) dm⊗sE (xs−1

1 )

and

∀y0
−s+1,

∫
E×Ks

H(xs, y
s
−s+1) dµ(xs, y

s
1) = 1.

Therefore, by the Lebesgue dominated convergence theorem, we obtain

lim
k→+∞

sup
i≤0

∫
E×Ks

BkCi dµ(xs, y
s
1) = 0 P̄θ∗ − a.s..

Of course, this convergence also holds in P̄θ∗ -probability. Now, since, for every k, Ãk is a real valued
random variable (see (5)) with the same distribution as p`+1

1,+

∏`
j=sG(Y jj−s)

∏s−1
j=0 G̃(Yj), we obtain the

result.

Lemma 29. ([?, Lem. 6 & 7, Prop. 3]) For every θ ∈ Θ, `(θ) ≤ `(θ∗). Furthermore

`(θ) = `(θ∗) ⇒ P̄Yθ = P̄Yθ∗ .
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Elements of the proof. We do not rewrite the proof of this lemma, the reader can follow the proofs
of [?, Lem. 6-7, Prop. 3] (using Lemma 28 and Kullback-Leibler divergence functions). The only
adaptations to make concern the proof of [?, Lem. 7] which, due to our slightly weaker hypothesis (5),
are the following facts. Following the proof of Lemma 28, observe that, due to (2), (34) and (33), on
{Y p−s+1 = yp−s+1, Y

−k
−m−s+1 = y−k−m−s+1}, p̄θ(Y

p
−s+1|Y

−k
−m−s+1) is between

pp+s1,−

∫
E×Ks

p∏
j=−s+1

G(yjj−s)p̄θ(X−s = x−s, Y
−s
−2s+1 = y−s−2s+1|Y

−k
−m−s+1) dµ(x−s, y

−s
−2s+1)

and

pp+s1,+

∫
E×Ks

p∏
j=−s+1

G(yjj−s)p̄θ(X−s = x−s, Y
−s
−2s+1 = y−s−2s+1|Y

−k
−m−s+1) dµ(x−s, y

−s
−2s+1),

with G(y0
−s) :=

∫
E
p2,θ(y0|x, y−1

−s) dmE(x). Therefore we have

pp+s1,−

ps1,+

p∏
j=1

G(Y jj−s) ≤ p̄θ(Y
p
1 |Y 0
−s+1, Y

−k
−m−s+1) =

p̄θ(Y
p
−s+1|Y

−k
−m−s+1)

p̄θ(Y 0
−s+1|Y

−k
−m−s+1)

≤
pp+s1,+

ps1,−

p∏
j=1

G(Y jj−s).

Due to (3) and (4), we obtain

Ēθ∗
[
sup
k

sup
m≥k
| log(p̄θ(Y

p
1 |Y 0
−s+1, Y

−k
−m−s+1))|

]
<∞,

which enables the adaptation of the proof of [?, Lem. 7].

Proof of Theorem 2. Let x0 ∈ E. We know that, P̄θ∗ -almost surely, (n−1`n(·, x0))n converges uniformly

to ` which admits a maximum `(θ∗). Since `n(·, x0) is continuous on Θ and since Θ is compact, θ̂n,x0
is

well defined. Moreover, the limit values of (θ̂n,x0
)n are contained in

{θ ∈ Θ : `(θ) = `(θ∗)} ⊆ {θ ∈ Θ : P̄Yθ = P̄Yθ∗}.

Assume now that Qθ∗ is aperiodic and positive Harris recurrent, following the proof of [?, Thm. 5], we

have limn→+∞ `(θ̂n,x0
) = `(θ∗) almost surely for any initial measure and we conclude as above.

B Identifiability for the von Mises model: proof of proposition
13

Assume that P̄Yθ1 = P̄Yθ2 . In particular, we have

p̄θ1(Yk = yk|Y k−1
k−s = yk−1

k−s) = p̄θ2(Yk = yk|Y k−1
k−s = yk−1

k−s), for P̄Y
k
k−s

θ1
− a.e. ykk−s

and thus

M∑
x=1

P̄θ1(Xk = x|yk−1
k−s)p2,θ1(yk|x, yk−1

k−s) =

M∑
x=1

P̄θ2(Xk = x|yk−1
k−s)p2,θ2(yk|x, yk−1

k−s), for P̄Y
k
k−s

θ1
− a.e. ykk−s.

Since p̄θ1(ykk−s) > 0 (the invariant pdf h1 satisfies h1 > 0 and the transition pdf qθ satisfies qθ > 0 by

construction) and due to (30), we deduce that, for m⊗(s+1)-a.e. ykk−s, we have

M∑
x=1

P̄θ1(Xk = x|yk−1
k−s)f

γ
(x)

0,(1)
+
∑s

`=1 γ
(x)

`,(1)
eiyk−` (yk) =

M∑
x=1

P̄θ2(Xk = x|yk−1
k−s)f

γ
(x)

0,(2)
+
∑s

`=1 γ
(x)

`,(2)
eiyk−` (yk)

with fγ defined by (29) where m denotes the Lebesgue measure on T.
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According to [?], finite mixtures of von Mises distribution are identifiable. This implies in particular that
if

M∑
x=1

π
(x)
1 f

γ
(x)
1

(y) =

M∑
x=1

π
(x)
2 f

γ
(x)
2

(y) for m− a.e. y

with γ
(x)
1 6= γ

(x′)
1 for x 6= x′ and π

(x)
1 > 0 for x ∈ {1, ...,M} then there exists a permutation τ :

{1, ...,M} → {1, ...,M} such that γ
(x)
1 = γ

(τ(x))
2 and π

(x)
1 = π

(τ(x))
2 .

Recall that we have assumed that (γ
(x)
0,(1), ..., γ

(x)
s,(1)) 6= (γ

(x′)
0,(1), ..., γ

(x′)
s,(1)) if x 6= x′, which implies that

γ
(x)
0,(1) +

s∑
`=1

γ
(x)
`,(1)e

iyk−` 6= γ
(x′)
0,(1) +

s∑
`=1

γ
(x′)
`,(1)e

iyk−` , for m⊗(s+1) − a.e. ykk−s.

Therefore, since for every x ∈ {1, ...,M} and for m⊗s-almost every yk−1
k−s , P̄θ1(Xk = x|yk−1

k−s) > 0 (since

hθ1 > 0), for m⊗s-almost every yk−1
k−s there exists a permutation τyk−1

k−s
of {1, ...,M} such that,

∀x ∈ {1, ...,M}, γ
(x)
0,(1) +

s∑
`=1

γ
(x)
`,(1)e

iyk−` = γ
(τ

y
k−1
k−s

(x))

0,(2) +

s∑
`=1

γ
(τ

y
k−1
k−s

(x))

`,(2) eiyk−` .

Since the set of permutations of {1, ...,M} is finite, there exists a positive Lebesgue measure subset of Ts
on which the permutation is the same permutation τ . From this, we deduce that

∀x ∈ {1, ...,M}, ∀j ∈ {0, ..., s}, γ
(x)
j,(1) = γ

(τ(x))
j,(2)

and that, for Lebesgue almost every yk+1
k−s , the following holds true

∀x ∈ {1, ...,M}, P̄θ1(Xk = x|yk−1
k−s) = P̄θ2(Xk = τ(x)|yk−1

k−s).

Let us now discuss the identifiability of the other components of θ1 and θ2. If P̄Yθ1 = P̄Yθ2 then

p̄θ1(Yk = yk, Yk+1 = yk+1|Y k−1
k−s = yk−1

k−s) = p̄θ2(Yk = yk, Yk+1 = yk+1|Y k−1
k−s = yk−1

k−s) P̄Y
k+1
k−s

θ1
− a.e. yk+1

k−s

and thus, for Lebesgue almost every yk+1
k−s , we have

M∑
x,x′=1

P̄θ1(Xk = x|yk−1
k−s)p1,θ1(x′|x, yk)f

γ
(x)

0,(1)
+
∑s

`=1 γ
(x)

`,(1)
eiyk−` (yk)f

γ
(x′)
0,(1)

+
∑s

`=1 γ
(x′)
`,(1)

eiyk−`+1
(yk+1)

=

M∑
x,x′=1

P̄θ2(Xk = x|yk−1
k−s)p1,θ2(x′|x, yk)f

γ
(x)

0,(2)
+
∑s

`=1 γ
(x)

`,(2)
eiyk−` (yk)f

γ
(x′)
0,(2)

+
∑s

`=1 γ
(x′)
`,(2)

eiyk−`+1
(yk+1).

This implies that, for almost every yk+1
k−s , the quantity∑

x,x′

P̄θ1(Xk = x|yk−1
k−s)(p1,θ1(x′|x, yk)−p1,θ2(τ(x′)|τ(x), yk))f

γ
(x)

0,(1)
+
∑s

`=1 γ
(x)

`,(1)
eiyk−` (yk)f

γ
(x′)
0,(1)

+
∑s

`=1 γ
(x′)
`,(1)

eiyk−`+1
(yk+1)

is null and so (again using the identifiability of von Mises distribution)

∀x, x′, p1,θ1(x′|x, y) = p1,θ2(τ(x′)|τ(x), y) for m− a.e. y.

Now, due to the special form of p1,θ specified in (14), we get

∀x, x′, m− a.e. y,
qx,x′,(1)

∣∣∣exp
(
λ̃x,x′,(1)e

−iy
)∣∣∣∑M

x′′=1 qx,x′′,(1)

∣∣∣exp
(
λ̃x,x′′,(1)e−iy

)∣∣∣ =
qτ(x),τ(x′),(2)

∣∣∣exp
(
λ̃τ(x),τ(x′),(2)e

−iy
)∣∣∣∑M

x′′=1 qτ(x),x′′,(2)

∣∣∣exp
(
λ̃τ(x),x′′,(2)e−iy

)∣∣∣ .
(44)
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Let x ∈ {1, ...,M} be fixed. Applying (44) a first time with x′ = x and a second time with any x′, we get

∀x′, for m− a.e. y,
qx,x′,(1)

∣∣∣exp
(
λ̃x,x′,(1)e

−iy
)∣∣∣

qx,x,(1)

∣∣∣exp
(
λ̃x,x,(1)e−iy

)∣∣∣ =
qτ(x),τ(x′),(2)

∣∣∣exp
(
λ̃τ(x),τ(x′),(2)e

−iy
)∣∣∣

qτ(x),τ(x),(2)

∣∣∣exp
(
λ̃τ(x),τ(x),(2)e−iy

)∣∣∣
and so

∀x′,
qx,x′,(1)

qx,x,(1)
=
qτ(x),τ(x′),(2)

qτ(x),τ(x),(2)
(45)

and
∀x′, λ̃x,x′,(1) − λ̃x,x,(1) = λ̃τ(x),τ(x′),(2) − λ̃τ(x),τ(x),(2). (46)

Now, since
∑
x′ qx,x′,(1) = 1 =

∑
x′ qτ(x),τ(x′),(2), due to (45), it comes qx,x,(1) = qτ(x),τ(x),(2) and so

∀x′ ∈ E, qx,x′,(1) = qτ(x),τ(x′),(2).

If θ1 and θ2 are in Θ′, since λ̃x,x,(1) = 0 = λ̃τ(x),τ(x),(2), due to (46), we conclude that

∀x′ ∈ E, λ̃x,x′,(1) = λ̃τ(x),τ(x′),(2).

If θ1 and θ2 are in Θ′′, since
∑
x′ λ̃x,x′,(1) = 0 =

∑
x′ λ̃τ(x),τ(x′),(2), due to (46), we get λ̃x,x,(1) =

λ̃τ(x),τ(x),(2) and, applying again (46), we conclude that

∀x′ ∈ E, λ̃x,x′,(1) = λ̃τ(x),τ(x′),(2).

C Identifiability for the gaussian model: proof of Proposition 9

Using similar arguments as in Appendix B, existing results on the identifiability of mixture of Gaussian
distributions (see [?]) we obtain that if P̄Yθ1 = P̄Yθ2 , then for all x ∈ {1, 2} and y ∈ R(

β
(x)
0,(1), β

(x)
1,(1), ..., β

(x)
r,(1), σ

(x)
(1)

)
=
(
β

(x)
0,(2), β

(x)
1,(2), ..., β

(x)
r,(2), σ

(x)
(2)

)
and

p1,θ1(x|x, y) = π
(x)
−,(1) +

1− π(x)
−,(1) − π

(x)
+,(1)

1 + exp
(
λ

(x)
0,(1) + λ

(x)
1,(1)y

) = π
(x)
−,(2) +

1− π(x)
−,(2) − π

(x)
+,(2)

1 + exp
(
λ

(x)
0,(2) + λ

(x)
1,(2)y

) = p1,θ2(x|x, y)

(47)
where the regimes have been labeled such that the permutation τ is the identity.

If θ1 and θ2 are in Θ′ then λ
(x)
1,(i) 6= 0 for i ∈ {1, 2} and looking at the asymptotic behavior of the terms

which appear in (47) when y → ±∞ permits to show that π
(x)
−,(1) = π

(x)
−,(2), π

(x)
+,(1) = π

(x)
+,(2). We can then

easily deduce that λ
(x)
0,(1) = λ

(x)
0,(2) and λ

(x)
1,(1) = λ

(x)
1,(2) and thus that θ1 = θ2.

If θ1 and θ2 are in Θ′′, then we directly obtain that π
(x)
−,(1) = π

(x)
−,(2) = π

(x)
+,(1) = π

(x)
−,(1) = π0 and then that

θ1 = θ2.

D Identifiability for the Rainfall model: proof of Proposition 19

Assume that P̄Yθ1 = P̄Yθ2 . First, we use the fact that

p̄θ1(Yk = yk|Y k−1
k−s = yk−1

k−s) = p̄θ2(Yk = yk|Y k−1
k−s = yk−1

k−s) for P̄Y
k
k−s

θ1
− a.e. ykk−s (48)
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to prove that

(π
(x)
i,(1), α

(x)
i,(1), β

(x)
i,(1))i,x = (π

(x)
i,(2), α

(x)
i,(2), β

(x)
i,(2))i,x.

Using (48) on the set {r(i)
k > 0, ∀i ∈ {1, ..., `}}, we conclude that there exists a permutation τ of {1, ...,M}

such that, for every i ∈ {1, ..., `} and every x ∈ {1, ...,M}, we have

(α
(x)
i,(1), β

(x)
i,(1)) = (α

(τ(x))
i,(2) , β

(τ(x))
i,(2) ) (49)

and

P̄θ1(Xk = x|Y k−1
k−s = yk−1

k−s)
∏̀
i=1

π
(x)
i,(1) = P̄θ2(Xk = x|Y k−1

k−s = yk−1
k−s)

∏̀
i=1

π
(τ(x))
i,(2) .

Now, for every J ⊆ {1, ..., `}, we use (48) on the set {r(j)
k > 0, ∀j ∈ J, r(i)

k = 0, ∀i 6∈ J}. Due to (49)
and since θ1 satisfies (25), we obtain

P̄θ1(Xk = x|Y k−1
k−s = yk−1

k−s)
∏
j∈J

π
(x)
j,(1)

∏
i 6∈J

(1−π(x)
i,(1)) = P̄θ2(Xk = x|Y k−1

k−s = yk−1
k−s)

∏
j∈J

π
(τ(x))
j,(2)

∏
i 6∈J

(1−π(τ(x))
i,(2) ).

From which, we conclude

∀i ∈ {1, ..., `}, ∀x ∈ {1, ...,M}, π
(x)
i,(1) = π

(τ(x))
i,(2) . (50)

Now it remains to prove that (qx,x′,(1), µx,x′,(1)) = (qτ(x),τ(x′),(2), µτ(x),τ(x′),(2)). To this hand, as for the
von Mises model (see Appendix B), we use the fact that

p̄θ1(Yk = yk, Yk+1 = yk+1|Y k−1
k−s = yk−1

k−s) = p̄θ2(Yk = yk, Yk+1 = yk+1|Y k−1
k−s = yk−1

k−s) for P̄Y
k
k−s

θ1
−a.e. ykk−s

(51)
and obtain that

∀x, x′, p1,θ1(x′|x, yk) = p1,θ2(τ(x′)|τ(x), yk) for a.e.yk.

This implies that

q̃x,x′,(1) exp(−z′k−1µ̃x,x′,(1))∑
x” q̃x,x”,(1) exp(−z′k−1µ̃x,x′,(1))

=
q̃τ(x),τ(x′),(2) exp(−z′k−1µ̃τ(x),τ(x′),(2))∑
x” q̃x,τ(x”),(2) exp(−z′k−1µ̃x,τ(x”),(2))

, (52)

with q̃x,x′,(j) := qx,x′,(j) exp(− 1
2 (µx,x′,(j))

′Σ−1µx,x′,(j)) and µ̃x,x′,(j) := Σ−1µx,x′,(j). From (52), we obtain
that

q̃x,x′,(1) exp(−z′k−1µ̃x,x′,(1))

q̃x,x,(1) exp(−z′k−1µ̃x,x,(1))
=
q̃τ(x),τ(x′),(2) exp(−z′k−1µ̃τ(x),τ(x′),(2))

q̃τ(x),τ(x),(2) exp(−z′k−1µ̃τ(x),τ(x),(2))
,

and so that, for every x, x′ ∈ {1, ...,M},

µ̃x,x′,(1) − µ̃x,x,(1) = µ̃τ(x),τ(x′),(2) − µ̃τ(x),τ(x),(2) (53)

and
q̃x,x′,(1)

q̃x,x,(1)
=
q̃τ(x),τ(x′),(2)

q̃τ(x),τ(x),(2)
. (54)

Finally, it comes from (53) that µ̃x,x′,(1) = µ̃τ(x),τ(x′),(2) (using
∑
x” µ̃x,x”,(j) = 0) and so µx,x′,(1) =

µτ(x),τ(x′),(2). So (54) becomes
qx,x′,(1)

qx,x,(1)
=
qτ(x),τ(x′),(2)

qτ(x),τ(x),(2)

which implies that qx,x′,(1) = qτ(x),τ(x′),(2) (due to
∑
x” qx,x”,(j) = 1).
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E Proof of Lemma 16

Let f be any probability pdf wrt µ = mE ×mK . We have

[Q∗nθ (f − hθ)](x0, y0) =

∫
(E×K)n

0∏
i=−n+1

qθ(xi, yi|xi−1)(f − hθ)(x−n, y−n) dm⊗nE (x−1
−n)dm⊗nK (y−1

−n)

=

∫
En×Kn−1

0∏
i=−n+1

qθ(xi, yi|xi−1)(F − h1,θ)(x−n) dm⊗nE (x−1
−n)dm

⊗(n−1)
K (y−1

−n+1)

with F (x−n) :=
∫
K
f(x−n, y−n) dmK(y−n). Now, since qθ(xi, yi|xi−1) = p1,θ(xi|xi−1)p2,θ(yi|xi), we

obtain that

[Q∗nθ (f − h1,θ)](x0, y0) = p2,θ(y0|x0)

∫
En

0∏
i=−n+1

p1,θ(xi|xi−1)(F − h1,θ)(x−n) dm⊗nE (x−1
−n).

Therefore
||Q∗nθ (f − hθ)||L1(mE×mK) = ||Q∗n1,θ(F − h1,θ)||L1(mE).

Now, let us assume that p2,θ > 0 and that (Xk)k is an aperiodic positive Harris recurrent Markov chain.
We will use the notations of [?].

Since (Xk)k is positive, it is ψ-irreducible (with ψ = ψ0). Due to the hypothesis on p2,θ, this implies the
ψ-irreducibility of (Xk, Yk)k (with ψ = ψ0 ×mK).

Moreover (Xk, Yk)k is positive since it admits an invariant probability measure (due to the first point of
this result).

The fact that (Xk)k is aperiodic means that, for every νM -small set C such that νM (C) > 0 for (Xk)k,
the greatest common divisor of the set EC defined as follows is equal to 1:

EC := {n ≥ 1 : C is νn − small with νn = δnνM and δn > 0}.

Now, let C ′ be a ν′M -small set for (Xk, Yk)k with ν′M (C ′) > 0, then for every (x0, y0) ∈ C ′ and every
(B,D) ∈ B(E)×B(K), we have QMθ 1lB×D(x0, y0) ≥ ν′M (B ×D). Moreover QMθ 1lB×D(x0, y0) is equal to∫

EM−1

(∫
B

M∏
i=1

p1,θ(xi|xi−1)

(∫
D

p2,θ(yM |xM ) dmK(yM )

)
dmE(xM )

)
dm
⊗(M−1)
E (xM−1

1 ).

Since QMθ 1lB×D(x0, y0) does not depend on y0, we obtain

∀(x0, y0) ∈ E ×K, ∀B ∈ B(E), QM1,θ1lB(x0) = QMθ 1lB×K(x0, y0) ≥ ν′M (B ×K)

and so C := {x ∈ E : ∃y ∈ K, (x, y) ∈ C ′} is νM -small with νM (B) = ν′M (B × K) and νM (C) ≥
ν′M (C ′) > 0. Moreover EC = EC′ . Indeed, if C ′ is ν′n-small with ν′n = δ′nν

′
M , then C is νn-small with

νn(B) = ν′n(B ×K) = δnνM (B) with δn(x) =
∫
K
δ′n(x, y) dmK(y); and conversely, if C is νn-small with

νn = δnνM , then C ′ is ν′n-small with ν′n(B × D) = δ′nν
′
M (B × D) and with δ′n(x, y) = δn(x)p2,θ(y|x).

Therefore (Xk, Yk)k is also aperiodic.

Finally, the Harris recurrence property of (Xk, Yk)k follows from the Harris-recurrence of (Xk)k and from
p2,θ > 0.
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