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Consistent Abstractions of Affine Control Systems
George J. Pappas, Member, IEEE,and Slobodan Simic´

Abstract—In this paper, we consider the problem of constructing
abstractions of affine control systems that preserve reachability
properties, and, in particular, local accessibility. In this framework,
showing local accessibility of the higher level,abstractedmodel is
equivalentto showing local accessibility of the, more detailed, lower
level model. Given an affine control system and a smooth surjec-
tive map, we present a canonical construction for extracting an
affine control system describing the trajectories of the abstracted
variables. We then obtain conditions on the abstraction maps that
render the original and abstracted system equivalent from a local
accessibility point of view. Such consistent hierarchies of accessi-
bility preserving abstractions of nonlinear control systems are then
considered for various classes of affine control systems including
linear, bilinear, drift free, and strict feedback systems.

Index Terms—Abstraction, affine control systems, hierarchies,
local accessibility.

I. INTRODUCTION

A NATURAL approach for reducing the complexity of large
scale systems places a hierarchical structure on the system

architecture. For example, in the common two-layer planning
and control hierarchies, the planning level uses a coarser system
model than the lower control level. One of the main challenges
in hierarchical systems is the extraction of a hierarchy of models
at various levels of abstraction while preserving properties of
interest.

Abstraction is also important in the analysis of complex sys-
tems. In the area of formal verification of concurrent systems,
problems of exponential complexity are frequently encountered,
and hierarchical system abstractions are used for complexity re-
duction [9], [16], [17]. For example, in order to verify that a
given large scale system satisfies certain properties, one tries to
extract a simpler but qualitatively equivalent abstracted system.
Checking the desired property on the abstracted system should
beequivalentor sufficientto checking the property on the orig-
inal system. Depending on the property, special quotient sys-
tems which preserve the property of interest are constructed.

As a result, the notion ofabstraction refers to grouping
the system states into equivalence classes. Ahierarchy can
be thought of as a finite sequence of abstractions.Consistent
abstractions are property preserving abstractions. Depending
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on the cardinality of the resulting quotient space we may have
discreteor continuousabstractions. With this notion of abstrac-
tion, the abstracted system is defined as the quotient system
dynamics. In this spirit, abstractions of purelydiscrete-event
systems have been formally considered in the computer science
community [9], [16] based on the fundamental work of [17].
Similar work for discrete event systems has been also consid-
ered in the control community [7], [29], [30]. A related research
area considers equivalent discrete abstractions of continuous
or hybrid systems [2], [8], [14] as well as sufficient discrete
abstractions of hybrid systems [4], [10], [23].

In previous work, we have focused on extractingcontinuous
abstractionsfrom continuous systems. In particular, in [21], a
hierarchical framework for continuous control systems was con-
ceptualized and formally proposed. In [20], easily checkable
characterizations were obtained for constructing controllability
preserving abstractions of linear control systems. This imme-
diately resulted in a hierarchical controllability algorithm from
which we recovered the best known controllability algorithm
from numerical linear algebra [11], [15]. In the same spirit, in
[19] we characterized stabilizability preserving abstractions of
linear systems. The resulting hierarchical stabilizability algo-
rithm recovers the stabilizability algorithm in [24].

In this paper, we extend our hierarchical approach to a signif-
icant class of nonlinear control systems that consists of affine
control systems on smooth manifolds.1 In particular, we address
the following problem.

Problem 1.1: Given anaffinecontrol system

(1)

and a smooth, surjective map , where ,
, construct a control system

(2)

which can produce as trajectories all functions of the form
, where is a trajectory of (1). Furthermore,

characterize smooth mapsfor which (1) is locally accessible
(controllable) if and only if (2) is locally accessible (control-
lable).

The surjective map partitions the state space into equiva-
lence classes. System (2) will be referred to as theabstractionof
the more detailed model (1). It should be noted that the notion of
abstraction in this paper is quite different from previous notions
of state aggregation [5], [13], [26], and the more established no-
tion of approximate model reduction [3], [28]. In model reduc-
tion, the input and output of the system are fixed, while the state

1A preliminary version of this work for analytic, drift-free systems appeared
in [22].
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dimension is reduced. The abstraction problem that we formu-
late does not require the input of the two systems to be the same.
This is typical in planning and control hierarchies where, for ex-
ample, the input at the kinematic level may be a velocity input,
whereas the input at the dynamic level may be a torque input.

In [20], we extended the geometric notion of-related vector
fields to control systems, which allowed us to push forward con-
trol systems through maps and obtain well defined control sys-
temsdescribingtheabstracteddynamics.Thefact that theabstrac-
tion map sends trajectories of (1) to trajectories of (2) enabled
us to propagate reachable sets from system (1) to system (2). Fur-
thermore, in [20], we were able to provide constructive formulas
for constructing linear abstractions of linear control systems.

In this paper, we provide a constructive method for extracting
abstractions for affine control systems on smooth manifolds.
Our method is the natural nonlinear generalization of the linear
method provided in [20]. Furthermore, the method is natural in
the sense that it constructs thesmallest -related or abstracted
control system. In addition, our method is structure preserving
in the sense that the affine structure of our control systems is
preserved throughout the abstraction process. Therefore, by re-
peating our construction, we can obtain a hierarchy, that is a
finite sequence, of affine abstractions.

We then consider the problem of constructing abstractions
while preserving the property of local accessibility [18]. We de-
termine conditions on the mapunder which local accessibility
of the abstracted system (2) is equivalent to local accessibility
of (1). Such conditions greatly reduce the complexity of de-
termining local accessibility properties of nonlinear control
systems,sincerather thancheckingcontrollabilityofa largescale
nonlinear system, we can construct a hierarchy of consistent
abstractions and then check the local accessibility of systems
which are much smaller in size. A property preserving hierarchy
will then propagate the desired property along the sequence of
abstractions from the simplest abstracted model to the original
complex system.

The structure of this paper is as follows. In Section II, we re-
view the results in [20] in the setting of linear systems. In Sec-
tion III, we review some differential geometric concepts that are
used in the paper, whereas in Section IV, we review some re-
sults from [20] that are used in this paper. In Section V, we pro-
vide methods for constructing abstractions of affine control sys-
tems. In Section VI, we characterize abstractions that preserve
the property of local accessibility. This leads to hierarchical ac-
cessibility criteria which are considered for various classes of
affine systems in Section VII. Finally, Section VIII discusses
interesting directions for further research.

II. L INEAR ABSTRACTIONS

The main goal of this paper is to obtain nonlinear analogues
of the results in [20]. We start our review of the results in [20]
with a formal definition of linear abstractions.

Definition 2.1 [Linear Abstractions ([20])]: Consider the
linear control systems

and a surjective map . Then control system is called
a -abstraction or abstraction of system if system can
produce as trajectories all functions of the form ,
where is a trajectory of system .

The above definition of abstraction relates the trajectories of
the two systems. Note that system must capture all (output)
trajectories of system , but may also generate more trajecto-
ries. At the level of vector fields, we have the following notion.

Definition 2.2 ( -Related Linear Systems):Consider the
linear time-invariant control systems

and the linear, surjective map . Then, is -related to
if for all , , there exists such that

The notion of -related control systems simply states that
system must be able to generate (using its control input

), the image under of any tangent vector that system
may generate at any point , and given any control

input . The connection between-abstractions and
-related systems is given by the following theorem.
Theorem 2.3 ( -Abstractions and -Related Systems [20])

: Consider the linear time-invariant control systems

and the linear, surjective map . Then, is a -abstrac-
tion of if and only if is -related to .

Given -abstractions and -related systems, it is clearly ad-
vantageous to work with -related systems since they poten-
tially offer algebraic methods for constructing abstractions. In
particular, the following proposition gives us a canonical con-
struction in order to generate-related linear abstractions.

Theorem 2.4 [Canonical Construction ([20])] :Consider the
linear system

and a surjective map . Let

be the system where

where is the Moore–Penrose pseudoinverse of, and
span Ker . Then is -related to .

Note that by Proposition 2.5, givenanylinear control system,
and any full-row rank matrix , there always exists another
linear control system which is -related to it. In addition to
propagating trajectories from the original to the abstracted
system, we are also interested in propagation of other properties
such as controllability. From linear systems theory we know
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that the reachable space from the origin for system is
given by Im . In partic-
ular, system is controllable if and only if .
As an immediate corollary of Theorem 2.3 we obtain that

, and, in particular, if is controllable
then is controllable.

In order to propagate controllability from the abstracted linear
system to the original system , conditions must be placed
on the abstracting map , resulting inconsistentabstrac-
tions [20]. With respect to controllability, the following theorem
characterizes consistent linear abstractions.

Theorem 2.5 [Controllability Preserving Abstractions
([20])]: Consider the linear system

and surjective map . Let

be the -related system where

where is the Moore–Penrose pseudoinverse ofand
span Ker . Furthermore, if

Ker

then is controllable if and only if is controllable.
The condition Ker suggests that in order to

abstract away some dynamics (captured by Ker) while pre-
serving controllability, one would have to ensure the ignored
dynamics are controllable. From the assumptions of Theorem
2.5, it is easy to see that a controllability preserving linear ab-
straction always exists if , since we can always choose
matrix satisfying Ker Im . Therefore the control-
lability preserving condition serves as a guideline for choosing
our abstracting matrix .

The goal of this paper is to develop similar results for non-
linear, affine control systems of the form . In
particular, we are interested in generalizing the canonical con-
struction of Theorem 2.4 for affine control systems. Further-
more, given that most results for nonlinear systems are local in
nature, rather than propagating global controllability, we focus
on the property of local accessibility, and obtain the nonlinear
analogue of Theorem 2.5. In order to achieve this, we must rely
on the differential geometric methods for accessibility of non-
linear systems.

III. GEOMETRIC PRELIMINARIES

We begin by recalling some definitions from differential ge-
ometry ([1], [18]). Let be a differentiable manifold, and de-
note by the tangent space of at . Let

be the tangent bundle of , and let be the canon-
ical projection map . Recall, for instance, that

, and that . Throughout the paper,
the reader can keep as a model manifold without loss of any
of the main ideas. Given a smooth map between

smooth manifolds and , the tangent map
pushes forward tangent vectors from to .

The union of all tangent maps is denoted by . Recall
that if both and are euclidean spaces, then is just
the total derivative of . In this paper, we will be concerned
with maps which are surjective submersions. In
such cases, we will think of as an embedded submanifold
of . As a model example to keep in mind, take ,

, where , and is the projec-
tion to the first coordinates.

A vector field on a manifold is a smooth map
which assigns to each point a

tangent vector . An integral curve of a vector
field is a smooth curve that satisfies

for all . Given two vector fields and
on , by we denote their usual Lie bracket.

A distribution on assigns to each a sub-
space of . A distribution generated by vector fields

is given by span . The
dimension of at , denoted by , is then

span . Regular distributions
require the dimension of the distribution to be independent
of . A vector field belongs to a distribution if

at each .
Given two smooth distributions and , we define the dis-

tribution by declaring to be the subspace
of generated by vectors of the form where

, are smooth vector fields belonging in and re-
spectively. Given a distribution , Lie is the Lie algebra
generated by . It is obtained by taking the span of iterated Lie
brackets of vector fields in .

Given a vector field on manifold and a smooth map
, not necessarily a diffeomorphism, the push for-

ward of by is generally not a well-defined vector field on
. This leads to the concept of-related vector fields.
Definition 3.1 ( -Related Vector Fields [1], [18]):Let

and be vector fields on manifolds and , respectively,
and be a smooth map. Then, is -related to if
for every

(3)

If is a smooth surjection from to , then given a
vector field on a manifold , the push forward of

by is a well defined vector field on only if
whenever for

any two points , . The following well-known theorem
gives us a condition on the integral curves of two-related
vector fields.

Theorem 3.2 ( -Related Vector Fields [1], [18]):Let and
be vector fields on and respectively and let

be a smooth map. Then, vector fieldsand are -related if
and only if for every integral curve of , is an integral
curve of .

Even though -relatedness of vector fields is a rather restric-
tive condition, this is not the case for control systems. In order
to have global definitions of control systems ([6], [18]), we shall
need the concept of fiber bundles.
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Definition 3.3 (Fiber Bundles):A fiber bundle is a quintuple
where , , are smooth manifolds

called the total space, the base space and the standard fiber, re-
spectively. The map is a surjective submersion and

is an open cover of such that for every there
exists a diffeomorphism satisfying

where is the projection from to (local
triviality condition). The submanifold is called the fiber
at .

If all the fibers are vector spaces of constant dimension, then
the fiber bundle is called a vector bundle. If all the fibers are
affine spaces then the fiber bundle is called an affine bundle.

The tangent bundle of a smooth manifold is an example of a
fiber (vector) bundle. Some others are as follows.

Example 3.4 (Trivial Fiber Bundle):If and
is the projection to the second coordinate,

, then the five-tuple is called thetrivial
fiber bundleover with fiber . For example, the 2-torus is
a trivial fiber bundle over the circle with fiber . Locally,
every fiber bundle looks like the trivial one [1].

Example 3.5 (Distributions):Every distribution can be re-
garded as a vector bundle by takingto be the union of all
and defining the projection by whenever .
The fiber is , where . The local triviality condi-
tion means that is locally spanned by linearly independent
vector fields.

If is an affine bundle on , then locally there exist a
vector field and a distribution such that .
If is generated by vector fields then
span . Formally, is the union of all affine
spaces , for all , the fiber

is an arbitrary but fixed affine-dimensional subspace of
where .

Example 3.6:Consider the following (affine) control system
on :

Then at each point , the set of all possible tangent di-
rections is a straight line in (considered as the tangent space
to at ) given by the equation .
Note that this line does not pass through the origin which is why
it forms an affine subspace. Here, and

.
We will denote the Lie algebra generated byby Lie .

It is obtained by taking the span of all iterated Lie brackets of
vector fields in . For simplicity, we will abuse the notation and
use Lie also to denote the distribution given by
Lie .

IV. CONTROL SYSTEM ABSTRACTIONS

Definition 3.1 and Theorem 3.2 capture the essence of
Problem 1.1, but for vector fields. The restrictive nature of
Theorem 3.2 is due to the deterministic nature of vector fields.
The nondeterministic nature of control systems, however,

allows us to remove such restrictions. In [20], Definition 3.1
and Theorem 3.2 were extended to control systems. We now
briefly review some of the results of those papers. We first
begin with a global definition of control systems.

Definition 4.1 (Control Systems [6], [18]) :A control system
consists of a fiber bundle and a smooth

map which is fiber preserving, that is
where is the tangent bundle projection. Given a
control system , the control bundle of is natu-
rally defined pointwise by for all .
A control system is called affine if the control bundleis an
affine bundle.

The base manifold of the control bundle is the state space
and the fibers can be thought of as the state dependent
control spaces. Given the stateand the input, the map selects
a tangent vector from . The notion of trajectories
of control systems in this context is now given.

Definition 4.2 (Trajectories of Control Systems):A smooth
curve is called a trajectory of the control system

if there exists a curve satisfying

In local coordinates, Definition 4.2 simply says that a trajec-
tory of a control system is a curve for which there exists a
function satisfying, . Note that even
though Definition 4.2 assumesto be smooth, the bundle curve

is not necessarily smooth. The definition, therefore, allows
nonsmooth control inputs as long as the projection
is smooth.

We now consider abstractions of control systems. Anabstrac-
tion is a map which we will assume to be a surjec-
tive, smooth submersion.2 We can now define -related control
systems in a manner similar to Definition 3.1 for vector fields.

Definition 4.3 ( -Related Control Systems) :Let
with and

with be two control systems. Let
be a smooth map. Let and be the control bundles
associated with control systems and respectively. Then

is -related to if for every

(4)

Control system will be referred to as anabstractionof con-
trol system ([20]). Note that many control systems may
be -related to as the set of tangent vectors onthat must
be captured, can be generated using many control parameteri-
zations.

It is straightforward to show that -relatedness of control
systems indeed generalizes Definition 3.1 [20]. Furthermore, if

and satisfy condition (4), then also satisfies
condition (4). This suggests that there exists aminimalsystem

, up to control parameterization, that is-related to . The

2Note that any map� gives rise to an equivalence relation by defining states
x andy equivalent if�(x) = �(y). In order for the resulting quotient space to
have a manifold structure, the equivalence relation must be regular [1].
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minimal system naturally corresponds to the case where condi-
tion (4) becomes an equality, or equivalently when the following
diagram commutes:

(5)

where is the space of fiber subbundles of .
In contrast to the restrictive conditions of Theorem 3.2, the

following straightforward proposition, shows that every control
or dynamical system is-related to some control system for any
map .

Proposition 4.4 ([20]): Given any control system
and any smooth map , then there always

exists a control system which is -related to
.

The following theorem generalizes Theorem 3.2 to control
systems.

Theorem 4.5 ( -Related Control Systems [20]) :Let
and be two control systems and

be a smooth map. Then is -related to if
and only if for every trajectory of , is a trajectory
of .

Because of Theorem 4.5, throughout this paper, we can equiv-
alently say that is an abstraction of or that is -re-
lated to . If and denote all trajectories of control
systems and , respectively, then Theorem 4.5 simply
states that is -related to if and only if

. The abstracted system therefore overapproximates the ab-
stracted trajectories of the original system which may result in
trajectories that the abstracted systemmay generate but are
infeasible in the original model .

Even though Definition 4.3 and Theorem 4.5 for control sys-
tems remove the tight restrictions of Definition 3.1 and The-
orem 3.2 for dynamical systems, the challenge now becomes
providing methods for constructing abstractions of control sys-
tems. This is the objective of Section V.

V. ABSTRACTION CONSTRUCTION

The results we reviewed in Section IV were true for general
control bundles, including affine bundles. In this section, we
present a canonical way of constructing abstractions for affine
control systems. Therefore, from this point on, we assume that
all objects are smooth and all control bundles are affine.

Let be a control system on a manifold .
Denote the affine control bundle of by . This is an affine
subbundle of , so there exists a vector field on and
a distribution on such that

We say that is the distributionassociated with . Let
be a surjective submersion, where is an em-

bedded submanifold of . Denote by the vector subbundle
of defined as

Ker (6)

Since is a submersion, the distribution has constant di-
mension everywhere, where and

. Furthermore, is an integrable distribution. De-
note the foliation that is tangent to by .

Our goal is to construct the smallest control system on
which is -related to . We will accomplish this by con-

structing the smallest -invariant affine subbundle of
containing whose associated distribution contains, and
taking to be any control system whose control bundle equals

.
A fiber bundle over is called -invariant, for some

smooth vector field with local flow , if
, for all and for which both sides are

defined. For a distribution , we say that is -invariant, if it
is -invariant for every vector field in .

Proposition 5.1: Let be an affine subbundle of , where
, for some vector field on and

distribution on . Let be a vector field on . Then is
-invariant if and only if

Proof: : Assume is -invariant. Denote the local
flow of by and let be any vector field in . Then, for
every and

Subtracting from the left hand side, dividing by,
and letting , we obtain . Therefore,

.
: Since , by a standard result in

differential geometry [18], it follows that the distribution is
-invariant. Similarly, we obtain that the distribution

is -invariant. Therefore, for every and for which
is defined

for some real-valued function. That is,
. Since

, it is easy to see that , for all .
However, is a 1-cocyle over the flow of , i.e.,

, so . Since
, it follows that is identically equal to one.

This implies that , as desired.
Definition 5.2 (Canonical Construction in ) : Given

and as above, let be the smallest -invariant distribution
containing , , and (see Fig. 1). Therefore,
is generated by

(7)

where . Define the as

(8)

The affine bundle is called thecanonical bundle associated
with and .
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Fig. 1. Construction of~A .

The following proposition establishes the invariance proper-
ties needed for our construction.

Proposition 5.3 ( -Invariance and -Relatedness):

a) The affine bundle of Definition 5.2 contains , it is
-invariant, and its associated distribution contains
. Moreover, it is the smallest affine bundle with these

properties.
b) If for some , , then

Proof:

a) Clearly . -invariance follows from the con-
struction of , the inclusion

and Proposition 5.1.
To show that is the smallest affine bundle

with these properties, let be another -invariant
affine bundle containing whose associated distri-
bution contains . Then , for some
distribution containing . By -invariance,

, so is -invariant. Simi-
larly, . Since is by construction the
smallest -invariant distribution containing , ,
and , it follows that , hence .

b) By the Frobenius Theorem, locally each leaf of is
a plane constant constant,
is the plane in , and is the projection

. Assume
and both lie in one such foliation chart [1] of .
Since is -invariant and (in the same chart)

diag , where is the identity
matrix, it is easy to see that (b) holds. If is not in
the same foliation chart as , we can apply a similar

argument to a finite sequence of foliation charts covering
a path (in the leaf ) connecting and .

The above proposition ensures well posedness of the fol-
lowing definition which summarizes our canonical construction
for extracting affine abstractions from affine control systems.

Definition 5.4 (Canonical Construction on ) : Let
be a control system on a manifold with affine

control bundle

Let be a surjective submersion, whereis an em-
bedded submanifold of . Denote by the vector subbundle
of defined by (6). Define the affine distribution by

where is generated by (7). The affine bundle on
defined by

for any , is said to be canonically-related to .
Any control system with control bundle
is said to be canonically -related to .

Theorem 5.5 (Canonically-Related Systems) :The bundle
of Definition 5.4 is the smallest bundle onwhich is -re-

lated to .
Proof: That is -related to follows from its con-

struction and Proposition 5.3. To show that it is the smallest,
assume is another bundle on -related to . Let

. Then clearly contains and is -invariant.
Therefore, by Proposition 5.3, . It is then immediate
that , which proves the mini-
mality of .

Definitions 5.2 and 5.4, and Theorem 5.5 provide us with
a constructive method to construct-related systems. Further-
more, the construction is natural since it generates the smallest
such system. We shall apply the canonical construction to var-
ious classes of affine systems in Section VII. In Section VI, we
consider the relationship between-related control systems re-
garding accessibility and reachability properties.

VI. A CCESSIBILITY EQUIVALENCE

In addition to constructing abstractions of nonlinear systems,
we are also interested in preserving properties of interest be-
tween the original and abstracted model. In [20], we focused on
controllability of linear control systems. In this paper, we focus
on local accessibility for affine control systems.

We first recall some standard definitions for reachable sets.
Consider a control system , let be
a neighborhood of , and consider time . The
reachable set from at time , denoted , is the
set of points that can be reached fromwith trajectories of

that remain within for all . In our definition
of control systems, the reachable set is formally expressed as
follows.

Definition 6.1 (Reachable Sets [18]) :Let
be a control system on a manifold. Given a neighborhood
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of , define the reachable set in time as

with

and

(9)

The reachable set fromup to time is defined as

(10)

Using the above definition of reachable sets, we can now de-
fine various notions of local accessibility.

Definition 6.2 (Local Accessibility [18]):A control system
on a manifold is said to be the following.

a) Locally accessible at if for every neighborhood
of and every , contains a nonempty,
open set of .

b) Locally accessible if it is locally accessible at every
.

c) Symmetrically locally accessible at if it is locally
accessible at , and contains an open
neighborhood of .

d) Symmetrically locally accessible if it is symmetrically lo-
cally accessible at every .

e) Controllable if for every , .
The following theorem allows us to check accessibility prop-

erties of control systems by simply checking the rank of certain
distributions.

Theorem 6.3 (Rank Conditions [18]) :Consider a control
system on an -dimensional mani-
fold , and let be the associated control bundle. Let

Lie be the accessibility Lie algebra generated by
. Then

a) if , then is locally accessible at
;

b) if for all , then is locally
accessible;

c) if and is symmetric at , that
is if then , then is
symmetrically locally accessible at ;

d) if and is symmetric for all
, then is symmetrically locally accessible;

e) if , is symmetric for all ,
and is a connected manifold, then is controllable.

We now focus on our problem of interest, namely the prop-
agation of accessibility properties from the original to the ab-
stracted system, and vice versa. One way is immediately given
to us by Theorem 4.5 which propagates trajectories from the
original to the abstracted system.

Theorem 6.4 (Accessibility Propagation):Let a control
system be -related to a control system

with respect to some surjective submersion
. Then, for all

(11)

(12)

Therefore

a) if is locally accessible at , then is locally
accessible at ;

b) if is locally accessible, then is locally accessible;
c) if is symmetric locally accessible at , then

is symmetric locally accessible at ;
d) if is symmetric locally accessible, then is sym-

metric locally accessible;
e) if is controllable, then is controllable.

Proof: Consider any and let .
By assumption there exists trajectory of
with , , and for all

we have . Since is -related to
, by Theorem 4.5 there exists trajectory

of with and . Therefore,
, , and

for all . Thus,
which proves (11). Having established (11), then (12) as well as
a), b), c), d), and e) follow immediately using straightforward
topological arguments.

Note that Theorem 6.4 is true for any mapas long as it
is a smooth surjective submersion. Furthermore, Theorem 6.4
holds for any two -related systems, not only for the canonical
construction of Definition 5.4. A different but equivalent proof
of Theorem 6.4 would propagate the accessibility Lie algebra of

through the epimorphism .
Whereas Theorem 6.4 propagates accessibility from the orig-

inal to the abstracted system, from a hierarchical perspective, the
reverse question is the complexity reducing direction. In other
words, checking accessibility of the abstracted system should be
equivalent to checking accessibility of the original, more com-
plicated, system. We shall call such property preserving abstrac-
tionsconsistent abstractions.

This question will be answered for the canonical construction
of Definition 5.4. We begin with the following proposition.

Proposition 6.5: Consider an affine control system
and its associated affine control bundle on a

manifold . Let be a surjective submersion where
is an embedded submanifold of . Use Definition 5.4 to

construct control system on with control bundle ,
and on that is canonically -related to .
Furthermore, assume that

Ker Lie

Then, the following hold.

a) Lie Lie .
b) For every , open set , and

c) For every we have

d) For every , open set , and
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e) For every , open set , and

Proof:

a) Since Lie , we have Lie , which
implies that Lie Lie . The opposite inclu-
sion follows from .

b) Follows from a).
c) Recall that and is the projection

in the direction of . Then, c) follows without dif-
ficulty from these facts.

d) Let be arbitrary and suppose .
Then there exists an -trajectory from to with

for . By c), is also an -trajectory
and it clearly lies in . Thus,

which proves one direction.

Now suppose that . Then
there exists an -trajectory (not necessarily in )
from to with for all .
But then is an -trajectory where , ,
connects and , and for all .
Therefore, which completes the proof.

e) Follows from b) and d).

The following theorem is an immediate consequence of the
preceding result.

Theorem 6.6 (Accessibility Equivalence):Consider an affine
control system and its associated affine con-
trol bundle on a manifold , and let be a
surjective submersion. Use Definition 5.4 to construct a control
system on that is canonically -related to

. Furthermore, assume that

Ker Lie (13)

Then

a) is locally accessible at if and only if is
locally accessible at every ;

b) is locally accessible if and only if is;
c) is symmetric locally accessible at if and only if

is symmetric locally accessible at every ;
d) is symmetrically locally accessible if and only if

is;
e) is controllable if and only if is.
Therefore, if is -related to using the canonical con-

struction described in Definition 5.4, and condition (13) is sat-
isfied, then is a consistent abstraction of .

Condition (13) can be used in guiding the selection of the ab-
straction mapping . Note that (13) can always be satisfied
as long as inputs exist. For example, for the affine control system

we can always choose a map whose derivative satisfies the
condition Ker , as long as does not vanish. In

this case, we are only ignoring directions that aredirectly con-
trolled, therefore controllable, and condition (13) is automati-
cally satisfied. The fact that the presence of control makes con-
sistent abstraction possible clearly demonstrates the complexity
reducing properties of control systems.

VII. COROLLARIES

In this section, we illustrate the construction of Definition
5.4 and apply Theorem 6.6 for various classes of affine control
systems. We begin by recovering the results for linear systems
that were obtained in [20].

A. Linear Systems

Consider the linear system

span (14)

where , and are constant input vector
fields. Suppose our abstraction maps are surjective linear maps

. Then has full-row rank, the tangent map
is simply , and Ker Ker . Consider

span

span

The construction of Definition 5.4 results in

span

span

span

span

span

span

Higher order Lie brackets in (7) are clearly zero. The affine dis-
tribution at is

span

span

for any . Since has full row rank, we can choose
where is the Moore–Pen-

rose pseudoinverse of. Therefore, the canonically -related
system for any linear surjective map is

span

span

or more compactly

(15)

where
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In order to propagate accessibility properties, the linear abstrac-
tion map must satisfy the consistency condition (13) which in
the linear context becomes

Ker Lie

span span

(16)

Condition (16) can always be satisfied as long as since
we can always choose Ker span . In order words, we
can always obtain accessibility preserving abstractions as long
as there are control inputs. Under these conditions, Theorem 6.6
directly implies that local accessibility of (15) isequivalentto
local accessibility of (14). In fact, from Theorem 2.5, condition
(16) propagates not only local accessibility, but also global con-
trollability [20].

B. Bilinear Systems

Consider the bilinear system

(17)

where , and . Note that the
reachable set from the origin is only the origin. Suppose our
aggregation map is again linear and surjective.
Then

span

span

The canonical construction results in

span

span

span

span

span

span

span
...

span

Second-order Lie brackets between and are zero. Since
Ker , and choosing results in an

affine bundle defined by

span

span

span
...

span

Therefore. the canonically -related system is

In order to propagate accessibility properties, the linear abstrac-
tion map must satisfy the consistency condition (13)

Ker Lie (18)

The Lie algebra Lie of bilinear
systems is spanned by , and higher
order matrix brackets. Unfortunately, at we have
Lie , and therefore, a consistent
abstraction is obtained only on . This is not necessarily
the case, however, if one considers bilinear systems of the form

in which case one can consistently abstract some dynamics on
by choosing Ker span .

C. Drift Free Systems

As a special case of affine control systems, consider the
so-called drift free systems

span (19)

where are smooth vector fields on . In this
case, the canonical construction of Definition 5.4 is simplified
as the drift term . Therefore, rather than dealing with
affine bundles, we now work with standard distributions. This
results in the following construction.

Definition 7.1 (Canonical Construction on ): Let
be a drift-free control system on a manifold with

distribution . Let be a surjective submersion,
where is an embedded submanifold of . Denote by the
vector subbundle of defined as

Ker

Define the distribution which is generated by

(20)

The distribution on defined by

for any , is canonically -related to . Any con-
trol system with distribution is said to be
canonically -related to .

The canonical construction of Definition 5.4 ensures that the
abstraction of an affine control system is affine. Similarly, the
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canonical construction of Definition 7.1 ensures that the abstrac-
tion of drift free control systems is also drift free. As an example,
consider the unicycle model

(21)

and consider the abstracting map which simply ignores, that is
. The construction of Definition 7.1 results

in

for anychoice of . Choosing results in

(22)

Note that the canonical construction preserves the drift free
structure of the system. Furthermore, since

Ker span span

system (22) is a consistent abstraction of the unicycle model
(21). Therefore the unicycle model (21) is locally accessible if
and only if system (22) is locally accessible, which is trivially
true. The above abstraction of the nonholomic unicycle by a
two dimensional integrator is exactly in the spirit of [25], where
topological properties for collision avoidance of the models are
also considered in detail.

D. Strict Feedback Systems

Consider the class of strict feedback systems used in back-
stepping designs [12], which have the following block triangular
structure

...

(23)

where and all maps , are smooth. For notational
simplicity, we present the canonical construction for , that
is

(24)

and therefore, the affine bundle is

span (25)

Suppose our abstraction map is the a simple projection
. Then

Ker span (26)

The canonical construction results in
, where

span

and therefore, consists of

span

span

Clearly, . Higher order Lie brackets, even though
nonzero, also belong to Ker . Therefore, the construc-
tion results in

span

span span

span span

Pushing forward through results in

span

for any . Choosing re-
sults in the following abstracted system:

span

(27)

where is now thought of as a virtual input. The above calcu-
lation also shows that for strict feedback systems, ifis to be
abstracted, then one can simply eliminate the differential equa-
tion associated with . Therefore, the triangular nature of strict
feedback systems make the computations for the canonical con-
struction very simple.

In order to propagate accessibility, the consistency condition
(13) must be satisfied. This means that

Ker Lie

span Lie (28)
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From (28), it is clear that if for all , , then
the consistency condition is trivially satisfied and the the local
accessibility of (24) is equivalent to the local accessibility of
(27). If for some , , then the consistency
condition may be satisfied by or by using higher
order Lie brackets. For example, the first-order Lie bracket con-
tains

span

Therefore, the consistency condition is automatically satisfied
if

span

for all . If this is not satisfied, then higher order
Lie brackets may be used.

Some classes of strict feedback systems deserve special at-
tention.

E. Nonlinear Systems With Appended Linear Dynamics

Consider the following class of systems:

(29)

where , , , , are smooth maps,
and , are matrices of appropriate size. Such systems fre-
quently arise in mechanical systems with nonlinear kinematics
but linear actuator dynamics. In studying the local accessibility
of such systems, rather than computing the full-blown accessi-
bility Lie algebra, one would like to decompose the analysis in
order to reduce the complexity.

System (29) can be thought of as a strict feedback system
with considerably more structure since and

. Consider again the simple projection map
which ignores the linear dynamics. The canon-

ical construction of Theorem 5.5 proceeds in the same way as
for strict feedback systems and results in the-related system

(30)

where is now an input.
Local accessibility of (30) is equivalent to the local accessi-

bility of (29) if the consistency condition (13) is satisfied. The
special structure of system (29), and some algebra reveals the
following consistency condition:

Ker span

span
irrelevant terms

In other words, if the pair is controllable, then we can
simply ignore the linear part of the system, and local acces-
sibility of (30) is equivalent to the local accessibility of (29).

Therefore, the accessibility properties of system (29) truly de-
compose to the controllability property of the linear subsystem,
and the accessibility property of the nonlinear subsystem.

F. Linear Systems With Appended Nonlinearities

Conversely, consider the following class of systems:

(31)

where , , , , are smooth maps,
and , are matrices of appropriate dimension. In this case,
the abstracting map ignores the nonlinear part
of the system. System (31) can be thought of as system in strict
feedback form with special structure. Therefore, the canonical
construction results in the abstracted model

(32)

Again the structure of (29) and some algebra lead to the fol-
lowing form for the consistency condition:

Ker span

span
irrelevant terms

Lie

Therefore, if the nonlinear subsystem is locally accessible, that
is Lie , then the local accessibility of the non-
linear system (31) is equivalent to the controllability of the linear
system (32).

VIII. C ONCLUSION

In this paper, consistent abstractions of affine control sys-
tems were considered. In particular, we provided constructive
methods for abstracting affine control systems with respect
to smooth surjective maps. Our construction is structure pre-
serving in the sense that affine control systems are abstracted
by affine control systems. Furthermore, we characterized
abstraction maps that result in preserving the property of local
accessibility from the abstracted model to the original model.
Our framework was then applied to various classes of nonlinear
control systems including linear, bilinear, drift free, and strict
feedback systems.

We believe that there is a clear research agenda which fo-
cuses on classes of systems as well as properties of interest and
characterizes the abstracting maps that preserve the properties
of interest for the particular class under consideration. For ex-
ample, obtaining consistent abstractions for nonlinear systems
with respect to stabilizability would be helpful in better under-
standing backsteppable systems. For hierarchical controller de-
sign, refining the controller design from the abstracted level to
the more complicated model is a challenge. For linear systems,
this was recently achieved in [19] from which we can extract
as a special case the the hierarchical stabilization algorithm of
[24]. Other properties of interest include trajectory optimality,
preserving Hamiltonian structure [27], and the propagation of
state and input constraints.
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