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Abstract

In this paper, we propose a consistent-aware deep learn-

ing (CADL) approach for person re-identification in a cam-

era network. Unlike most existing person re-identification

methods which identify whether two pedestrian images are

from the same person or not, our approach aims to obtain

the maximal correct matches for the whole camera network.

Different from recently proposed camera network based re-

identification methods which only consider the consistent

information in the matching stage to obtain a globally op-

timal association, we exploit such consistent-aware infor-

mation under a deep learning framework where both fea-

ture representation and image matching are automatically

learned. Specifically, we reach the globally optimal solu-

tion and balance the performance between different cam-

eras by optimizing the similarity and data association iter-

atively with certain consistent constraints. Experimental re-

sults show that our method obtains significant performance

improvement and outperforms the state-of-the-art methods

by large margins.

1. Introduction

Person re-identification aims to match pedestrians across

multiple camera views. It is a challenging problem due to

the changes of scale, illumination, viewing angle, pose, etc.,

and has numerous application including visual surveillance,

robotics, multimedia and forensics.

Most current approaches focus on pairwise re-

identification, which distinguish whether two im-

ages captured from different cameras are from the

same person or not. Existing person re-identification
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Figure 1. An illustration of person re-identification in a camera

network. The green lines refers to correct matches and the red

lines indicates wrong matches. If P1 is considered to be the same

person as both P2 and P3, then P2 and P3 must be the same person.

Otherwise, the inconsistency will arise. This constraints results

in the upper left green triangle. Similarly, P2 and P5 cannot be

considered as the same person, as P3 and P5 are different persons

in the same camera view (best viewed in the color pdf file).

methods can be roughly divided into two categories:

image-based and video-based. Image-based method-

s [19, 24, 36, 40, 41, 45–47] focus on seeking effective

feature descriptors which are robust to the changes of

light, pose, viewing angle, etc., or designing discriminative

similarity metrics for person matching. Video-based

methods [13, 23] focus on promising video modeling and

matching techniques to reduce the influences of occlusion

and illumination changes.

One key application of pairwise re-identification is visu-
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Figure 2. The overall framework of our approach. We consider the simplest situation where there are 3 cameras in the camera network.

First, we take a batch of persons as the input and feed them into the CNN deep network. Then, we use the cosine similarity to obtain the

similarity matrix C. By using a specially designed gradient descent method, we obtain the globally optimal association matrices H. We

further compute the difference as H−H
∗, and propagate it back to deep model to update the CNN features.

al surveillance in a camera network, which aims to identify

persons across multiple different cameras. While the re-

identification performance is encouraging for a pair of cam-

eras, the overall performance across the whole camera net-

work is still far from satisfactory and the inconsistency in-

formation usually occurs. Figure 1 illustrates the difference

between the pairwise re-identification and the camera net-

work re-identification. Assume there are three cameras (a, b

and c) in the network, person P1 in camera a is matched to

person P2 in camera b and person P3 in camera c, then P2
and P3 must be considered as the same person. However,

the re-identification system may recognize that P2 and P3
are not the same person according to their appearance infor-

mation from camera b and c directly, which bring an incon-

sistency for this camera network. In other words, pairwise

re-identification methods cannot obtain the globally opti-

mal matching results for a whole camera network. To ad-

dress this, Das et al. [3,5] proposed a camera network based

re-identification approach which exploit such consistent in-

formation in camera network. However, the consistent in-

formation was only exploited in their matching part and not

utilized in the training stage.

In this paper, we proposed a consistent-aware deep learn-

ing (CADL) approach for person re-identification in a cam-

era network, where the whole overall framework is shown

in Figure 2. Unlike conventional deep learning based person

re-identification methods which employ a large number of

labeled samples to train the deep model for feature extrac-

tion, our approach aims to seek the globally optimal match-

ing for the whole network. Specifically, we used a gradient

descent algorithm to seek the globally optimal matching by

maximizing the sum of all matching similarity for all camer-

a pairs, while satisfying all the consistent constraints simul-

taneously. After the globally optimal solution was obtained,

we propagated the difference to adjust the deep neural net-

work. Unlike other methods [1, 17, 34, 37] aiming for lo-

cal optimum, CADL aims for the global optimum and thus

can improve the overall performance. Experimental results

on three datasets including the Market-1501, WARD, and

RAiD are presented to show the effectiveness of the pro-

posed approach.

2. Related Work

Person Re-identification: Recently, numerous method-

s have been proposed for person re-identification from t-

wo aspects: image-based [19, 24, 36, 40, 41, 45–47] and

video-based [13, 23]. Image-based methods focus on

seeking discriminative feature descriptors and metrics for

pedestrian matching. Representative features in person re-

identification include color histograms [19,40,45,46], color

names [41, 47], local binary patterns (LBP) [14, 40], scale

invariant feature transform [22, 45, 46] and scale invariant

local ternary patterns [19,21]. Typical metric learning meth-

ods for person re-identification are locally adaptive deci-

sion functions (LADF) [18], cross-view quadratic discrim-

inant analysis (XQDA) [19], probabilistic relative distance
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comparison (PRDC) [49], metric learning with accelerated

proximal gradient (MLAPG) [20], local fisher discriminant

analysis (LFDA) [26] and its kernel variant (k-LFDA) [39].

Video-based methods focus on effective video modeling

and matching techniques to reduce the influences of occlu-

sion and illumination changes. Representative methods in

this category include conditional random field, space-time

feature description [2], video ranking function [38], and

top-push constrained matching [43].

Deep Learning: Deep learning has achieved great suc-

cesses on various computer vision applications such as im-

age classification [11, 15, 30, 32], object detection [7, 8, 10,

27, 28], face recognition [29, 31, 33], etc. There has also

been growing number of methods which apply deep learn-

ing for person re-identification in recent years. For example,

Yi et al. [42] proposed a siamese CNN (S-CNN) deep ar-

chitecture for person re-identification, where three S-CNNs

were employed for deep feature learning. Ahmed et al. pro-

posed a cross-input neighborhood difference method [1] to

extract the cross-view relationships of the features. Li et al.

proposed a deep filter pairing neural network (FPNN) [17]

to jointly handle misalignment, photometric and geometric

transforms, occlusions and background clutter. Cheng et al.

proposed a framework to deal with local body-parts based

features and the global features [4]. More recently, Wang et

al. [37] proposed a framework containing one shared sub-

network together with two sub-networks that extract single

image and cross image representations respectively. Xiao et

al. proposed a domain guided drop out (DGD) method [39]

to improve feature learning by selecting the neurons specific

to certain domains. Varior et al. [35] proposed a long short

term memory (LSTM) method to process image regions se-

quentially and enhance the discriminative capability of local

feature representation by leveraging contextual information.

Varior et al. [34] proposed a gated Siamese CNN architec-

ture to selectively emphasize fine common local patterns by

comparing the mid-level features across pairs of images.

3. Approach

3.1. Problem Formulation

Assume there are m cameras in the camera network.

The number of possible camera pairs is
(

m
2

)

= m(m−1)
2 .

For simplicity, we first assume that the same n persons are

present in each camera of the networks. We propose our

framework by making all correct matches for all persons in

the whole camera network.

Matrix Representation: Two types of matrices are used

in our framework, where the superscript refers to camera

ID, and the subscript refers to person ID.

Similarity score matrix: Let Ca,b denote the similarity

score matrix between camera a and b. C is an n by n matrix,

with row index representing the persons from camera a, and

the column index representing the persons from camera b.

Then the (i, j)th cell in C
a,b denotes the similarity score

between person P a
i and P b

j .

Adjacency Matrix: Let H denote the adjacency matrix

to represent the relationship between persons. H is an n

by n matrix, with row index representing the persons from

camera a, and the column index representing the persons

from camera b. The elements h
a,b
i,j of adjacency matrix H

a,b

between camera a and b is either 0 or 1. If h
a,b
i,j = 1, we

assume P a
i and P b

j are the same person. Otherwise, they

represent different persons.

Globally Optimal Objective: As mentioned above, our

framework aims to obtain the globally optimal match by

maximizing the sum of similarities for all cameras. As t-

wo person images are considered as the same person only

when the corresponding elements in H is 1. Therefore we

formulate the following objective function:

max
H

Sim =
m
∑

a,b=1,a<b

C
a,b·Ha,b

subject to: H
a,b
i,j ∈ {0, 1},

n
∑

i=1

H
a,b
i,j = 1,

n
∑

j=1

H
a,b
i,j = 1,Ha,c

i,kH
c,b
k,j ≤ H

a,b
i,j ,

∀a, b, c = 1, 2, ...,m, a < b (1)

Notice that a < b might be eliminated if we use probe and

gallery setting, such as the Market-1501 dataset.

Constraints: We first consider the simplest situation

where all persons appear in all cameras, so that the re-

identification in the network can be modeled as a one-to-one

match problem. Since each person can only be matched ex-

actly to one person with no crossing, i.e. in the adjacency

matrix, there should be exactly one 1 in each row and col-

umn. We present an example in Figure 1. When matching

P2 in camera b to persons in camera c, we cannot match P2
to both P3 and P5 as P3 and P5 in the same camera are

not the same person. We also need to keep the inter-camera

consistency. As shown in Figure 1, if person P1 in camera

a is considered to be the same person with both person P2
in camera b and person P3 in camera c, then person P2 and

person P3 should be considered as the same person, result-

ing in the upper left green triangle. Otherwise, there will be

a contradiction. For the case where there are more than 3

cameras, it can be easily demonstrated that we can guaran-

tee the inter-camera consistency by checking all the triplet

camera pairs, e.g. we keep consistency in a camera network

which consists of camera {a, b, c, d} by checking the con-

sistency in {a, b, c}, {a, b, d}, {a, c, d} and {b, c, d}. If P1
and P2, P1 and P3, P2 and P4 in Figure 1 are considered

as the same person, we first re-identify P2 and P3 as the
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same person, and then make sure that P3 and P4 are the

same person.

To guarantee such consistency, we make certain con-

straints on the adjacency matrix H. The constraints are de-

scribed as follows:

1. Binary Constraint. While H should be theoretically

binary, we first continualize H and iteratively adjust its val-

ue. We impose a binary constraint on H, which is to help H

approximate 0 or 1. It imposes larger penalty on elements

far from 0 or 1, which is computed as:

JB = ‖(H− 0.5) · (H− 0.5)− 0.25‖2F (2)

2. Row and Column Constraints. As all n persons appear

in all m cameras, the ground-truth H
∗ should have exactly

one positive value every row and every column, due to one-

to-one match. Take e as a n-length column vector full of

ones, that is e = [1, 1, · · · , 1]T, we introduce row and col-

umn constraints as below:

JR = ‖He− e‖22,JC = ‖eTH− e
T‖22 (3)

Note that constraints 1 and 2 guarantee that each row and

column of H has exactly one 1 element while other ele-

ments are 0.

3. Triplet Constraints. As there are more than 2 cameras

in the camera network, there may exist inter-camera incon-

sistency in the network. As mentioned above, we only need

to keep consistency in all camera triplets. We summarize

this constraint in the matrix form. For a camera triplet, say

a, b, c, we introduce the loop constraint as:

JT
a,c,b = ‖max{0,Ha,c

H
c,b −H

a,b}‖2F (4)

where ∀1 ≤ a < b < c ≤ m.

We see that if and only if the (i, k)th cell of H(a,c) and

the (k, j)th cell of H
(c,b) are 1, will the (i, j)th cell of

H
(a,c)

H
(c,b) be 1. In this case, the (i, j)th cell of H(a,b)

should be 1 to guarantee the consistency. There are totally

m-2 terms for every a, b, and we take the average of these

terms.

To sum up, we formulate the following optimization ob-

jective function to achieve the above goal:

min
H

J1 =

m
∑

a,b=1

(−‖Ha,b·Ca,b‖2F )

+
m
∑

a,b=1

(αJB
a,b + β(JR

a,b + JC
a,b))

+ µ
1

m− 2

m
∑

a,c,b

JT
a,c,b (5)

Having obtained the globally optimal match, we expect

the result exactly the same as the ground-truth. Specifically,

we compute the loss between the obtained result and the

ground-truth as follows:

argmin
f

J2 = (‖H−H
∗‖2F ) (6)

3.2. The Overall Framework

We present the whole framework in a recurrent manner,

as shown in Figure 2.

We first take a subset of persons from different cameras

as training samples and feed them into f , which is a neural

network in this work. We take the output of f as features

and obtain a similarity matrix C
a,b for each camera pair

a, b, ∀a, b = 1, ...,m. More specifically, we use the cosine

metric to calculate the similarity between the feature xi and

xj , :

cos =
x
T
i xj

‖xi‖‖xj‖
, sim =

cos+ 1

2
(7)

Then we obtain the best H that maximizes the global simi-

larity and minimizes the constraint items. The algorithm to

obtain H will be described later. According to the obtained

H, we calculate the difference using 6 and propagate the

difference between the obtained H and the ground-truth ad-

jacency matrix H
∗ to train the neural network. More specif-

ically, we intuitively consider dC = dH, so the (i, j)th

entry of H and features xi, xj can be computed as:

∂J2

∂xi

= (Hi,j −H
∗

i,j) ·
1

‖xi‖‖xj‖
· (xj −

x
T
i xjxi

xT
i xi

) (8)

∂J2

∂xj

= (Hi,j −H
∗

i,j) ·
1

‖xi‖‖xj‖
· (xi −

x
T
j xixj

xT
j xj

) (9)

We fix the training person set and use the adjusted neural

network to repeat the above process. In this manner, we

train our neural network by iteratively optimize H and C to

meet the globally optimal result for this batch of persons.

The way to obtain the globally optimal association ma-

trix from C in different camera pairs is not trivial. We

denote the relationship between H and C as: H =
Φ(C, α, β, µ). It’s hard to obtain Φ explicitly. As an alter-

native, we proposed a gradient descent method to gradually

approximate the optimal H that maximizes the global simi-

larity and minimizes the constraint items at the same time.

We compute the following derivatives:

∂J1

∂Ha,b
=−H

a,b ·C(a,b)2

+α((Ha,b − 0.5)·2 − 0.25) · (Ha,b − 0.5)

+β((Ha,b
e− e)eT + e(eTH

a,b
− e

T))

+µ

m
∑

c

−(max{0,Ha,c
H

c,b −H
a,b})

(10)
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Algorithm 1 details the proposed method.

First, we initialize all H matrices with every entry equals

to 1
n

, so that the sum of each row and column is 1, which

meets row and column constraints. Then, we get the gradi-

ent dH so that we perform gradient descent over H. After

that we impose double ReLU to H to help the matrix con-

verge faster.

3.3. Extension to General Cases

In real-world scenarios, we do not always ensure that ev-

ery person appear in every camera, so the number of per-

sons in different cameras is different, like the Market-1501

dataset. Here we generalize our algorithm to the situation

where only part of people appear in a certain camera. This

situation can be easily obtained by adapting the row and

column constraints in the objective function and the corre-

sponding gradient. In this case, C and H matrices are not

always square, and some rows or columns of H may be all

zeros. For example, person P1 appears in camera a but does

not appear in camera b, the corresponding row and column

will be all zeros as no match is found. Instead of keeping

the sum of every row and column to 1, we only need to keep

the sum 0 or 1. The modified row and column constraints

are described as follows:

JR
′ = (‖(He− 0.5e) · (He− 0.5e)− 0.25e‖22 (11)

JC
′ = ‖(eTH−0.5eT ) ·(eTH−0.5eT )−0.25eT ‖22 (12)

We see that if the sum of each row and column is 0 or

1, no penalty will be exerted. We derive the gradient by us-

ing the same rule. Due to the length limitation, we put the

complete objective and the modified gradient in the supple-

mentary.

4. Experiments

4.1. Datasets and Protocols

We conducted experiments on three popular person re-

identification datasets that have three or more cameras to

form a camera network, Market-1501 [47], RAiD [3,5] and

WARD [25], having 6, 4, and 3 cameras respectively. While

several state-of-the-art methods for person re-identification

e.g., [4,19,35,37] evaluated their performance on other pop-

ular datasets (e.g. i-LIDS [48], VIPeR [9], CUHK01 [16],

CUHK03 [17]), these datasets do not fit our purpose since

they only provide images from two different cameras for a

certain sequence. Here we give a brief description of these

three datasets.

Market-1501 [47]: The Market-1501 dataset has 32,668

bounding boxes of 1501 persons captured from 6 cameras in

front of a supermarket in Tsinghua University. The dataset

employs Deformable Part Model (DPM) as pedestrian de-

tector to obtain the bounding boxes, which is not as ide-

Algorithm 1 CADL

Input: Training images set, label index, learning rate lr,

iterative number It, iterative number IH and parameter

α, β, µ.

Output: neural network: f

1: Initialize f

2: for iter < It do

3: Select a batch of persons P = {Pi}
4: Extract features X = {xi} for P

5: Calculate C
a,b using (7)

6: Initialize H
a,b

7: for i < IH do

8: for ∀a, b = 1, ...,m, a < b do

9: Generate dH
a,b using (10)

10: end for

11: for ∀a, b = 1, ...,m, a < b do

12: H
a,b ← H

a,b − lr ∗ dHa,b

13: H
a,b ← max(Ha,b, 0)

14: H
a,b ← min(Ha,b, 1)

15: end for

16: end for

17: dH
a,b ← H

a,b −H
a,b∗, ∀a, b = 1, ...,m

18: Back propagation dH to adjust f using (8-9)

19: Repeat 4 - 18 until reaching global optimum

20: end for

21: return neural network: f

al as human annotated ones but is more close to the real-

world scenario. Besides the true positive bounding boxes,

the dataset also provides false alarm detection results, which

makes the dataset more challenging. The standard evalua-

tion protocol in [47] treats the re-identification problem as

an image search problem, which is not very suitable to eval-

uate our framework. Hence we proposed a special protocol

by evaluating the matching accuracy for all 30 camera pairs

between the test and probe sets. Since there are so many

results, it is not possible to show all of them, we calculated

weighted average and variance to evaluate the performance

(the full results are given in the supplementary). In some

scenarios, to evaluate the effectiveness of our method on

pairwise re-identification, we also conducted experiments

on the standard protocol where rank-1 accuracy and mean

average precision (mAP) were measured to show that even

only training with our method in such cases.

RAiD [3, 5]: Re-identification Across indoor-outdoor

Dataset (RAiD) has 6920 bounding boxes of 43 identities

captured by 4 cameras. The cameras are numbered as 1,2,3

and 4 where camera 1 and 2 are indoor while camera 3 and

4 are outdoor. The images are affected by very large illu-

mination variations between indoor and outdoor situations.

Following the same protocol in [3,5], 21 persons were used

for training and 20 were used in testing. This dataset is
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Table 1. Performance comparison of state-of-the art algorithms on

the Market-1501 dataset using our own protocol. We measure

the matching accuracy for all 30 camera pairs and calculate the

weighted average and variance. Our method is more accurate and

balanced between different camera pairs.

Method Weight Acc. Var.

BoW [47] - (SQ) 21.14 0.0321

Ours - Pretrained - (SQ) 27.29 0.0221

Ours - Contrastive - (SQ) 46.23 0.0084

Ours - Cosine - (SQ) 52.88 0.0049

Ours - CADL - (SQ) 60.09 0.0111

BoW [47] - (MQ) 27.76 0.0258

Ours - Pretrained - (MQ) 40.51 0.0189

Ours - Contrastive - (MQ) 59.16 0.0168

Ours - Cosine - (MQ) 72.02 0.0043

Ours - CADL - (MQ) 81.15 0.0039

challenging for deep learning methods due to the small data

size. It is impossible to train a deep neural network on such

a small set of data, so we took the pretrained model pro-

vided in [39] and fine-tuned it on RAiD. We conducted 20

experiments without applying the provided masks and took

average as our result.

WARD [25]: The WARD dataset has 4786 images of 70

persons acquired in a real surveillance scenario in three non-

overlapping cameras. The dataset also has a huge illumina-

tion variation apart from resolution and pose changes. Fol-

lowing the protocol proposed in [3,5], we conducted our ex-

periment in the same way as RAiD for 20 times. Again, we

did not apply the provided masks. And our method achieved

almost 100% accuracy on all 3 camera pairs.

4.2. Settings

Due to the limitation of GPU memory, it is impossi-

ble to feed all person images for all cameras into CNN at

once, so in our experiments, we considered 3 cameras each

time and took 30 persons per camera to feed into our C-

NN for WARD and Market-1501 datasets. We considered

all 4 cameras and took 21 persons per camera to feed in-

to CNN for RAiD dataset. We set the initial learning rate

as 0.01 and reduced by a factor of 0.1 every 10,000 batch-

es. After careful adjustment, we set the hyper-parameter as

α = 0.01, β = 1, µ = 1. We set momentum = 0.9 and

weight decay = 0.005. All the experiments were conducted

using Caffe [12] without data augmentation.

Due to the small size of WARD and RAiD dataset, it

is infeasible to train a neural network from the scratch, so

we performed our method by fine-tuning pretrained mod-

el using CADL. More specifically, we chose the pretrained

model provided in [39]. The CNN starts with 4 concatenat-

ed convolution layers followed by a pooling layer. Next is

Table 2. Performance comparison of state-of-the art algorithms for

the Market-1501 dataset using standard protocol. The proposed

CADL framework not only outperforms the pretrained model and

contrastive loss trained model, but also outperforms all the state-

of-the-arts by large margins.

Method Rank 1 mAP

SDALF [6] 20.53 8.20

eSDC [46] 33.54 13.54

BoW [47] - (SQ) 34.40 14.09

DNS [44] - (SQ) 61.02 35.68

Gated Siamese [34] 65.88 39.55

Ours - Pretrained - (SQ) 35.65 12.82

Ours - Contrastive - (SQ) 58.28 41.28

Ours - Cosine - (SQ) 73.84 47.11

BoW [47] - (MQ) 42.14 19.20

BoW + HS [47] - (MQ) 47.25 21.88

S-LSTM [35] -(MQ) 61.60 35.31

DNS [44] - (MQ) 71.56 46.03

Gated Siamese [34] - (MQ) 72.92 45.39

Ours - Pretrained - (MQ) 41.57 15.97

Ours - Contrastive - (MQ) 69.09 49.20

Ours - Cosine - (MQ) 80.85 55.58

a series of 6 inception units. After the final fully connected

layer, the CNN produces features of length 256. The de-

tailed structure of the pretrained CNN is described in our

supplementary materials. Unlike other pretrained model

trained on ImageNet, it takes input of size 144×56 which

is much more suitable to due with person images. We give

a short analysis proving its advantage over other pretrained

model in the supplementary.

For our framework, we evaluated 4 results on datasets:

1. Ours - Pretrained. This is the result obtained us-

ing the original pretrained model from [39]. We conducted

this experiment to show the effectiveness of the pretrained

model on three datasets.

2. Ours - Contrastive. We fine-tuned the pretrained

model using contrastive loss to provide a baseline for eval-

uating CADL. Contrastive loss is widely used in siamese

neural network structure, e.g. [35, 42], and can well repre-

sent the results for regular training approach. We randomly

selected the camera and person ID, and the margin was kept

as 1.0, the ratio between negative sample pairs and positive

sample pairs are set as 2.

3. Ours - Cosine. In some scenarios, we need to per-

form pairwise re-identification, e.g. the standard protocol

for Market-1501. So we trained our model using CADL

and conducted pairwise re-identification using cosine met-

ric. We took the rank-1 result to evaluate the performance.

In this experiment, we only trained our model using CADL

and experimental results show that CADL can well boost
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Table 3. Performance comparison of state-of-the art algorithms for the RAiD dataset, we report the rank-1 results for all camera pairs.

Method Cam12 Cam13 Cam14 Cam23 Cam24 Cam34 Avr. Acc. Var

FT [3, 5] 74.00 26.00 41.00 41.00 52.00 61.00 49.17 0.0287

ICT + NCR [3, 5] 89.00 60.00 66.00 60.00 71.00 68.00 69.00 0.0115

FT + NCR [3, 5] 86.00 67.00 68.00 75.00 74.00 79.00 78.83 0.0050

Ours - Pretrained 47.14 60.71 31.19 51.90 25.24 73.33 48.25 0.0324

Ours - Contrastive 48.33 60.24 50.92 67.14 55.00 67.62 58.21 0.0067

Ours - Cosine 67.14 88.81 67.62 88.57 58.57 93.57 77.38 0.0214

Ours - CADL 97.50 98.25 100.00 96.00 95.50 96.00 97.21 0.0003

Table 4. Performance comparison of state-of-the art algorithms

for the WARD dataset, we report the rank-1 results for all cam-

era pairs. The results are averaged from 20 experiments and our

method reach almost 100% performance.

Method Cam12 Cam13 Cam23

ICT + NCR [3, 5] 40.00 26.85 36.57

FT + NCR [3, 5] 57.14 45.14 61.71

Ours - Pretrained - (SQ) 51.29 77.29 65.43

Ours - Contrastive - (SQ) 63.57 70.71 78.14

Ours - Cosine - (SQ) 93.57 90.14 94.57

Ours - CADL - (SQ) 99.57 99.29 99.71

the performance in the training stage.

4. Ours - CADL. We trained and tested with CADL

framework. After training and calculating the similarities,

we applied the gradient descent algorithm to approximate

the globally optimal match. By this experiment we obtained

the best result where average accuracy is highest with small-

est variance. Notice that this result is not available for the

standard protocol of Market-1501, which conducts pairwise

re-identification.

4.3. Results and Analysis

Results: The results of Market-1501, RAiD and WARD

datasets are given in table 1 & 2, table 3, and table 4 respec-

tively.

The results show that CADL outperforms all the tradi-

tional or deep methods on the 3 datasets. For Market-1501,

which is very challenging dataset due to the large person

numbers and distractors, our method reaches state-of-the-

art performance both in the average accuracy and the vari-

ance. Under our protocol, we obtained a more accurate and

balanced CNN for different camera pairs using CADL. Un-

der the standard protocol where many state-of-the-art meth-

ods are evaluated, we outperforms all the state-of-the-arts

by 8%. RAiD dataset has 4 cameras and only 22 persons for

training, which is difficult for deep learning based method-

s. Nevertheless, our framework can address the problem of

overfitting effectively, and achieved remarkable result. For
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Figure 3. An analysis on µ. We conducted an experiment on RAiD

dataset by changing µ from 0 to 1.5, and plot the average accuracy

and variance. From the curve we can see that at about µ = 0.8 we

have the highest accuracy and the smallest variance.

the WARD dataset, CADL reached over 99% accuracy for

all the camera pairs and outperformed the state-of-the-art by

large margins. As shown in Table 4, our method has signif-

icant performance gains compared to the pretrained model

and contrastive loss based method.

Even without obtaining globally optimal match in the

testing stage, i.e. only training with CADL and perform-

ing pairwise re-identification, as reported in Ours - Cosine,

large improvements were gained compared to contrastive

loss and pretrained models. Furthermore, our framework

outperforms all the state-of-the-art methods. This shows

that our method is very effective for re-identification in a

camera network. Training with CADL can significantly

boost the performance of both pairwise re-identification or

camera network based re-identification. By implementing

our algorithm after similarity is generated, we can further

improve the result and bring down the variance (see Ours -

CADL).

Hyper-Parameters: We analyzed the effect of param-

eter setting. From previous experiments we found that the

values of α and β cannot vary too much, otherwise the algo-

rithm will fail. So we conducted an experiment on µ to show

the effect of inter-camera information. By introducing µ we

can bring down the inconsistency between different camera

pairs and balance the performance. So a proper µ can help

to increase the average accuracy and bring down the vari-

ance. We conducted the experiment on the RAiD dataset,
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Figure 4. An example to show the convergency and effectiveness

of our algorithm. The blue curve is the average accuracy of ob-

tained H, and the red curve is the original accuracy of C. We can

see that accuracy improvement is gained and the objective J goes

down smoothly.

and plotted the average accuracy for

(

4

2

)

= 6 camera pairs

and the variance along µ in Figure 3. The figure shows

that as µ increases, the average accuracy first increases to

the peak due to the obtained consistency, and then decreas-

es for too large µ. As for the variance, it decreases as µ

increase from 0 to 1. Taking accuracy and variance into ac-

count, we can reach an optimal result by setting µ = 0.8
approximately.

Convergency and Effectiveness of H Approximation:

To demonstrate the convergency and effectiveness of our

gradient descent algorithm, we first conduct a small exper-

iment on dataset WARD. After careful adjustment, we set

the hyper-parameter as α = 0.01, β = 1, µ = 1. We initial-

ized all H matrices with every entry equals to 1
n

. We plotted

the accuracy of 3 camera pairs and the overall loss in Fig-

ure 4. We can see that as iterations goes on, the loss drops

smoothly, and the average accuracy climbed up above the

original accuracy (obtained by matching the sample with s-

mallest distance).

As we initialized the adjacency matrix to meet the row

and column constraints, the initial objective is very small.

At the beginning of the optimization, the objective increas-

es due to the increase of row and column loss. However,

the objective decreases significantly later and converges to

a good level for 3,000 iterations.

Further experiments show that our algorithm is robust

and insensitive to scale.

Comparison with NCR: Previous work [3, 5] on cam-

era network also presents a method to obtain H, named

NCR, by solving a binary integer programming problem.

It gains performance improvement. As mentioned above

our framework CADL exploited such consistent-ware in-

formation throughout the training and testing process, but

here, we would like to give a comparison by only gener-

ating globally optimal H in the testing stage to compare

the performance of two methods. Using the standard pro-

tocol provided in [3, 5], we test the performance and speed

using the similarity matrix obtained from contrastive loss

Table 5. Comparison between NCR and our CADL.

Cam12 Cam13 Cam23 Time

Original 63.57 70.71 78.14 -

NCR 79.43 85.14 85.14 5.2558

Ours 82.29 86.86 88.57 0.3768

on WARD. The experiment was conducted 20 times using

MATLAB on i7-4750HQ with 8GB RAM. The results are

shown in Table 5. We can see that our method CADL out-

performs NCR in both accuracy and speed. Our algorithm is

much faster and stable than NCR, and obtain little accuracy

improvement.

Furthermore, as the number of persons increases, the

number of constraints for BIP will increase significantly.

Suppose there are m cameras and n persons in the camera

network, the number of constraints is approximately n5∗m4

(as proposed in the supplementary of [3,5]), which makes it

impossible to solve for scenario where there are large num-

ber of people, e.g. in Market-1501, there are 6 cameras and

1501 persons, so the total number of constraints will reach

1016. On the contrast, our gradient descent based algorithm

can work robustly on different scales.

5. Conclusion

In this paper, we proposed the first end-to-end

consistent-aware deep learning (CADL) method for person

re-identification in a camera network. We solved the prob-

lem of person re-identification in a camera network by ex-

ploiting intra-camera and inter-camera consistent-aware in-

formation both in the training and testing stages. We al-

so presented a gradient descent based algorithm to obtain

globally optimal matching that maximizes the global simi-

larity satisfying the consistency constraints. Experimental

results have been proposed to validate the effectiveness of

our method.
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