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ABSTRACT.  A general framework for proving relative consistency results
with regard to supercompactness is developed. Within this framework we prove
the relative consistency of the assertion that every set is ordinal definable with
the statement asserting the existence of a supercompact cardinal.  We also gener-
alize Easton's theorem; the new element in our result is that our forcing condi-
tions preserve supercompactness.

Introduction. The framework for our results is "backward Easton forcing":
forcing conditions are constructed in the ground model by an iteration similar to
the iteration described in the Solovay-Tennenbaum paper [12], the essential dif-
ference being that at the limit stages of the construction one takes the inverse
limit (instead of the direct limit) of the conditions constructed at the previous
stages. Backward Easton forcing is independent from large cardinal theory.
Indeed, large cardinals are mentioned only in the latter part of this paper.

The concept of supercompactness is due to Solovay [7]. We shall need only
the most elementary facts concerning supercompact cardinals, which we provide
in §0.

The essential idea of the backward Easton forcing constructions is probably
due to R. Jensen [unpublished, 1965]. A few years later and independently of
Jensen's work, F. Tall used similar constructions to obtain the consistency of
various conjectures in topology [14]. J. Silver realized the importance of these
methods to the theory of large cardinals, and he refined and extended them to a
method, to which we refer as the "Silver forcing method", for preserving certain
large cardinal properties in suitable Cohen extensions.  By this method Silver
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62 T. K. MENAS

obtained the consistency of the failure of the G. C. H. at a measurable cardinal [11].
The essential ideas of backward Easton forcing are incorporated in condi-

tions II and IV of our notion of a very fine system and in Proposition 11 and
Corollary 12.  Silver's ideas are incorporated in condition III of a very fine system,
in the generality of Proposition 11 and its corollary, and in a technique employed
in the lemma of Theorem 18.

In §0 of this paper we record a few of our conventions (the rest are dealt
with as they are needed) and state some facts about supercompact cardinals.

§1 is devoted to an abstract development of the Silver forcing method which
incorporates and extends the key ideas stated by Silver in a brief mimeographed
account distributed in the summer of 1971.

§2 contains the two main theorems stated above and related results.

0. ZF is Zermelo-Fraenkel set theory and ZFC is ZF plus the axiom of
choice. We shall consider only standard models of ZFC.  Let M be a model of
ZFC and t(vq, . . . , vn) a "term" of ZFC. Define <p(vo> • • • > vnvn+0 t0 De ̂ e
formula "r(v0.vn) = v„+1" of ZF. Then for x0, . . . ,xn,xn+l in M, we
say that "in M, t(xq, . . . ,xn) = xn+l" or "M 1= t(x0.xn) = xn + l" to
mean that M 1= tfxo, • • • > xnxn+0- Sometimes when we are not working in
M, we write "xn+1 = tu(x0, . . . ,x„)" for "M i= r(xQ, . . . ,xn) = *„+,".

If A and B are sets, AB is the set of all functions with domain A and range
a subset of B. For/G AB and W C A, f[W] = {x: (3 v G W)(f(y) = x)}. p(A)
is the set of all subsets of A unless otherwise stated. If X is a cardinal, we say
that A is closed under X-sequences if every function from X into A is in A.

Small Greek letters almost always denote ordinals.  Exceptions are clearly
stated. Cardinals are initial or finite ordinals and are usually denoted by the let-
ters "k", 'V and "X". If A is a set, \A\ is the cardinality of A.  The term "car-
dinal" is generally reserved for infinite cardinals. If k and X are cardinals, p„X is
the set of all subsets of X of cardinality less than k,k* = \xk\, and Xv =
HJ{aX: a < k}\. We reserve the term "inaccessible" for strongly inaccessible cardinals.

A two-valued measure ju: p(X) -* 2 on a nonempty set X is K-additive if for
every a < k and /: a -*■ p(X) so that Kf(ß)) = 1 for every ß < a, p(C)ß<a f(ß))
= 1.

Let p. be a two-valued measure on pK\. p is normal if
(i) p is K-additive.

(ii) For all a < X, p.({x G pKX: a E x}) = 1.
(iii)  For every function / from pKX into X, if

K{xEpK\:f(x)Ex})=l,

then for some a < X,
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CONSISTENCEY RESULTS CONCERNING SUPERCOMPACTNESS 63

p({xEPll\:f(x) = a})=l.

k is X-supercompact if there is a normal measure on pK\ and k is supercompact
if it is X-supercompact for all X > k.

We assume that the reader is familiar with the elementary ultrapower tech-
niques. If p is an Xj -additive measure on a set X, "j: V -*■ M = Vx¡¡i" will
always mean that / is the canonical elementary embedding of the universe into the
transitive collapse M of the ultrapower of the universe with respect to a. We
sometimes denote M by "j(V)". We also refer to / as "the elementary embed-
ding associated with p". All elementary embeddings will be assumed to be with
respect to the e-relation.

Let (x be a normal measure on pKX and ]\: V •* Mx s* VPk ¡ß. By a
theorem of Solovay, MK is closed under Xv-sequences and jjn) > X [7]. If / is a
function with domain pKX, r/1M will always be the element of Mx that corre-
sponds to the equivalence class of/with respect to p. We omit the "p.n when no
confusion results. If c is in MK,(cx;xE pKX> will be some function such that
f(cx; x E pK\y = c.  Suppose k < v < X and q: pK\ -*■ pKv is such that <7(x) =
x n v for every x E pKX. Then the measure qjß) defined on pKv so that for
every subset A of pKv, qJp)(A) = 1 iff m({x EpK\: q(x) EA)) = 1, is a normal
measure on pKv and is said to be the projection of p on pKv. It is not difficult
to prove that for every subset A of pKi>, q*(p)(A) = 1 iff jjv] EjJA). Let
/„: V^-Mv^ Vp*v¡qjp). Then there is an elementary embedding k: Mv -*■ Mx
such that k » jv= jK. in fact, for every /: pKv -* V,

/t(r/l<?»(M))= r/o?lM.

1. On the Silver forcing method. The reader is expected to know in detail
the papers of Scott and Solovay on Boolean-valued models of set theory [8] and
of Solovay and Tennenbaum on iterated Cohen extensions [12].

This section bristles with notational conventions so that no part is intelligible
without a perusal of its predecessors. Subsection 1 concerns two-stage extensions,
and subsection 2 concerns limit stages. Subsection 3 is devoted to properties of
a very fine system. In subsection 4 we show how to preserve the axioms of ZFC
in forcing with suitable classes of conditions.

Subsection 1. Two-stage extensions. If R is any partially ordered set, PR
will be the underlying set and <R will be the partial ordering on PR , i.e., R =
<PR ; <R>. We require that <R be so that for every x and y in PR if x <   y and
y <   x, then x = y.  Two elements p and r of P   are incompatible iff there is no
s in P   so that s <   p and s <   r.  R is separative if for every p and q in Pv ,
either q <   p or there is an r in PR so that r <R q and r is incompatible with p.
If R has a greatest element, it is unique and will be denoted by "1   ".
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64 T. K. MENAS

Suppose P is a partially ordered set and X is an ordinal.  P is \<losed if
for every descending X-sequence (p0; a < X) in P (i.e., Pß<?pa for all a <
ß < X), there is a p in p   such that p <ppa for all or < X.  P is X-directed closed
if for every directed X-sequence <ptt; a < X> in P (i.e., for every a < ß < X, there
is a y < X such that py <ppa and p7 <p Pp) there is a p in P  such that p <
pa for all a < X.

If C is a Boolean algebra "2?c" will denote the underlying set and "+ ",
"•", and "—_" will denote the Boolean operations of join, meet, and comple-
ment respectively. 0   and 1   will be the zero and unit elements of C and <   will
be the relation on B„ defined so that for a0 and al in B , a0 <   ax iff a0 •   -
(flj) = 0 . If C is complete, 2. and II   will be the infinite join and the infinite
meet, respectively.

Let B and C be complete Boolean algebras, and i a complete embedding of
B into C. The projection it of C on B with respect to / is the map from B into
BB defined so that ti(c) = fig [b E Bß : c <c Kb)} for all c in Bç .

Now suppose that B is a complete Boolean algebra and that P ÇB. is a
Ö

dense subset of B (i.e., 0_ $ P and for every b E B„, if b i= 0_, there is a p E P
8 oo

so that p <Bb). Then P = {P; <   t P)is a separative partially ordered set.
Conversely, if R is a separative partially ordered set, there is a canonical complete
Boolean algebra B(R) and a mapping [ ] : R ■+ Z?(R) so that the set [PR ] =
{[r]: r E PR} is a dense subset of Z?(R) and [ ] gives an isomorphism of R with
the partially ordered set <[PR ] ; <B(R) r [PR ]>.

We now describe [ ] and B(R). For p G PR , let [p] = {q G PR : q <R p}.
We work with the topology t on il  generated by the family {[p] : p G P }.
^b(r) *s t*10 set of all regular open subsets of PR .  [See Halmos [2] for the rele-
vant topological and Boolean algebra concepts.]   With respect to t, a subset b of
P is regular open iff (vp G b%^q G PR )(q <R p -»■ <7 G b) and (Vp G PR )
((V?<Rp)(3r<R?)(rGè)-»-pGA). Forô0,6, G5B(R),60 'g^^ = b0
n *i»*o +B(R) *i " {P GPR : (V<? <R PWr<Rq)(rEb0 U ft^}, -B(R)ft0 =
{p GPR: (Vfl <R p)(«$¿0)}, and 60 <S(R) ôx iff b0 Cb^

Convention X. Henceforth we reserve the term "poset" for any separative
partially ordered set with a greatest element. If Vi is a poset, where i is any sub-
script, we let P¡, <¡, 8,, Bt, -¡, +¡, -t, Qt, and 1,, be PP{, <p¡, B(?¡), BB(P¡),
'BW +B(Viy -B(P¡)> 0B(P,)' and 1B(Pi) respectively. We also use "<," to
denote the relation <b(P.) and omit the brackets from "[p]" for all p EPp .

Now suppose that C is a complete Boolean algebra and that P is a dense
subset of C so that lc G P.  We have noted that P = (P; <c I P) is a poset.
There is a unique isomorphism e: B(P)-+ C such that e(p) = p for all p G P.

If B is a complete Boolean algebra, V^' will be the separated Boolean
valued universe and the maps : V -*■ V^ and    : V^ ■+ V will be as in [12].
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CONSISTENCY RESULTS CONCERNING SUPERCOMPACTNESS 65

If 0(vo, . . . , v„) is a formula of ZF and x0,. . . , xn are elements of V^,
||0(xo, . . . , x„)||(B> is the Boolean value of the statement 0(xo,. . . , x„). The
superscript "(8)" will be omitted whenever possible. Also whenever we say that
in K(B), 0(xo, . . . ,x„) or that F(B) [= <Kx0, . . . ,xn), we mean that

||0(xo,...,xB)||<8> = lB.

If u and v are sets such that v Ç K<B> and /is a function from u into v,f* will
be the unique element of V^ so that

lg — 11/* is a function with domain u\\^

and for every xEu, ||/*(x) =/(x)||(B> = lg.
Suppose that 8 is a complete Boolean algebra and that in V^B\ V is a com-

plete Boolean algebra. It is shown in [12] that V = (Bv ', +p, *p. ~p> is a com-
plete Boolean algebra and that there is a canonical complete embedding /*gp of 8
into V so that for all bEBB, ||/gp (b) = lp || = b and ||/Bp (b) = 0p || = -ßb.

Let i be j'gp and let it be the projection of V on 8 with respect to i. We
recall two important facts of [12].

0. Proposition. For every b E BB and for every xEB*, it(i(b) • x) =
Kb) ■ 1t(x).

1. Proposition. For every b EBß and x.yEB?, i(b) •_- x <•_• i(b) "x y
iffb<B\\x<vy\\.

2. Proposition. For every xEB$, ir(x) = ||x ¥= 0p ||.

Proof. By Proposition 1, i(\\x = 0p ||) «g x = 0p . Thenx <^ i(||x =£ 0p ||),
since ||x = 0p|| = -Bl|x=E0p||.

Suppose x <v i(b). Then ||x * 0p || <ß \\i(b) # 0p ||,.and since \\iQ>) * 0p ||
= b,i(\\x¥=0v\\)<Bb.   D

3. Proposition. Suppose that in F(B), P is a dense subset ofV. Then the
set {/(£>) •£ p: b E B' , b # 0g, and pEP}isa dense subset of V.

Proof. First note that if p E P and b E Bß so that b # 0g , then i(ô) •£
P^Ofi. This follows from the fact that \\p ̂ 0^11 = lg and from the fact that
by Proposition 2, Tr(/(Z>) «g p) = b «g ||p =¿ 0p || = Ô.

Suppose x £5- so that x # 0~. Then 0g <g b = ||x * 0p ||. Since K(B)
N (x * 0p -+ (3p E PXp <p x)), there is a p G P with ||x * 0p || <g ||p <p x||.
By Proposition 1, i(b) -g p <^ i(¿>) «g x, and by Proposition 2, i(b) •? x = x. D

Now let P0 be a poset and let Pj be a poset in K(ß(po». Let i be
(ß(Po)ß(Pi)' anc* ̂ ct n De tne projection of B(?x) on 2?(P0) associated with i
Define .P0 ® Pl = {« e 5, : (3 p G P0)(3? G Px)(u = i(p) •, ç)}. We abbreviate
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"'(p) *i Q" to "i(p)q" when no confusion seems likely. Proposition 4 will show
that the representation of u E P0 ® Pt as i(p) *| g is not in general unique; that
is, it is possible that for a q' E Pt distinct from q, u = i(p) •, q = i(p) *| q'.
However the p is unique. For i(p0)q0 and /'(Pi)<?i in P0 ® Pj, set i(p0)q0
<P03ï>i <Pi)?i iff'(P0)?o <i '(Pi)<7i- Then the set P0 ® Vx = <PQ ®?,;
<p «p > is a poset in our sense of the,word with greatest element /( 1 p ) 1 p .

By Proposition 3, P0 ® Pj is a dense subset of Bj. There is a unique iso-
morphism e: B(PQ ® ?i) ■* B^ so that for every i(p)q EP0 ®Pl, e(i(p)q) =
i(p)l-

4. Proposition. For every i(p0)q0 and i(pl)ql in P0 ®Plt i(p0)q0

So® Pi foitei WPo **o Pi andPo <o llio <i «ill-
Proof.  Suppose c0, cx EBY are such that ||c0 =£ 011| = \\ci ¥= OJ = 10.

Let ¿„.¿»i G50.
Suppose that i(b0) •, c0 <t /(¿j) •, c,. Then i(60 •„ -0bt) •, c0 = °i •

By Proposition 2, tt(c0) = 10. So ¿0 '0 -0ôj = 00 and b0 <q bt. Then i(b0)
A A / A•j c0 <j i*(60) «j Cj, and by Proposition 1, b0 <q ||c0 <j cjl. Conversely one

A Amay check that if b0 <« bl and 60 <q ||c0 <x Cj||, then i(b0) -j c0 <t /(ôj)
•, c,. Note that n(i(b0) •1 c0) = 2>0 «0 tt(c0) = b0.

The proposition now follows from the fact that (Wq E P^Qlq ¥* OJI =
lo)-   □

We now digress (up to Proposition 5) to consider the special case when we
are working with Godel-Bernays class-set theory and the "poset" Pj is a proper
Boolean valued class of V   ° . The operation ® as defined above will no longer
work because we can not form2?(Pj) in V   °\ However we will consider a simi-
lar operation, denote it by "®" also, and show that Proposition 4 holds for this
new construction.

Let U be the F-generic subset of P0 defined so that for every xEP0,
\\x EU\\=x and ||x <£ U\\ = (-x)\ Select an element a of V{ Bo) so that
||a G ?! Il = 00. In K(Eo) define P* = <P*, <*> so that Pf = Px U {a} and for
every x, y G Pj*, x <* y iff x = a or x =£ a, y + a, and x <j y. In K( °\ P* is
a partially ordered class with least element a.  In V   °  define /: P0 x Pj -*> Pj*
so that (vx GP0)(vv G P^í/íx, v) = v if x E U and/(x, v) = a if x <£ t/).

LetP,,®?! ={xGK(B°):3pGP03?GP1 so that 10 = ||/(p, q) = x||}.
For p0, Px G P0 and q0, qï G Pj, set /(p0, ?0) <Pog Pl /(Pj, q{) iff ll/(p0, <70)
<*/(Pi»<7i)H = V This holds iff Po S) Pi and Po <o Hio <i 9ill- Let P0
§ P, = <P0 ®Pt; <PogPl>. Clearly if Pt is a set in V{B°\ then P0 ® Px
with respect to the former ®-operation is isomorphic to P0 ® Pt with respect to
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this latter ®-operation.  For this revised ̂ -operation the map that sends p EP0
into f(p, 1 j ) is an embedding of P0 into P0 ® Pt. Proposition 6 will hold for
both versions of §) and for the case when Pj is a class of P* °\

5. Proposition, (i) Suppose P0 is \-closed and in K(s(Po)), Pj is
\-closed.  Then P0 ® Pt is \-closed.

(ii) Suppose P0 « \-directed closed and in K(B(Po)), Pj is \-directed
closed.  Then P0 ® Pj is X-directed closed.

Proof, (i) Let <.i(pa)qa; a < X> be a descending sequence in P0 ® Pj.
By Proposition 4, <pa; ot < X> is a X-descending sequence in P0. There is a
pEPQ with p <o Pa for all a < X. Since for a < ß < X, pß <„ Ht/» <! <7a||,

V A

p ^j \\{qa; a < X>* is a descending X-sequence in P, H. Hence there is a q E P¡
such that p <„ \\q <t qj\ for all a < X. Then i(p)q <P()g Pj r(pa)<7a for all
a<X.

(ii)  Let (i(pa)qa; a < X> be a X-directed sequence in P0 ® Pj. Then <pa;
a < X> is a X-directed sequence in P0, and there is a p G P0 so that P <q pa for
every a < X.

For a < ß < X, there is a 7 < X so that p ^, \\q   <j r7a and i7 <j ^||.
Then p ^, ||<f7a; a < X>* is a X-directed sequence in P, ||. There is a q E Px such
that p<Q\\q< qa\\ for all a < X. Hence i(p)q <P()g Pl i(pa)qa for all a < X. D

The following observation concerning the proof of part (i) will be needed
in Subcase II' of the proof of Proposition 10. Namely, for any p in P0 so that

A

P <o pa for all a < X there is a q in Px so that z'(p)<7 <Po§ p. i(pa)qa for all
0: < X. In other words, if <ra; a < X> is a descending sequence in P0 ® Pt and
p G PQ is so that p ^, 7r(ra) for all a < X, then there is an r G P0 ® P¡ so that
ff(r) = p and r <P()g Pi ra for all a < X.

In closing this subsection we mention an analogue of the "product lemma".
The proof and the definitions of some of the concepts involved are to be found
in [3].

Let M be a countable standard model of ZFC and in M, let P be a poset
and B(?) the canonical complete Boolean algebra associated with P. Suppose
that G is an M-generic subset of P. Then U(G) = {b G BB,P): (lp G G)(p G b)}
is an M-generic ultrafilter on B(P). Conversely, if U is an M-generic ultrafilter on
B(P), G(U) - {p G Pp : p G U] is an M-generic subset of P.

If U is an M-generic ultrafilter on B(?), iv will be the interpretation of
MB(P) with respect to U.  iv has the property that for all x G MB(P), ip(x) =
{iJy)- y S MB(P) and \\y G x|| G U).
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Suppose that the discussion concerning P0 and Pl took place in M.

6. Proposition, (i) Let G0 be an U-generic subset of P0 and Gl an
M[G0] -generic subset ofi^ç^PJ.   Then G = [i(p)q: pEG0and iuiGo)(q) G
Gj) is an ^-generic subset of PQ®?1.

(ii) Let G be an ^-generic subset of P0 ® Pj.  77ie« G0 = {p E P0; j'(p)l j
EG} is an ^-generic subset of P0. Gt = {ï{/(go)0î0: í'Oo)«? G G} is an M[G0]-
generic subset o//'t/(Go)(Pi).

Subsection 2. Limit stages.
7A. Definition. Let P and R be posets. A map i from B(P) into B(R) is

fine iff the following conditions obtain.
I. i is a complete embedding of B(V) into B(R) so that i[Pp] Ç Pr.
II. If it is the projection of B(R) on B(P) associated with i, then 7r[PR ] =

P?.
III. If p E PR and q E Pp are so that q <p n(p), then i(q) 'bch) P G PR .
Note that if i is a fine map from B(P) into P>(R), then since P is a dense

subset of B(P) and / is complete, the values of í on B(P) are uniquely determined
by its values on P.

Remark (Solo va y).   The composition of fine maps is fine. For suppose
that P0, Pj, and P2 are posets and that i0l: B0 -*■ Bj and i12: Bt -*■ B2 are
fine maps.  Let tt21: B2 -*■ Bt be the projection with respect to i12 and 7t10: Bj
-*• B0 the projection with respect to i0l. Set i02 = i12 ° /01, and let 7r20: B2 -*■ B0 be
the projection with respect to i02. We show that i02 is a fine map. Condition I
is obvious and condition II follows easily from the fact that 7r20 = jr10 o tt21. To
check for condition III, let p EP2 and q E P0 be so that q <« jr20(p).  Since fa
and ii2 are fine, i0l(q) -x 7r21(p) GPj and i'12(/0i(<7) 'x 7r2i(p)) -2 pEP2. But

'nOoiii) *1 7r2l(P)) *2 P = /02(<?) *2 '«(^aiirt) '2 P' Which is e(lual t0 l02(<t)
•2 p since p <2 i12(7r2i(p)) by the definition of jt21.

7B. Definition. Let x be a nonempty class of ordinals. A sequence of
posets (Pß\ßE x> and a sequence of maps </76 ; y, S G x and y < ô> constitute a
fine x-system iff for ail y, S, and tj in x so that y < 6 < tj:

(a) î75 is a fine map from B7 into Bs, and iyy is the identity.

(b) iyr, = iSr,°iy5-
We now consider three methods for extending the fine x-system <P^; ß G x>

and (/75 ; y < S and 7, 5 G x>.  For simplicity we assume that x = a for some
ordinal a > 0. For y < 5 < a, let 7r67 be the projection of B6 on B^ with respect
to/75.
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Suppose that a = ß + 1 and that in P(8'3), R is a poset. Let Pa = Pß® P.
e: B(Pa) -*■ J?(R) the canonical isomorphism, and set ißa = e_1 ° *b«bcR)* ̂ or
y <ß, let iya = ißa » iyß and for y = a, let z*7a be the identity restricted to Ba.
It is easy to check that the two pairs (Pß; ß < a + 1> and <i*76 ; 7 < 5 < a + 1>
constitute a fine o + 1-system.

Now suppose that a is a limit ordinal. We will show that by letting Pa be
the direct limit of (Pß; ß < a> with respect to the embeddings (iyS tPy;y<5 <a>
or the inverse limit of (Pß; ß<d> with respect to the poset homomorphisms
<tt6    t p& ; y < § < a>, we can extend the above a-system to a fine a + 1-system.

8. Proposition. Let Pa be the direct limit of the posets (Pß; ß<a) with
respect to the embeddings (iyS I" Py; y < 5 < a). For every 0 < a, the canonical
monomorphism of Pß into Pa extends to a (unique) fine map ißa from B(Pß)
into B(Pa) so that the pair (Pß; ß < a> and (iyS ; y < 5 < a> constitute a fine
a + I system.

Proof. We first recall the direct limit construction. Without loss of gener-
ality assume that the P^'s for ß < a are disjoint.

For x, y E \Jß<a Pß, let o(x) be the unique 17 < a such that x G P^ and
define x ~y iff (35 > max(o(x), oO)))0'a(X)S(*) ■ '*c(v)8(>*))• ~ is an ecluiva-
lence relation. Let Pa be the set of equivalence classes and for x G \Jß<a Pß,
let fx1 be the equivalence class of x.  For rx1, xy^ EPa, let rx! ^ *y* iff

(35 > max(o(x), <*yWi„M6(x) <s ia(y)s(y))- Set Pa = <Pa; S»>- The reader
should verify that Pa is a poset in the sense of Convention X.   For ß < a, the
canonical monomorphism from Pß into Pa is the function that maps every ele-
ment of Pß into its equivalence class.

A routine check establishes that for ß < a the map ißa: B(Pß) -> B(Pa)
defined for a EBß by ißa(a) = {'pi : p G U7<a P7 and (35 > a(p))(io(/,)5(p)
^5 ißs(a))} is a complete embedding extending the canonical monomorphism
from Pß into Pa.  [Note: one first shows that ißa(a) is regular open and then
that ißJ-ßa) = -a ißJa). It is obvious that /^(fl^,, a,,) = (!„<„ /'^(a^)
for any sequence {an; r¡ < v) of elements of fia.]

Note that for /î, 7 < a and a G fi^,
a if 7 = 0,

*a7(W*))=  '/3-y(a)     ifT>/1,
^(a)    if7<0.

Fix 0 < a. To see that 1^ is fine note that property II (of a fine map) of
ißa follows from the preceding remark and from properties I and II of the iyS 's
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for y < ô < a. Property III follows from the same property of the iyS 's for
7 < 5 < a.   D

We remark without proof that in the above construction, B(Pa) is isomor-
phic to the completion of the direct limit of the Boolean algebras (B(Pß); ß<od
with respect to the embeddings (iyS ; y < 8 < a>.

Let us now consider the inverse limit construction. Define Pa = {/G
n/3<a Pß- *«T(/ß)) = fto for all 7 < 5 < a}. For / and g in Pa, set f<¿ g iff
f(ß) *^ß s(ß) for every ß < a. The inverse limit of the posets (Pß', ß<a) with
respect to the poset homomorphisms <jr67 t P6; 7 < 6 < ct>is the partially ordered
set Pa = <Pa; ̂ >.

The following property of Pa is needed in the proof of Proposition 9 and in
the proof that Pa is separative.

Fix ß < a. Let /G Pa and q E Pß be so that q <ß f(ß). Then there is a
g E Pa so that g <af and g(ß) = q. g is defined so that for 7 < a

!irßy(q) if 7 < 13.
ißy(q)'yf(7)    if7>ß.

To see that g G Pa fix 7 < 5 < a. If 6 < ß, then nSy(g(8)) = £(7). If
7 > ß, then nSy(ißS(q) -a /(5)) = /^(?) «7 Tr57(/(5)) = f^fo) «7 f(y). If 7 <
0 < 5, use the fact that ir5y = iißy o nsß. Clearly ̂  ^ /and f (ß) = q.

We now show that Pa is separative. Let /0, /x G Pa be so that fx ^ f0.
Then there is a j3 < a so that fx (ß) ^ f0(ß)- Since P^ is separative there is a
ç G P^ so that <7 <0 /j 03) and ̂  is incompatible with f0(ß). Let g E Pa be so
that £ ^ /j and g(ß) = q. Then £ is incompatible with f0.

9. Proposition. For every ß<a, there is a canonical fine map ißa from
B(Pß) into B(Pa) so that the sequences (Pß;ß<d> and <iyS ; y < 6 < a> form a
fine a + \system.

Proof. Fix ß < a. Define ißa: B(Pß) •* B(Pa) so that for a G Bß, ißa(a) =
{fEPa: f(ß) Ea}. It is routine to check that ißa [Pß] ÇPa. We show that it is
a complete embedding.

To see that iea(a) is regular open first note that it is open. Then let/GPa
be so that (Vtf <„ /X3A «^ g)(h(ß) E a). Suppose that q E Pß is so that q <ß
f(ß). By the property we established for Pa, there is a g E Pa so that g ^ / and
g(p~) = q.  So there is an A G Pa with h ^ g and h(ß) G a. Since a is regular
open, it follows that f(ß) E a and hence that /G ißa(a).

One shows that ißa(-ß a) = -a ißa(a) by the same method. It is obvious
that ^(H,,.,;,, a„) = n,)<ü ißa(an). This suffices to prove that ißa is a complete
embedding.
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Note that for fEPa, naß(f) = f(ß). So ißa has property II of a fine map.
For property III, let / G Pa and q <ß f(ß). Define g G Pa so that g(ß) = q and
g(i) = ipM) -y Ai) for all |3 < 7 < a. Then ißa(q) -af = g.   D

In an unpublished paper concerning Suslin's hypothesis Jensen considers a
construction for forcing conditions at a limit stage similar to the inverse limit con-
struction defined above.  Stephen Simpson inquired whether the two construc-
tions are essentially equivalent.

Let us consider a precise formulation of the question. We continue to
assume that a is a limit ordinal and that Pa is the inverse limit of (Pß; ß < a>
with respect to (irSy \ Ps; y < 5 < a).  For every ß < a define a poset R^ so
that Pq   = Bß - {Oß} and <R   = <ß IPR . Let Ra be the inverse limit of <R^;
ß < a) with respect to the homomorphisms <7r67 r PR  ; y < 5 < cd. The ques-
tion is whether B(Pa) is isomorphic to B(Ra). Solovay has shown that this is not
always the case. However, if the P^'s (for ß < a) constitute a very fine system
(to be defined below) and if in addition for every limit stage ß<a,Pß is the
inverse limit of its predecessors, then B(Pa) is isomorphic to B(Pa).

Subsection 3. Properties of very fine systems. We work with Gódel-Bernays
class-set theory. The reader may translate arguments ostensibly requiring quanti-
fication over classes into proper class-set theory notation.

Definition. A fine system of posets (Pa; a an ordinal) and embeddings
(iyS ; 7 < 5> is very fine iff there is a sequence of sets <P77+1 '» 7 an ordinal) so
that for every ordinal 7, Pyy+l is a poset in V^ T , and the following conditions
obtain.

I. If a = 0, then Pa = <{0}; =).
II. If a = ß + 1, then Pa = Pß® Pßß+1. Let e be the canonical isomor-

phism from 8a into 8^. Then ißa = e~x o /g ~    and for 7 < 0, iya = ißa
°iyß. ß  ßa

III. If a is an inaccessible cardinal so that for every 7 < a, |P77+ x I < a in
P( i', then Pa is either the direct limit or the inverse limit of (Pß; 0 < a), the
former with respect to the embeddings Uy5 t Py; y < 5 < a) and the latter with
respect to the homomorphisms (itSy T Ps; 7 < 5 < a). For every 0 < a, ißa is
the canonical embedding of 8^ into 8a.

rv. If a is a limit ordinal so that either a is not an inaccessible cardinal or
for some 7 < a, |P77+11 > a in K(8t\ then Pa is the inverse limit of {Pß; 0 < a)
with respect to the homomorphisms (its    t Ps ; 7 < 5 < a). For every 0 < a,
ißa is the canonical embedding of Bp into Ba.

Condition I is required only for notational convenience. Accordingly if
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v < a are ordinals and x = [ß: v < ß < a], we sometimes consider the now
obvious concept of a very fine x-system.

Henceforth in this section we work with the very fine system <Pa; a an
ordinal) and Uy6 ; y < 5>. (Pyy+1 ; 7 an ordinal) is as in the definition of a very
fine system, and for y < 5, jr67 is the projection of B6 on 87 with respect to z'78.

10. Proposition. Let X be an ordinal so that for every cardinal v, if P„
is the direct limit of its predecessors, then X < v.

(i) Let a be an ordinal so that for every y <ol, F*8?' \= (Pyy+1 « X-
closed). Then Pa is \-closed.

(ii) Let a be an ordinal so that for every X < a, K(8t) (= (Pyy+1 is X-
directed closed). Then Pa is \-directed closed.

Proof.  We only prove part (i) since the proof of part (ii) is essentially
the same.

We show by induction on 17 < a that P^ is X-closed.
Case I. P0 is obviously X-closed.
Case II. For t? = ß + 1, that Pn is X-closed follows from Proposition 4.5

and the induction hypothesis.
Case III. Suppose that r\ is an inaccessible cardinal and that Pn is the direct

limit of its predecessors.
Let <x6 ; 6 < X) be a decreasing sequence in Pn. By our assumption on X,

X < 17. Then there is a 7 < tj and a decreasing sequence <ps ; 5 < X) in Py so that
iyv(p¿) = x6 for all 5 < X. By the induction hypothesis, there is a p E Py so
that p<yP6 for all S < X. Then iyn(p) <„ x5 for all 6 < X.

Case IV. Suppose that tj is a limit ordinal and that P^ is the inverse limit
of its predecessors.

Let </6 ; S < X) be a decreasing sequence in P^. By induction on ß < tj,
define a& G Pß so that a& <ß fs(ß) for all 5 < X, and for all 70 < 7i < ß,
n7i7oKi) = fl7o and if Wi^fro)) " /sCXi) for aU 5 < X, then iyQyi(ayQ) =
<V

Subcase V. For ß = 0, let aß = 0.
Subcase II'. Suppose 0 = 7 + 1. If/6(7 + 1) = /'77+1(/6(7)) for all S <

X, let üß = iyy+l(ay). Otherwise, by the proof of Proposition 5 and the induc-
tion hypotheses on ay, there is an aß G Pß so that a0 <ß fs(ß) for all 5 < X and
Vßykß) = ay.

Subcase III'. If ß is an inaccessible cardinal and Pß is the direct limit of its
predecessors, then as in Case III of this proof, there is a 7 < ß and a sequence
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<p6 ; 5 < X) in P7 so that iyß(ps) = fb(ß) for all 5 < X. Set aß = iyß(ay).
Subcase IV'. If 0 is a limit ordinal and Pß is the inverse limit of its prede-

cessors, define aß E Pß so that for all y < 0, aß(y) = ay.   □

11. Proposition.  Let v > 0 be an ordinal. For every a>v there is a
set Pua so that P(Bu) |= (Pva is a poset), and Pa is isomorphic to Pv ® Pva.

Proof. We remind the reader of Convention X.  By induction on a > v we
will construct the set Pva, three mappings ea,ka, and tta, and for all 0 so that
v<ß<a, two sets jßa and paß so that the following hold.

I. Let x = {0; t; < 0 < a}. In P(B v\ <Pvß; 0 G x)* and </76 ; y < 5 in x)*
constitute a very fine x-system. For y < 6 in x, P8"' |= (pSy is the projection
of 8ufi on 8U7 with respect to/78). Also if 7 Gx is a limit ordinal, then v"v'
r= (P^ is the direct limit of its predecessors) or V^Bv' t= (P^ is the inverse limit
of its predecessors) according to whether Py is the direct limit or the inverse limit
of its predecessors respectively.

H. For 0 G x, eß is an isomorphism from B^ onto ßvß so that eß[Pß] =
Pv ® PVß. kß is the embedding i8 g and itß is the associated projection. Let
7 < 5 be in x.  The following diagrams commute.

Diagram B

Note that by Lemma 2 of §5.7 of [12] ,jyS oky=ks. Note also that the
commutativity of Diagram B follows readily from the commutativity of Diagram
B for 7 = ü + 1 and from the commutativity of Diagram A.

Case I. a = v + 1. Then Pva has been defined. Let ea be the canonical
isomorphism from 8a into $„„ so that for p EPa, ejp) = p. Set A:a = ig g
and let ita be the associated projection.

Case II. a = 0 + 1 and 0 > v. By induction hypotheses we have that eß:
Bß ■* %vß = U*vß'> +u/î> "vß> \ß>is an isomorphism so that eß[Pß] =PV® Pvß.
Also Pa=Pß® Pßa.

As in Lemma 5.3.1 of [12], there is a canonical isomorphism t of Bvf
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relational systems from V{B "^ onto WiB~»ß\ where W(B »^ is essentially V(B^
computed in F(Bu), i.e., the underlying class of W(B ̂  is the set {x G K(8w):

F   "  N^''   u" )• Since B^ and Bu/3 are isomorphic by eß, there is a bijec-
tion o from K(B'j) onto W(B ̂  so that if b E Bß, <p(v0, . . . , v„) is a formula of

ZF and x0, . . . , xn are elements of V   ß , then

£ <0 ll*(*0, ....^)ll(6p) iff
(*)

V(Bv) N (cp(6) <„„ll*(o(x0), .... o(x„))||(8»P>).

Since V(Bß) |= (Pßa m (Pßa;<ßa) is a poset and B„a - B(Pßa)), V®»*

1= (Kß <vß \\°(?ßtt) = <o(Pßa); o(<ßa))is a poset and o(ßßa) m

B(o(Pfia))\\{S^).
Working in VÍB¿:  Let Pva = Püß ® a(Pßa). Let Í = /pu<,a(8<ta> and

<* = o(<ßa). There is a canonical isomorphism e: Bva —► o(Bßa)~ so that for

Pepva> e(P) = P-   Let //3a: Buff ~"*" Büa be the maP «~' ° '•  For 7 < a,/7a
and p     are defined as usual.

Define ka to be / g g     and ira the associated projection.

We are now ready to define ea. Let u E Pa . Then u = ißa(p)q for some
p E Pß and qE Pßa. Let eß(p) = kß(r)s, where r E Pv and s G Pu/3. Then F* u)
1= (o(q) E o(Ppay and s G Pü(3). Also /(sM?) G Püa. Define e» to be
*«(r)(/(s)c(<7)).

We show that ea is well defined and preserves order. For n < 2, let «n G
P<x>un= 'ßaiPn^n' *nd eß(Pn) " VvX aS above.

Suppose u0 <a u,. Then p0 ^Pj and p0 <0 ||<?0 <pa <?11|<BP>. Also

r0 <„ r, and r0 <0 \\s0 <uß Sl\\(B»\ By (*) above in K(8»\ fcfl(r0)s0 <„„

llo(?o) <# o(9i)ll(8,",)- Since r0 <v \\kß(r0)s0 = s0\\(B»\ then

'o <u "so <ofllk(?o) <* ^i)ll(8u0)ll(8u)-

Then r0 <„ \\i(s0)o(q0) <va ¡(sJoiqJW1*»* and ka(r0)(i(s0)a(q0)) <va
A

fca(',i)0'(si)ff(íi)), i-e.. ea(u0) <va ea(Ul).
The chain of implications can be reversed:  ea(u0) < va ea(uj)implies that

It is not hard to check that ea is surjective and that the inductive hy-
potheses hold.

Case HI. a is a limit ordinal and Pa is the inverse limit of its predecessors.
In ViBv\ let Pva be the inverse limit of the posets (Pvß; v<ß<a)*

with respect to the poset homomorphisms <jUg7 f Pu6 ; v < y < S < a) . For
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(ß   )v < 0 < a, let jßa be in F v the canonical embedding of Bv„ into Bva, and let

¡iaß be in V v , the canonical projection of Bua on 8^. Let ka be z"ß g and
7Ta the associated projection.

Now let uEPa and u(u) = 7ra«(u) = p.  Fix 0 so that v < 0 < a. Since by
Diagram B, itß(eß(u(ß))) = p, there is a fy G Pu(J so that eß(u(ß)) = kß(p)qß.

Set q = {¿¡y, u < 0 < a)* and p = <%7; u < 7 < 5 < a)*. Suppose 7 and
5 are so that v < 7 < 5 < a. By Diagram A,

1„ = IIM6#6(P)?6) = Mp)M(8u).

But 1„ = \\uSy(k6(p)q6) m ky(p)pôy(q&)\\iB»\ since

h = UJy6(.ky(Py) = h(P)\\(Bv)-

So p <„ |||x67(<76) = q/Sv\ It follows that

P Si IKV7, 5)(5 < 7 < 5 < a) -^ q(y) = p(y) = fxs>7(<7(5))||(Bü).
V V

Define a function U from Bv into Bv so that for b G £„, U(b) = ô.  Then in

V(Bv\ i/is an ultrafilter on 8U; and for b EBV, \\bE U\\ - ft.
In P(B u), define / G Pu0( so that for every 0 with u < 0 < ä, /(0) = 1^ if

p £ £/ and /(0) = COS) if ¿ G (/.  Set ea(w) = kjp)f.
To show that ea is well defined and preserves order, for n < 2 let un E Pa

and let pn, qß for u < 0 < a, and q" and /" satisfy the obvious conditions.
Suppose m0 <a «j and fix 0 so that v < 0 < a. Then p0 <y pj and p0 <„

\\q°ß <vß qlß\\. Since for n < 2,p„ = ||p„ G f/|| <„/„(J) = q¡, it follows that
PO <u W) Stf /l(0)ll-   Hen<* Po <„ «A) <»* A« ̂  *«(P0)/Ô <W
*«(Pl)A-

The converse implications also hold and show that ea is injective and that
ea(uo) < ua ea("l) imPues ** «0 ^a "l •

To prove that ea is surjective, let ka(p)fEPv ® Pva. There is an x E
nv<ß«x Kß so *»t for aU 0 with y < 0 < a, ||/(0) = x(0)|| = 1„. Define u E
Hß<a Pe so that for 0 < a

!ff„fl(p) if J3 < u,

^1(*f3(p)x(0))    if0>u.

An easy check using Diagrams A and B and the fact that for v < 7 < 5 <
a, fyS o ky = ks, establishes that uEPa. Then eju) = ka(p)f.

Routine arguments show that the inductive hypotheses hold.
Case IV. a is an inaccessible cardinal and Pa is the direct limit of its prede-

cessors.
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For the first time we make use of the fact that for every 7 < a, V   t  (=
(I P77+, I < ä). An easy induction on 7 < a shows that |#7I< a. In particular
\Bv\<a.

In V(ßv\ let Pva be the direct limit of the posets (Pvß; v < 0 < a)* with
respect to the embeddings (/ 6 t P ; u < 7 < 5 < a>*. For 0 so that v<ß<a,
let jßa be in V   v  the canonical embedding of BVß into Bva, and let paß be in

(B  )V v the canonical projection of Bva on Bu|3.  Let ka be i8 g     and ita the
associated projection.

Let u E Pa and let 17 be an ordinal greater than v so that there is an x E P^
with ina(x) = u.  Set eju) = f^jejx)).

A check using Diagram A establishes that ea is well defined and preserves
order. That ea is injective is also routine.

To show the surjectivity of ea, let ka(p)z EPV® Pw. Then

lu = \\(2ßEa)(3q EP(ß))(j(ß)(q) = z)\\iB"\

where / = (jßa; v < 0 < a>* and P = (Pßa ; u < 0 < a>*.
For 0 so that v < 0 < a, let

S(0) - ||(3 <? G P(ß)) (/(0) (<?) - z)\\l*»\

Then for v < y < 5 < a, ^(7) <,, ^(5). Since 15^1 < a, there is a 0 < a so that
g(ß) = ly.  It follows that there is a q E Pvß with fßa(q) = z. Then

ea(ißJeß1(kß(p)Q))) = ka(p)z.

Routine arguments show that the inductive hypotheses hold.   D

12. Corollary.  Let X and a > v > 0 be ordinals so that for every car-
dinal v with a>v>v,ifP„ is the direct limit of its predecessors, then \<v.
Suppose that for every ß>v with 0 < a, Pßß+1 is \-closed in V   ".  Then the
Pva constructed in the proof of 11 has the additional property that in V   u ,
Pva is \-closed. A similar statement is true for X-directed closure.

Proof.  First note that if v is a cardinal so that a > v > v and so that in
(B  )V v , P„„ is the direct limit of its predecessors, then X < v.

(B   )Now fix 0 > v so that 0 < a. If 0 = v, then by assumption, V   v  t=
(Puu+ j is X-closed). Suppose that 0 > v. Consider Case II in the proof of Propo-

sition 10. We have o: V(Bv) <-► wiBv^, and in V(B°\ Pu„xl = Pvß ® o(Pßß+l).
Since by assumption P(8") |= (Pßß+l is X-closed), then in V(Bv),  r8^> (=

V V V

(o(Pßß+1) is X-closed). [Note.  a(X) = X in the appropriate sense.]
Apply Proposition 10 to < Pvß; v < 0 < a>* in V{Bv\   D
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A few remarks on homogeneity will simplify some of our proofs in the
next section.

A poset P is homogeneous if for every p and q in PP, there is an auto-
morphism a of P such that a(p) and q axe compatible. Every automorphism a
of P "extends" in the obvious sense to an automorphism of B(P) and generates
an automorphism of t/W», both of which will also be denoted by "a". If P
is homogeneous, then the zero and the unit elements are the only elements of
B(P) that are invariant under all automorphisms of B(P). It follows that if
<¡>(v0, . . . , vn) is a formula of ZF and x0,.. ., xn are elements of V, then
||0(xo,. . . , xj|(s(p)) is either the unit or the zero element of B(P).

13. Proposition. Let a be an ordinal such that for all ß<a, Pßß+1 is
homogeneous and definable in V   ß from elements of V.  Then Pa is homo-
geneous.

Proof.  Let a*, b* EPa. Define functions a, b E Uß<a Pß by setting
a(ß) = naß(a*) and b(ß) = iraß(b*) for all ß < o¡. In particular a(á) = a* and
b(a) = b*. We have to construct an automorphism a * of Pa and an element d *
of Pa so that d * < b* and d* < a *(a*). In fact we shall construct by induc-
tion on ß < a, an automorphism Oß of Pß and an element dß of Pß so that for
all 7 < 5 < ß and p E P6

(A) rr6y(ps(p)) = oy(rt6y(p)) and aß(iSß(p)) = iSß(a6(p)),
(B) dß <ß oß(a(ß)), dß <ß b(ß), n6y(d6) = dy and if i76(a(7)) = a(S) and

'r6(è(7)) = HO), then iy6(dy) = ds.
Case I. ß = 0. Let d0 = 0 and let o0 be the identity restricted to {0}.
Case II. ß = tj + 1. Note that oTJ(PI)^+1) = P^n+, because P^+j is by

hypothesis definable in V   *>  from elements of F.
If i^(a(r¡)) = a(ß) and ivß(b(v)) = *>(/?), let ^ = z^), and set

"ßOnßiP)^ = ^^(P))^^) for aU p GP^ and <jr GP^+j.
Otherwise suppose that a(ß) = iVß(a(v))q0 and that ¿(0) = i^(b(r}))qlt

where ?0, <?, GPJJT)+1. Since R1Jt}+1 is homogeneous in K   * , there is a r
(b )that is in K   ^  an automorphism of P,j,,+ t such that

IK3 Q ePm+l) (<« <„„+l ^niflo)) A  q <r,n+l<?l)H = V

Hence there is a q2 GP^+1 such that ||<72 <„„+i/(<70) a««1 «2 Stj+i «ill "
1,,. Set </„ = /„„(i,,)^. For every i^qEP^ ®PT1T}+1 set aß(ir)ß(p)q) =
irJp(aT)(p))r(aT)(í?)). Then o^ is an automorphism of P^ and the induction hy-
potheses hold.

Case III.  Pp is the inverse limit of its predecessors. For fEPß and y < ß
define ̂ (7) = dy and aß(f)(y) = ay(f(y)). aß is an automorphism of Pp and
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dß is an element of Pß by the induction hypotheses.
Case IV.  Pß is the direct limit of its predecessors. Let inß(p) G Pß for

some pEPn. Set Oß(inß(p)) = ¡^(oJp)).  °ß is an automorphism of Pß. There
is an T, < 0 so that inß(a(n)) - a(ß) and /„„(ifo)) = 6(0). Set rf, = /„„(<*„).   D

Subsection 4.  Forcing with a class of conditions.  Let M = (M, M*; G) be
a countable standard model of Gödel-Bernays class-set theory, where M (the sets
of M) and M* (the classes of M) are countable sets. If 8 is in M a complete Bool-
ean algebra, M^8* will be the universe of B-sets and B-classes constructed in M.
M*B) "satisfies" the axioms of Gödel-Bernays class-set theory.

Now suppose that the discussion of the preceding subsection took place in
M. In particular, < Pa ; a an ordinal) and <z'»a; 0 < a) are classes of M.

We now work in M. We leave it to the reader to translate arguments that
seem to involve "classes of classes" to proper class-set theory notation.

Let Px be the direct limit of the very fine system < Pa ; a an ordinal > and
(ipa; 0 < a). For every a let iaoo be the canonical embedding of Pa into P„ and
let ir„a be the associated projection defined so that for every 0 and p G P»,
H~a(ißjp)) = *0«(P) if 0 > a> and n~Jiß~(P)) = ißaiP) if 0 < o-

Propositions 10 to 13 extend to the case of P„. For example let v be an
(B   )ordinal. Then there is a class Pv„ of M    "  and an isomorphism euoo of P„ with

P„ ® P1)00. The latter poset is constructed using the class version of the ®-oper-
St (B  )

ation, as is the embedding kva, of Pv into Pv ® Puoo. In M   " , the Pua's for
a > v and the /pa's for u < 0 < a constitute a very fine system with Puoo being
the direct limit of the Pua's. If for every a > v, Paa+1 is X-closed in M   a and
if for every cardinal v > v so that Pv is the direct limit of its predecessors, X < v,

v (B    )
then Puoo is X-closed in M   v (similarly for X-directed closure).

Let G be an M-generic subset of PM (in addition to the usual conditions on
G, we require that A C\ G =£ 0 for every class A of M that is a dense subclass of
P„). Then evoo[G] is an M-generic subset of Pv ® Puoo, Gv= {p EPV: ivoo(p)

G G} is an M-generic subset of Pv, and Gvoo = {iu(Cv)(q): kuJlv)q E eua> [G]}
is an M [Gv] -generic subset of î^g )(P„„) [cf. Proposition 6 and remarks pre-
ceding it]. Let M [G] = {x: there is an a in M so that x is a set of M [Ga]}.

14. Proposition. Suppose that for every ordinal a there is an ordinal
•na>aso that in M(B,'a), P_ «, is ot-closed.   Then M[G] is a model of ZFC.1I(H

Proof. Note that M[G] is the directed union of transitive models of ZFC.
Hence only the power set and replacement axioms are unclear. Moreover we may
prove the replacement axiom in the special case when the "domain" is an ordinal.

Let (¡>(v0, . . . ,vn, vn+ p vn + 2) be a formula of ZF, and let x0,.. . , xn
and k be elements of M[G] so thatM[G] (= (Va G k) (3 ! x)<í>(x0,. .. , xn, a, x).
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Let /be the function with domain k so that for every a < k,M[G] |=
0(xo.xn, a, /(a)). We will show that / is in M[G].

For simplicity set u = nK, iV = M[GV], H = Gv„, /' = iv(G ); and P„ =

i(Pv„). For v < ß < a, define /J, = i(jßa), p*ß - /(pa(5), and P* = /(PM) [cf.
Proposition 11].

P* is the direct limit of the very fine system < P* ; a > u) and (,jßa ; v <
0 < a). It will prove convenient (but not necessary) to assume that P* is the
"union" of the P*'s and that the /^a's are restrictions of the identity. For every
a > v let p*a be the projection of P* onto P*, i.e., for all ß > v and p G Pp.,

tó«(P) = ^a(p) if U > a and p*a(p) = p if ß < a.
Since P* is the direct limit of the fine system of posets < P* ; a > v), for

every a > v the set Ha = H n Pp* is an W-generic subset of P* and î?[i/a] =
M[GJ.

Define KH on the sets of W by induction on their rank so that KH(a) =
{KH(b): (3P G H) ({b, p) G a)} for every a a set of N. Let W[//] = KH[N],
where N is the class of all sets of hi.

We now adopt (without explicitly defining) the terminology of Shoenfield's
paper on unramified forcing [9] and assume that the reader is well acquainted
with this paper and especially with the section on Easton forcing. We will define
the forcing relation with respect to P* .

Define A on every set b of hi by induction on the rank of b so that A(b) is
the least a>v with the property that for all a G Ra(fc) and p G Do(b) O p* ,
A(a) < a and p G P*.  For a and b in W set A(a, b) = max(A(a), A(b)). For
every b a set of W, A(b) is an ordinal a so that all the p's referred to in b appear
in P*. Note that for A(b) < a, KH(b) = KH (b), where KH   is (as in Shoen-
field) defined analogously toKH. Then for a>v,KH [N] = N[Ha] = {x: x
is a set of N[Htt] } and N[H] = \JaSN N[Ha]. It follows then that N[H] =
M[G].

If 0 is a formula of the forcing language, then "p ||-¡jj¡r" asserts that "p
weakly forces <¡> with respect to P* ".

Now let a, b E N and a = A(a, b) and p G P* .  Define p IH*- a G ft iff
M*a(P) lr£ a e 6, and p Ih*- a * i iff /i*a(p) Ihf a ± b.  [Note that \r~ would
be the same for any ß > a.]

As in Shoenfield, define p W^- <j> for 0 a formula of the forcing language and
p G P* by induction on the complexity of 0. Define p ||— <t> iff p |r*- — <p.
The definability, extension, and truth lemmas are proved as in Shoenfield. In the
proof of these lemmas use the fact that P* is the direct limit of the fine system
of the P*'s.

Let x0, . .. , xn be names inN fot x0, . . . ,xn respectively (recall that
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M[G] = N[H]). For a < k let Da = {p G P* : (3 z) (p \\- (3x^(a\ x) —
<p(a, z)))}. For every a < k, Da is an open dense section of P*. Since P* is
k-closed, D = C\a<K Da is also an open dense section of P£. So there is a p G
H n D such that p ||— (Va G k) (3 !x)«/»(x0, . . . , x„, a, x).

For every a < k let g(á) be such that p ||— 0(á\ g(a)). There is a S > v
such that A(s(a)) < 5 for all a < n. Then f(a) = KH(g(a)) = KH (g(a)) for all
a < K. Since £ is in N, /is in N[H6], hence in M[G]. It is now clear that the
replacement axiom holds in M[G].

A similar argument using the k-closure of P* would show that every sub-
set of k in N[H] lies in N.  Using this and the fact that the H[Ga] 's satisfy the
axiom of choice, it is easy to see that the power set axiom holds in M[G].   D

2.   Applications of the Silver forcing method. Subsection two contains the
main theorems of this chapter on ordinal definability. In subsection one we con-
sider three technical constructions which will be needed to ensure that every set
is ordinal definable and the G.C JI. holds in suitable Cohen extensions.

Subsection 1. Technical backward Easton constructions.  The Beth function
a is defined on the ordinals by induction on a so that for a = 0, 3(a) = cj; for
a = ß + 1, 3(a) = 23(^); for a a limit ordinal, 3(a) = \Jß<a 3(0). A cardinal
v is a Beth fixed point if 3(i>) = v. We use the standard interval notation for
ordinals.  For example, if a < ß, then [a, ß) = {7: a < 7 < ß}.

If c is either the class of all ordinals or an ordinal greater than zero we say
that < Pa ; a E c) is a very fine sequence of posets if there is a sequence of maps
{i&a; ß < a E c) so that < Pa; a G c) and {ißa; ß<aEc) constitute a very fine
system.

15. Lemma.  There is a term C(vQ, Vj ) of ZF so that ifv<\are Beth
fixed points, then C(v, X) is a v-directed closed poset with the property that
v{B(C(v,\))) |= (- and \ are Beth fixed points and the G.C.H. holds in the inter-
val [v, X)).

Proof. Let 6(v0) be a term of ZF so that for every cardinal k if 2" > k+
then 8(k) is the poset R with PR = {p : p is a function with domain a subset of
K+ and range a subset of 2" so that |p| <k} and forp, q EP , p <Rq if p 2.

q; if 2K = k + , then 0(k) = < {0}; = ). In any case 8(k) is a homogeneous, K-di-

rected closed poset and K(b(ô(k))) |= 2* = (k)+.
Let v < X be Beth fixed points. Define by induction on a < X a very fine

sequence of posets <.Pa;a<\) and a strictly increasing sequence of cardinals
{va; a < X) so that for every a < X, Pa is a homogeneous, »»-directed closed po-
set and I PJ and va are less than 2(v + a + cj). The verification of the cardinal-
ity estimates is left to the reader. Homogeneity follows from Proposition 13.
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Case I. For a = 0 let vQ = v and P0 = < {0}; =).
Case II. For a = 0 + 1 let V{B^ N Pßa = 6(vß). Set Pa = P0® Pßa .

Define va to be the unique cardinal in [v, X) so that P(8ot) N (ya is the least
cardinal greater than Vß).

Case III. For a an inaccessible cardinal > v let Pa be the direct limit of its
predecessors and set va = Up<« vß- ^ ^ mduction hypotheses va = a.

Case IV. For a a limit ordinal that is not an inaccessible cardinal > v let
Pa be the inverse limit of its predecessors and set va = Up«* vß- Set £"("> A) =
Px, the inverse limit of the Pa's.

We first show that for every a < X, P(8x) |= (va+l = (va)+). By the con-
struction V(Ba+l) t= (ua+l = (ï>a)+). By Proposition 11 there is a poset Pa+ix
in K(8°+l) such that Px is isomorphic to Pa+l ® Pa+ix and K(8a+l) |=
(P«+u is *«+i"dosed). Then P(8«+i) |= (F(B(P«+^)) |= ((ia+1)¥ =
((»'a)V)+)). Since P(8x) is "isomorphic" to theß(Pa+lx)~-relation system

whose underlying set is {x G V(ßa+i): \\x G Vm?ct+ix))\\ = 18      }[cf. proof
of Case II of Proposition 11], VlB¿ \= (va+l = (ï>a)+).

Now suppose that ||The G.CÜ. does not hold in [v, X)\\(Bk) ¥= 08 . By the
homogeneity of Bx [cf. Proposition 13] there is an x G V   K so that ||x is the
least cardinal in [v9 X) such that 2X =^ jc  || = 1B . But by the preceding para-
graph and the homogeneity of Bx there is an a < X such that ||x = vj\ = 18
Now use the closure conditions, the essential property of 6(v0), and an argument
similar to that of the preceding paragraph to get a contradiction.   D

16. Construction. Let v < X be Beth fixed points so that the G.CÜ.
holds in [v, X). Let A = {7 G [v, X): 7 is a regular cardinal}. Suppose that/:
A —► [v, X) is so that

(a) For every 7 G A, f(y) is a cardinal with cofinality > 7.
(b) For all 7 < 5 in A, f(y) < /(5).
For every 5 EA letß6 = {<y,a, 0): 5 >yEA, a<f(y), and 0<7>.

Let Ô = USGj4 Qs. SetPR = {p: p is a function, domain(p) C, Q, range(p)
Ç 2, and for all 7 G A \ domain(p) n Qy\ < 7}. For p and q in P?, set p < R «7
if p 2 ?.  There is a term E(v0) of ZF so that for every function / with the above
properties E(f) is the poset R = <PR ; < r ). For every a < v, E(f) is a-directed
closed. The paper of Shoenfield (E(f) is essentially due to Easton [1]) on un-
ramified forcing [9] shows that if the G.C.H. holds in [v, X], then every 7 G A,
7is a regular cardinal and V = f(y)" in pCs^i/M).

The remaining material in subsection 1 is relèvent only to Theorems 20 and
21; the reader interested in Theorem 18 may skip directly there.

Henceforth o>(v0) will be a term of ZF enumerating in increasing order the
class of all infinite cardinals.
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Before proceeding with the next lemma we recall two constructions involv-
ing Kurepa trees. We use (without explicitly defining) the terminology of Jech's
article on trees [4].

Let a be an ordinal. We shall define the poset R of Stewart's conditions
for adding a Kurepa tree on co(a + 1) [13].

PR is the set of all ordered pairs < L,f) with the following properties:
(i)  L = <7/;<)isatree.
(ii) T Q. <o(a + 1) so that I T\< co(a + 1).
(iii) / is an injective function with domain a subset of w(a + 2) of cardi-

nality less than co(a + 1). The range of /is a subset of the set of all branches of
L of length ß, where ß is the length of L -

(iv)  For every point x in T there is a branch b in the range of / so that
xEb.

For<L0,/0)and <L1,f1)inPR, <L0,/0><k <Li./i>if L0 is an end-
extension of Lj, if domain (/0)i(/i), and if f0(ß)^fi(ß) for all ß in the do-
main of/j.

Let o(v0) be a term of ZF so that if a is an ordinal, then o(a) is the poset
R of Stewart's conditions defined above. a(a) is an co(a)-directed closed poset
so that if the G.C.H. holds, then the cardinals of Kare cardinals in F(B(a(a))),
and the G.C.H. holds and there is a Kurepa tree on co(a + l)v in K(ñ(or(ci))).
[The proof of [4] is only for a = 0.  But it extends without serious difficulties
to the more general context.]

Now let a be an ordinal so that there is an inaccessible cardinal greater than
co(a). We shall describe Levy's condition R for forcing the least inaccessible cardi-
nal k > co(a) to be co(a + 2) in the Cohen extension.

PR = {/£ k x co(a + 1) x k: /is a function, |/| < co(a + 1), and for
all (7, 5) G domain(/), f(y, 8) E w(7)}.  For /0 and ft in PR, /0 <R /, if

There is a term t(v0) of ZF so that if a is an ordinal with the property that
there is an inaccessible cardinal greater than w(a), then t(o) is the poset R de-
fined above. In this case, r(a) is co(a)-directed closed. Silver has shown [10]
that if the G.C.H. holds, then in t/(B(T(a))), the G.C.H. holds and there are no
Kurepa trees on cj(a + 1 )v.

17.   Lemma.   Let u <\be Beth fixed points so that | {a G [v, X): a is an
inaccessible cardinal} I > v and ( V cardinal k < X) (2K = k+). Let A be a sub-
set ofv, and let rj: v—+v enumerate in increasing order the set of all limit ordi-
nals less than v.  There is a term \(v0,vx) of ZF so that for A and v as above,
X(v, A) is a v-directed closed poset and for every y < v, \\There is a Kurepa tree
on w((v + r¡(y) + l)v)|| = lß(x(v,A)) if 7 e A and \\nere is a Kurepa tree on
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co((i>+ t?(7) + 1)")|| = 0BMv A)) if y £.A. Also the G.C.H. holds beneath X" in
j/(B(x(".v4)))

Proof.   Define by induction on 7 < v a very fine sequence of posets
(P7 ; 7 < p) as follows.

Case I. For 7 = 0, let P0 = < {0}; =).
Case II. For 7 = 5 + 1, let

v v

67      j r((v + t,(5))v)   if 5 el

Case III. For 7 a limit ordinal, let Py be the inverse limit of its predeces-
sors. Set x(v, A) = P„.

We shall make a few remarks on the proof but shall leave the detailed veri-
fications to the reader.

Roughly, the argument needed to establish that the G.C.H. holds beneath X
(B  )in V   v proceeds by induction on 7 < v and uses the relevant closure conditions

on the P   's [cf. proof of Lemma 15], the usual cardinality arguments on the
P7's, and the fact that the forcing conditions o(v0) and r(v0) preserve the G.C.H.
The only difficulty arises when 7 is a limit ordinal. For this case note that in
V   " , K = oj((u + tj(7))v) is a strong limit cardinal of cofinality < 7 and hence

v

2K = ky. Then use the fact that P„ is 7-closed.
(B        )To complete the outline-proof, fix 7 < v. lîyEA, then V   ?+1   N

(There is a Kurepa tree on u((v + 77(7) + l)v) and Py+lv is «((i> + r¡(y) + 3)v>
closed). As in the proof of Lemma 15, it follows that in V   " , there is a
Kurepa tree on u((v + r¡(y) + l)v). The proof is similar for 7 fÊ A.    D

Subsection 2. The main theorems. The following result is a generalization
of the main theorem of Easton [1]. The new element in our result is that the
property of supercompactness is preserved.

18.   Theorem. Let M = (M, M*; G) be a countable standard model of
Gödel-Bernays class-set theory so that the G.C.H. holds in M- Let I be a class-
function of M from the regular cardinals of M into the cardinals of M so that for
all regular cardinals v<Xin M

(1) cofinality (I(v)) > v and
(2) I(u)<I(X).

Assume in addition that there is a statement \¡j and a formula 4>(v0, Vj) of ZF
so that \¡j is true in M and so that M N (( V cardinal 7) (R(y) \= ty ~* I[y] £ 7
and (Va, 0 G 7) (1(a) = 0 «-* R(y) N 0(a, 0)))).   [This condition states that in
M, I is A2 in the Levy hierarchy.]

There is a class of conditions Px in M so that if M is any Cohen extension
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of M with respect to PM then
(1) U is a model of Z?C.
(2) M and hi have the same regular cardinals.
(3) For every regular cardinal v in hi, I(y) = 2" in hi.
(4) Every supercompact cardinal in M is supercompact in hi.

Proof.  Conditions (1) and (2) on / are the usual Easton requirements.
The additional condition on / is a local definability requirement needed to show
that supercompactness is preserved in Cohen extensions of M with respect to P„ .

We work in M. Let e be a class-function enumerating in increasing order the
closed unbounded class F = {a: a is a limit point of the set {ß: ß = 3 ß and
R(ß) N $}.   For a < ß in F let Iaß = I t [a, ß) and set Ia=I \ a. Note that
for every a in F, a = 3a and Ia is definable in R(a), that is

(A)   (V7 < a) (Vfi ) (4(7) = 6 «-*• R(a) \= (3 7) (*(7) h * A #7, 5 ))).

Define by induction on the ordinal a a very fine class-sequence of posets
< Pa; a an ordinal) so that for every regular cardinal v, M   a  N (u is a regular
cardinal) and so that in M(8a), the G.C.H. holds for all cardinals X > e(a)r.

Case I. For a = 0, let P0 = < {0}; =).
Case II. For a = ß + 1, let M(8^ 1= (Pß0l = E(Ie(ß)e(a))) [cf. Construc-

tion 16], and set Pa=Pß® Pßa .
Case III. For a an inaccessible cardinal so that (V/? < a) (M   ß  N I Pßß+i I

< a), note that e(a) = a and let Pa be the direct limit of its predecessors.
Case TV. If a is a limit ordinal and Case III does not hold, let Pa be the

inverse limit of its predecessors.
Let P», be the direct limit of the Pa's and let Gm be an M-generic subclass

of P„. Set hi = AitG«,] = {x: there is an a in M so that x is a set of M[Ga] }
[cf. remarks preceding Proposition 14].

By Corollary 12 and Proposition 14, hi is a model of ZFC.
Note that for every a in M, hi is a Cohen extension of M[Ga] by means of

a poset which is 7-directed closed for every 7 < e(a). By this remark and by
Construction 16 and routine arguments, hi and M have the same regular cardinals
and for every regular cardinal v in hi, hi t= (2V = I(v)).

It remains to show that every supercompact cardinal in M is supercompact
in hi.  For this we shall need a local definability property of the Pa's and a
general observation regarding Cohen extensions.

Fact B.  There is a term u(v0) of ZF so that in M, v(a) = Pa for every
ordinal a, and for every fixed point a of e and ß < a, R(a) N v(ß) = Pß.

Fact B follows readily from Fact A and from an inspection of the definition
of the Pa's.
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Remark C. Let M* C. M be countable standard models of ZFC with the
same ordinals so that R(a) C\M* EM for every a in M.  Suppose that X is a
cardinal in M so that xAi* n M C. M* and that in M*, Pis a poset with |Pp| < X.
Let G be an M-generic subset of P. Then XM*[G] n M[G] £ Af*[G].

Proof of remark.   Let / G XM* [G] O M[G] and f G M so that KG(f)
= f [we use Shoenfield's notation [9] ]. There is a d E M * and a p0 G G so that
in M, p0 ||— f : X —*d. Let d   be the intersection of all transitive sets b so that
dEb.  Then d* EM*.

For every a < X let Aa = fr <pp0: (3 x G d*) (p |f- ((3y) (f(a ) = y)
—*y= x))}. Aa is a dense subset of Pbeneath p0. Let g be a function so that
domain (g) = {<a, p> : a < X and p G Aa} and so that for (a, p) in the do-
main of #, p \\—((3y)(f(a)=y)—+y =g(a, p))mdg(a,p)Ed*. By our
assumptions on M, M*, and P,gE M*. Routine arguments show that for every
a < X, Aa n G # 0 and for every p G ¿a n G, tfc(s(a, p)) = /(a). Then / G
M*[G].   D

Now suppose that k is supercompact in M.
We first show that k is in F.   It will then follow by the inaccessibility of k

that in fact e(n) = k. We work in M. Let 0 > k be so that a » = 0 and R(ß) |=
^. Let p be a normal measure on pK0 and/: M —*/(M) =* K K /p the associated
embedding. By the remarks in §0, /(M) is closed under 0-sequences and j(n) > 0.
Since ap = 0, it follows that R(ß)Ej(M) and that /(M) N (Ä(0) N ^ and 3^ =
0). So ifr (ßx: x EPKßy = ß, then R(ßx) N ¡¡>, a^ = 0^, and ßx < k a.e.
with respect to p. Now note that by the K-additivity of u, n is the least ordinal
so that ßx < k a.e. with respect to p. It follows that k is in F.

Lemma,   k is supercompact in W.

Proof.  Our proof is fairly general and depends only on the closure prop-
erties of the P^'s and on Fact B.

Let k < v' < v < X < X' be fixed points of e.
Working in M let p be a normal measure on pK X' and / the associated ele-

mentary embedding of M into ;'(M) °" Mp"   /p. By the discussion in §0, we have
that *7(M) £ /(M), R(X') E /(M), and /(k) > X'. Let p' be the projection of p
on pK v. Recall that p' is a normal measure on pK v' so that for every A Ç pKv',
p'(A)= liñ j[v']Ej(A).

To facilitate the understanding of the proof we first give a preview. Since
in M, P is a limit of a very fine sequence of posets, in /(M), j(Pv) is also a limit
of a very fine sequence of posets. Now the Pa's are "locally definable", and M
and ;(M) have the same X'-sequences. It follows by an application of Propositions
11 and 12 to/(P„) in/(M), that in the terminology of these propositions,/(M)
t= [There is a Px/(p) G/(M)(8x> with an isomorphism d: j(Pv) -» Px ® P*f(v)
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and ;(M)(Bx) h (P*/(„) is 7-directed closed for every 7 < Xv)].
Now let / be the interpretation of /(M)(Bx) with respect to U(GK) [cf. dis-

cussion preceding 6]. Since in/(M) [GJ, i(P*j(v)) is a 7-directed closed poset
for every 7 < X, it is also the case that /(P*/(ll)) is a 7-directed closed poset for
every 7 < X in M.

Using this closure property of i(P*uv\), we shall choose, in a manner to be
described below, an M [Gx] -generic subset H of i(P*/(„)) so that if H* =
d~x[GK ®H] Cj(Pv), then/[GJ CH*. This will allow us to define in M[GJ
• [H] an elementary embedding k: M[GJ —*/(M) [H*] extending the embedding
/: M —*"/(M) as follows:

(*) k(KGv(x))=KH*(j(x)).

In verifying that (*) gives a well-defined map we shall need the fact that
for every p G Gv, j(p) EH*. To establish this fact we shall use an important idea
of Silver to show the existence of a single master condition q E P*.-,V) so that if
H is any M [G J -generic subset of i(P*j(v)) with i(q) G H, then / [Gv] CH* =
d~l [Gx ®H]. Silver uses a variant of this idea to prove the consistency of the
failure of the G.C JL at a measurable cardinal.

The embedding k does not lie in M[GJ : since M[G„] \= (Gv is an M-generic
subset of P„), then *(M [<?„]) N (k(Gv) is a fc(M)-generic subset of k(Pv)). But
k(Pv)=KPv)^Px®Ki(Vy

Finally we shall define by means of k a set p* so that in M [Gv], p * is a
normal measure on pKi>' extending p. Since p* is definable from k and k lies in
M[GJ [H],  u* is also in M[GJ [H].   But then p* is already in M[GJ because
M[GjJ[#]    and M[G^] have the same ^-sequences.

We now proceed with the proof. Since in M, <u(a); a < v) is a very fine se-
quence of posets, it follows that/(M) N ((v(a); a </(»')) is a very fine sequence
of posets). For ß < a <j(v) in ;(M), let v(ci) = P* and let iß*a be the canonical
embedding of B(Pß) and n*ß the associated projection. Since R(X) G/(M), Fact
B shows that for ß < a < X, P* = Pa, i*a . ,^ and ^ - ira/l. Note that
/(P„) = P,*,,) In/'(M) there is an isomorphism d: P*(v) —*■ PK ® P*/(v), where

in ;(M)   x , P*/(p) is 7-directed closed for every 7 < e(X)\
In /(M ) let / = z'g B( P*/(y)) [cf. remark preceding 1], and let 1 be the

interpretation of/(M)   x  with respect to the M-complete ultrafilter U(GK) on
BK. Note that if f(p)q EPX® p*j(v) and p G Gx, then /(/(p)?) = i(q).

Fix s G Pv. Since PK is the direct limit of its predecessors, there is an a <
k and an s0 G Pa so that 7r„K(s) = iaK(s0). Since Pft C ä(k), j(s0) = s0 and so
i/(i,)/(K)(/(s)) = i£j(K)(.so)-  [T° ensure that this be true is the only reason for
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taking the direct limit at certain limit stages of the construction.]   It follows that
d(j(s)) ~ /0"a\(so))si for some si G Kj(vy If m addition, s E Gv, then
'«*(so)G Gx ™d i(à(j(s))) - K*0-

Now note that/ r  P„isin/(M). In/(M) [Gx] defined = {i(d(j(s))): sE
Gv). From the preceding paragraph and the fact that Gv is a directed subset of
Pv, it follows that in/(M) [Gx] ,A is a directed subset of z(Px/(„)) of cardin-
ality less than X. Hence there is a «7 G P*/(„) so that 1 (?) < a for every a G A
in the poset ordering of i(P*,(v)).

Let # be an M [Gx]-generic subset of i(P*/(„)) so that /(?) G #. Then Gx
® # = {/(p)?: p G Gx and i(q)EH} is a /(M)-generic subset of Px ® Px/(l()
so that /[G„] ç d~x [Gx ® ¿7] = H*.

By Remark C, */(M) [GJ n M[GX] C/(M) [Gx]. Hence /(P^/(l/)) is
7-closed in M[GX] for every 7 < X. Then R(v) n M[GJ = R(v) n M[GX] =
R(u)nU[Gx][H].

Define in M[GX] [#], an elementary embedding k: M[GJ —»/(M) [#*]
so that fc(Ac (x)) = KH*(j(x)) for every x G M. It is easy to see that k is a
well-defined elementary embedding.   For example let 0(vo,. . . , vn) be a formu-
la of ZF and x0,...,x„E M[GJ so that M[GJ |= <¡>(x0, .... x„). There is
a p G G„ so that p |fc- <t>(x0, .. ., x„) where KG (\m) = xm for all m < n.

Then in/(M),/(p) ||— 0(/(xo), . . . ,/(x„)) and j(p) EH*. It follows that
/(P„)

y(M)[//*] N(%).«a
We show that k extends/. For every poset P let Ap be the operation de-

fined on every set * G M by induction on the rank of x so that xP = {<p, y P) :
y Ex and p GPp}. Then if G is any M-generic subset of P, ATG(xP) = x for
every jc G M.  In particular, for every x G M,

*(x) = k(KGJxp»)) = KH .(j(xP»)) = KH*UQ<fKPvh = /(*)•

Define a measure p* on the subsets/I of pKv' in M[G„] so that p*(4) = 1
iff/[j/] Gfc(4). Clearly p* lies in M[Gx] [//]. Since k extends /, p* extends
p'. Also p * is in M[GJ since it is an element of R(v).

We claim that in M[G„], p * is a normal measure on pKv.
To see that p* is K-additive let 5 < k and let (Aa ; a < 5) be in M[G„] a se-

quence of sets so that p *(Aa) = 1 for all a < 5. Set B = f)a<s Aa. Now
k(8) = /(5) = 5 since 5 < k and / fixes every ordinal less than k. Hence k(B) =
na<6 K(Aa), and />'] Gk(B) because j[v'\ Ek(Aa) for all a < 5. So u*(B)
= 1.

Now fix a < v'. To see that if in M [G„] ,A= {x G PKv': a Ex} then
u*(A)= 1, note that in k(M[Gv-]),k(A)= {x Epk{K)k(v'): k(a) Ex}. But
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\j[p'] | = v and k(K) = j(n) > X' > p'. Hence j[v'] G k(A) and p*04) = 1.
Finally we must show that in M[GJ, if /: pKv' —*■ v' is so that the set A =

{x G pKv: f(x) E x} has measure one with respect to p * then for some a < v,
p*({x G pKv': f(x) = a}) = 1. Note that in *(M[G„.] ), k(A) = {x G p*()()*(i»'):
*(/) (*) G x}, and that since j[v'\ G Jfc(4), k(f) (j[v'] ) E j [i>']. So there is an
a G v so that k(f) (j\v\) = ka. It follows that in M[G„],

p*({xEpKv':f(x) = a})=l.

This concludes the proofs of the claim, lemma, and theorem.   D
The concept of ordinal definability is originally due to Gödel. Myhill and

Scott rediscovered it, and we refer the reader to their paper [6] for a detailed
exposition and relevant results.

The transitive closure of a set x, Tc(x), is the intersection of all transitive
sets A so that x EA. x is ordinal definable if there is a formula <¡>(p0 ,..., vn+, )
of ZF and ordinals a0 < • • • < a„ < ß so that R(ß) |= ((3 ! v)0(ao,. . ., a„, v)
A #(a0, . . ., an, x)). x is hereditarily ordinal definable if every element of
Tc(x) is ordinal definable. There is a sentence, V = HOD, of ZF which asserts
that every set is hereditarily ordinal definable.

The definable well-ordering of all pairs of ordinals due to Gödel gives rise
to a term rr(v0, Vj) of ZF so that for every cardinal v,it t (v x v) is a bijection
from v x v onto p.

Suppose that p is a Beth fixed point, A is a subset of p, and / is a bijection
from p onto R(p) so that for every (ß, a) G p x p, f(ß) G /(a) iff it(ß, a) G A.
For such A and p we write "A ~ R(p)".   An argument by induction on the well-
founded relation SA = {(ß, a) G p x p: ii(ß, a) G A } on p establishes that the
function tA from p into R(p) defined so that for every a G p, tA(a) = (tA(ß):
t(ß, a) G A } is precisely the function /. Then if A is ordinal definable, tA and
hence every element of R(y) is ordinal definable.

If k is a supercompact cardinal then a class-sequence p = <px: X is a Beth
fixed point > k) is a class-sequence of coherent measures for k if for every pair
of Beth fixed points X > p > k, px is a normal measure on pK\ and p„ is the pro-
jection of px on pKP, i.e., for every A C pKv, pv(A) = 1 iff P^({x EpK\:xC\
pEA})= 1.

Suppose that k is supercompact and that y > k is an inaccessible cardinal.
Let p * be a normal measure on pK7 and let p = {(px, X): X is a Beth fixed point
in [k, 7) and px is the projection of p * on pKX}. Then A = <^(7), -R(7 + 0;
G) is a model of Go'del-Bernays class-set theory, and in A, P is a class-sequence of
coherent measures for k.

Solovay has shown (unpublished) that if a is supercompact with a class-se-
quence of coherent measures, then there are cardinals k' <\' <K so that X' is
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inaccessible and R(X') H= k' is supercompact.

19.  Lemma.  Let k be a supercompact cardinal with a class sequence p of
coherent measures.  For every Beth fixed point X> k let /x: V —► jJV) °«
VPk /px be the elementary embedding of the universe associated with px.   TTiere
is a well-ordering W of the universe so that for every Beth fixed point X>k, the
set Wx = W n R(X) is a well-ordering ofR(X) so that j\(Wx) n R(X) = Wx, and
so that R(X) is an initial segment with respect to W, that is, (Vx) (VjO (x G
R(X) and y € R(X) -* (x, y)EW).

Proof.   For the remainder of this proof let v and X range over the Beth
fixed points.

Select a well ordering WK of R(k) so that for every v < k, R(v) is an initial
segment of R(k) with respect to WK. For every X > k let Wx = jx(WK) n R(X).
Since jJV) is closed under X-sequences, Wx is a well ordering of R(X) with the
property that for every v < X, R(v) is an initial segment of R(X) with respect to
Wx. Since (Vx G R(k)) (xEWk+-+xE Wx), ,\(V) |= (Vx G R(j\(k)))
(*tj\(K)~*£km)- Hence jx(Wx) n R(X) = Wx.

Now fix k < v < X. There is an elementary embedding k: jv(V) —*jJV)
so that k o jv= jx and so that for every x G R(v + 1) k(x) = x. Then Wv =
KK) = KJJK)n ^(")) - i\(K)n m = Wx n Ä(")-

Sttw = Ux>Kwx.  a
For the next two theorems let M be a countable standard model of Gödel-

Bernays class-set theory so that k is a supercompact cardinal in M and p is a class
sequence of M of coherent measures for k. We will work in M. "v" and "X"
and subscripted versions thereof will range over the Beth fixed points of M. For
X> k, ux, jx, Wx and W will be as in the preceding lemma.

20.   Theorem   There is a Cohen extension W of M so that M is a model
of "ZFC + V = HOD" and k is supercompact in W.

Proof.   First a definition.  Suppose that v is a Beth fixed point and A Q
v. Define the function /on the set {7 : (3 a < v) (y = w(p + a + 1))} so that
for every a < v, f(u(v + a + 1)) = co(v + a + 3) if a G A and f(u(v + a + 1))
= u(v + a + 2) if a £ A.  There is a term of ZF, E *(vQ, v,), so that for A, v,
and / as above E *(i>, A) = E(f) [cf. 16].

Work in M. Let e be a class-function enumerating in increasing order the
Beth fixed points.

Define by induction on the ordinals a very fine sequence of prosets < Pa ;
a an ordinal) so that for every a and 0, |Pa| < e(a + 2), and e(0)v is a Beth
fixed point in M(8a).
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Case I. For a = 0, let Pa = < {0}; = >.
ase II. For a = ß + 1 let R be such that in M(Sß\ R = C(e(ß)\ e(a)").

Let A be the W-least set so that in M(B(P'3® R)), A ~ R(e(ß)"). Then define in

fA(B(Pß®R))> L =E*(e(ßyt A)y and set pß+i =(Pß®R)®L.
Case III. For a an inaccessible cardinal, let Pa be the direct limit of its

predecessors.
Case IV.  For a a limit ordinal that is not an inaccessible cardinal, let Pa

be the inverse limit of its predecessors.
Let P«, be the direct limit of the Pa's and let GM be an M-generic sub-

class of P„. Define M[Ga] and MIG^] = hi as before [cf. 18 and remarks
preceding 14]. By the closure properties of E(vQ) and hence of E*(v0, v,), by
10 and 12, and by 14, hi is a model of ZFC.

For a = ß + 1, M[GJ |= (there is a subset A of e(ß) so that A ~ R(e(ß))
and so that for every 7 < e(ß\ y G A iff 2"(e(ß)+y+1 > = u(e(ß) + 7 + 3).   It
follows that in (A[Ga] every element of R(e(ß)) is hereditarily ordinal definable.
By the closure properties of £"(v0) and by 10, 12, and 14, hi n R(e(a)) =
M[Ga] n R(e(a)). Hence in hi every element of R(e(ß)) is hereditarily ordinal
definable. More generally, hi t= (V = HOD).

One shows that k is supercompact in hi by an argument analogous to that
of the proof of Theorem 18. One uses the normal measure px> on pKX', the fact
that jX'(WK-) n R(\') = Wx- and the following "local definability" property of
the Pa's which is analogous to Fact B of 18:

Fact B'.   There is a term v(v0, Vj) of ZF so that if a is a fixed point of e
and ß < a, then v(ß, W n R(a)) = Pß and (R(a); G, W n R(a)) |= ü(j3, W O
Ä(a))=Pfl.   D

Now suppose that in addition to the other properties of M, M has a proper
class of inaccessible cardinals.

21. Theorem   There is a Cohen extension hi of hi so that hi is a model
of "ZFC + G.C.H. + V = HOD" and k is supercompact in hi.

Proof.   For a coding device we use the term xOv vi) °f Lemma 17. This
is the reason for the requirement that there be a proper class of inaccessibles in M.
The proof is otherwise identical to the proof of Theorem 20. We only describe
the relevant class of forcing conditions.

Work in M.  Let e be a class-function enumerating in increasing order the
closed unbounded class {p : p is a Beth fixed point so that | {a < p : a is in-
accessible}! = p}.

Define by induction on the ordinals a very fine class-sequence of posets
(Pa;a an ordinal) so that for every a and ß,\Pa\< e(a + 2), and e(/3)v is a
Beth fixed point in M(8a).
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Case I. For a = 0, let Pa - < {0}; =)•
Case II. For a = 0 + 1, define in lAiBß\ R = C(e(0)v, e(a)v). Let A be

the IV-least set so that M(B(^gR)) N (A ~ /?(e(0»). In M(B(P^ R)), let L =
X(e(ß)",A). SetP0+1 = (Pß ® R) ® L .

Case III. For a an inaccessible limit of inaccessibles, let Pa be the direct
limit of its predecessors.

Case IV. For a a limit ordinal that is not an inaccessible limit of inacces-
sibles, let Pa be the inverse limit of its predecessors.   D

Theorems 20 and 21 translate by the usual methods to consistency results.

BIBLIOGRAPHY

1. W. B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139-178.
MR 42 #4392.

2. P. R. Halmos, Lectures on Boolean algebras, Van Nostrand Math. Studies, no. 1,
Van Nostrand, Princeton, NJ., 1963.    MR 29 #4713.

3. T. J. Jech, Lectures in set theory, with particular emphasis on the method of
forcing, Lecture Notes in Math., vol. 217, Springer-Verlag, Berlin and New York, 1971.
MR 48 #105.

4.  -, Trees, J. Symbolic Logic 36 (1971), 1-14.    MR 44 #1560.
5. M. Magidor, Dissertation, University of Jerusalem, 1972.
6. J. R. Myhill and D. Scott, Ordinal definability, Proc. Sympos. Pure Math., vol. 13,

part 1, Amer. Math. Soc, Providence, R.I., 1971, pp. 271-278.    MR 43 #7318.
7. W. Reinhardt and R. Solovay, Strong axioms of infinity and elementary embed-

dings (to appear).
8. D. Scott and R. Solovay, Boolean-valued models for set theory, mimeographed notes.
9. J. R. Shoenfield, Unramified forcing, Proc. Sympos. Pure Math., vol. 13, part 1,

Amer. Math. Soc, Providence, R.I., 1971, pp. 357-381.    MR 43 #6079.
10. J. Silver, The independence of Kurepa's conjecture and two-cardinal conjectures

in model theory, Proc. Sympos. Pure Math., vol. 13, part 1, Amer. Math. Soc, Providence,
R.I., 1971, pp. 383-390.     MR 43 #3112.

11.  -, Forthcoming paper on large cardinals and the G.C.H.
12. R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin's prob-

lem, Ann. of Math. (2) 94 (1971), 201-245.    MR 45 #3212.
13. D. H. Stewart, M. Sei. Thesis, Bristol, 1966.
14. F. Tall, Doctoral Dissertation, University of Wisconsin, 1969.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY,
CALIFORNIA 94720

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGE-
LES, CALIFORNIA  90024  (Current address)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


