
Consistency of Versions in Object-Oriented Databases

Wojciech Cellary * and Genevikve Jomier
**

* Technical University of Poznan, 60965 Poznan, Poland
** Gip Altair, BP 105, 78153 Le Chesnay-Cedex, France

Abstract

This paper presents an approach to maintaining con-
sistency of object versions in multiversion database
systems. In this approach a multiversion database is
considered to be a set of logically independent and
identifiable database versions. Each database ver-
sion is composed of a version of each object stored
in the system. However, identical object versions
may be shared by many database versions. Database
versions are identified by version stamps. Version
stamps are also used to associate object versions with
database versions. Because of the particular con-
struction and semantics of version stamps, object
version management is very efficient. Moreover, it
is orthogonal to other problems of version manage-
ment, such as object addressing, concurrency con-
trol, access authorization, etc. The paper explains
how the requests of object reading, updating, creat-
ing and deleting are realized.

1 Introduction

In recent years, development of database technology
has addressed non-traditional domains, such as com-
puter aided design (CAD), manufacturing, manage-
ment, software engineering (CASE) and office au-
tomation. Database management systems (DBMS)

Permission to copy without fee all or part of this material i.s

granted provided that the copies are not made or di\trihuted for

direct commercial adcantage. the VLDB copyright notice and

the title of the publication and its date appear. and notice is pivcn

that copying is by permission of the Very Large Data Base

Endowment. To copy otherwise. or to rcpuhlish. requires ;I Ccc

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

devoted to these domains need to support new func-
tions. One of the most important is version ma-
nagement, which appears necessary in new object-
oriented database systems [9,18,20,22,23,24,29,31,35].
These systems are required to manage simultane-
ously several versions of the same object. For ins-
tance, in computer aided management applications,
consecutive real world states appearing one after the
other have to be stored in a database. In CASE and
CAD applications, a database has to store different
alternatives of the same object. Such databases are
called multiversion.

Various aspects of version management have been
considered in the literature: version identification
and manipulation, change notification and propaga-
tion, version primitives, functions, histories, struc-
tures of version graphs, etc. These aspects have
been considered separately for CAD databases [3,
8,13,15,16,17,19,21,27], information systems [10,25]
and engineering databases [11,12,34], taking applica-
tion specificity into account. There is also conside-
rable work concerning temporal aspects of databases
using versions [1,26,28,30]. All these aspects are im-
portant, however, as soon as the database becomes
large, with a great number of objects, and many
among them with several versions, the key problem
of version management is the problem of consistency.
Intuitively that means that the DBMS must be able
to present to the user the versions of dinerent ob-
jects that go together. If this problem is not solved
efficiently, it is impossible to query and update the
database consistently.

In monoversion databases the problem of consis-
tency is stated as follows. A monoversion object is
defined as a pair (object identifier, object value). A
monoversion database is defined as a set of objects,
and a monoversion database state as the set of va-
lues of all the objects contained in the database. A
monoversion database is considered to be consistent
if it accurately represents a state of the real world
that it models. The real world modeled may phy-
sically exist or not, as happens in the case of de-
sign databases, where a designer stores a representa-

432

tion of a real world state that exists only in his/her
mind. Formally, database consistency is defined by
consistency constraints imposed on object values. To
maintain database consistency, atomic transactions
are used, which transform one consistent state of the
database into another [14].

In multiversion databases the consistency pro-
blem is more complex. Now, a multiversion object is
defined as a pair (object identifier, set of object ver-
sions). An object version is defined as a pair (version
identifier, version value). A multiversion database is
defined as a set of multiversion objects. A multiver-
sion database state is defined as the set of the values
of all the object versions contained in the database.

Introduction of object versions has a fundamen-
tal consequence: generally, a multiversion database
is inconsistent, i.e. considered as a whole it does not
reflect any state of the real world. Assume a mul-
tiversion database containing two objects, A in two
versions ai and a2, and B in one version bl . Even
if bl is consistent with respect to both al and rr2,
the multiversion database state {ai, 02, bl} is incon-
sistent. As a consequence, in multiversion databases
the definition of a transaction as a process that trans-
forms one consistent state of the database into an-
other is no longer valid, because the initial state of
a multiversion database is inconsistent. Thus, a fun-
damental problem of multiversion databases is to re-
cognize which versions of different objects are con-
sistent together. This problem is important, because
in a database composed of m objects, each one in n
versions, there are up to nm different subsets of the
database containing one version of each object. Even
if not all of them are consistent, and even if m and
n are small, the user will quickly be lost without the
help of the system.

The problem of version consistency has been per
inted out in some papers referenced above, and tools
to maintain partial consistency [3], i.e. consistency
of parts of the database, have been proposed. They
may be seen as links established between consistent
versions of different objects. In [35], these links are
given in the form of slices, where a slice is a set of
object versions that have been produced by a single
transaction. In [15,16] they are given in the form of
version histories, which maintain is-a-descendant-
of and is-an-ancestor-of relationships among many
versions of the same object, and configuration ob-
jects, which in CAD are parts of a design hierarchi-
cally constructed. In [29] consistency surfaces are
proposed for tracking the state of particular versions
of objects and the degree to which they are consis-
tent with versions of other objects. In [3] the idea of

layers and contexts introduced in Pie [5] is taken up
again; a layer is a group of sets of related changes
and a context is a sequence of layers. In [3] the pro-
blem of configuring a system in software and design
database domains is considered. A syntactic charac-
terization of a correct configuration tied to a trans-
action model is presented. In this model each object
is stamped with the signature of the transaction that
created it. Then, correct configurations are genera-
ted by the use of a version graph for each object and
transaction dependence graphs.

The common point of all these approaches is that,
by different means, they establish explicit links bet-
ween consistent object versions. Storage, use and
maintenance of these links impose a heavy burden
on database management. It grows rapidly with the
number of objects and the number of versions of each
object [22]. So these approaches seem to be imprac-
ticable, except in some limited or particular cases.

In this paper, a totally different solution of the
consistency problem, called the database version ap-
proach, is presented. Its concepts are described in
Section 2. Section 3 explains how object versions
are managed in the system. Section 4 is devoted to
operating on objects. Section 5 deals with concur-
rency control. In Section 6 version management of
composite objects is presented and compared with
other approaches. Section 7 concludes the paper.

2 Database Version Approach

The database version approach is not based on the
notion of partial consistency of the multiversion da-
tabase. To solve the problem of multiversion database
consistency, we use the same notion of consistency as
used in monoversion databases.

A monoversion database stores one representa-
tion of the real world state, strictly taken, the last
one introduced by the user, which replaces the previ-
ous one. If a user of a monoversion database modifies
one object, in fact, he replaces the entire represen-
tation of one real world state by the representation
of anot her.

Similarly, if a user of a multiversion database cre-
ates a new version of an object, in fact, he creates
a new representation of an entire real world state.
In the future, he will need to retrieve this represen-
tation. This is possible if the multiversion database
stores the set of representations of the real world
states, introduced by the users.

In our approach a representation of a real world
state is called database version. A multiversion data-

433

base is defined as a set of logically independent and
identified database versions (Figure 1). Formally, a
database version is defined as a pair composed of
the database version identifier and the set of ver-
sions of all the objects contained in the multiversion
database, one version per object. The state of a
database version is defined as the set of values of all
the object versions that it contains.

The concept of database versions allows the use
of transactions defined as an extension of the classi-
cal definition [14]: a transaction is defined as a pro-
cess that takes a set of database versions each one
from a consistent state to another consistent state.
Before or after transaction execution a database ver-
sion may be empty.

In the simplest case a transaction concerns one
database version. It may be non-versioning or ver-
sioning. A non-versioning transaction queries or up-
dates a database version, causing its evolution in-
dependently of the evolution of the other database
versions. It corresponds exactly to the notion of
transaction in monoversion databases. A version-
ing transaction creates a new database version. It is
addressed to a database version, the parent database
version, and it creates a child database version, which
is a logical copy of the parent. Thus, the set of
database versions is organized as a tree, called deriva-
tion tree. Once created, the new database version
will evolve autonomously, according to the non-ver-
sioning transactions addressed to it.

A user operates on a multiversion database in the
following way. First of all he chooses (a) database
version(s). One way to do that is to specify a database
version identifier used by the DBMS. However, it is
more convenient to use other identifiers, which re-
flect the semantics of the database, and which are
translated into the system identifiers. For instance,
in a temporal database each system identifier of a
database version may be associated to a date, in a
CASE application to a software configuration [32].

When the database version is chosen, the user
may perform non-versioning transactions addressed
to it, as if he worked on a monoversion database.
The system will automatically identify object ver-
sions belonging to the database version chosen. The
user, however, is responsible for writing transactions
properly, i.e. in a way that a transaction transforms
an initial consistent state of the database version
into another consistent state. By running a version-
ing transaction, the user may create a new (child)
database version and then work on it. Finally, a
user may work simultaneously on several database
versions, embedding operations addressed to differ-

atabase version
atabase version

Figure 1. Multiversion database as a set of
database versions.

ent database versions in a transaction. In this case,
he may, for example, move the value of an object
version from one database version to another, browse
through the multiversion database, read all the dif-
ferent versions of an object, and so on. The only
requirement is that the transaction must transform
a consistent state of each database version accessed
into another consistent state.

To summarize, there are two levels of operation
on a multiversion database. At the upper level the
user creates or deletes a specified database version.
At the lower level he reads, writes, creates or deletes
a specified object in a specified database version.

3 Object Version Identification

Since a child database version usually differs only
partially from its parent, versions of the same object
contained in different database versions may have
identical values. To avoid redundancy, this value has
to be physically shared by several database versions.
This may be done by associating, for an object, se-
veral identifiers of database versions with one value
that they share. However, the following problem
arises: when a new database version is created, its
identifier must be associated with one value of each
object stored in the multiversion database. In a large
database the association process would be inadmissi-
bly long. To solve this problem, in the database ver-
sion approach, database version identifiers are con-
structed in a special way. They are called database
version stamps or simply stamps.

As the multiversion database is organized as a
tree of database versions, the stamp of a database
version is constructed in such a way that it makes
it possible to identify all the database version’s an-
cestors. If a database version is the n-th child of its
parent, whose stamp is p, then the child stamp is

434

b)

Figure 2. Database version derivation trees.

p.n. The root database version is stamped 0.
The following example shows how stamps are used

to identify object versions. Consider a multiversion
database, composed of four database versions. Its
derivation tree is shown in Figure 2.a. An object A
is stored in the multiversion database. From the lo-
gical point of view, one version of A appears in each
database version. Thus each object version of A may
be seen as a row of the relation Object-Versions-of-A
(Value, DB Version Stamp) presented in Table 1.

Value DB Version Stamp

a0 0

Table 1. Relation Object- Versions-of-A.

However to avoid the replication of values of ver-
sions of A which are identical in several database ver-
sions, like a2 in database versions 0.2 and 0.3, this
relation is implemented as shown in Table 2. Each
row of this table, named Oid_A, may represent seve-
ral object versions of A. For instance the last row
of Table 2 implements object versions (0.2, a2) and
(0.3, a2) of A. This may also be read “the value of
object A in database version 0.3 is a2”.

oid~

Value) DB Version Stamps

Table 2. The multiversion object A.

Suppose now that database version 0.1 has a child,
database version 0.1.1 (Figure 2b) and that the value

al is shared by database versions 0.1 and 0.1.1. In
this case the association of database version stamps
with values presented in Table 2 does not need to be
modified. It is sufficient to establish a rule saying
that:

For an object, if no value is explicitly as-
sociated with database version stamp s,
then database version s shares the value
with its parent database version.

Suppose that the value of A in database ver-
sion 0.1.1 is required. Since, in Table 2, no value
is stamped with 0.1.1, using the rule above, one can
deduce that the desired value is shared with the pa-
rent database version, stamped 0.1, so al is found.

This mechanism works recursively for an arbi-
trary number of ancestor database versions sharing
a value. Thus a versioning transaction avoids the ex-
plicit association of the stamp of the database ver-
sion that it creates with a value belonging to each
object. As a result, we distinguish between unshared
value of object version, belonging to only one data-
base version, and shared value of object version, be-
longing to several database versions, whose stamps
are associated explicitly or implicitly.

Consider now object B stored in the same multi-
version database (Table 3).

Oid-B

Value 1 DB Version Stamps

Table 3. The multiversion object B.

Fromstamp association {ao,bo}, {al, bo}, {az,bl},
(a2, bo} and {al, b2) are consistent because each pair
is contained in a database version. On the contrary,
{al,h) and {az,W are not known to be consistent.

In the example above, Table 2 represents a mul-
tiversion object A identified by its object identifier,
Oid-A. Each value oi may be arbitrarily complex, in
particular, it may be totally or partially composed
of references to other objects, i.e. their oid.

To implement this versioning strategy, the only
requirements are that the identifier of an object iden-
tifies the data structure implementing the set of its
versions, and that each value of object version is as-
sociated with its list of database version stamps.

435

4 Operating on Objects

In this section we explain how the requests for ob-
ject reading, updating, creating and deleting are per-
formed. These requests are addressed to a database
version stamped s.

Reading

To perform a read request, the value of an object ver-
sion belonging to database version s must be identi-
fied and read. This is presented in Section 3.

Updating

To update an object in database version s, its value
in database version s must first be identified. Then,
it must be determined if this value is shared or not.
A value is unshared if only one stamp is explicitly as-
sociated with it, and if all the children of this stamp
are explicitly associated with other values of versions
of the same object. Otherwise, a value of an object
version is shared.

If a value v is not shared, it can be updated with-
out any modification of stamp. If it is shared, a new
row, new, with value v and stamp s must be created
in the table implementing the multiversion object.
Then v is updated in new. The value v of the old
row, old, remains unchanged, stamped by the ver-
sion stamps of all the database versions that shared
it, except s. Because of implicit sharing, the set of
stamps associated with v in old contains after the
update:

1. All the stamps explicitly associated with v be-
fore the update, except s, if s was explicitly
associated with v, because the database ver-
sion s could share v implicitly.

2. The stamps of all the children of the database
version s, which are not explicitly associated
with other values of versions of the object. Be-
fore the update these children shared implicitly
v with the database version s.

The performing of an update request is illustrated
by the following example. Consider the derivation
tree presented in Figure 3. Object A, stored in the
database, has two object version values: as belong-
ing only to the database version stamped 0, and al,
which is shared by the remaining database versions,
as shown in Table 4a. Table 4b shows object A af-
ter it has been updated in database version 0.1.1.
Value al is preserved in database versions 0.1, 0.1.1.1
and 0.1.1.2, which share it explicitly, and database

Figure 3. Derivation tree of database versions.

versions 0.1.2 and 0.1.3 which share it implicitly.
If object A is updated again in database version
0.1.1, the stamp association remains unchanged (Ta-
ble 4~). Table 4d presents object A after its update
in database version 0.1.

4

Value DB Version Stamps

a0 0
01 0.1

1 Value 1 DB Version Stamps 1

Value 1 DB Version Stamps

Value 1 DB Version Stamps

d,

Table 4. Updating.

Object creation and deletion are reduced t 0 up-

436

dating. Formally, all the objects that exist in the
multiversion database appear in one version at each
database version. Thus, to create a new object,
which appears only in a particular database version,
but not in the others, or to delete an object in a
particular database version, we have to express its
non-existence in a database version. To this end a
special value nil is used. It means does not ecist.
The nil value of each object is contained in the root
database version stamped 0 (in the above example
a0 = nil).

Deletion

To delete an object in a particular database version
it is sufficient to update it with the nil value.

Creation

To create an object in a particular database version,
its nil value is first introduced in the root database
version. Then, the object is updated in the standard
way.

5 Concurrency Control

Transactions are executed concurrently and they are
serialized by the concurrency controller. However,
as values of object versions may be shared between
database versions, the concurrency control must be
studied at the logical level of database versions and
at the physical level of multiversion objects.

On the logical point of view, an access conflict
happens only if two transactions addressed to the
same database version access the same object: con-
flict concerns the version of this object belonging to
this database version. On the contrary, no conflict
happens if the transactions are addressed to differ-
ent database versions: as two database versions are
logically independant, on the logical point of view,
their object versions are different.

It follows that access conflicts happen between
non-versioning transactions addressed to a database
version p and a versioning transaction which wants
to derive a child database version c from p. The rea-
son is that the versioning transaction makes a logi-
cal copy of the parent database version p to create
the child c. Physical copy is avoided because the
values of object versions are shared between parent
and child database versions. Since the reading of
database version p by the versioning transaction is
only virtual, locking it may be avoided and the ver-
sioning transaction may be serialized in such a way

that it precedes all the other non-versioning trans-
actions working on database version p [7].

Conflicts that do not appear at the logical level
may appear at the physical level of multiversion ob-
jects, because database versions may share values of
object versions. The solution to this problem is sim-
ple because, as explained in the preceding section,
when an object version, whose value is shared, is to
be updated in a database version s, its value is repli-
cated and associated only with s (unshared value).
Then changes are introduced to this object version
belonging to database version s, while the original
value remains unchanged in the other database ver-
sions. Thus there is no problem if this replication is
done in a critical section.

6 Management of Versions of
Composite Object

In this section, the database version approach is com-
pared with the other approaches to version man-
agement of composite objects. In these approaches,
principally, object versions refer object versions, i.e.
reference resolution is static. This way of referencing
deeply influences version management as presented
in [20,22] and briefly described below.

Consider Figure 4a. A composite object A has
two components B and C. Each version of A refers
to a version of B and C. Figure 4b shows the im-
pact of the creation of a new version of B, bz: one
or more new versions of A must be created. Each
new version of A associates 62 with a version of C
consistent with it: for instance ag composed of b2
and CO, and a4 composed of bz and ~2. If A is itself a
component of a composite object of a higher level, E
for instance, then several new versions of E must be
created. The process of creation of new object ver-
sions will continue up to the root of the composite
object.

As noticed in [22] and shown in the previous ex-
ample, the creation of object versions in composite
objects may be done through the use of the is-part-
of link, which permits reading a composite object
bottom-up, but such links must be maintained by
the system. If it does not exist, bottom-up object
identification can only be done by memorizing the
access path from the object root of the composition
hierarchy. However, in this case, no versionable ob-
ject may be shared by several composite objects [20].

At each level of a composition hierarchy the num-
ber of object versions created grows geometrically.
This reduces database system performance, since cas-

437

b)

a) Before creation of bz.

B c

b) After creation of bz.

Figure 4. References between object versions.

cading creations require extra read and write opera-
tions, and extra overhead of the concurrency control
if the database is multiuser.

The process of object version creation may be
performed by the user without any system support;
then he decides at each step which object versions
have to be created. Since this may be very cumber-
some, another solution is percolation [3] : the version
manager automatically creates all the possible ver-
sions of composite objects at each level of the com-
position hierarchy. In this way the user avoids work,
but the database is burdened by a large number of
useless object versions.

The counterpart of this complex process of cre-
ation of object versions for composite objects is that
many composite object versions must be deleted in
the case of deletion of a version of a component ob-
ject.

On the other hand, in the database version ap-
proach, version management is orthogonal to the ob-
ject model, and dynamic reference resolution is used.
Consider, as an example, three classes d,S and C,
such that each object of class A is composed of one
object of class B and one object of class C. The
database version derivation tree is given in Figure
5a, and five objects: A, B, B’, C and C’, whose ver-

Figure 5. Database version derivation trees.

sions are given in Table 5 a,b,c,d,f. From Table 5e,
four different versions of object A exist: (~0, ho, CO}
in database version 0, {ai, b1, cl} in database version
0.1, {oz, bi,cl} in databaseversion 0.2 and {crs, bi,ci}
in database version 0.3. Different versions of A are
composed of different versions of different objects of
the same class and different versions of the same ob-
ject.

Suppose now that a user wants to create a new
version of A composed of b’, and a new version cg of
C. He derives a new database version 0.1.1 from 0.1
(cf. Figure 5b) and updates C in database version
0.1.1: the result is the insertion of c2 stamped by
0.1.1 (cf. Table 5f). All the other objects remain
unchanged and the DBMS is now able to recognize
that {ai, bi, ~2) is the value of the version of A be-
longing to database version 0.1.1.

This example shows that in the database version
approach the version management does not gene-
rate cascaded creations or deletions of object ver-
sions when a component object version is created or
deleted.

Another consequence of the dynamic reference
resolution used in the database version approach is
that the internal structure of the value of a non-
versionable complex object is the same as the inter-
nal structure of the value of a version of a complex
object, because both use object identifiers. It is ex-
actly the same as the internal structure of the objects
in monoversion databases. Thus, in contrast to other
versioning strategies the decision whether an object
is versionable does not need to be made when classes
are defined.

a) OXB

Value] DB Version Stamps 1

bn I 0 I

h 0.1, 0.2, 0.3

438

Value DB Version Stamps

b) O&B’ bb 0

b: 0.1,0.2
b: 0.3

1 Value 1 DB Version Stamps
c) Oid-C

I
Cn 1

-” ,
0 1

Cl 0.1, 0.2, 0.3

Value DB Version Stamps

d) Oid-C’ 4 0
4 0.1, 0.2, 0.3 ’

Value DBV Stamps

Oid-B Oid-C cro 0
e) OidA Oid-B Oid-C al 0.1

Oid-B ’ Oid-C (~2 0.2
Oid-B’ Oid-C’ (~3 0.3

Value 1 DB Version Stamps

f) Oid-C
/q-T&q

Table 5. Version stamp association in a composite
object.

7 Conclusions

The database version approach offers a very power-
ful tool for managing multiversion databases, be-
cause of version stamp semantics. It allows to es-
tablish: object version identification, consistency of
database versions, history of each object, history
of the database versions and the difference between
database versions.

This semantics must be compared with the se-
mantics of the version identifiers used in other ap-
proaches to version management. In those approa-
ches an object version is identified using a pair (ob-
ject identifier, version identifier), where version iden-
tifier is a local reference to the object. As a conse-
quence, the only possibility offered besides identifi-
cation is object history.

The difference between the semantics of version
stamps and version identifiers explains why the capa-
bilities of versioning mechanism using version stamps
includes all the capabilities of versioning systems US-

ing version identifiers.

The main advantage of the database version ap-
proach is its orthogonality to the object model, ob-
ject addressing, concurrency control, access autho-
rization and other object management problems.

Version stamps are easy to implement and eco-
nomical with respect to space. In comparison with
other approaches, version management overhead does
not grow significantly with the number of object ver-
sions.

Our work on the database version approach is
in progress. We are extending it to versions of me-
thods and schemes and are implementing it in the
O2 system [4,33] under development at Altair.

Acknowledgements

The authors are grateful to Francois Bancilhon, Clau-
de Delobel, David Dewitt, David Maier, Michel Ra-
oux and Fernando Velez for their helpful comments
and suggestions.

References

PI

PI

PI

PI

PI

PI

PI

Adiba M. Histories and Versions fir Multime-
dia Complex Objects. IEEE Data Engineering
Bulletin, Dec. 1988, pp. l-8.

Agrawal R., Jagadish H.V. On Correctly Con-
figuring Versioned Objects. Proc. 15th VLDB,
Amsterdam, Aug. 1989, pp. 367-374.

Atwood T. M. An Object-Oriented DBMS for
Design Support Applications. COMPINT 85,
Montreal, Sept. 1985, pp. 299-307.

Bancilhon F., Barbedette G., Benzaken V., De-
lobe1 C., Gamerman S., Lkcluse C., Pfeffer P.,
Richard P., Velez F. The Design and Implemen-
tation of 02, an Object-Oriented Database Sys-
tem. Proc. OODBS II Workshop, Bad Munster,
FRG, Sept. 1988.

Bobrow D., Goldstein I. Representing Design
Alternatives. Proc. Conf. on Artificial Intelli-
gence and Simulation of Behavior, Amsterdam,
July 1980.

Cellary W., Gelenbe E., Morzy T. Concur-
rency Control in Distributed Database Systems.
North-Holland, Amsterdam, 1988, 349 pages.

Cellary W., Jomier G. Versioning and Con-
currency Control in Object-Oriented Databases.

439

PI

PI

WI

WI

PI
/

PI

WI

[I51

WI

PI

PI

AltaYr Research Report, 1990, submitted to
publication.

Hong-Tai Chou, Won Kim. A Unifying Frame-
work for Version Control in a CAD Environ-
ment. 12th VLDB Conf., Kyoto, August 1986,
pp. 336-344.

Hong-Tai Chou, Won Kim. Versions and
Change Notification in an Object-Oriented
Database System. 25th ACM/IEEE Design Au-
tomation Conf., Anaheim, June 1988, pp. 275
281.

Davidson J. W., Zdonik S. B. A Visual Inter-
face for a Database with Version Management.
3rd ACM-SIGOIS Conf. on Office Information
Systems, Providence, RI, Oct. 1986, p. 52.

Dittrich K. R., Lorie R. A. Object-Oriented
Database Concepts for Engineering Applica-
tions. IBM Res. Rep. RJ 4691(50029), San Jose,
Calif., 5/8/85.

Dittrich K. R., Lorie R. A. Version Support for

Engineering Database Systems. IBM Res. Rep.
RJ 4769 (50628), San Jose, Calif., 7/18/85.

Fauvet M. C. Etic: un SGBD pour la CA0 dans
un Environment Partagt. These de 1’UniversitC
de Grenoble 1, France, Sept. 1988.

Gray J. Notes on Data Base Opemting Sys-
tems, in: R. Bayer, R. M. Graham and G. Seeg-
muller (Eds.) Operating Systems: An Advanced
Course, Springer Verlag, Berlin, 1978, pp. 393
481.

Katz R. H., Chang E. Managing Change in a
Computer-Aided Design Database. 13th VLDB
Conf., Brighton, GB, 1987, pp. 455462.

Katz R. H., Chang E., Bhateja R. Version
Modeling Concepts for Computer-Aided Design
Databases. ACM SIGMOD Int. Conf. on Data
Management, 1986, pp. 379-386.

Katz R. H., Lehman T. J. Database Support for

Versions and Alternatives of Large Design Files.
IEEE Trans. on Soft. Eng., Vol. SE-lo, No 2,
March 1984, pp. 191-200.

Kim W., Ballou N., Chou H. T., Garza J.
F., Woelk D. Integrating an Object-Oriented
Programming System with a Database System.
OOPSLA ‘88 Proc., San Diego, Calif., Sept.
1988, pp. 142-152.

WI

PO1

WI

1221

PI

WI

PI

[261

P71

PI

P91

Kim W., Banerjee J. Support of Abstract Data
Types in a CAD Database System. COMPINT
85, Montreal, Sept. 1985, pp. 381-385.

Kim W., Banerjee J., Hong-Tai Chou, Garza J.
F., Woelk D. Composite Object Support in an
Object-Oriented Database System. OOPSLA 87
Proc., Orlando, Fla., Oct. 1987, pp. 118-125.

Kim W., Batory D. S. A Model and Storage
Technique for Versions of VLSI CAD Objects,
in: Foundations of Data Organization, Plenum
Press, pp. 427-439.

Kim W., Bertino E., Garza J. F. Composite Ob-
jects Revisited. SIGMOD Record, Vol 18, No 2,
June 1989, pp. 337-347.

Kim W., Hong-Tai Chou. Versions of Schema
for Object-Oriented Databases. 14th VLDB
Conf., Los Angeles, Calif., 1988, pp. 148-159.

Kim W., Woelk D., Garza J. F., Chou H. T.,
Banerjee J., Ballou N. Enhancing the Object-
Oriented Concepts for Database Support. Third
Int. Conf. on Data Engineering, Los Angeles,
Calif., Feb. 1987, pp. 291-292.

Klahold P., Schlageter G., Unland R., Wilkes
W. A Transaction Model Supporting Complex
Applications in Integrated Information Systems.
Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, Austin, Texas, May 1985. SIG-
MOD Record Vol. 14, No 4, Dec. 1985, pp. 388-
401.

Klahold P., Schlageter G., Wilkes W. A General
Model for Version Management in Databases.
12th VLDB, Kyoto, August 1986, pp. 314327.

Landis G.S. Design Evolution and History
in an Object-Oriented CAD/CAM Database.
CH2285-S/86/0000/0297, IEEE 1986, pp. 297-
303.

Lum V., Dadam Pi, Erbe R., Guenauer J., Pis-
tor P., Walch G., Werner H., Woodfill J. De-
signing DBMS Support for the Temporal Di-
mension. SIGMOD 84, Boston MA, June 1984,
SIGMOD Record Vol. 14, No 2, 1985, pp. 115-
130.

Vbase Integrated Object System, Technical
Overview. Ontologic Inc., 47 Mannings Road, _
Billerica MA, 1987.

[30] Stam R., Snodgrass R. A Bibliography on Tem-
poral Databases. Dept. of Computer Science,
Univ. North Carolina, Chapel Hill, NC 27514,
Sept. 1988.

[31] Stonebraker M., Rowe L. The Postgres Papers.
Memorandum No. UCB/ERL M86/85, Nov.
1986.

[32] Tichy W.F., Tools for Software Configuration
Management. Proc. 11th International Confer-
ence on Software Engineering, May 1989.

[33] Velez F., Bernard G., Darnis V. The 02 Ob-
ject Manager- an Ove&iew. 15th VLDB Conf.,
Amsterdam, Aug. 1989.

[34] Woelk D., Kim W. Multimedia Information
Management in an Object-Oriented Database
System. MCC Technical Report Number DB-
046-87, Feb. 1987.

[35] Zdonik S.B. V ersion Management in an Object-
Oriented Database. Int. Works. on Adv. Pro
gramming Environments, Trondheim, Norway,
1986, pp. 139200.

441

