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CONSISTENCY RESULTS FOR LINEAR REGRESSION
WITH CENSORED DATA

By I. R. JAMES AND P. J. SMITH

The University of Western Australia

Buckley and James (1979) proposed an estimation method for linear
regression models with unspecified residual distribution and right-censored
response variables. In this paper we consider weak consistency of the regres-
sion parameter estimators under regularity conditions which avoid restrictions
on the censoring patterns.

1. Introduction. For a vector of n responses y, a matrix of explanatory
variables X and a parameter vector 8, assume that

E(y) = X8,
and that the residuals
8i=yi_x;rﬂy i=1)2)"'yn)

are iid with an unspecified distribution and finite variance o2, where x; is the
ith row of X. However, for each i, instead of observing (y;, X;), one observes (z;,
i, X;), where z; = min(y;, t;) for some censor variables ¢;, and §; is an indicator
variable taking the value 1 if y; < ¢; (uncensored) and 0 if y; > ¢t; (censored). The
censor variables t; need not be random in general.

Three estimation methods for the above model have been proposed in the
literature: by Miller (1976), Buckley and James (1979) and Koul, Susarla and
Van Ryzin (1981). Of these, only the last has been studied comprehensively at a
theoretical level, but it has been found to sometimes perform unsatisfactorily in
practice (Miller and Halpern, 1982) since it is sensitive to the requirement that
the censor variables ¢; have a distribution which does not depend on the explan-
atory variables x;. Heuristic arguments by Miller (1976) indicate that his method
requires the variables t; — x/ 8 to be identically distributed for the estimators to
be consistent. However Mauro (1983) gives a counter-example showing that this
assumption is not sufficient. In simulations, Buckley and James (1979) found
that their method gave approximately unbiased estimates for the slope parameter
in the simple linear regression model for a wide range of censoring patterns, some
depending on the explanatory variables and others not.

This paper investigates consistency properties of the Buckley-James esti-
mators. The simple linear regression model with a single explanatory variable is
considered in detail in Section 2, where conditions are given which ensure the
existence of a (possibly nonunique) consistent “solution” to the estimating
equations. These conditions avoid assumptions about censoring patterns, thus
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supporting the empirical observation of approximate unbiasedness of the slope
estimator mientioned above. An extension of the results to multiple linear regres-
sion is considered briefly in Section 3.

2. Simple linear regression.

2.1 Buckley-James estimators. Suppose we have a single explanatory variable
and consider the model

(1) yi=a+frite i=1--,n,

where the independent partial residuals r; = y; — Bx; have distribution function
F and survival function S = 1 — F. Note that F has mean « and variance o The
method of Buckley and James (1979) is motivated by the expectation identity

Elyid; + B(y:| y:> t)(1 = 8)] = e + B,

and replaces the censored observations in the usual least-squares normal equa-
tions by their estimated conditional expectations in the following way. Let

eb)=2z—bx;, i=1, cen,

and let

. 3(;)
A n-—1
Fyu) =1 = Tlieyymu \ ———
b( ) H.e(,)(b)_ <n — + 1>

denote the Kaplan-Meier product limit estimator (Kaplan and Meier, 1958)
calculated from the e;(b). In this formula e(;)(b) is the ith ordered observed
residual and §; its associated indicator. To overcome problems of definition if
e(»(b) is censored, the product limit estimator is modified here by always defining
Fb(e(,,)(b)) =1 (Meler 1975; Miller, 1976).

Putting S, =1 — F,, define for each i = 1, n,

N _ “ ‘ if & — bx; < ew(b)
Iab(yi | Yi > tl) - {tt + ‘I;_ b [Sb(u) dU/Sb(t bxl)] ,07 lf ti _ bxi > e(,,)(b)
and let

i(b) = yid; + Bo(yi | yi > t)(1 = 8).

Thus 3,(b) is the observed response y; if uncensored, or an estimate of it, based
on the e;(b), if censored. One then attempts to find estimators &, ,8 of «, 3, which
satisfy the equations

2) Y (54B) —a—Px) = 0
3) Y (x: — £)(9(B) = Bx) = 0.

Note that (3) depends only on 8, and once @ is obtained, & is found explicitly
from (2). ‘
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If we define

va(b) = (T (1 — %) 9:(b))/ T (i — %)?,

equation (3) is equivalent to va(B) = B. A natura} iterative scheme for attempting
to solve this starts with an initial estimate of 3 and successively updates it by
v.(8). However, these iterations need not converge, and indeed, since v,(b) is
discontinuous and piecewise linear in b, an exact solution of (3) need not exist.
This situation suggests alternatives for the definition of a “solution” to (3): either

(A) apoint 8 at which the left-hand side of (3) changes sign,
or
(B) a point at which the left-hand side of (3) is closest to zero.

We have found definition (A) convenient to work with in theoretical calculations
in Section 2.3, although for a model with multiple covariates the analogue of (A)
is difficult to formulate while (B) generalizes in a straightforward way. Note that
neither definition implies uniqueness of the “solution”.

2.2 Consistency of v,(8) for 8. In what follows we assume that F is absolutely
continuous with density f and has support bounded above. The latter assumption
avoids the considerable theoretical difficulties encountered in estimating F with
censored data over the whole line (see for example Gill, 1983; Susarla and Van
Ryzin, 1980), and will be reasonable for most practical applications. On the other
hand we do not require that the support of F be bounded below. Often one will
be working with positive measurements and the linearity will pertain to the log
scale, in which case arbitrarily large negative values may be observed. Let U =
supfu; F(u) < 1} < .

Since we wish to regard the censor variables ¢; as fixed, our proofs rely on the
product limit estimator results of Meier (1975) rather than work which regards
the censor times as random variables (for example, Breslow and Crowley, 1974;
Gill, 1983; Yang, 1977). Following Meier, let _# (u) denote the expected number
of censored and uncensored values e;(3) exceeding u. Define ¢; = t; — 8x; and let
—p denote convergence in probability.

THEOREM 1. Suppose that
(a) #(uw—->wasn—-wforalu<U
(b) Y%, (x;—x)®2—>®asn—®

[Zr, Ste) | — &1

(c) lim supn_,«,-l Y I

< o,

Then vx(B) —» B.

REMARK. A sufficient condition for (c) is
lim lnfn-—wo(]-/Nc) 2?=1 (xi - -x_:)z > 0’

where N. is the expected number of censored observations, since by the Cauchy-
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Schwartz inequality
LS lx — %] = (T S%e) ATy (v — ®)HY?
= N2k, (x; —0)3)Y2 0
In order to prove Theorem 1, we make use of the following lemma, the proof
of which is deferred to Section 2.4.
LEMMA 1. If #(u) > ®asn— o forallu < U, then
SUDce(-w,0) | Egri| ri > ¢) = E(ri|r; > ¢) | —p 0,
where ]ﬁ‘,ﬁ(r;i | r; > c) is the estimator of E(r;|r; > c) based on the product limit
estimator Fjg. :
PRrROOF OF THEOREM 1. Let u; = E(r;| r; > ¢;) and let ;= lé;ﬁ(ri | r;>¢;). Then

_ Yy (=0 Y (= 21— 6) (s — w)
Zzn=1 (x; — 5)2 2?=1 (x; — 33)2

=1+ 1I, say,

where r} = r;6; + pi(1 — §;). Since E (r}) = o and the r¥ are independent, we have
(T (x — %)%)*°

where ¢? = var(r¥) = ¢% — var(r;| r;> ¢;)S(c;). By (b) and Chebychev’s inequality
it follows that I —p 0. Next,

E) =0, var() =

N 1 i — x| (1 =9
IIIlSSupilﬂi_l-‘il{Z }I:'zl(x?cl(i)z )},

and again by Chebychev’s inequality the term in braces converges in probability
to Xk, |x — %] S(c)/(ZE, (x; — %)?). Condition (¢) and Lemma 1 now show
that I —p 0 and hence (y,(8) — 8) —p 0.0

Theorem 1 shows that under appropriate restrictions, if n is large the function
va(b) — b will be close to zero at b = 8 with high probability. Indeed, if we define
a 0-solution as any value b for which | v,(b) — b| < §, then the following corollary
is a direct consequence of Theorem 1.

COROLLARY 1. If conditions (a)-(c) of Theorem 1 are satisfied, then for any
0> 0, 8 is a 6-solution of v,(b) = b with probability tending to 1 as n — .0

The above is not sufficient to imply that all or any “solutions” of v,(b) = b, in
the sense of (A) or (B) in Section 2.1, are consistent. To examine properties of
these “solutions” we need to consider the behaviour of v,(b) as n — o for b # 8,
and this requires assumptions about the explanatory variables. We consider this
aspect further in the next section.
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2.3 Properties of v,(b) —b. To investigate the behaviour of v,(b) ~ b, suppose
that %, ---, x, behave as if they were realizations of a random variable with
nondegenerate distribution function G, in the sense that the proportion of the
x’s not exceeding x tends to G(x) for each x as n — o. We also assume that G
has bounded support, so that the partial residuals r;(b) = y; — bx; remain bounded
above. Since we can write ri(b) = ri(8) + (8 — b)x;, the variables r;(b) arise from
a convolution distribution

(4) Fy(u) = f F(u — (8 = b)x) dG(x),

with corresponding survival function S,(z). Note that Fs(u) = F(u) and ri(B) =
r; in the previous notation.
Under these assumptions the product limit estimdtor Fb estimates F,. Let

ui(b) = E(ri(b) | ri(b) > t; — bx),

where the conditional mean is calculated from the distribution F,, and denote by
fii(b) the estimate of u/(b) based of F,. Define U(b) = sup{u; Fy(u) < 1} < » and
let _#(u) be the expected number of el(b)' exceeding u. If we now put

21 (% — %)S(c)(8:(b) — 0:(8))
Yy (x — %)?

a(b) _ fU(b) Sb(u) du
BT Db Selt — b))’

¥n(b) =

with

we have the following result.

LEMMA 2. If #(u) — o as n— o for all u < U(b), then
(5) [ Yn(b) = B — ¢¥u(b) | —p 0.

PROOF. Note firstly that our assumptions about G ensure conditions (b) and
(c) of Theorem 1 hold, and by Lemma 1, sup; | :(b) — wi(b) | —p 0. Now letting
r¥ =r6; + w;(1 — §,) as before, we may write

_ ZE (0 = ) + i (o — %) (b)) = wi(d))(A — 5y)

iy (g — 33)2 2 (x — x)?
Zz— (x; — %)(8:(b) — 0:(8))(A = 6 — S(c))
Zz=1 (xz - x)2

=1+ II + III, say.

Terms I and II tend in probability to zero by arguments similar to those in the
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proof of Theorem 1. Further, since for each i, « + (8 — b)e, + bx; < t; + 0;(b) <
U(b) + bx;, it follows that there exists a function p(b) < o such that
[ 6:b) — 6{B) | < p(b) for all i. By Chebychev’s inequality term III also tends in
probability to zero. O

Lemma 2 shows that, with high probability, v,(b) — b is approximated by ,.(b)
— b + g for n large, and the limiting behaviour of v,(b) is determined by that of
¥n(b). Note that ¢,(8) = 0. In order to investigate properties of ¥,(b) in a
neighbourhood of 8 in Theorem 2 we first need the following lemma concerning
the derivative of 6,(b). For the remainder of this section we assume that F is
differentiable.

LEMMA 3. Suppose the density function f of the partial residuals r; is bounded
on (—», U). Then foreachi=1,2, -- .,

0:(8) = (xi—eg(l - fi(c‘))f S du )

where e, is the mean of G.

PrOOF. It is straightforward to show that if f is bounded, we may interchange
the order of integration and differentiation, giving

= —f(u)e,.

b=8

, ue) [ 4 S,(w) ]
= s [, |5 (5o )

from which the result follows. O

i)
% Sy(u)

Further,

THEOREM 2. Let 6 > 0 be any value for which the conditions of Lemma 2
hold for all b € (B — 6, B + 8), and suppose f is bounded on (—o, U). Suppose
further that
| 2y (i — £)%S(c) |

(a) | ¢=lim SUPn— |75 = B2 | :

(b) S(c;)|6/(b) —6/(B)| >0 as b— B uniformlyin i.

Then with probability tending to 1 as n — o, there exists a point b in (8 — 9,
B + 6) at which v,(b) — b changes sign.

PrROOF. From Lemma 3 and condition (a) we obtain

lim sup, ¥ (B) < < 1.
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By condition (b), for any ¢ > 0 we can find a 6* < 6 small enough so that if
|b— 8| =<d%
E?=1 'xi — 32'

(% — f)z )

[¥n(b) — ¥n(B) | < e lim sup, .

Since the lim sup term is bounded, we deduce that lim sup, ..y .(b) <1 for all b
in some neighbourhood of . It follows that there exist values b, < 8, b, > 8 and
7 > 0 such that lim inf,_..(Y,(b1) — b, + B) > 7 and lim sup,_.«(¥n(bs) — by + B)
< —n. Lemma 2 then gives the result.

REMARK (i). Note that the term in braces in condition (a) of Theorem 2 is
the expected proportion of the sum of squared deviations of explanatory variables
which correspond to censored observations.

REMARK (ii). Condition (b) is clearly met if f is continuous and the t; and x;
take only a finite number of different values. Moreover, since S is assumed to
have a bounded derivative and G has bounded support, the following hold:

(1ia) Su(t; — bx;) — S(c;) as b — B uniformly in i.
(iib) Letting hs(u) = 3Sy(1) /b, fs(u) = —3Ss(u)/du and assuming f is uniformly
continuous, we have

ho(t; — bx;) — —e.f(c) as b—f
and
folt: — bx;) — f(c) as b— 0,
both uniformly in i.

From (iia) and (iib) it follows by expanding out the expression for #/(b) that
condition (b) of Theorem 2 will be satisfied if f is uniformly continuous and for
all ¢; < U, S(c;)/Sy(t; — bx;) — 1 uniformly in i as b — 8. In particular, this will
be true if there exists an m > 0 such that there are no ¢; in (U — m, U), for then
S(c;) is bounded away from 0 for ¢; < U.

REMARK (iii). Theorem 2 states nothing about asymptotic uniqueness of a
“solution” to v,(b) = b. Our experience with the method suggests, however, that
such uniqueness holds under a wide range of conditions.

2.4 Proof of Lemma 1. Note that

| By(ri| ri>c¢) — B(ri|r: > ¢) |

V(8w S B
=" I <—‘% B §(C—)> du' = | ¢nlc) |, say.

For any ¢ > 0, since the mean of the residuals is finite, we can choose U* < 0
sufficiently small that [%, (1 — S(u)) du < ¢/4. Then for ¢ < U*,

| énlc) | = |Ac| + | Be|
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[ S(w) f v S(w)
o[ ) [ o3

(Y (8w Sw
and BC—J;* (ST(C—)—%> du.

where

Now
v S(w) f v S(w)
| A, SJ; <1—S(C)>du+ } <1——STC)>du
U* U*
< f (1 - Sw) du + f (1~ S(w) du
U* U*
< i (1 - Sw) du + I (1 — S(w)) du.
From Meier (1975),

U* U*
f_ (1 — S(w)) du —p I (1 - S@)) du < i,

80 P(sup.<u+ | Ac| < ¢/2) — 1 as n — . Now write

1 (Y . v 1 1
%L Sw) — S(w) du+<fw S(w) du)(sf(a—%)‘

__1_f" ; f”A >|S<c>—8<c>|
=507 Jo- | S(u) — Sw)| du + < . S du SIS

< supu<u | Sw) — S() | (U — U*) 4 SUPusur | S'(Au) - Sw) | (U-U»

B S(U) S(U*S(U*) '
Again from Meier (1975), sup,<v | S(u) — S(u) | —p 0 so sup.<y+ | B.| —p 0. Since
SUP.<u* | dnlc) | < supe<u+| Ac| + supe<u~ | Be|, it follows that
(6) P(sup.<u+| ¢nlc) | <e) > 1 as n— oo

Next, for any 6.> 0, use a similar argument to that for B, to obtain

| Bc| =

(7 P(supyr<c<u—s | ¢nlc) | <e) =1 as n— oo

Finally,

3 "8y, , (750 ,]
®) SUPy_s<c<u | Pnlc) | = SUPU-s<e<U) } - §(c) du + ¢ S duf
<26 forall n.

Lemma 1 now follows immediately from (6), (7) and (8) by noting e is arbitrary
and by choosing § < ¢/2.0
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2.5 Estimation of . Buckley and James (1979) note that & is the mean of
the estimated distribution F‘g. If assumptions regarding G are as in the previous
section, then continuity of F, in b ensures that « will be consistent if B is. In
practice the estimator of o tends to be biased downwards, due to the censoring
and to the policy of assuming the largest observation is always uncensored.

3. Multiple linear regression. In the general multiple linear regression
case with design matrix X the equations corresponding to (2) and (3) are

X"(3(8) - XB) =
with y(b) the vector of estimated responses y; obtained by the obvious analogue
of the simple regression case in Section 2.1. Standard linear regression programs
are easily modified to implement the iterative scheme where at each step y(8) is
obtained from the previous estimate 8, then regarded as the response vector in
the next iteration. As for the simple regression case the iterations may not

converge but they provide a satisfactory way of obtaining approximate solutions.
If X" X has full rank, one attempts to solve

B =(X"X)'X"§(8) = va(B) say.

Using the same methods as in the proof of Theorem 1, we then have

THEOREM 3. Suppose that

(@) #(u) »>xoasn—oforallu<U,

(b) trace(X"X)™!— 0asn— o,

(¢) lim sup, XS < ®, where X, is the matrix of absolute values of (X" X)71XT
and ST = (S(c1), - - -, S(cn)).

Then v,(8) —p 8.0

4. Discussion. It is important that the conditions we have assumed in
proving our consistency results place few restrictions on censoring patterns, since
in practice a number of different random and nonrandom mechanisms produce
the censor values t;, and one could rarely assume a simple model for their
distribution. For this reason we consider the t;’s as fixed and rely heavily on the
product limit estimator results of Meier (1975). Foldes and Rejto (1981) also give
asymptotic results for the product limit estimator which are relevant to our work,
including rate of convergence results, but assuming that the censor variables are
independent with continuous distribution functions.

The product limit estimator of F used in the Buckley-James method may be
replaced by other distribution-free estimators such as those of Susarla and Van
Ryzin (1976, 1978, 1980), Ferguson and Phadia (1979), Phadia (1980) or Rai,
Susarla and Van Ryzin (1980). These have properties similar to the product limit
estimator and one would expect the regression estimators derived from them to
have the same asymptotic properties.

Extensive simulation studies we have carried out suggest that the conditions
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used to prove the consistency results in this paper are much more stringent than
necessary. In particular, violation of the assumptions regarding explanatory
variables in Section 2.3 appears not to be critical, but theoretical study of v,(b)
— b is difficult without some such simplifying assumptions. Further, suppose that
the partial residuals r; have support in (—o, U), with U possibly infinite, and
sup;(t; — Bx;) = t < U. Then _# (u) -» o as n — o for u > t, but provided _# (u)
—  for all u < t, the results of Section 2.2 remain valid with U replaced by ¢t
and F truncated at t. In this case the regression line being estimated is y = o* +
Bx with a* < «, so the intercept estimator will be biased downwards. However,
this bias should not affect the slope estimator. Conditions for Theorem 2 are
violated by the truncated distribution function, and the consistency results in
this case will be considered elsewhere.

Finally, it is worth noting that the estimation method of Buckley and James
adapts easily in principle to weighted and nonlinear regressions, although the
technical problems then encountered have yet to be studied.
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