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Abst rac t .  We consider a general class of time series linear models where parameters 

switch according to a known fixed calendar. These parameters are estimated by 

means of quasi-generalized least squares estimators. Conditions for strong consistency 

and asymptotic normality are given. Applications to cyclical ARMA models with non 

constant periods are considered. 
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I .  Introduction 

For many real time series, such as seasonal ones that one encounters very often 

in economics, stationary models are inadequate. The most popular method employed 

to take non stationarity into account consists in looking for a suitable transformation 

of the data  that  generates a new set of data exhibiting no apparent deviation from 

stationarity. However, this allows for very restrictive types of nonstationarities only. 

Take, for instance, the simple example of a seasonal daily series xt of period s = 7. 

The above-mentioned method generally leads to fit an autoregressive moving-average 

(ARMA) model to the differenced series yt -- x t  - x t - 7 .  This implies that the same 

ARMA model applies for each day of the week. In other words, Sundays and Mondays 

will be predicted using the same formula. The approach may seem arbitrary. An alter- 

native one consists in considering different ARMA models for each day of the week. This 

leads to the so-called periodic autoregressive moving-average (PARMA) models which 

have recently received much attention (see e.g. Adams and Goodwin (1995), Anderson 

and Vecchia (1983), Bentarzi and Hallin (1993), Lund and Basawa (2000)), Basawa and 

Lund (2001). PARMA models belong to the wider class of ARMA models with time- 

varying coefficients. Following the seminal works by Priestley (1965) and Whittle (1965), 

the probabilistic properties of a wide class of models with time-varying coefficients have 

been considered by Hallin (1986), Kowalski and Szynal (1991), Singh and Peiris (1987) 

among others. 

However the estimation methods remain less explored for time-varying models than 

for stationary models. The main reason is certainly that, for such nonstationary mod- 

els, the convenient asymptotic theory of stationary ergodic processes does not apply, 

which constitutes a major difficulty. In this paper we study the asymptotic behavior of 
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42 ABDELOUAHAB BIBI AND CHRISTIAN FRA N CQ  

(quasi-generalized) least squares estimators for a vast class of linear models with time. 

varying coefficients and heteroskedastic innovations. The quasi-generalized least squares 

procedure is very simple and, in our framework, its asymptotic efficiency is equivalent 

to that of the quasi-maximum likelihood method. We at tempt to state consistency and 

asymptotic normality under conditions which are sufficiently explicit to be easily used 

for the construction of asymptotic confidence intervals and hypothesis tests, when the 

estimation procedure is applied to simple models of particular interest. We consider in 

particular models, that we call cyclical time-varying models, with a finite number of 

recurrent regimes which alternate with a non constant periodicity. The applications we 

have in mind are, for instance, economics series with different dynamics for worked days 

and legal holidays. 

Among the authors who have studied asymptotic behaviors of estimates of time- 

varying coefficients, let us mention Azrak and M@lard (2000) who gave conditions for 

consistency and asymptotic normality of quasi-maximum likelihood estimators for gen- 

eral time-varying ARMA models. For locally stationary processes, Dahlhaus (1997) 

studied in detail a generalized Whittle estimator. Other relevant references are the 

following. Tyssedal and Tjcstheim (1982) gave conditions for the consistency of least 

squares and quasi-generalized least squares estimators of an AR(p) with constant autore- 

gressive coefficients and innovations with time-varying variance. Tjcstheim and Paulsen 

(1985) showed the asymptotic normality. Kwoun and Yajima (1986) gave conditions for 

consistency and asymptotic normality of least squares estimators of parameters of an 

AR(1) with time-varying autoregressive coefficient and innovations with constant vari- 

ance. The conditions given here axe close in spirit to those given by Kwoun and Yajima 

(1986) but  the considered class of models is wider, since it includes ARMA models with 

time-varying coefficients and time-varying conditional variance. 

The paper is organized as follows. Section 2 presents the model and states con- 

sistency and asymptotic normality of least squares and quasi-generalized least squares 

estimators. The latter is used to take into account conditional heteroskedasticity. We 

make a comparison between the (quasi-generalized) least squares estimators and the 

quasi-maximum likelihood estimator. In Section 3, the results obtained in Section 2 for 

general time-varying linear models are applied to simple examples of PARMA and cycli- 

cal time-varying models. A numerical illustration is proposed in Section 4. Section 5 

contains proofs of theorems stated in Section 2. 

2. Main results 

Consider the following time-dependent linear model 

t 

(2.1) Xo = r xt = st + E r 1 7 6  t = 1 ,2 , . . . ,  

i=1 

where 00 = (00(1), . . . ,  Oo(d))' is an unknown parameter of interest belonging to an open 

subset O of R d, the r are known functions from R d to R. The sequence (et) is 

supposed to be a heteroskedastic independent white noise. More precisely we assume 

that st -- arch, where (Yt)t>0 is a sequence of independent and identically distributed 

(i.i.d.) random variables such that E~t = E~ 3 = 0, E~ 2 = 1 and E~t 4 = m4 < c~, the 

at 's are strictly positive numbers. 

Now let us introduce a simple example of a time-varying model of form (2.1) to make 

ideas concrete. Imagine that we suspect d changes in regime at known dates. Let A(k) 
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be the set of the indices corresponding to regime k. Denote by st : =  E d = l  kllA(k)(t) the 

regime corresponding to index t. We might consider a time-varying MA(1): 

(2.2) X0 = O.(S0)~0, X t  = o ' ( S t ) ~ t  - -  b ( s t ) o . ( s t - 1 ) O t - 1 ,  t = 1, 2, . . . .  

This is clearly a particular form of (2.1), with parameter of interest 00 = (b(1) , . . . ,  b(d)) 

and nuisance parameter/30 = (o.(1), . . . ,  o.(d)) E ]0, +cr d. It is important to note that 

the coefficients of Model (2.2) are not random (in particular, (2.2) does not belong to 

the class of threshold moving-average models studied by de Gooijer (1998)). When 

(st) is periodic, (2.2) is a PMA(1) process. For instance, this kind of model could 

be relevant for daily time series with different regimes for weekdays and weekends (if 

t = 0 corresponds to Sunday, we can set d = 2, A(1) = {1 ,2 ,3 ,4 ,5 ,8 ,9 , . . . } ,  A(2) = 

{0, 6, 7, 13, 14, . . .},  (8t)t>_O = (2, 1, 1, 1, 1, 1, 2, 2, 1 , . . . ) ) .  PARMA models are examples 

of periodically correlated (PC) processes (see Gladyshev (1963), or Alpay et al. (2001) 

for a more recent reference). Extensions which can account for more complex cyclical 

phenomena have been proposed. In particular, almost periodically correlated (APC) 

processes were introduced by Gladyshev (1963) and have been discussed by many authors 

(see e.g. Alpay et al. (2000), Dehay and g o n s a n  (1996), gakagon  and g i amee  (1996) and 

the references therein). A discrete-time p r o c e s s  ( x t ) t E  Z is said to be APC if its covariance 

function is an almost periodic sequence in the sense of Bohr (for each m, and every e > 0, 

the set of e-almost periods of the function k ~-~ Rm(k)  := Cov(xm+k, Xm), defined as the 

natural numbers ~-~ such that IRm(k+T~)-Rm(k)] < e for every k E Z, is relatively dense 

in Z). Similarly, a continuous-time process (xt)teR is said to be APC if its covariance 

function is an almost periodic function on the real line in the sense of Bohr. Examples of 

APC processes are obtained from contemporaneous aggregation of independent periodic 

processes with incommensurate periods: for instance, xt = Yt sin(t) + zt sin(~rt), t E l~, 

where (Yt) and (zt) are independent stationary processes. A sequence on the integers 

is an almost periodic sequence if and only if it is the restriction on the integers of an 

almost periodic function on the real line (see e.g. Alpay et al. (2000)). It is clear that 

(2.2) is an APC process when the sequences (b(st))t and (o.(st))t are almost periodic. 

Another interesting situation is when the regimes are recurrent, but  alternate with a non 

constant periodicity. For instance, this could account for legal holidays and worked days 

in daily economic time series. Such series are cyclical, but  they are generally not APC: 

~/T C Z, 3e > 0, m E Z, k E Z such that [ Cov(xm+k+~,xm) - Cov(xm+k,xm)[ > e (it 

suffices to choose m and k so that m + k correspond to a legal holiday and m + k + T 

to a worked day). An example of cyclical model, in which the structural changes are 

recurrent but not periodic, will be discussed further in Section 3. 

We now return to the general specification. Iterating (2.1), Ct can be written as linear 

function of xt,  x t - 1 , . . . ,  xo. In other words, the following autoregressive representation 

holds 
t 

(2.3) xt = e t -  E r t # ( O o ) X t - i ,  t =  1,2, . . . .  
i----1 

In view of (2.1), 6t is independent of the o.-field generated by xt -1 ,  x t - 2 , . . . ,  xo. There- 

fore, (2.3) shows that the best one-step predictor of xt is ~t(Oo) := Eoo(Xt [ x t -1 ,  

x t - 2 , . . . ,  Xo) = -~-]~=1 zrt#(Oo)Xt_i. When 00 is replaced by 0, the prediction error is 
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given by 

t t 

(2.4)  t(0) := x ,  + = t = 1 , 2 , . . . ,  

i=1 i=0 

i 0 where r = ~ k = 0 r t , k ( ) r  ~rt,0(0) = r = 1. We will 

refer to et(O) as a residual. Note that et = e,(0o) can be interpreted as an innovations 

process of (x,), and that the marginal variance of the innovation process is also the 

conditional variance of the observed process: at 2 = Var0o(Xt ] xt-1, x t - 2 , . . . ,  xo). When 

this conditional variance is not constant over time, i.e. at ~ a, (xt) is said to be con- 

ditionally heteroskedastic. However, contrary to GARCH-type models, the conditional 

variance does not depend on past values of (xt). It would be desirable, in particular for 

applications to financial time series, to incorporate ARCH effects, but  it is beyond our 

technical capabilities. 

Numerous appealing estimation procedures are based on the minimization of 

weighted sums of squares of residuals (see e.g. Godambe and Heyde (1987) for a general 

reference and Basawa and Lund (2001) for an application to PARMA models). First 

consider the (ordinary) least squares estimator (LSE). Let O* be a compact subset of 

O which contains a neighborhood of 00. Given a sequence (x0 , . . . ,  xn) of observations, 

define a LSE as any measurable solution of 

(2.5) 0n = arg minQn(0), where Qn(O) = n -1 ~e2(O).  
OEO* t = l  

For convenience, write Ct,i = r for i = 0 , . . . , t ,  and ~bt# = 0 for i > t. In 

addition to the previous assumptions, it will be supposed that: 

A1. \/0, 00 E O*, if 0 # 00 then there exists a positive integer q0 such that 

l imin fn_~  n -1 ~t=l  qo 2 n E i = I  ~ 2 t , i  > O .  

A2. V0, 00 E O*, there exist constants 7(lh[) (possibly depending on 0 and 9o but  

not on t) such that 

ICt#r162 -----  (Ihl), 
O<_i , j  

and ~-~h>O 7(h) < co. 

A3. V0, 0o E O*, there exist constants 7(IhJ) such that, for all tk, hk,h~ > O, 
k = 1,2,3,4, 

' i ( (  }) E YI  Ctk,hk+ik Ctk,h~+jk < 7 max max h, ,  max h~ 
-- [ k=2,3,4 k=2,3,4 

O < _ i k , j k  k = l  

~-~-h>O hT(h) < oc and 7(h) ~ 0 as h T c~. 

A4. Y0o E O*, the functions 7rt#(.) and r admit third order partial deriva- 

tives. 

Ah. \/0o C O*, ~-~i>o 7i < c~, where 

7i = sup s u p  m a x { [ r  ~/)(1){0, 00)[, " t , i  , - �9 , [ r  
t_>l 0ce*  

Oo)1, Oo)1, Oo)1, Oo)1}, t , i  " " " , " �9 , "t~t,i ~ '  ~ t , i  
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(k) ~h(klk:) 
with Ct,i (',00) = OCt,i(',Oo)/OO(k), "~t,i  (',00) = 02r 

ff )(klk2k3) ( ' ,  00) 7-- 0 3 ~ ) t # ( - O 0 ) / O 0 ( k l ) O O ( k 2 ) O 0 ( ~ 3 )  " 
t , i  

These assumptions will be discussed further in Section 3, and technical remarks 

will be given in Section 5. Notice tha t ,  in view of (2.5), 0~ can be interpreted as a 

M-estimator.  Under A4, this is also a Z-estimator, because 0n is solution to est imating 

equations 

n t 0 ^ 

(2.6) E et(On) E O--~(k) 7rt,i(On)xt-i = O, k = 1 , . . .  ,d. 
t = l  i=1 

We are now in a position to state the first result of this paper. 

THEOREM 2.1. Under A1, A3-A5, 0n tends almost surely to Oo as n --* c~. 

(d) 
Let the gradient vector r = ~(r (00, 0o), �9 �9 �9 Ct# (0o, 0o)) .  In order to estabhsh 

the asymptot ic  normali ty  of the LSE, consider the following addit ional  assumptions. 

A6. {fft}t is such tha t  inft crt > 0. 

A7. There exist a positive integer ro such tha t  for all r _> ro, the matrices 

exist. 

A8. The matr ix  

n •  
r I  := lim n -1 Z (72 qh()q/,()' 

n--*oo t w t , i  w t , i  
t = l  i=1 

f i  t 

J := lim n -1 ~ ~/,(')~b (')' 
n---*oo / .  "t't,i t , i  

t = l  i=1 

exists and is strictly positive definite. 

It will be shown in Section 5 tha t ,  under A1-A8, the matr ix  

f i '  
I := lim n -1 crt 2 V "  ~/,('4/,()' w t , i  w t , i  

n --~ oo 
t = l  i=1 

exists and is strictly positive definite. We have the following theorem. 

THEOREM 2.2. Let the assumptions of Theorem 2.1 be satisfied. In addition, as- 

sume A6-A8. Then x/-~(On - 00) converges in law to the centered normal distribution 

with covariance matrix E := J - 1 I J - 1 .  

Detailed proofs of Theorems 2.1 and 2.2 are given in Section 5. An outline of the 

proofs is the following. 

SKETCH OF PROOF OF THEOREMS 2.1 and 2.2. Because et(O) - et belongs to the 

a-field generated by x t - 1 , . . . ,  Xo and because et is centered and independent  of this a- 

field, Er - ct} = 0 for all t. Therefore, using the identifiability assumption and 

a strong law of large numbers for independent but  non identically dis tr ibuted random 

variables, the objective function is shown to be asymptot ical ly  minimal at  00: 

n n 

Q n ( O ) - Q ~ ( O o ) - - - - - n  - 1 E { e t ( 0 )  --  ~Et} 2 -[- 2Tt - 1 E ~ t { e t ( O ) - - s  

t : l  t = l  
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is asymptotically strictly positive when 0 r 0o. This is not sufficient to show Theorem 

2.1, but  we can infer Theorem 2.1 from a standard compactness argument. 

Using a standard Taylor expansion, we have 

n l / 2 ( 0 n  - -  00)  - - - -  OOostQn(OO) n 1/2 Qn(Oo) + O R ( l ) .  

The first task is to show that {-02Qn(8o)/OSOt~ '} ~ - 2 J  in probability. The 

proof is more demanding than in the standard framework of stationary processes 

because the ergodic theorem does not apply. Approximating nl/2OQ,~(Oo)/O0 = 

n-1/2 ~-]tn__ 1 2etOet (00)/00 by standardized empirical means of r-dependent processes and 

using the Lyapounov central limit theorem, it can be shown that nl/2OQn(t~o)/O0 has a 

limiting normal distribution with mean 0 and covariance matrix 4I. The conclusion in 

Theorem 2.2 follows. [] 

For the linear regression model, it is well known that the ordinary LSE is not efficient 

when the errors are heteroskedastic (see e.g. Gouri6roux and Monfort (1995) or Hamilton 

(1994)). The same problem arises here, in the case of conditionally heteroskedastic 

models (i.e. when at is not constant). To remedy this problem, the idea is to weight 

appropriately the residuals. Consider therefore the measurable solutions of 

n 

(2.7) 0(~) : arg min Q(~)(O), where Q(~)(O) : n -1 ~ Tte2t(O) 
OEO* t = l  

and T : (Tt)t is a sequence of positive weights. Assume that Tt = Tt(Xo, . . .  , X t - t )  is 

measurable with respect to the a-field generated by the random variables x0 , . . . ,  x t -1 .  

Denote by A6* the assumption that, almost surely, suPt Ttat < co and inft T t a t >  0. Let 

n t n t 

I (7) := lim n - l ~ - ~ T 2 a  2~'~,/,('),/,(')' j ( r )  l i m  n-1 x--'x--~ o/.('L~.(')' 
n--*o~ A.~ t t A.~-t,i~-t,i , : - - - -  2... ,2.. ,Tt~t,i~t,i  �9 

t : l  i = I  t = l  i = I  

Denote by AT* (respectively A8*) the assumption obtained by replacing I by I (~) (re- 

spectively J by J(~)) in A7 (respectively A8). We have the following result. 

THEOREM 2.3. A s s u m e  A1-A5 and A6*-A8*. Then the weighted L S E  0(~) con- 

verges almost surely to 8o and x/~(O (~') - 80) converges in law to the centered normal 

distribution with covariance matrix  E (~) := (J (T) ) - I I (~- ) (J (r ) ) - I  as n ~ co. 

The proof of Theorem 2.3 is omitted since it is very similar to that  of Theorems 

2.1 and 2.2. It is easy to show that the asymptotic variance of the weighted LSE of any 

linear combination of 0 (1 ) , . . . ,  0(d) is minimal when Tt = a t  2. The proof is given in 

Lemma 5.10 below. For this asymptotically optimal sequence of weights, the weighted 

LSE is called the generalized least squares (GLS) estimator and is denoted by 0~. Its 

asymptotic covariance matrix is E c = ( j c ) - i  := (j(~-o))-l, where TO = (at2) t .  In most 

of the practical situations, as in (2.2) for instance, at is unknown and depends on a 

nuisance parameter ~: at -- at(~). When a consistent estimator/~n of fl is available, the 

quasi-generalized least squares (QLS) estimator 0n Q, obtained by replacing at by at(flu) 
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i n  ^G On, possesses the same asymptotic behavior as the GLS estimator. More precisely, we 

have the following result. 

THEOREM 2.4. Suppose that fit -- (7t(/3o) is continuous in Do uniformly in t, and 

that  ~n converges almost surely to Do. Assume A1-A5 and A6*-A8*, where T iS replaced 

by "to. Let ?o = (at2(~n))t �9 Then the QLS estimator oQ := ~(§ converges almost surely 

to Oo and x/~(oQ-Oo) converges in law to the centered normal distribution with covariance 

matrix E G as n ~ oc. 

The proof of Theorem 2.4 is given in Section 5. 

To discuss the practical implementation of QLS estimators, let us consider the 

simple model defined by (2.2). Assume that the relative frequency of regime k, 
n 

n - ]  Y]t=l lIA(k)(t), converges to 7r(k) C ]0, 1[, for k -- 1 , . . .  ,d. It is easy to see that  

a consistent estimator of the conditional variance of regime k is given by 

(2.8) b2n (k) . -  1 n 
7r(k)n E et2(0n)l[A(k) (t)' k = 1, . . .  ,d. 

t----1 

A QLS estimator is then obtained in the following way: 

Step 1. 

Step 2. 

Step 3. 

an ordinary LSE is obtained by solving (2.5); 

an estimate r = (bn(1) , . . . ,  ~n(d)) of D is obtained using (2.8); 

a QLS estimator is obtained by solving (2.7) with Tt = bg2(St). 

This algorithm is usually attributed to Cochrane and Orcutt (1949). Refined QLS 

estimators can be found by repeating Steps 2 and 3 several times, replacing, in Step 2, 

0n by the QLS estimator derived in Step 3. All these QLS estimators have the same 

asymptotic behavior. 

We now briefly compare the QLS and quasi-maximum likelihood (QML) procedures 

for the general formulation (2.1). The assumptions of Theorem 2.4 are imposed. Pa- 

rameters 0 and D are supposed to be functionally independent. In QML procedures, a 

likelihood function is used as a vehicle to estimate the parameters, but need not be the 

correct density. The Gaussian likelihood, referred to as quasi-likelihood, is frequently 

used to form the estimator. We follow this practice. Thus, given the initial value x0, the 

(conditional) log-quasi-likelihood of ( x l , . . . ,  xn) is, apart from a constant, 

(2.9) + i n  �9 
en(O,D) = --~ t=l [(Yt (D) 

Maximization of (2.9) leads to QML estimators ^L ^L Dn ). Under regularity (0n, suitable 
1/2 ^L ^L conditions, n {(0n,Dn) - (00,D0)} converges in law to a centered Gaussian distri- 

bution with variance involving expectations of first and second order derivatives of 

gn(0, D) (the reader is referred to Azrak and Mdlard (2000) for a more rigorous state- 

ment). Since O~.n(O, DO)/O0 and 02s Do)/O000' are proportional to OQ(~-~ and 

02Q(~~ it is easily seen that ~L and 0Q have the same first order asymp- 

totic behavior. However, minimization of Q(~O)(0) is often easier than maximization of 

(2.9), because the optimization is made over a parameter space of smaller dimension. In 
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some particular cases, the dimension of the QML optimization can be reduced. Indeed, 

differentiating gn (0,/3) partially with respect to/3, t? L minimizes the objective function 

n 

(Zl0) - -  

t : l  

e (e) 
+ In a2{/~L(0)}] , 

where ^L /3 n (0) satisfies 

(2.11) 
,=, {/3. (0)} {/3. (0)} 

We shall refer to g~(O) as the reduced likelihood. In the simple case when a 2 -- /3, 

Equation (2.11) leads to 
n 

^L n -1  e (0) (0) = 
t = l  

and minimization of (2.10) is equivalent to the LSE minimization: 

n 

n - l E  

t = l  

a2{/~L(0)} +lnat2{~L(0)} = 1 + l n  n -1 et2(0) . 

t : l  

In the general case, the reduced likelihood seems less useful because it is not easy to 

solve (2.11). Thus, QLS and QML estimators have the same asymptotic accuracy but 

QLS estimators are generally simpler to implement. 

3. Application to seasonal or cyclic time series 

In this section we will check Assumptions A1-A8 for very simple examples. The first 

example is a conditionally homoscedastic PARMA model with two AR(1) regimes. In 

this very simple case, the LSE of the time-varying coefficients can be obtained from the 

LSE of a time-constant multivariate model. A condition for the asymptotic normality 

of the time-varying model LSE follows. This condition is that  the product of the AR 

coefficients over a period is less than unity in absolute value. This is the causality 

condition given by Vecchia (1985). We show that, in this particular case, Assumptions 

A1-A8 reduce to this condition. The second example is a conditionally heteroskedastic 

model with two MA(1) regimes. Cases where the regime switches at regular time intervals 

(i.e. the PARMA model case) or irregular time intervals (i.e. the cyclical model case) are 

considered. It will be seen that the QLS estimator may perform much better than the 

LSE. 

3.1 A seasonal t ime-varying AR(1) model 

Consider a daily time series x0, xl,  . . . .  Suppose that  time t -- 0 corresponds to 

Monday. We suspect different behaviors on weekends and on weekdays. Thus, we define 

two sets of indices corresponding to two regimes; A = (0, 1,2, 3, 4, 7, 8, 9 , . . .}  contains 

the indices corresponding to the weekday regime (Regime 1), and A c ---- {5, 6, 12, 13, . . .}  

contains the indices corresponding to the weekend regime (Regime 2). The regime cor- 

responding to index t is st - IIA (t) + 21IZXc (t). W~e have st ---- 1 when t - 7[t/7] < 4 and 
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st = 2 when t - 7 [ t / 7 ]  > 4 ([x] denoting the integer par t  of x). After some relevant trans- 

formations (for instance, subtract ion of the daily sample means),  consider the  following 

t ime-varying AR(1)  model  

(3.1) Xo -- ~1o, xt  -~ a t (O)x t -1  -f-/It, t = 1 , 2 , . . . ,  

where 0 = (a, 5) c ]~2, and at(O) = a l i A ( t ) +  5liAc(t) .  So, the dynamics  is tha t  of an 

AR(1),  with parameter  6 on Saturdays  and Sundays,  and parameter  a for the rest of the 

week�9 We do not  expect  this model  will be  plausible for numerous real t ime series. This 

is only an illustrative example chosen for its simplicity. Figure 1 displays a reahzat ion 

of length 100 of this model.  

The  LSE 0,~ = (6~, an) is explicitly given by 

(3.2) 6n = }-~{t:2<t_<n} X t X t - l K a ( t )  

Y~{t:2<t<_n} Xt2--11Ia (t) 

: ~'~{t:2<t<n} XtXt--lllAr (t) 

an = E{t:2<_t<_n} xt2-11Iac(t) " 

Because of the non stat ionari ty of the model, the direct s tudy  of this es t imator  is not 

obvious. Wi th  periodic coefficients, it is possible to embed seasons into a mult ivariate 

s ta t ionary process (see Tiao and Grupe  (1980)). More precisely, wt := ( x T t , X T t - 1 , . . . ,  

x7t-6)i=l,e .... is an AR(1) process of the form 

(3.3) ~ = 

/a0 0 

0 50 ". 

"- 5o 

ao 

x t - l +  

( [Tt  

s 

\ ~7t--6 

:= Aw, t-1 q- et. 

50 , 

40 

30 

20 

10 

-10 

-20 

-30 

-40 

110 b i 5 / i i i J 
20 30 40 0 60 70 80 90 100 

Fig. 1. A simulation of length 100 of Model (3.1) with a = 2 and 5 = 0. 
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Therefore, estimates (3.2) can be obtained by estimating the VAR(1) model (3.3) subject 

to linear constraints (coming from the special form of A). Neglecting the fact that  the 

initial distribution is not the invariant distribution (because of the initial value x0 = Yo), 

(xt) is stationary whenever I det A I -- 152a51 is strictly less than one. It is well known 

that  I det A I < 1 is a sufficient condition for the consistency and asymptotic normality of 

the LSE of A (in addition to standard assumptions such as the existence of fourth-order 

moments for the innovations). It is also well known that the LSE asymptotic distribution 

is not standard for unit-root models (see e.g. Dickey and Fuller (1979)) and for explosive 

models in which I det A I > 1 (see e.g. White (1958)). Although a formal proof appears 

quite challenging, it seems reasonable to conjecture that 

(3.4) 1~02a~l < 1 

is a necessary and sufficient condition for the LSE asymptotic distribution stated in 

Theorem 2.2 to hold. This condition is that the product of the AR coefficients over 

a period is less than unity in absolute value. This is the causality condition given by 

Vecehia (1985). 

Our aim in this section is therefore to see whether Assumptions A1-A8 reduce to 

(3.4) or not. Denote 80 = (a0,5o) the true value of the unknown parameter. When 

t corresponds to Monday, it is easy to see that (CA#, i = 1 ,2 , . . . )  -= (a0 - a, (a0 - 
a ) ~ o ,  - 2  - 2  - 2  2 - 2  5 ( a o - a ) a  0 , (ao-a)aoao,  (ao-a)aoao , .  �9 (ao - a ) a o a  0 , (ao-a)5]a~,  ( ao -a )a4a  5, ( a o -  
a )54a6 , . . . ,  (ao ~4 10 

- a)aoa o , . . . ) .  Assume that (3.4) holds. We have then 

t 

lira E r i 
t--~c~,t--7[t/7]=O i=1 

-4  2 - 4  4 -4  6 -4  8 - 4  10",]/ 
= (ao - a) 2 1 - -  7,4,.101 (1 + ho 2 + ~ + aoa o + aoa o + aoa o + aoa o + aoa o ) J 

,~0~0 

Similar results hold for the other weekdays. Using Cesaro sums, it is now easy to see 

that 
n t 

1 E E ~ 2  
It t,i 

t = l  /=1 

converges to a finite positive number. It is clear that  A1 holds since this number is strictly 

positive if and only if at(O) = at(Oo) for all t, which is equivalent to (a,~) = (ao,~o). 

Let 5 a small positive number such that  00 E O* = O~ := {8 = (a,5) : lah~[ _< p := 

(1 - 5) < 1, lal < 5 - ' ,  lal _< 5- -1}  �9 W e  have supt suP0~o ̀  I~bt#l _< 25-7p [i/rl. Therefore 

A2 holds with 

7(h) 8 5 - 2 s (  1 ) 2 = p2h/7. 
1 - p2/7 

Similarly it is easy to check A3. Assumption A4 is straightforwardly satisfied. On O~, 
(k) 5_7p[(i_1)/7] q/,(klk2)[O O0 ) let# I < Moreover, second and third order partial derivatives ~'t,i ~ , 

and ~t,iq/'(klk2k3){0~,, 80) are equal to zero. Therefore A5 is satisfied. Assumption A6 is 

straightforwardly satisfied. Tedious computations show that I = J is diagonal, with 

diagonal elements 

1 {5 + 5o ~ + 5~ + a~(4 + 5o 2 + 254) I ( 1 ,  1 )  - 7 ( 1  - .107,4~ 
~'0 t~0) 
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+ 4 (3  + ao + 4) + a o(2 + a0 + + ao (1 + a ]  + gaol)}, 

1 ~" (1 + 5o2)(1 - a~ 2) 10-2]  
I ( 2 , 2 ) -  7(1 - ~0~1~ [. ] - - -ao  ~ + 1 + a  o a o f .  

Assumptions A7 and A8 follow. We have verified that ,  as expected,  the assumptions 

of Theorem 2.2 are satisfied when (3.4) holds. Note  that ,  for this P A R ( l )  model, an 

alternative way to compute  I is to apply Theorem 3.1 in Lurid et al. (2001). 

A few comments  on the matr ix I are the following. It can be shown that  n I  is asymp- 

totically equivalent to the Fisher information matr ix  of the parameters .  Thus, nI(1,  1) 

and nI(2,  2) can be interpreted as the information that  a series of length n contains abou t  

ao and 50, respectively. Note  that  when 50 = ao, we obtain  I(2,  2) = 2/{7(1 - a02)} and 

/ (1 ,  1) = 5/{7(1 - ag)}. Recall that ,  for a t ime-constant  AR(1) realization of length 

n, the information abou t  the parameter  ao is n(1 - a~)) -1. Thus, when 5o = ao, the 

information abou t  the weekend and weekday parameters  is proport ional  to the weekends 

and weekdays frequencies. This result is not valid when 5o r ao. If, for instance, ao = 2 

and 50 = 0, then we have /(2,  2) = 1366/7. In this case the information given by the 

t ime-varying A R  series abou t  ~o is much more important  than that  given by the corre- 

sponding t ime-constant  A R  of same length (i.e. 2/7).  In other words, weekdays contain 

useful information abou t  the weekend behavior.  

3.2 A time-varying conditionally heteroskedastic MA(1) model 

Consider a t ime-varying MA(1) model  of the form (2.2) with two regimes: 

(3.5) Xo = aor/o, xt = atrh - bt(Oo)at-l~?L-a, t = 1 , 2 , . . . ,  

where the parameter  of interest 0 --- (b, l)), bt(0) = b~A(t) + t)]IA~ (t), the conditional 

variance at 2 = a2U~(t) + 521I~c(t) depends on the nuisance parameter  /3 = (a, 6-), A 

denotes a subset  of integers and A c denotes its complement.  An important  difference 

with Example (3.1) is tha t  it is not supposed that  the process switches at regular t ime 

intervals. It is impor tant  to relax this assumption when, for instance, one wants to take 

into account weekends, legal holidays and strike days. The  term at has been added to 

allow a different mean square error of prediction in the two regimes. We have, 

~Pt,o(O, 0o) = at, ~Pt,l(O, Oo) = {bt(O) - bt(Oo)}tTt_l, 

Ct,i(O, Oo) = bt(O).-"bt-i+2(O){bt-i+l(O) - bt- i+l(Oo)}at- i ,  2 < i < t. 

Assume that  the relative frequency of the first regime, n -1 y]tn__a IA(t) ,  converges to 

some number  7r E ]0, 1[, as n ~ cx~. Then A1 holds with qo = 1, since 

1 n 1 n 

- E  - n r > n bt(O) bt(Oo)}2min{a ,6- 
t = l  t = l  

min{ao 2, 6-~)}{;r(b- bo) 2 + (1 - 7r)(b - bo)2}. 

Now suppose that  

(3.6) f o r s o m e p e ] O , l [ , O o C O * : = O o = { ( b , b ) : m a x { t b l ,  lbl} <_p }. 

Then we have 

ICt,~(0, 0o)1 _< p i -12pmax{ao ,  60}. 
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Similar bounds hold for r (k~k2) '/'(k'k2ka)(0, 00)l. This entails t , i t  0o)1, ICt,i (0,0o)1 and ~t , i  

A2, A3 and Ah. Therefore Theorem 2.1 applies. 

To obtain the asymptotic distribution of the LSE, additional assumptions on A are 

required. Indeed, as we will see later, I depends on A not only through 7r. For instance, 

consider the case when { l b , ( t ) } t = o , 1  .... constitutes a realization of an i.i.d, sequence of 

Bernoulli distribution with parameter  ~r. We assume that  this sequence of Bernoulli 

random variables is independent of the noise (rh). In this case, A is referred to as a set 

of Bernoulli shifts with parameter  ~r. Applying the ergodic theorem to the stationary 

processes {bt (0o) �9 �9 b t - r + 2  (O0)IIA (t  -- r + 1 ) a t - r  }t>r, r >_ 2, s tandard computat ions show 

that  

I = 

J = 

~o~= + ~ ( 1  - =) 

1 - {b2n + bo2(1 - ~r)} 

x ( ~r(a~ -Dg(1 - ~-)(ao 2 - 5 8 ) }  

\ 0 

0 ) 
(1 - n){5 2 + b 2 r ( a  2 - 502)} ' 

cro27r+hg(1-~r) (~r 0 ) 

1 - - { - ~ o o ( i  --~r)} 0 1 -7r  ' 

and 

Z = 
og~ + ~8(1 - ~) 

( ( ~  - ~8(1 - ~)(o8 - ~8)} /~  
x 

0 

0 ) 
(~8  + b S ~ ( ~  - a 8 ) ) / ( 1  - ~)  ' 

for almost all observed sequences { I A ( t ) } t = 0 , 1  .... of shifts, provided b27r + b2(1 - lr) < 1. 
Similar calculations show that  the asymptotic variance of the QLS estimators is 

x ( "a-I {a~ - D~ --O';'r)(a~ -- 8"~ 0 ) 
(1 - . ) - ' { 8 . o  2 + b g . ( ~ o  2 - 8 . o 2 ) }  - 1  " 

According to the general theory, the QLS estimators outperform the ordinary least 

squares estimator (E - E C is always a semi-positive definite matrix). The efficient gain 

can be significant. If, for instance, 7r = 1/2, b0 = 0.7, bo = -0.7,  ao = 1 and 50 = 100 

then 

E =  (0"40999 0 ) and E a =  (0"0003 0 ) .  

1.5401 0 0.0008 

In order to show that  the distribution for the shifts is material for the LSE and 

QLS asymptotic distribution, consider the simple case when A = {0, 2, 4 , . . .} .  This set 

is referred to as a set of alternating shifts. In this case, we have ~r = 1/2 and, when 
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2-2 
bob o < 1, i (  -22-2-2 ) 

a o ( a  o + boao) 0 
I = 3 ( 1  - 2-2 2 - 2  2 2 ' 

- bobo) 0 a o ( a  o + boao) 

j _ _ l ( 5 0 2 ( l §  0 )  

2(1--b~ Cr02(1 + ' (3.7) o 

a~ + b~176 0 

+ bo) ~o E 2(1 2-2 (1 -2 2-2 
= - b~176 5~ + b~)a~) " 

0 (1 2 2  2 
+ bo) ~o 

The above E is not the same as when the shifts are independent Bernoulli variables, 

although lr takes the same value 1/2. The same remark can be made for the asymptotic 

variance of the QLS estimator, which is now 

E G 2(1 2-2 - -2 2 
= _ bobo ) (r~) + boa o 520 . 

o + bg5g 

Once again, the QLS estimators outperform the LSE. If, for instance, bo = 0.7, bo = 

-0.7,  a0 = 1 and 50 -- 100 then 

 =(0.3355 0 ) 
0 6845.9730 

0 

4. Numerical illustration 

In this section, the previous asymptotic results are illustrated by means of sim- 

ple Monte Carlo simulation experiments. We consider the time-varying MA(1) model 

introduced in Subsection 3.2: 

(4.1) X0 ---- (70//0, X t  = 6 r t / / t  - -  b t ( O ) ( : r t - 1 / / t - 1 ,  t = 1, 2 , . . . ,  

where bt(O) = blIa( t )  + bl[ac(t) ,  a 2 = a2HA( t )  + 52KAc( t ) ,  (//t) i.i.d. Af(0, 1), and A 

is a given subset of integers. In a first set of experiments, displayed in Tables 1-2, A 

constitutes a set of Bernoulli shifts with parameter ~r = 1/2, as described in Subsection 

3.2. The sequence of Bernoulli random variables was generated independently of the noise 

(//t). In a second set of experiments, displayed in Tables 3-4, we take the set of alternating 

shifts A = {0,2 ,4 , . . .} .  For these two set of experiments, five hundred independent 

trajectories of size n of model (4.1) have been simulated. For each trajectory, b and b 

have been estimated by LS and QLS estimators. In the algorithm presented in Section 2, 

Steps 2 and 3 have been repeated until the QLS estimator stabilizes (two repetitions are 

generally sufficient). The nuisance parameters a and 5 have been estimated in the 

same way, but the results are not reported here for reasons of space. Replacing the 

unknown parameters b and b by their LS estimates Dn and b~, we obtain an estimate 

of the LSE asymptotic covariance matrix E defined in Subsection 3.2. We denote 

by Vara~(D,~) 1/2 := n-1/2E(1, 1) 1/2 the estimate of the standard deviation of Dn. In 

order to demonstrate that this estimate, although based on the asymptotic theory, can 
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T a b l e  1. LS  a n d  Q L S  e s t i m a t e s  of  t h e  p a r a m e t e r s  of  M o d e l  (4 .1)  in  c a s e  of  B e r n o u l l i  s h i f t s  

w i t h  p a r a m e t e r  7r = 1 / 2 .  

S t a t i s t i c  

P a r a m e t e r  M e t h o d  n = 100 n = 250 n ---- 500 

M E A N  R M S E  R M S E *  M E A N  R M S E  R M S E *  M E A N  R M S E  R M S E *  

Des ign  1: b = 0.75, t) = 0.25, a = 1, 5 = 10. 

b LS 0.7475 0.0415 0 .0377 0.7483 0.0231 0.0219 0.7496 0.0156 0.0152 

QLS 0.7493 0.0183 0.0165 0.7494 0.0114 0.0105 0.7496 0.0079 0.0075 

LS 0.2634 0.1664 0.1383 0.2515 0.0916 0.0884 0.2509 0.0636 0.0626 

QLS 0.2509 0.0352 0.0303 0.2515 0.0188 0.0194 0.2506 0.0140 0 .0137 

Des ign  2: b ---- 1.2, t) = 0.0, a = 1, 5 = 1. 

b LS 1.2139 0.0995 0.0675 1.2051 0.0568 0.0460 1.2038 0.0340 0.0329 

QLS 1.2138 0.0995 0.0675 1.2051 0.0569 0.0460 1.2038 0 .0340 0.0329 

LS 0.0051 0.0938 0.0681 0.0028 0.0514 0.0461 0.0018 0.0336 0.0329 

QLS 0.0062 0.0936 0.0674 0.0028 0.0516 0.0459 0 .0017 0.0336 0.0329 

Des ign  3: b = - 0 . 5 ,  b = - 0 . 5 ,  a = 1, & = 2. 

b LS - 0 . 5 0 8 4  0.0978 0.0903 - 0 . 5 0 4 6  0.0548 0.0574 - 0 . 5 0 2 1  0 .0404 0.0406 

QLS - 0 . 5 1 2 0  0.0885 0.0799 - 0 . 5 0 6 9  0.0496 0.0511 - 0 . 5 0 3 9  0.0365 0.0362 

LS - 0 . 5 1 2 8  0.1675 0.1433 - 0 . 5 0 4 0  0 .0973 0.0923 - 0 . 5 0 4 4  0 .0667 0.0656 

QLS  - 0 . 5 0 3 5  0.1521 0.1278 - 0 . 5 0 1 8  0.0889 0.0824 - 0 . 5 0 4 9  0 .0587 0.0586 

M E A N  c o r r e s p o n d s  t o  t h e  m e a n  of  500  e s t i m a t e s  o b t a i n e d  f r o m  500  i n d e p e n d e n t  r e a l i z a t i o n s  o f  t h e  

m o d e l  

R M S E  c o r r e s p o n d s  t o  t h e  r o o t  m e a n  s q u a r e d  e r r o r  o f  e s t i m a t i o n  o v e r  t h e  500  r e p l i c a t i o n s  

R M S E *  c o r r e s p o n d s  t o  t h e  m e a n  o f  e s t i m a t e s  of  t h e  R M S E  ( b a s e d  o n  t h e  a s y m p t o t i c  t h e o r y )  

be successfully applied to finite samples of reasonable size, the mean o f  Varas(bn) 1/2 
over the 500 replications, denoted by RMSE*, has been compared to the root of the 

mean of ( b -  bn) 2 over the 500 replications, denoted by RMSE. Similar comparisons 

are made for the other estimators. Now, let us consider the hypothesis H0 (1) : b = 0, 

H0(2) : D = 0 and//o(3): b -- b. With the LSE, H0 (1) (respectively H0 (2)) is rejected when, 

in absolute value,/~n (respectively bn) is greater than 1.96 times its estimated standard 

deviation Varas(bn) 1/2 (respectively Varas(~,~)l/2). If the asymptotic theory applies for 

such sample sizes then the error of first kind should be approximately 5%. A Wild-type 

test is used for H0 (3). More precisely, Ho (3) is rejected whenn([~n-~n)2(E(1, 1)+E(2, 2)) -1 

is greater than the 95%-quantile of the X12 distribution. The same tests were run with 

the QLS estimator. 

The results reported in Tables 1-2 are in accordance with the asymptotic theory. 

The QLS estimator clearly outperforms the LSE when a ~ 5 (i.e. in Designs 1 and 3). 

For the first and third parameter values, (b, b, ~, 5) = (0.75, 0.25, 1, 10) and (b, b, a, 5) = 

( -0 .5 , -0 .5 ,  1,2), Table 1 shows that the RMSE's are smaller for the QLS estimator, 

and Table 2 shows that the tests based on the QLS estimator are more powerful that  

those based on the LSE. For the second parameter value, (b, b, a, 5) -- (1.2, 0, 1, 1), LS 

and QLS estimators have very similar behaviors. This is not surprising because when 

a = 5 they should have the same asymptotic behavior. Note however that, for H (3) with 

the third parameter value and for H0 (2) with the second parameter value, the rejection 

relative frequencies of both tests are significantly greater than the theoretical 5% for 

small sample sizes (for a theoretical 5% size, the empirical size on 500 independent 
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Table 2. Relative frequency of rejection of 5% level tests for Model (4.1) in case of Bernoulli 

shifts with parameter lr = 1/2. 

Null hypothesis True/False Method n = 100 n -- 250 n = 500 

Design 1: b = 0.75, /~ = 0.25, a = 1, 5 = 10. 

Ho (1) : b = 0 False LS 100.0% 100.0% 100.0% 

QLS 100.0% 100.0% 100.0% 

H(2) : ~ = 0 False LS 49.4% 79.8% 97.8% 

QLS 100.0% 100.0% 100.0% 

H (3) : b = b False LS 90.4% 90.4% 97.8% 

QLS 100.0% 100.0% 100.0% 

Design 2: b = 1.2, b = 0.0, a = 1, 5r = 1. 

Ho (D : b = 0 False LS 100.0% 100.0% 100.0% 

QLS 100.0% 100.0% 100.0% 

H0 (2) : b = 0 True LS 17.6% 9.6% 5.8% 

QLS 17.4% 9.4% 5.8% 

Ho (3) : b = b False LS 100.0% 100.0% 100.0% 

QLS 100.0% 100.0% 100.0% 

Design 3: b = -0.5,  b = -0.5,  a = 1, 5 = 2. 

/(1) : b = 0 False LS 100.0% 100.0% 100.0% 

QLS 100.0% 100.0% 100.0% 

H (2) : b = 0 False LS 90.2% 100.0% 100.0% 

QLS 95.2% 100.0% 100.0% 

H (3) : b = b True LS 7.2% 6.2% 5.2% 

QLS 8.6% 5.2% 5.4% 
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s a m p l e s  is b e t w e e n  3% a n d  7% w i t h  p r o b a b i l i t y  0.95) .  T h i s  is d u e  to  t h e  fac t  t h a t  t h e  

s t a n d a r d  d e v i a t i o n  o f  t h e  e s t i m a t o r s  a r e  s l i g h t l y  u n d e r e s t i m a t e d  b y  t h e  V a r a s ( - ) l / 2 ' s .  

T h e  r e su l t s  r e p o r t e d  in  T a b l e s  3 - 4  a lso  p o i n t  o u t  t h e  s u p e r i o r i t y  of  t h e  Q L S  e s t i m a t o r  

over  t h e  L S E ,  for f in i te  s a m p l e s .  T h e  p a r a m e t e r  e s t i m a t i o n  for a l t e r n a t i n g  sh i f t s  s e e m s  

however  m u c h  m o r e  d i f f icul t  t h a n  for B e r n o u l l i  sh i f t s .  T h i s  was  to  b e  e x p e c t e d  b e c a u s e ,  

for t h e  t h r e e  p a r a m e t e r  va lues ,  t h e  a s y m p t o t i c  c o v a r i a n c e  m a t r i c e s  of  t h e  e s t i m a t o r s  a r e  

g r e a t e r  for t h e  a l t e r n a t i n g  sh i f t s  t h a n  for  t h e  B e r n o u l l i  sh i f t s .  E v e n  for l a rge  s a m p l e s ,  

t h e  in fe rence  m a d e  f rom t h e  a s y m p t o t i c  t h e o r y  is n o t  c o m p l e t e l y  s a t i s f a c to ry .  I t  c a n  b e  

seen  in T a b l e  4 t h a t ,  in  D e s i g n  1, t h e  r e j e c t i o n  r e l a t i v e  f r e q u e n c y  of  H (2) is on ly  47 .8% 

for n = 5000 w i t h  t h e  L S E .  In  D e s i g n  2, t h e  r e j e c t i o n  r e l a t i v e  f requenc ies  of  H (2) w i t h  

b o t h  e s t i m a t o r s  a r e  fa r  f r o m  t h e  t h e o r e t i c a l  5%, even  for n = 500. M o r e  su rp r i s i ng ly ,  

s eve ra l  r e su l t s  w o r s e n  w h e n  t h e  s a m p l e  size inc reases .  In  D e s i g n  1, w i t h  t h e  L S E  t h e  

r e j e c t i o n  r e l a t i v e  f r e q u e n c y  o f  H (2) d e c r e a s e s  w h e n  n i nc r ea se s  f r o m  n --- 100 t o  n = 500. 

In  Des ign  2, w i t h  b o t h  e s t i m a t o r s  t h e  r e j e c t i o n  r e l a t i v e  f r e q u e n c y  o f  H (2) d e t e r i o r a t e s  

w h e n  n i nc reases  f rom n = 250 to  n = 500. T h i s  is d u e  to  t h e  fact  t h a t  t h e  s t a n d a r d  

d e v i a t i o n  of  t h e  e s t i m a t o r s  a r e  n o t  wel l  e s t i m a t e d  b y  t h e  Vara~ ( - ) l / 2 ' s ,  even  for  l a rge  

s ample s .  To solve  t h e  p r o b l e m ,  a l t e r n a t i v e  e s t i m a t o r s  of  E a n d  E c ,  such  as  b o o t s t r a p  
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T a b l e  3. L S  a n d  Q L S  e s t i m a t e s  of  t h e  p a r a m e t e r s  of  M o d e l  (4 .1)  in  c a s e  o f  a l t e r n a t i n g  s h i f t s .  

Stat is t ic  

P a r a m e t e r  M e t h o d  n = 100 n = 500 n ---- 5000 

M E A N  R M S E  R M S E *  M E A N  R M S E  R M S E *  M E A N  R M S E  R M S E *  

D e s i g n  1: b ---- 0.75, b = 0.25, a = 1, 5~ = 10. 

b LS 0.7656 0 .0606 0.0416 0.7514 0.0222 0.0184 0 .7500 0.0052 0.0048 

QLS  0.7504 0.0148 0.0137 0.7498 0.0058 0.0062 0.7499 0.0019 0 .0020 

LS 0.2738 0.7103 0.5548 0.2324 0.4194 0.3530 0.2433 0 .1263 0.1251 

QLS 0.2740 0 .2283 0 .1797 0.2550 0.0865 0.0819 0.2500 0.0255 0 .0260 

Des ign  2: b = 1.2, b = 0.0, a = 1, ~ ---- 1. 

b LS 1.2081 0.1478 0.1415 1.1997 0.0584 0.0632 1.1994 0.0196 0.0199 

QLS 1.2083 0.1486 0.1415 1.1997 0.0589 0.0632 1.1994 0 .0197 0.0199 

t) L S  0.0076 0 .1064 0.0903 - 0 . 0 0 0 2  0.0427 0.0405 - 0 . 0 0 0 8  0 .0126 0 .0128 

QLS  0.0062 0 .1082 0.0892 - 0 . 0 0 0 2  0.0428 0.0405 - 0 . 0 0 0 8  0.0126 0.0128 

D e s i g n  3: b ---- - 0 . 5 ,  ~) = - 0 . 5 ,  a = 1, 5~ = 2. 

b LS - 0 . 5 1 0 2  0 .0844 0 .0767 - 0 . 5 0 2 8  0.0335 0.0346 - 0 . 5 0 0 5  0.0109 0.0109 

QLS - 0 . 5 0 7 5  0.0708 0.0663 - 0 . 5 0 2 8  0.0281 0.0296 - 0 . 5 0 0 6  0.0093 0.0094 

~) LS - 0 . 5 1 1 8  0 .2350 0.2182 - 0 . 5 1 0 7  0.0972 0.1004 - 0 . 5 0 3 6  0.0322 0.0320 

QLS - 0 . 5 1 8 9  0.2061 0.1898 - 0 . 5 0 9 3  0.0858 0.0862 - 0 . 5 0 2 3  0 .0270 0.0274 

M E A N  c o r r e s p o n d s  t o  t h e  m e a n  o f  500  e s t i m a t e s  o b t a i n e d  f r o m  500  i n d e p e n d e n t  r e a l i z a t i o n s  o f  t h e  

m o d e l  

R M S E  c o r r e s p o n d s  t o  t h e  r o o t  m e a n  s q u a r e d  e r r o r  o f  e s t i m a t i o n  o v e r  t h e  5 0 0  r e p l i c a t i o n s  

R M S E *  c o r r e s p o n d s  t o  t h e  m e a n  o f  e s t i m a t e s  of  t h e  R M S E  ( b a s e d  o n  t h e  a s y m p t o t i c  t h e o r y )  

estimators, could be investigated. This is left for future research. 

5. Lemmas and proofs 

First we give some remarks about Assumptions A1-A8. It is easy to show that  A3 

is stronger than A2. The latter is given because it is sufficient for intermediate results 

given below. For O = 00 we have Ct,i -- 0, Vi > 1. Therefore A1 can be interpreted as an 

identifiability assumption. Assumption A3 holds for instance when, for each O and 80, 

Ct#(O, 00) tends to zero at an exponential rate uniformly in t, as i ---* c~. Assumption 

A5 holds when the convergence of the previous sequence and of lr holds 
t t , i  

uniformly in O. Since Ct,0 = at, A5 implies that {at}t is bounded. Lemma 5.1 below 

shows that  A8 holds when 

(5.1) 3r0: Vr > r0, rJ :~- lira n -1 f i  fi~/,(')J,(')' 
- -  n - - * o o  "t~ t , i  W t , i  

t = l  i = 1  

exists and is a strictly positive definite matrix. Since for all A E ]~d  and r > r0, 

n ?~ 

A'TJA = A'roJA + l i m n  -1 ~ ~ x'~t,(')~/,(')'% > A'roJA ' 
n - - * o o  "" w t , i  w t , i  ~" - -  

t = l  i - - - - r o T 1  

it suffices to check the strict positive-definiteness of ro J. 

Now we give proofs of the Section 2 results. In the rest of this section, the letter K 

will be used to denote positive constants whose values are unimportant and may vary. 

The proofs are broken up into a series of lemmas. 
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Table 4. Relative frequency of rejection of 5% level tests  for Model (4.1) in case of a l ternat ing shifts. 

Null hypothesis True/False Method n = 100 n = 250 n -- 500 n -- 5000 

Design 1: b = 0.75, D = 0.25, a = 1, ~ = 10. 

H(1) : b = 0 False LS 100.0% 100.0% 100.0% 100.0% 

QLS 100.0% 100.0% 100.0% 100.0% 

H (2) : [)= 0 False LS 32.8% 24.8% 19.8% 47.8% 

QLS 33.6% 57.6% 86.0% 100.0% 

Ho (3) : b = D False LS 25.0% 24.8% 19.8% 47.8% 

QLS 74.4% 57.6% 86.0% 100.0% 

Design 2: b = 1.2, b = 0.0, a = 1, 5 = 1. 

Ho (1) : b = 0 False LS 100.0% 100.0% 100.0% 100.0% 

QLS 100.0% 100.0% 100.0% 100.0% 

H (2) : [) = 0 True LS 11.0% 6.8% 7.4% 4.6% 

QLS 11.4% 6.8% 7.6% 4.6% 

H0 (3) : b = b False LS 100.0% 100.0% 100.0% 100.0% 

QLS 100.0% 100.0% 100.0% 100.0% 

Design 3: b = -0 .5 ,  b = -0 .5 ,  a = 1, fi- = 2. 

H (1) : b = 0 False LS 100.0% 100.0% 100.0% 100.0% 

QLS 100.0% 100.0% 100.0% 100.0% 

H (2) : [) = 0 False LS 62.4% 96.4% 99.6% 100.0% 

QLS 75.8% 99.2% 100.0% 100.0% 

H (3) : b =/~ True LS 8,4% 3.8% 5.2% 5.6% 

QLS 8.4% 4.8% 5.4% 5.6% 

LEMMA 5.1. U n d e r  A5, (5.1) enta i l s  A8. U n d e r  A5-A8, the  m a t r i x  

V ' r 1 6 2  = lim ~I I =  lim n -1  a2s  t,i t,i 
n - - ~  ( x )  T ---~ O O  

t = l  i=1 

exis ts  a n d  is s t r i c t l y  pos i t i ve  def in i te .  

n v" ~/,(L/,(')' r Jn  n _ l  n r ,/,('),/,(')' PROOF. Let Jn  = n - 1  ~-]t=l ~i=1 and A-~i> l ~ t , i  Wt , i  ~ -~ E t = l  Wt,i  Wt , i  

r J~  = J ~ - r J n .  Assumption A5 implies tha t  supn IfJ~l[ -~ 0 as r -* c~. Therefore, ( rg)r  

is a Cauchy sequence which converges to some limit Joo. For every e > 0, there exists a 

sufficiently large integer r = r(c) > r0 such tha t  [ l ~ g - J ~ l l  < e/3 and supn H r J n -  Jnll < 

C/3. For n large enough, 

[[.In - Joo[[ _< [['In - rJn[[ + [[rJn -- rJ[[ + I[~J - Joo[] < e. 

Since e is chosen arbitrarily, limn~oo [[Jn - J ~  [] -- 0. The existence of I is shown by the 

same arguments.  Since A'JA _> (suPt at2)-xA'IA and A'IA _> (inft a,2)A'JA, under  A5 and 

A6, I is invertible if and only if J is invertible. [] 
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LEMMA 5.2. Let 

Zt = Zt(O, 0o) = E ~)t'i~)t'jZ]t-il]t-J" 
l<_iCj<t 

There exists a constant K = K(O, 0o) > 0 such that, under A2, 

(5.2) E Zt <_K 

t = l  Tt 

and, under A3, 

(5.3) E Zt <_ - ~  

t= l  

PROOF. From A2, we have 

]EZtZt+lhll = l<_hCj~l~i~r Ct,il Ct,jl Ct+lhl,i2 ~bt+ Ihl,J2 ETh-il ~t-j~ r/t+lh I-i2 rh+lhl-.h 

= 2 l<i~r _ <_ 2"y(Ihl)- 

Therefore,  from A2, 

1 2 
E - Zt <- - ~  E ( n - I h l ) ~ ( l h [ )  = O ( n - 1 ) .  

n t = l  Ih l<n 

Thus  (5.2) holds. Similarly, for tl  ~ t2 _< t3 <_ t4, we have 

z f l  4 
O) k=l k=~ 

w h e r e  2 (1 )  denotes  the sum over the  indices i k , j k  satisfying 1 _< ik 7 t jk  <-- tk, k = 

1 ,2 ,3 ,4 .  Most  of the expectat ions  in this sum are equal to zero. Indeed, if one index 

tk -- ik or tk -- Jk is different from all the others,  the summand  vanishes. This  is also the 

case when three  indices coincide and are different f rom all the others. The  expecta t ion  

in the summand  is equal to m 2 when ik : tk -- tl -t- il and jk  : tk -- tl -{- j l ,  k = 2, 3, 4 

(and in 2 3 other  si tuations obta ined by permut ing  some ik and jk).  Let  Y~K2) the sum 
4 4 

of the 1-]k=l Ctk,ikCtk,jkEl-Ik=l rh~-ikrhk-Jk 's over all these indices. From A3, we have 

l<i17~jl <_tl 

4 

H ~bt~,tk--tl+ilr 

k = l  

<_ K~/ ( max  ltk - t l l )  . 
\k=2,a,4 

The  expecta t ion  also equals m4 when tl  - il  = t2 - i2 = t3 - i3 = t4 - j4 r t l  - j l  = 

t2 - j2 r t3 - j3 = t4 - i4, and in a finite number  of similar situations. Let  :~'~(3) the 



E S T I M A T I N G  T I M E - D E P E N D E N T  L I N E A R  M O D E L S  59 

sum over all these indices. From A3, we have 

~(3) - K i n 4  E ICtl'il~)tl'jlff3t2't2--tlq-ilff2t2't2--tlq-jl 
1_<il , j l  ,j3 

" ~)t3,t3-tl+il ~2t3,ja~)ta,ta--t3q-j3r I 

- \ t k = 2 , a , 4  

The last s i tuat ion is when the expectat ion is equal to 1. This is for instance the case 

when the four indices t l  - i l  = t2 - j 2 ,  t l  - - j l  : t 2 -  i2 ,  t 3 -  i3 = t 4 -  i4, t 3 -  j3 = t 4 -  j4 

are different. Let  ~-~(4) the sum over all these indices. From A3, we have 

(4~) -< 
K ~ [r162 

1~ i l  , j l  ,i3,j3 

" r  #3 ~)t3 ,j3 ~2t4,t4 - t 3  +i3 ~)ta,ta--t3+j3 I 
_< "~(max{It2 - t l l ,  Ira - t31}). 

Since 7(') decreases, we have shown that ,  for tl  _< t2 _< t3 _< t4, 

(5.4) [EZt~Zt2Zt~Zt4[ < KT(max{[t2 - tl[, It4 - t3[}). 

Now we have 

,~ 4 4! 

(5.5) E 1 ~  Zt <_ n- ~ E [EZtlZt2ZtaZt4[ 

l ~tl <t2 ~t3 ~t4 <_n 

4! 4 ~ ( j ) , n  

j = 2  

where ~--~(j),n denotes the sum over the subscripts tl,t2,tz,ta satisfying 1 < t l  < t2 < 

t3 _< t4 < n and max2<k<a{tk -- tk-1} ---- tj -- tj-1. For fixed j and k, the number  of 

indices 1 < t l  < t~ < t3 < t4 < n satisfying max2<t<4{te - te-1} = tj - tj-1 = k is less 

than  nk 2. Therefore, from (5.4), 

n--1 co 

E E (j)'nlEzt'zt2zt3zt41 < K E nk2"y(k) < gn2 E k"/(k), 
j = 2 , 4  k=O k=O 

and 
n--1 k i oo 

[E Ztl Zt2 Zta Zt4 [ 
k=0 i=0  j=O k=O 

which, in view of A3 and (5.5), entails (5.3). [] 

LEMMA 5.3. Let 

l < i < t  
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There exists a constant K > 0 such that, under A2, 

(5.6) E Z _<K 
n 

and, under A3, 

(5.7) E 1 , K 
- Z t < n 2 
n t = l  

PROOF. Let ~n the a-field generated by {~?0,.-.,~n}- From (2.1) and (2.4), 

this is also the a-field generated by {x0 , . . . , x~} .  Therefore EZ~Z~+Ih I = 

E~h+lhlE~-].l<i<t+lhl(Trt+lhl,i(O)- ~rt+lhl,i(~o))Xt+lhl_iZ ~ = 0 when h ~ 0. Since 

~ti= 1 (7~t#(O) - 7~t,i(Oo))x+-+ = ~ti= 1 ~t,i~?t-i, using A2 with h = 0, we obtain E(Z~ 2) = 

~-~=1 r -~ v / ~ )  �9 Arguing as in Lemma 5.2, we deduce (5.6). Similarly, we obtain 

(5.7) by the arguments used to show (5.3). [] 

LEMMA 5.4. Assume A2. For any positive integer q, let 

w(q) E 2 2 = ~ + , i ( ~ t - i  - 1). 

Then almost surely, 
n 

1 

n 
t = l  

a s  I t  ---~ o o .  

PROOF. Assumption A2 implies that ,  for any fixed i, supt r < K. Thus 

E t - 2  2 2 Var{r i - 1)} < oc. 
t~>l 

Therefore the strong law of large numbers for independent random variables entails, 

i n 

--E 2 2 n Ct,iO?t-i - 1) -~ 0 
t----1 

a.s. as n -~ oe. 

The conclusion follows. [] 

LEMMA 5.5. Under Assumptions A1 and A3, for  all 0 E O*, almost surely, 

l iminf  Qn(O) > l iminf  Q~(0o) and t imsupQn(0)  > l imsupQn(Oo), 
n n ~ n 

with equalities i f  and only i f  O = 80. 

PROOF. We have 

t t 

e + ( e )  = + - = + 

i = 1  i = 1  
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Thus 

(5.8) 

+ - ( ~ # ( o )  - ~ , ~ ( O o ) ) x ~ _ ,  ~ .  
Tt t = l  

Using Lemma 5.3, the Markov inequality and the Borel-Cantelli lemma, 

(5.9) - -  7rt , i (O)  - -  7 r t , i ( O o ) ) x t - i  ~]t ~ 0 almost surely as n --* c ~ .  

i t  t = l  

Note also that A3 entails that suPt at = sup t Ct,0 < oo. Therefore, from (5.8) and (5.9), 

for all 0 E O*, 

liminf Qn(O) >_ liminf Qn(Oo) and limsupQ.(O) _> limsupQn(Oo). 
n n n n 

We have 

(5.10) n l ~ / ~ - ~  }2 n ~ E 
_ _  ~)t , i l l t_ i  = _1 ~ ) t , i ~ ) t , j ~ l t _ i ? l t _ j  

t = l  k i = 1  t = l  l < i T ~ j ~ t  

n t 
1 2 2 

n 
t = l  i = 1  

Using (5.3) in Lemma 5.2, the Markov inequality and the Borel-Cantelli lemma, 

n 

(5.11) 1 E E 
n 

t = l  l ~ i ~ j ~ _ t  

Ct , i~) t , j~ t - - i~ t - - j  ~ 0 almost surely as n --* oo. 

By A1 and Lemma 5.4, almost surely, for n large enough, 

(5.12) 
1 n t qo 

t , i?] t_ i  ~__ - -  t , i?] t_ i  
n n 

t = l  i = l  t = l  i=1  

11 n qo --EE  
>- 2n  t , i -  

t = l  i = 1  

when 0 ~ 0o. 

The conclusion follows from (5.8), (5.9), (5.10), (5.11) and (5.12). [] 

LEMMA 5.6. Under A4 and A5, 

n 

l imsupn -1 ~ sup I~,(0)l ~oe,(e) < oo 
n---* c~ ~ OEO* 

a .8 .  
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PROOF. From A5, the Cauchy-Schwarz inequality and the strong law of large num- 

bers, almost surely, 

l i m s u p n - 1 E  sup le~(8)l e,(8) 
n--*or t--=l 0EO* 

n t t 

-< K l i m s u p n - I  ~ E E X[iX[Jl?~t-iT]t--Jl 
n--*oo t = l  i = 0  j = 0  

OO OO n 

< K lim sup E Z ~'i~'j n -1 ~ 7/2 < co. [ ]  
n--~oo i = 0  j = 0  t = 0  

PROOF OF THEOREM 2.1. Because the 0,'s belong to the compact set @*, almost 

surely, there exists a subsequence (~}nk) of (/},) which converges to some limit 800. Since 

Qnk(') is minimum at (/}nk), almost surely, 

(5.13) Qn,c(On,,) _< Qn,~(8o), Vk. 

Using a Taylor expansion and Lemma 5.6, we obtain 

(5.14) IQn~(o~) - Q~(8oo)l < 2 1 1 ~ n  ~ - -  Sex, link 1 ~ s u p  le,(8)l et(8) 
t----1 0EO* 

--* 0 a.s. 

as k -~ co. From (5.13) and (5.14), we obtain 

liminf Qnk (8oo) _< liminfQnk(8o) and limsupQnk (8oo) _< limsup Qnk (80). 
k--*oo k--*c~ k--*oo k--*oo 

Lemma 5.5 still holds when (n)n_>l is replaced by the increasing subsequence (nk)k>_l. 
This entails that 8oo = 80. Since all the subsequences which converge have the same 

limit 00, the sequence (~n) converges almost surely to 80. [] 

LEMMA 5.7. Under the assumptions of Theorem 2.1 and Assumptions A6-A7, the 
random vector nl/2(O/aS)Qn(8o) has a limiting normal distribution with mean 0 and 
covariance matrix 4I. 

PROOF. The random vectors 

(.) 
ni/2-~Qn(OO) = 2n-i/2 ~ at~t E ~bt,i~t_i, 

t = l  i > l  

are centered. For any positive integer r > r0, where r0 is defined in A7, define the 
following truncated variables 

r 

(.) O 
rut = rut = e (00)- ru, .  

i=l 

We have nl/2(O/OO)Qn(8O) = n -1/2 y~tn=_l rUt + n -1/2 Y~tn=l rut. The sequence (rUt)t 

is r-dependent, but not identically distributed. Therefore, the standard central limit 
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theorems do not directly apply. We will combine the arguments used to prove the central 

limit theorem for stationary r-dependent sequences with those used to prove the central 

limit theorem for sequences of independent but not necessarily identically distributed 

random variables. For n > 2r, each A = (A1,... ,Ad)' ~ 0 E R d and each integer kn in 

]2r, n[, we have n - V 2  ~ = 1  A'rUt = Sn + Rn, where 

Sn = n-1/2At[(rU1 + " "  + rUk,~-r) + (rUkn+l "~- " " -{- rY2k,~-r) 

-~- . . .  + ( r U ( [ n / k , , ] - l ) k , + i  - [ - ' ' " - } - r U [ n / k n ] k n - r ) ] ,  

R .  = n-~/2~'[(~G _~+~ + . . .  + ~Uk.) + 6U2k.- .+~ + " "  + ~U2k.) 

+ " "  + 6Vl- /k . lko- .+l  + + ~UI./k.lk.) + (.gI./k~Ik. + " "  + ~U.)]. 

From A5, 

t 
i=l j:l 

where K does not depend on t. Using the independence of the first [n/kn] summands 

into brackets in the expression of Rn, we have 

n_ l /2  . ~ n  ] 
HR~H2 -< V LKJ rK + n-'/2k"K 

Choose k ,  such that kn --~ oo and n-1 /2kn  -~ 0 as n --* oa. Then Rn tends to zero 

in mean square, which implies that n -1/2 y~tn=l A'rUt and Sn have the same asymptotic 

2 VarS~ distribution (when existing). By Assumption A7, this also entails that s n := --~ 

4M~IA > 0. We have Sn -= y~[n=/k,] Xn,t ,  where Xn,t  = n-U2M(~U(t-1)k, ,+l  + " "  + 

rUtk,-r) .  By previous arguments, IIA'~UtII4 _< K < c~, where K does not depend on t. 

Therefore E(Xan,t) < n-2{(k,~ - r ) K }  4. For each n, the random variables X n j ,  X n , 2 , . . .  

are independent. Moreover, 

["/k'l G - -  [~/k~] -~'k - 
E(X L)  < n r) K o 

t = l  8~ S n 

as n -~ oo, provided kn is chosen such that n-1 /3kn  --~ O. By the Lyapounov central 

limit theorem (see e.g. Billingsley (1995), p. 362) and the Cramer-Wold device (see e.g. 

Brockwell and Davis (1991), p. 204), n -1/2 ~t~=l rUt converges in law to the centered 

normal distribution with variance 4TI. 

From A5, 

lira supVar n -W2 n r E'U, = lim sup n-' t#~',,, r 
t ----~ oo 

n t = l  ) r - -*o~ n t = l  1 J 
oo 

_< sup. )i% E 
t 

i = r + l  

The conclusion comes from Lemma 5.1 and a standard argument (see e.g. Brockwell and 

Davis ((1991), Proposition 6.3.9)). [] 
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LEMMA 5.8. Under Assumptions A4, A5 and A8, 

02 
O000;Q~(Oo) --, 2J 

in probability as n --~ o0. 

PROOF. For k, k' E {1 , . . . , d} ,  we have 

02 2 ~ 0 0 2 n 02 

O0(k)OO(kt ) Qn (0o) = n t=l 0--~(k)et (0o)O~(~t)et(Oo) q- -n Et=l et(Oo) O0(k)OO(kt ) et(Oo). 

The random variables et(Oo){O2et(Oo)/OO(k)OO(k')}, t = 1, 2 , . . .  are centred and uncor- 

related. Moreover, in view of A5, 

O( ~ )} supVarn et(O~ k)OO(k') et(O~ <oo. 

n 

T h e r e f o r e  n - 1  2 t = l  et(Oo){O2et(Oo)/OO(k)OO(kt)} converges in mean square to zero. In 

order to lighten the notations, write ~/,(k) instead ~c .~.(k)(00, 00). We have wt,i oJ. Wt,i 

O@(k) 
0 E ~,(Oo) oo--g~,(Oo) = ~ r . , ,  

i_>l 

and 

Coy / 0 0 0 0 0 0 o--~(k)~(O)oo--b~dOo), o-~(k) e,+f~,(Oo)oo--~,+~h,( o)} 
_ ~ r r162 r 
- -  t,Q t,jl t+lhhi2 t+lhl,j2 Cov(~ t -Q ~ t - j l  ,rh+lhl-i2rh+lhl-j2 ) 

ix ,jl ,i2 ,J2 >_ 1 

X T M  ,/,(k) ~/,(k'),/,(k) ~/,(k') 
Z.., wt,il ~t , j l  wt+lhl,il+lhlWt+lhl,jl+lhl 

i lr  

, vt+lh[,il+lhl 
i1r 

~/)(k) d,(k')d,(k) d,(k') 
-~ E t,il Wt,il Wt+lhl,i,+lhWt+lhhi~+lhl(m4 -- 1). 

Q>_I 

Therefore, in view of A5, 

n--1 
2 

h=-n§  i1>1 jl_>l 

n - 1  
1 

+n-~ E (n-lhl) E - 2 - 2  7i17il+lhllm4 -- 11 
h = - - n + l  il >1 
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4 -2 2 
_ - % ~ + -  ~ ~?~ Ira,- ~I 

n \ ix->l / _ n 1~1 

The conclusion follows. [] 

LEMMA 5.9. 

{1 ..... ,d}, 

Under Assumptions A4 and A5, almost surely, for each Q,i2,i3 E 

oa Q,~(O) 
limsuPn__+oo O~o*SUp 00(il)00(i2)00(i3) < cx~. 

PROOF. 

since 

The proof follows from the arguments given in the proof of Lemma 5.6, 

sup 
0EO* 

0 3 

00(il)00(i2)00(i3) Qn(O) 

_< sup 
t=l I, OcO* 00(il)00(i2)00(i3) et(O) 

0 02 

+ o~o*SUp ~ e t ( O ) o o ( i 2 ) O O ( i a ) e t ( O )  

oo(i ~ o + 0Eo*SUp et (0) 0~(i3) et (0) 

l 0 02 
+ o~o*SUp ~ e t ( O )  00(i3)00(il)et(O) 

n 

8 E '~i'~jn-1 E r/t2" 
i,j>_O t=O 

[] 

PROOF OF THEOREM 2.2. A Taylor expansion of the criterion around 00 yields 

0 x/~ff--~Qn(On) x/~~ 02 o* 

where the Oi*i's are between 0~ and 0o. Theorem 2.1 and Lemma 5.9 entail that  

Qn(Oi'J) - OO(i)O0(j) Qn(Oo) 00( 

<- e~e*sup oe(i~o(j )  Q.(O~,~) IIo. - Ooll --, o 

almost surely. The conclusion follows from Lemmas 5.7 and 5.8. [] 

LEMMA 5.10. Suppose that the assumptions of Theorem 2.3 hold. Suppose also 
that these assumptions hold when T iS replaced by "Co. Then we have 

E (T) _~ E c (i.e. E (r) - E C is a nonnegative definite matrix). 
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PROOF. Let  the r andom vectors 

V(r) _-_ ( j ( r ) ) - I ~ Q ( ~ ) ( 0 0 ) .  

From a direct extension of Lemma 5�9 the  asympto t ic  variance of V ( r )  is Varas V (~) = 
4E (T). Moreover 

Covos(v~(~), v~(~o)) 

Therefore  

• • ) (.) 2 
_-- ( g ( r ) ) - I  lim C o v  TtatUt ~3t,iUt_i, -1 qh(.)'~ s --  a s  Us ~'s,j  '1 - j  

t = l  i : 1  n s = l  j = l  

�9 ( j ( r o ) ) - i  

-_ 4( j(~))-l ( j(~))( j(~o)) -1 = 4Z(~o). 

Varos(V~ ~) - v(~o)) 

= varos v~ (~) + varos v~ (~o) - Covos (v~ (~), v~ (~o)) - Covos(v~ (~o), v~ (~)) 

: 4(~(~) _ ~(~o)) 

is nonnegat ive definite. [] 

PROOF OF THEOREM 2.4�9 The  consistency is obta ined as in the proof  of Theorem 

2�9 Since the object ive function depends on the est imate  of the nuisance parameter ,  

write Qn(O,~n) instead of Q(§176 In view of A5 and A6, let m = inftat(rio) > 0 and 

M -- supt at(rio) < c~. Almost  surely, for all sufficiently small c > 0 and sufficiently 

large n, we have 

sup [at(~n) - at(riO)] < C and rn - c > 0. 
t 

From A5, we have 

n 1/2 ~On(Oo,~n)--  ~-~O(n~'~ 

i = 1  

- 2 m 2 ( m  _ c)2 0 2 := K(c)n -1/2 U2t. 
i : 1  t : l  t : l  

T he  Markov inequali ty entails tha t ,  for all Co > 0, 

( n ) K(c)2m4 
P g(c)n - 1 / : ~ U  2 > Co < 

t = l  - -  C2 

The  right hand side of the previous inequali ty can be made arbi t rar i ly  small by choosing c 

sufficiently small�9 Thus  n 1/2 I[ (O/09)Qn(9o, ~n) -- (O/09)Q (r~ (90)II --~ 0 in probabi l i ty  as 
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n ~ c~. Arguing as in the proof of Lemma 5.7, it can be shown that  nl/2(O/OO)Q ('~ (0o) 
has a l imiting normal distribution with  mean 0 and covariance matrix 4I  (~~ . We deduce 

that  n 1/2 (O/O0)Q,n(Oo, ~)n) has the same asymptot ic  distribution. By  similar arguments,  

it can be shown that  

l(02/00(i)o0(j))Qn (0o, ~n) - (02/O0(i)O0(j))Q (r176 ~ o 

in probability as n -~ oc. The proof is completed as in the proof of Theorem 2.2. [] 
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