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The question of whether classically conformal modifications of the standard model are consistent with

experimental observations has recently been subject to renewed interest. The method of Gildener and

Weinberg provides a natural framework for the study of the effective potential of the resulting multiscalar

standard model extensions. This approach relies on the assumption of the ordinary loop hierarchy λs ∼ g2g
of scalar and gauge couplings. On the other hand, Andreassen et al. recently argued that in the (single-

scalar) standard model gauge invariant results require the consistent scaling λs ∼ g4g. In the present paper,

we contrast these two hierarchy assumptions and illustrate the differences in the phenomenological

predictions of minimal conformal extensions of the standard model.
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I. INTRODUCTION

The standard model (SM) of particle physics represents

a quantum field theory staying perturbatively consistent

under renormalization group (RG) flow all the way up to

the Planck scale MPl, where quantum gravity effects

become relevant. Due to the absence of any beyond-the-

standard-model signals from the LHC, the conservative

scenario of no (or minimal) new physics up to MPl has

gained some momentum in the community. Still, there is a

number of obvious shortcomings. For one, the Higgs mass

parameter is unnaturally small compared to MPl, known as

the hierarchy problem. Moreover, the strong observational

evidence for dark matter and neutrino masses calls for an

extension of the SM. Ideally, such an extension should also

resolve the puzzle of the metastable Higgs vacuum [1,2].

A good guideline for extending the SM is to call for

additional symmetries, such as supersymmetry, which

should be broken in order to agree with current exper-

imental observations. In this paper, we focus on another

prominent example of a guiding (and broken) symmetry:

The standard model is “nearly” conformal as a classical

field theory. Conformal invariance is only broken by the

explicit Higgs field mass term, which induces the electro-

weak symmetry breaking and the masses of all known

elementary particles. At least qualitatively, the same effect

can be generated in a classically scale-free model, the

radiative corrections of which lead to a spontaneous gen-

eration of mass scale and symmetry breaking as was first

advocated by Coleman and Weinberg [3] (see Ref. [4] for an

extensive review). While classical conformal symmetry is

broken via radiative corrections, the vanishing mass term is

stable under renormalization [5] using dimensional regulari-

zation. However, this attractive scenario does not yield a

radiative breaking of the electroweak symmetry in a scale-

free version of the SM (simply dropping the scalar mass

term) due to the largeness of the top mass. By adding

additional bosonic degrees of freedom (d.o.f.) to the SM—

e.g., via an extended Higgs sector or novel gauge fields—

this problem may in principle be cured. The question for

realizing such a (minimal) version of a conformal standard

model has recently attracted a lot of attention in the literature;

see e.g., [6–15]. A common feature of these works is an

extended scalar sector for which an effective potential needs

to be established and minimized such that spontaneously

generated masses may be extracted in a perturbatively

consistent and also gauge invariant fashion. As we shall

argue in this paper, this is a nontrivial issue building upon

certain scaling assumptions of the scalar couplings λi with

respect to the gauge and Yukawa couplings.

Besides the Coleman-Weinberg mechanism, another

way to break conformal symmetry is via the introduction

of a (typically high) cutoff scale Λ. This scale induces

quadratic divergences generating a Higgs mass contribution

proportional to Λ
2. In the context of conformal extensions

of the standard model, this naturalness problem is an often

addressed point of criticism (see e.g., Ref. [16]), since the

classically vanishing Higgs mass requires fine-tuning in

order to stay small. Here, we do not employ a cutoff scale as
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we only consider conformal extensions of the standard

model designed such that Landau poles are delayed beyond

the Planck scale and thus may be effectively considered

as having no physical cutoff. We perform all calculations

using dimensional regularization and employ the MS-

renormalization scheme. We will also not address the

question of embedding the considered models into a theory

of quantum gravity which would result in a natural cutoff

Λ ∼MPl at the Planck scale.

A. Multiscale issue

An immediate problem that one faces when considering

multiscalar conformal extensions of the standard model is

the question of multiscale renormalization. Loop contribu-

tions to the effective potential typically come with loga-

rithms that depend on the ratio of the scalar field and the

renormalization scale. These contributions become large

when the field value and the scale differ significantly,

which invalidates the perturbative expansion. In the case

of a single scalar field, a single renormalization scale is

sufficient to resum these logarithmic contributions via the

RG which results in the RG-improved effective potential.

What is done here is setting the arbitrary renormalization

scale μ to the scalar field value at its minimum hϕi, which
cancels all logarithms log ϕ

hϕi in the potential and derived

quantities thereof in the vacuum configuration. However, in

the presence of multiple scalar fields, one faces logarithms

of different field-to-scale ratios, which renders a single

renormalization scale insufficient for dealing with all

logarithmic contributions at the same time. A natural

resolution seems to be the introduction of multiple renorm-

alization scales as proposed by Einhorn and Jones [17] and

later refined by Ford and Wiesendanger [18]. At least in

certain cases, this approach was argued [19] to be equiv-

alent to the decoupling method of Ref. [20], which splits

the mutliscale problem into single-scale problems in

between different mass thresholds. Unfortunately, these

methods complicate the RG analysis significantly, which

limits their applicability to simpler toy models or low loop

orders. A more powerful approach was suggested by

Gildener and Weinberg [21]: Assuming the presence of

a flat direction of the classical potential in the space of

scalar fields at some renormalization scale μGW, the

symmetry breaking is studied only in this direction, which

again results in a single-scale problem. In the context

of conformal extensions of the standard model, this

approach was recently applied in e.g., Ref. [14]. A new

method for the study of multiscale potentials was suggested

in Ref. [22], which assumes the existence of a (field-

dependent) value of the renormalization scale where all

loop corrections to the effective potential vanish. Working

at this scale translates the problem of understanding the full

effective potential into a study of the tree-level potential

with running coupling constants.

Notably, even in a (single-scale) textbook approach, the

problem of multiscale renormalization can be avoided in

certain theories at one-loop order. This is due to a special

prescription for solving the minimum conditions for the

effective potential as illustrated in Sec. III for the model

of Ref. [7].

B. Gauge-dependence issue

Besides the problem of multiscale renormalization,

another important requirement is gauge independence.

The effective potential is generically gauge dependent

[23], and great care is needed to extract physical informa-

tion contained in its minimal value. However, drawing

conclusions on which modifications of the standard model

are compatible with current experimental data is very

sensitive to small modifications, and thus it requires caution

to identify a minimal model. In particular, the gauge

dependence of the effective potential has recently been

emphasized in Refs. [24,25]. In the context of the standard

model, gauge invariance was shown to require a nonstand-

ard hierarchy of coupling constants [25], which amounts to

taking the scalar coupling(s) λs to be of the order of the

fourth power of the gauge couplings gi and Yukawa

couplings yt, i.e.,

λs ∼Oðg4i Þ ∼Oðy4t Þ: ð1:1Þ

This hierarchy has also been shown to hold in the

Coleman-Weinberg radiative symmetry breaking for

scalar electrodynamics [3]. Reintroducing ℏ, this scaling

is easily motivated by setting λs ∼ ℏ; in other words, the

classical scalar potential is made quantum by hand.

Although being rather unconventional, this choice clearly

allows the leading scalar potential to receive sizable one-

loop quantum corrections that can significantly shift its

minimum to nonvanishing field values hϕi ≠ 0. As this

scaling assumption makes the (tree-level) scalar potential

essentially quantum, we term it the “quantum potential”

approach.

The ordinary loop counting, on the other hand, amounts

to the assumption

λs ∼Oðg2i Þ ∼Oðy2t Þ; ð1:2Þ

which is equivalent to taking λs not to be of order ℏ as is

usually done. In fact, this is the scaling applied in the

Gildener-Weinberg scheme.

C. Setup

Let us explain the difference of the generic situation

we are facing in multiscalar extensions of the conformal

SM in more detail. Due to the assumed classical scale

invariance, the tree-level part of the scalar potential needs to

be of the form
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V0ðΦ⃗Þ ¼ 1

4
λIJKLΦIΦJΦKΦL; ð1:3Þ

where the totally symmetric symbol λIJKL parametrizes the

set of scalar couplings and theΦIðxÞ denote all scalar fields
in the theory. The one-loop correction to the scalar potential

computed in dimensional regularization then takes the

generic form

V
ð1Þ
eff ¼

ℏ

64π2

X

i

nimi½ΦI�4
�

ln
mi½ΦI�2

μ2
− ai −

1

ϵ

�

: ð1:4Þ

Here, the index i runs over all particles in the theory which

couple to the scalars. For each particle, mi½ΦI� denotes its
field-dependent effective tree-level mass, which emerges

for nonzero scalar vacuum expectation values and implic-

itly depends on the renormalization scale μ. The ni count
the real d.o.f. of the particle i with a minus sign for

fermions, while the ai are scheme-dependent constants: in

the MS scheme, they are given by −5=6 for gauge bosons

and −3=2 for fermions or scalars. Clearly, the classical

potential always has the trivial vacuum hΦ⃗i ¼ 0. The quest

is now to have V ¼ V0 þ V
ð1Þ
eff develop a minimum at a

nonzero value of hΦ⃗i through radiative corrections. Here,

we focus on the comparison of two distinct scenarios:

(1) Quantum-potential approach.—The multiscalar ef-

fective potential is treated as in the single-scalar

case, e.g., in the case of the standard model. The

scalar couplings λIJKL are taken to scale as ℏ, i.e., to

be of the same order of magnitude as (part of) the

one-loop contributions V
ð1Þ
eff to the effective potential.

Effectively, this amounts to assuming a hierarchy of

couplings λ ∼ g4, where g are the gauge or Yukawa

couplings. This scaling hierarchy pushes the scalar

coupling contributions in V
ð1Þ
eff to the next order.

(2) Gildener-Weinberg method.—One demands that V0

has a degenerate zero energy vacuum along a ray

hΦi ¼ φn⃗, parametrized by a sliding-scale field φ at

a particular scale μGW. The quantum fluctuations of

V
ð1Þ
eff then lift the degeneracy along this valley and

yield a radiatively generated nonvanishing vacuum

expectation value hΦ⃗i, which induces all the masses

in the theory. In this approach, the ordinary loop

hierarchy of couplings λ ∼ g2 is assumed. Impor-

tantly, finding the minimum of the multiscalar

effective potential reduces to a single scalar problem

for the field φ.

In the case of single-scalar models, it can be seen that

both scenarios yield the same result at one-loop order.

This is due to the fact that for a single scalar potential λϕ4

the existence of a classically flat direction necessitates

λðμGWÞ ¼ 0 in the Gildener-Weinberg scenario. Then, V
ð1Þ
eff

only depends on the gauge and Yukawa couplings of order

g4, just as is the case in the Coleman-Weinberg setup (at

one-loop order). In the multiscalar case, however, radiative

symmetry breaking is also possible if one assumes standard

perturbative scalings, i.e., λ ∼ g2, since the now possible

nontrivial vacuum degeneracy of the tree-level potential

may be lifted by a small OðℏÞ one-loop correction. In the

present paper, we contrast these two different scaling

assumptions in the multiscalar case, i.e., the two different

methods described above, in order to extract gauge invari-

ant data from the effective potential. As we shall show,

these scaling assumptions for the couplings lead to different

phenomenological predictions in conformal extensions of

the standard model, which have been very popular recently.

In the following analyses, we neglect influences of all

leptons except for the top quark. Furthermore, since we

work entirely at one-loop level and the Higgs boson has

no color charge, we can neglect all contributions to the

effective potential that come from the strong interaction.

They will be of higher loop order.

The paper is structured as follows. We start by intro-

ducing the Hempfling model of Ref. [7] in Sec. II as our

laboratory throughout the paper. We proceed to apply the

quantum potential (QP) approach and the Gildener-

Weinberg (GW) method in Secs. III and IV, respectively.

In particular, for both cases, we determine the allowed mass

ranges for the new scalar and the new U(1) gauge boson Z0,
as well as the allowed couplings, demanding compatibility

with experimental bounds on the scalar mixing and the

absence of Landau poles and vacuum instability up to the

Planck scale. In Sec. V, we briefly demonstrate that a

further reduction of the field content does not lead to a

phenomenologically viable model. Finally, we conclude by

comparing the QP and GW approaches and give a brief

outlook.

II. OUR LABORATORY:

THE HEMPFLING MODEL

It is well known that implementing Coleman-Weinberg

symmetry breaking into the standard model with vanishing

mass term does not give rise to a phenomenologically

viable vacuum due to the large top mass. As we will see

below, the same applies to an extension of this model by a

single scalar field; see also Ref. [14]. The addition of new

fermionic d.o.f. will give negative contributions to the mass

eigenvalues and only worsen the situation. We are thus led

to introduce new bosonic fields. Restricting to renormaliz-

able models, we can add scalar fields or vector fields.

A. Hempfling model

Here, we will analyze the conformal extension of the

standard model that was proposed by Hempfling already

in 1996, i.e., before the discovery of the Higgs boson. In

addition to the standard model at vanishing tree-level Higgs

mass, the Hempfling model contains a new “dark” U(1)
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gauge boson Z0
μ exclusively coupled to a new scalar field S.

This is a minimal extension of the conformal standard

model in the following sense: As we will illustrate in

Sec. V, an extension by a single scalar field S alone is not

capable of consistently reproducing the correct Higgs mass.

Hence, we must add additional bosonic d.o.f. Adding yet

another scalar would introduce several new couplings to the

Higgs and the scalar S. We thus add a new Abelian gauge

field Z0
μ coupled only to the new scalar S by the new gauge

coupling gZ0 . The complex scalar S has a U(1) phase

symmetry S→ eiαS, and the full Lagrangian for this model

is given by

LHempf ¼ LSMj λ¼0
mH¼0

− VðH; SÞ þDμSðDμSÞ† − 1

4
F0
μνF

0μν

þ LGF þ Lghosts; ð2:1Þ

where LSMj λ¼0
mH¼0

is the SM Lagrangian without the Higgs

potential. The new tree-level potential is given by

VðH; SÞ ¼ λ1ðH†HÞ2 þ λ12ðH†HÞðS†SÞ þ λ2ðS†SÞ2:
ð2:2Þ

We work with the gauge fixing terms

LGF ¼ −
1

2ξB
ð∂μB

μÞ2 − 1

2ξW
ð∂μA

aμÞ2 − 1

2ξZ0
ð∂μZ

0μÞ2;

ð2:3Þ

keeping the ξi arbitrary. Note that we also do not consider

Uð1Þ mixing FμνF
0μν with the photon Aμ. Next, the Higgs

doublet and the new scalar are written in a background field

ðϕ̂; ŜÞ ∈ R expansion as

H¼ 1
ffiffiffi

2
p
�

ϕ1þ iψ1

ϕ̂þϕ2þ iψ2

�

; S¼ 1
ffiffiffi

2
p ðŜþs1þ is2Þ: ð2:4Þ

Terms involving ghosts or the strong interactions may be

left out, as they only appear at higher loops. The covariant

derivative couples S to the new gauge field Z0μ according to

DμS ¼ ð∂μ þ igZ0Z0
μÞS; ð2:5Þ

inducing cubic and quartic interactions. Because the new

gauge field does not interact directly with the fields of the

standard model, we call it a dark gauge field.

B. Effective potential

As usual, we expand the scalar fields around classical

field values ðϕ̂; ŜÞ and integrate out the quantum fields to

arrive at the effective potential at one-loop order. Dropping

from now on the hats of the background fields, we have

Veffðϕ; SÞ ¼
λ1

4
ϕ4 þ λ12

4
ϕ2S2 þ λ2

4
S4

þ 1

64π2

X

i∈I

nim
4
i

�

ln
m2

i

μ2
− ai −

1

ϵ

�

; ð2:6Þ

with I¼fA;B;C;E�;F�;G�;I�;Tg. The field-dependent

masses are given by

m2
A ¼ g22

4
ϕ2; m2

B ¼ ðg21 þ g22Þ
4

ϕ2;

m2
C ¼ g2

Z0S2; m2
T ¼ y2t

2
ϕ2; ð2:7Þ

as well as

m2
E� ¼ 1

4

�

ð6λ1 þ λ12Þϕ2 þ ð6λ2 þ λ12ÞS2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðð6λ1 − λ12Þϕ2 − ð6λ2 − λ12ÞS2Þ2 þ 16λ212ϕ
2S2

q
�

m2
F� ¼ 1

4

�

2λ2S
2 þ λ12ϕ

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2λ2S2 þ λ12ϕ
2Þ2 − ξZ0ð4λ2g2Z0S4 þ 2λ12g

2
Z0ϕ2S2Þ

q
�

;

m2
G� ¼ 1

4

�

2λ1ϕ
2 þ λ12S

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2λ1ϕ2 þ λ12S
2Þ2 − ðξBg21 þ ξWg

2
2Þð4λ1ϕ4 þ 2λ12ϕ

2S2Þ
q

�

;

m2
I� ¼ 1

4

�

2λ1ϕ
2 þ λ12S

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2λ1ϕ2 þ λ12S
2Þ2 − ξWg

2
2ð4λ1ϕ4 þ 2λ12ϕ

2S2Þ
q

�

; ð2:8Þ

while the parameters ni and ai take the form

nA ¼ 6; nB ¼ 3; nC ¼ 3; nT ¼ −12; nE ¼ nF ¼ nG ¼ 1 ¼ 1

2
nI;

aA ¼ aB ¼ aC ¼ −
5

6
; aE ¼ aF ¼ aG ¼ aI ¼ aT ¼ −

3

2
: ð2:9Þ

Note that of all leptons only the top quark is included in the analysis, as its couplings yt is by far dominant.
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C. Beta functions

The one-loop beta functions for the Hempfling model are

given by [14,26]

βλ1 ¼ 24λ21þ λ212− 3λ1ðg21þ 3g22Þþ
3

8
ðg41þ 2g21g

2
2þ 3g42Þ

þ 12λ1y
2
t − 6y4t ;

βλ12 ¼ λ12

�

12λ1þ 8λ2þ 4λ12þ 6y2t −
3

2
ðg21þ 3g22Þ− 6g2

Z0

�

;

βλ2 ¼ 20λ22þ 2λ212− 6λ2g
2
Z0 þ 6g4

Z0

βg1 ¼
41

6
g31; βg2 ¼−

19

6
g32; βgZ0 ¼

1

3
g3
Z0 ;

βg3 ¼−7g33; βyt ¼ yt

�

9

2
y2t −

17

12
g21−

9

4
g22− 8g23

�

;

ð2:10Þ

where βα ¼ 16π2μ dα
dμ
.

III. QUANTUM POTENTIAL APPROACH

In this section, we consider the quantum potential

method and apply it to the concrete example of the

Hempfling model. We discuss the phenomenological con-

sistency with the observed value of the Higgs mass and

study the absence of Landau poles and vacuum stability up

to the Planck scale.

A. Conceptual idea

As motivated in the Introduction, we will now impose

the hierarchy of coupling constants

λj ∼ g4k ∼ y4t ∼ ℏ; ð3:1Þ

which allows us to consistently expand all quantities in

the small parameter ℏ. This assumption extrapolates the

hierarchy λ ∼ g4 of scalar electrodynamics which—in that

model—was explicitly proven by Coleman and Weinberg

using the renormalization group [3]. Indeed, for theories

with a single scalar field, this hierarchy of couplings is

necessary in order for a one-loop contribution to push the

minimum of the tree-level potential from zero field values

to a nonzero value, i.e., to implement Coleman-Weinberg

symmetry breaking. Moreover, this hierarchy is crucial to

guarantee the gauge independence of physical informa-

tion extracted from the Coleman-Weinberg potential [24].

Also for the standard model, imposing the hierarchy (3.1)

consistently guarantees trustable and gauge-independent

results [25].

B. QP of Hempfling model

Solving the stationarity conditions

0 ¼ dVeff

dϕ

�

�

�

�

ϕ¼hϕi;S¼hSi
; 0 ¼ dVeff

dS

�

�

�

�

ϕ¼hϕi;S¼hSi
; ð3:2Þ

for λ1 and λ2, we arrive at the one-loop effective potential

Vren
eff ðϕ; SÞ ¼ −

λ12

8
hϕi2hSi2

�

ϕ2

hϕi2 −
S2

hSi2
�

2

þ 3

64π2
g4
Z0S4

�

log
S2

hSi2 −
1

2

�

þ 3

64π2
ϕ4

hϕi4 ð2m
4
W þm4

Z − 4m4
t Þ

×

�

log
ϕ2

hϕi2 −
1

2

�

; ð3:3Þ

where we have

mW ¼ g2

2
hϕi; mZ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22
p

2
hϕi; mt ¼

yt
ffiffiffi

2
p hϕi:

ð3:4Þ

Crucially, all dependence on the gauge parameters disap-

pears from the effective potential (3.3) after imposing the

hierarchy of couplings. That is, as in the standard model,

the hierarchy (3.1) resolves the gauge-dependence issue.

Moreover, solving (3.2) symmetrically for λ1 and λ2 (instead

of e.g., for λ1 and λ12), the dependence of the logarithms

on the renormalization scale μ completely drops out of the

effective potential. In particular, we have no multiscale

problem which naively could have been expected, cf. the

Introduction. This simplifies the analysis considerably. This

property is a consequence of the vanishing of βλ12 at one loop

under the scaling assumptions λi ∼Oðg4i Þ; compare (2.10).

We do not expect it to prevail at higher loop orders.

The above effective potential has a minimum at

fhϕi; hSig. Since the Higgs vacuum expectation value is

fixed by experiment, the potential contains three free

parameters, namely fλ12; gZ0 ; hSig. However, we can fix

an additional one by demanding the existence of a mass

eigenstate with eigenvalue mh, the measured Higgs mass.

In order to do so, we calculate the Hessian of the

potential at its minimum

M2
ij ¼

∂2Vren
eff

∂ϕi∂ϕj

�

�

�

�

ϕ¼hϕi;S¼hSi

¼

0

B

B

@

−
m4

0

8π2hϕi2 − λ12hSi2 λ12hSihϕi

λ12hSihϕi
3g4

Z0 hSi
2

8π2
− λ12hϕi2

1

C

C

A

; ð3:5Þ
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where we have introduced the abbreviation

m4
0 ¼ 12m4

t − 6m4
W − 3m4

Z ¼ ð319 GeVÞ4: ð3:6Þ

Since this matrix is nondiagonal, the mass eigenstates will

consist of mixtures of the interaction eigenstates. It is of

course simple to write down analytic expressions for the

mass eigenvalues

m2
�ðλ12; gZ0 ; hSiÞ ¼ 1

2
trM2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

trM2

2

�

2

− detM2

s

;

ð3:7Þ

but it is not possible to invert them in a closed form for any

of the three free parameters. In order to match one of them

to the Higgs mass, we will therefore numerically solve the

resulting equation.

Now, the presence of two mass eigenvalues opens up two

possible scenarios: The Higgs may be lighter or heavier

than the new scalar mX, i.e., mh ¼ m� and mX ¼ m∓. We

term these scenarios A (mh ¼ m−) and B (mh ¼ mþ).
Nevertheless, the numerical procedure is straightforward in

both cases; we randomly dial 3 × 104 pairs λ12 ∈ ½0;−π�
and gZ0 ∈ ½0; π� then:
(1) Solve the equation

m�ðλ12; gZ0 ; hSiÞ ¼ mh ð3:8Þ

for the expectation value hSiðλ12; gZ0Þ.
(2) Eliminate hSi in the other mass eigenvalue, resulting

in

m∓ðλ12; gZ0Þ ¼ m∓ðλ12; gZ0 ; hSiðλ12; gZ0ÞÞ: ð3:9Þ

(3) For any given pair fλ12; gZ0g compute the couplings

fλ1; λ2g from (3.2) as well as the predicted masses

for the new d.o.f.

mX ¼ m∓ðλ12; gZ0Þ; mZ0 ¼ gZ0hSiðλ12; gZ0Þ;
ð3:10Þ

which can be used as initial conditions for the RG

equations.

By constructing the appropriate parameter regions,

we enforce perturbativity by demanding jλij < π. We also

immediately dismiss parameter sets, which lead to unstable

extrema of the effective potential (i.e., negative values for

one of them2
i ) or to sizeable mixing between the Higgs and

the new scalar:

m� ¼ mh ¼ cos αϕþ sin αS: ð3:11Þ

Following the analysis of Refs. [12,27], this mixing is

constrained to sinα < 0.44 from present experimental

bounds. In addition, we study the UV consistency of the

model: We integrate the beta functions (enforcing the

scaling assumption) up to the scale at which a Landau

pole or vacuum instability occurs and stop at MPlanck if this

does not occur.

We show a plot of scenario A in Fig. 1, in which the

Higgs is lighter than the new scalar; there is a small window

of allowed couplings which allows for an extrapolation all

the way to the Planck scale. This window translates to a

range of masses

650 GeV < mZ0 < 970 GeV;

160 GeV < mX < 250 GeV: ð3:12Þ

for the dark Z0 boson and the new scalar resonance; see

Fig. 2. As can be seen from the plots of Fig. 3, scenario B

taking the new scalar to be lighter than the Higgs does not

allow for an extrapolation up to the Planck scale for any

coupling.

IV. GILDENER-WEINBERG APPROACH

Here, we study the effective potential of the Hempfling

model using the Gildener-Weinberg method of Ref. [21].

A. Conceptual idea

In their classic quantum field theory paper, Gildener and

Weinberg introduced an elegant formalism to deal with the

perturbative construction of the effective potential in the

presence of multiple scalar vacuum expectation values in

classically scale invariant theories. It represents a gener-

alization of the Coleman-Weinberg idea to the multiscalar

case and is equivalent to it in the single field case. The key

assumption is that the classical potential

V0ðΦ⃗Þ ¼ 1

4
λIJKLΦIΦJΦKΦL ð4:1Þ

has a nontrivial minimum at nonzero field values hΦ⃗i ≠ 0⃗

at a particular scale μGW, the Gildener-Weinberg scale.

This yields certain relations termed R among the couplings

λIJKL,

∂V0

∂Φi

�

�

�

�

μ¼μGW;hΦ⃗i≠0
¼ 0⇒ RðλIJKLÞjμ¼μGW

¼ 0: ð4:2Þ

Due to scale invariance of V0ðΦ⃗Þ, this immediately implies

that one has a vacuum degeneracy of V0 along a ray going

through the origin in scalar field space where the minimal

value of the classical potential is zero,

hΦ⃗i ¼ φn⃗; V0ðhΦ⃗iÞ ¼ 0: ð4:3Þ

Here, φ parametrizes the sliding scale, and we normalize

n⃗2 ¼ 1.
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This vacuum degeneracy of the classical potential may be lifted by quantum fluctuations. Evaluating the one-loop

contribution to the renormalized effective potential along the degenerate vacuum ray, one has

V
ð1Þ
eff ðΦ⃗ ¼ φn⃗Þ ¼ Aφ4 þ Bφ4 ln

φ2

μ2GW
: ð4:4Þ

Here, the functions A and B take the form

A ¼ ℏ

64π2hφi4
X

i

nimi½hφin⃗�4
�

ln
mi½hφin⃗�2

hφi2 − ai

�

¼ ℏ

64π2

X

i

nim̃i½n⃗�4ðln m̃i½n⃗�2 − aiÞ;

B ¼ ℏ

64π2hφi4
X

i

nimi½hφin⃗�4 ¼
ℏ

64π2

X

i

nim̃i½n⃗�4: ð4:5Þ

FIG. 1. Largest possible UV scales in the QP scenario A of the Hempfling model where the Higgs is the lighter scalar particle.
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The vacuum expectation value hφi for the sliding scale

field is radiatively generated, and we generically have

mi½hφin⃗� ¼ hφim̃i½n⃗� such that A and B are in fact inde-

pendent of hφi and are pure functions of the couplings.

The extremum of the one-loop effective potential along the

ray then lies at

hφi
μGW

¼ exp

�

−
1

4
−

A

2B

	

: ð4:6Þ

Hence, as long as A and B are of the same order of

magnitude, the logarithm ln
hφi
μGW

in the effective potential

stays small, and the perturbative expansion is under control.

One also straightforwardly extracts the mass of the excita-

tion along the flat direction n⃗which is the pseudo-Goldstone
boson (PGB) of broken scale invariance. Originally mass-

less, its mass is spontaneously generated by quantum

fluctuations and given by the compact expression

m2
PGB ¼ d2V

ð1Þ
eff ðφn⃗Þ
dφ2

�

�

�

�

φ¼hφi
¼ 8Bhφi2 ð4:7Þ

at one-loop precision. Clearly, a positive B is required in

order to have a minimum of the potential. In conformal

extensions of the standard model, mPGB may or may not be

identified with the Higgs mass.

B. GW for Hempfling model

Let us now analyze the Hempfling model in the

Gildener-Weinberg approach. The classical potential for

the two real scalars ϕ and S reads

V0ðΦ⃗Þ ¼ λ1

4
ϕ4 þ λ12

4
ϕ2S2 þ λ2

4
S4; ðλ1; λ2 > 0Þ;

ð4:8Þ

where the positivity constraint on the scalar couplings

implies stability. A degenerate nontrivial vacuum occurs if

the condition

λ12 ¼ −2
ffiffiffiffiffiffiffiffiffi

λ1λ2
p

ð4:9Þ

is met at μ ¼ μGW. At this scale, the classical potential takes

the simple perfect square form

V0 ¼
� ffiffiffiffiffi

λ1
p

2
ϕ2 −

ffiffiffiffiffi

λ2
p

2
S2
�

2

:

Clearly, we then have a degenerate vacuum along the ray

�

ϕ

S

�

ray

¼ φn⃗ ¼ φ

�

cos α

sin α

�

¼ φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ
1=2
1 þ λ

1=2
2

q

�

λ
1=4
2

λ
1=4
1

�

; with

tan α ¼
�

λ1

λ2

�

1=4

: ð4:10Þ

The particular form of the one-loop functions A and B in

(4.4) may be straightforwardly read off from the results in

(2.6) and (2.8). Remarkably, one finds that all the gauge

parameter-dependent masses mF�, mG�, and mI� vanish

identically on the ray (4.10) upon imposing the relation

(4.9).
1
Hence, in the GW setup with scaling assumptions

λs ∼Oðg2i Þ ∼Oðy2t Þ, we do find explicit gauge invariance

at leading order in perturbation theory. In addition, mE−

vanishes as it corresponds to the tree-level mass of the

pseudo-Goldstone boson excitation along the vacuum ray.

For the nonvanishing dimensionless mass coefficients m̃i,

one then finds [enforcing the conditions (4.9) and (4.10)]

m̃2
A ¼ g22

ffiffiffiffiffi

λ2
p

4ð ffiffiffiffiffi

λ1
p þ ffiffiffiffiffi

λ2
p Þ ; m̃2

B ¼ ðg21 þ g22Þ
ffiffiffiffiffi

λ2
p

4ð ffiffiffiffiffi

λ1
p þ ffiffiffiffiffi

λ2
p Þ ;

m̃2
C ¼ g2

Z0
ffiffiffiffiffi

λ1
p

ð ffiffiffiffiffi

λ1
p þ ffiffiffiffiffi

λ2
p Þ ;

m̃2
Eþ ¼ 2

ffiffiffiffiffiffiffiffiffi

λ1λ2
p

; m̃2
T ¼ y2t

ffiffiffiffiffi

λ2
p

2ð ffiffiffiffiffi

λ1
p þ ffiffiffiffiffi

λ2
p Þ : ð4:11Þ

These are to be inserted into the definitions of the functions

A and B in (4.5). The corresponding masses mi of the W
and Z boson, the dark Z0 boson, the scalar φE as well as the

FIG. 2. Allowed mass ranges for the new scalar and Z’ particles

in the quantum potential scenario A (mX > mh) which are

perturbatively stable up to the Planck scale. The scenario B

(mX < mh) always breaks down before reaching the Planck scale.

1
In a related model, the gauge invariance in the GW approach

was also noted in the Appendix of Ref. [10].
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top quark t are then obtained by multiplying these

expressions by the vacuum expectation value of the sliding

scale hφi, to wit

mW ¼ m̃Ahφi; mZ ¼ m̃Bhφi; mt ¼ m̃Thφi;
mZ0 ¼ m̃Chφi; mE ¼ m̃Eþhφi: ð4:12Þ

The mass of the pseudo-Goldstone boson then follows from

the above and (4.7) to be

m2
PGB ¼ 6m4

W þ 3m4
Z − 12m4

t þ 3m4
Z0 þm4

E

8π2hφi2 : ð4:13Þ

The vacuum expectation value hφi is related to the vacuum

expectation value of the SM-Higgs field hϕi ¼ 246 GeV

via

hφi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ
1=2
1 þ λ

1=2
2

q

λ
1=4
2

hϕi: ð4:14Þ

This relation then determines the masses of the dark Z0

boson and second scalar φE as functions of λ1 and λ2 to be

mZ0 ¼ gZ0

�

λ1

λ2

�

1=4

hϕi; mE ¼
ffiffiffi

2
p

λ
1=4
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ
1=2
1 þ λ

1=2
2

q

hϕi:

ð4:15Þ

Moreover, the relation (4.6) determines the Gildener-

Weinberg scale μGW as a function of λ1 and λ2 and the

SM parameters:

μGW ¼ exp

�

1

4
þ A

2B

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ
1=2
1 þ λ

1=2
2

q

λ
1=4
2

hϕi: ð4:16Þ

All unknown quantities have now been expressed as

functions of λ1 and λ2. Note that all couplings here are

defined at the scale μGW. This means that the SM quantities

need in principle to be RG evolved from the electroweak

scale to μEW. However, as long as the relative factor in (4.16)

is not too different from 1, this effect may be neglected.

Let us now look at the classical mass matrix in detail.

One easily computes

M2
ij ¼

∂2V0

∂ϕi∂ϕj

�

�

�

�

ϕ¼hϕi;S¼hSi

¼ 2hφi2
ffiffiffiffiffi

λ1
p þ ffiffiffiffiffi

λ2
p

 

λ1
ffiffiffiffiffi

λ2
p

−ðλ1λ2Þ3=4

−ðλ1λ2Þ3=4 λ2
ffiffiffiffiffi

λ1
p

!

: ð4:17Þ

The two eigenstates corresponding to the scalar masses

mE and mPGB are expressed in terms of the initial scalar

fields ϕ and S as

φPGB ¼ cos αϕþ sin αS;

φE ¼ − sin αϕþ cos αS;

tan α ¼
�

λ1

λ2

�

1=4

: ð4:18Þ

Importantly, there are now two options to identify the Higgs

mass of mh ¼ 125 GeV with the scalar resonances found:

either mh ¼ mPGB (scenario A) or mh ¼ mE (scenario B).

Either choice determines yet another coupling such that

in the end all quantities depend on just two parameters.

FIG. 3. Largest possible UV scales in the QP scenario B of the Hempfling model where the Higgs is the heavier scalar particle.
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As discussed in the previous section, present observational

bounds at the LHC restrict the allowed mixing in the

extended Higgs sector. The analyses of Refs. [12,27]

restricted the mixing angle ω in the parametrization

(translated to our conventions)

h ¼ cosωϕ − sinωS ð4:19Þ

to j sinωj < 0.44, where h is the Higgs field mass eigenstate.

This translates to the mixing angle bounds j sin αj < 0.44 in

scenario A and j sin αj > 0.90 in scenario B in (4.18).

C. Phenomenological analysis

The key equations are

3m4
Z0 þm4

E ¼ 8π2m2
PGB

ffiffiffiffiffi

λ1
p þ ffiffiffiffiffi

λ2
p
ffiffiffiffiffi

λ2
p hϕi2 þm4

0 ð4:20Þ

mZ0 ¼ gZ0

�

λ1

λ2

�

1=4

hϕi ð4:21Þ

mE ¼
ffiffiffi

2
p

λ
1=4
1 ð

ffiffiffiffiffi

λ1
p

þ
ffiffiffiffiffi

λ2
p

Þ1=2hϕi; ð4:22Þ

where m4
0¼12m4

t −6m2
W−3m4

Z¼ð319GeVÞ4 and hϕi ¼
246 GeV. It is then clear that the mass of the Z0 boson and

the mass of the non-Higgs scalar will depend on a two-

parameter family. In scenario A, we will take fλ1; λ2g,
while in scenario B, we take fλ1; gZ0g as independent

quantities. We randomly generate values for these cou-

plings and check their perturbative validity by demanding

the following bounds,

hφi; μGW ∈ ½24.6 GeV; 2460 GeV�; ð4:23Þ

i.e., these scales are only a factor of 10 away from the

electroweak scale. Beyond this, we would have to RG

evolve the SM parameters to μGW consistently, which we

did not implement in this work. Moreover, hφi and μGW are

also allowed to differ by a factor of 10 in order to avoid

large logarithms. Finally, we constrain the couplings jλij
and jgZ0 j to be numerically smaller than π.

For every pair fλ1; λ2g respectively fλ1; gZ0g the UV-

breakdown scale is computed by integrating the RG

equations using the initial conditions spelled out in the

Appendix. A breakdown is quantified by any gauge

coupling becoming larger than 10 (Landau pole) or the

scalar couplings λ1 or λ2 turning negative (vacuum insta-

bility). For this, the one-loop RG equations of the

Hempfling model were solved numerically, and the break-

down scale ΛUV was recorded for every data point. We

analyzed Oð104Þ random points in both scenarios:

(i) Scenario A (mh ¼ mPGB):

Here, we dial a pair fλ1; λ2g of couplings to

find mE from (4.22). Inserting this into (4.20) yields

mZ0 , and using this in (4.21) finally gives us gZ0 .

The values of fλ1; λ2g were picked randomly in the

interval ½0; π�2. However, it turns out that the mixing

condition j sin α < 0.44j is violated for all perturba-

tively viable resulting pairs fλ1; λ2g in this scenario.

Hence, this model is ruled out by experiment.

(ii) Scenario B (mh ¼ mE):

Now, λ1 and λ2 are not independent. We therefore

dial a pair fgZ0 ; λ1g within ½0; π�2. The coupling λ2
then follows from solving (4.21) to be given by

λ2 ¼
�

m2
h

2
ffiffiffiffiffi

λ1
p hϕi2 −

ffiffiffiffiffi

λ1
p

�

2

: ð4:24Þ

Implementing the mixing constraint tan α > 2.04,

which amounts to λ2 < λ1=2.04
4, yields a very

narrow range for λ1:

λ1 ∈ ½0.104; 0.170�: ð4:25Þ

This forces λ2 to be very small, λ2 < 0.01 and

accordingly jλ12j < 0.08. Then, the mass of the Z0

boson follows directly from (4.21), and the mass of

the non-Higgs scalar mPGB is deduced from (4.20).

After checking the RG evolution of all couplings, we

plot the breakdown scale in heat plots of Fig. 4. One

sees that also the gauge coupling is narrowed down

by the UV conditions to gZ0 < 0.9. Above this value,

it develops a Landau pole before MPl is reached.

Note that the SM value λ1 ¼ m2
h=2hϕi2 ¼ 0.129

leads to a vanishing λ2, which entails a diverging

mZ0 as well as μGW. This leads to a departure from

the perturbative domain of the Hempfling model and

explains the excluded central regions in the plots in

Fig. 4. The observed minimum Z0 mass follows

immediately from (4.20) for a vanishing mPGB to be

mmin
Z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð12m4
t − 6m2

W − 3m4
Z −m4

hÞ=3
4

q

¼ 240.95 GeV; ð4:26Þ

which is reproduced in the data. Below this value,

we have a negative mPGB and hence no second

minimum.

In summary, we conclude that the Hempfling

model in the GW scenario B gives rise to a

perturbatively stable conformal extension of the

SM all the way up to the Planck scale. The allowed

values of mZ0 and the new scalar resonance mPGB

take a lens shape with the range

240 GeV < mZ0 < 1600 GeV;

0 GeV < mX < 250 GeV; ð4:27Þ

see Fig. 5. These values are to be contrasted to the

quantum potential result in (3.12).
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V. SPECIAL CASE: SINGLE SCALAR SM

EXTENSION (gZ0 = 0)

If we set gZ0 ¼ 0, i.e., we decouple the dark Z0, we arrive
at a single scalar extension of the SM Lagrangian. This

model was studied in Ref. [8], and a set of couplings which

led to a minimum of the one-loop effective potential

resembling the standard model vacuum was reported.

This calculation minimized the sum of the tree and one-

loop effective potential without enforcing a hierarchy of

couplings. This is problematic as the absence of the QP

hierarchy assumption leads to the gauge dependence of

physical data extracted from the effective potential; see

Fig. 6. The explicit variation of the mass and the minimum

value of the potential in the setup of Ref. [8] with the gauge

parameter ξ is manifest.

However, using the results of the previous sections, it can

be seen that, independently of the choice of hierarchy, the

single scalar conformal standard model without a gauge

field does not allow for a stable vacuum consistent with

experimental bounds.

FIG. 4. Largest possible UV scales in the GW scenario B of the Hempfling model where the Higgs is not the pseudo-Goldstone boson

(PGB) particle. A random set of 12 000 dials of ðλ1; gZ0Þ in the realm λ1 ∈ ½0.1; 0.17� and gZ0 ∈ ½0; π� were performed and tested for

perturbative viability, and the UV breakdown scale of every point was computed. The nonsmooth jump at λ1 ∼ 0.13 from a UV cutoff at

the Planck scale to around 1012 GeV is due to the onset of vacuum instability (negative λ1 or λ2) at that intermediate scale.
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First, look at the QP hierarchy λi ∼ g4j. In the limit of

vanishing gZ0 , the mass matrix (3.5) for the scalar field

becomes

M2
ij ¼

 

−
m4

0

8π2hϕi2 − λ12hSi2 λ12hSihϕi
λ12hSihϕi −λ12hϕi2

!

: ð5:1Þ

Both mass eigenvalues are real if and only if both the trace

and the determinant of this matrix are non-negative. This

leads to

0≤
λ12m

4
0

8π2
; 0≤−

m4
0

8π2hϕi2−λ12ðhSi2þhϕi2Þ: ð5:2Þ

Recall that m4
0 ¼ ð319 GeVÞ4 is a positive number.

Therefore, the first condition can only be met if λ12 ≥ 0.

But then the second condition is violated, leading us to

conclude that within this hierarchy there is no choice of

couplings for which both mass eigenvalues turn out positive.

Now, we turn to the GW scenario with λi ∼ g2j . For this

assumption, we discussed two possible cases: The PGB of

scale invariance could be identified with either the Higgs or

the new scalar.

For the first case, there are no regions of the perturbative

parameter space in which the mixing constraint

sin α ≤ 0.44 ð5:3Þ

for the mixing angle between ϕ and S can be satisfied. This

argument is independent of the value of gZ0 and stays valid

in the decoupling limit.

In the second case, on the other hand, the formula for the

mass of the new scalar (4.13) with vanishing mZ0 reads

m2
X ¼ 6m4

W þm4
Z − 12m4

t þm4
h

8π2hφi2 < 0 ð5:4Þ

and predicts a negative mass squared, implying that there is

no stable minimum of the effective potential. Hence, this

model is ruled out.

VI. CONCLUSIONS

Since the seminal paper by Coleman and Weinberg [28],

it has been an attractive theoretical concept that mass scales

could be generated via quantum corrections to a classically

scale-free model. Even more appealing is the scenario of

such a mechanism underlying electroweak symmetry

breaking in nature, which has been of considerable interest

in the past; see e.g., Refs. [6–15]. The central task here is to

establish a perturbatively consistent and gauge invariant

formalism to minimize the effective potentials of such

conformally extended standard models. In this paper, we

have compared the two prevailing approaches in the

FIG. 6. Dependence of the minimum value of the effective potential and effective Higgs mass on the gauge parameter ξB ¼ ξW ¼
ξZ0 ¼ ξ in the standard model extended by a single scalar field without enforcing a certain hierarchy of couplings.

FIG. 5. Allowed mass ranges for the new scalar and Z0 particles
in the Gildener-Weinberg scenario B which are perturbatively

stable up to the Planck scale.
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literature in a simple model: the original Coleman-

Weinberg approach in its refined QP formulation and the

GW method [21], which was designed to circumvent the

multiple-scale problem of the Coleman-Weinberg approach

in the multiscalar case. The central message of our work is

that they are inequivalent as they inherently build on

different scaling assumptions for the scalar and gauge/

Yukawa couplings. While this might be a posteriori

unsurprising, it has not been appreciated adequately in

the phenomenological literature, in which the focus is on

the models and not on the method of minimizing the

effective potential.

Each of the two scenarios has its own justification. The

Gildener-Weinberg method represents the established

framework for studying multiscalar effective potentials

and requires the ordinary loop hierarchy of coupling

constants λs ∼ g2i . On the other hand, recent results on

gauge invariance in the context of the standard model

motivate the alternative hierarchy assumption λs ∼ g4i ,

which we dubbed the quantum potential approach. These

two different scalings may be thought of as alternative

“sectors” or phases of a given model. Here, we emphasize

that it is not sufficient to study only one sector (one scaling

assumption) in order to exclude a model by phenomeno-

logical data. In addition, we have shown that both the QP

and the GW methods yield gauge invariant results, at least

to the one-loop order.

If different methods yield different phenomenological

predictions, which approach should one use? Theoretically

speaking, the answer is clear: The scaling pattern of the

couplings determines the method to use. However, in

the model building for conformally extended standard

models, the scalar couplings λs are part of the undetermined

parameters. Hence, a thorough analysis of a given model

necessitates the application of both methods and studying

their phenomenological consequences. In practice, how-

ever, the situation is further complicated by the need to

overcome the multiple-scale problem in multiscalar poten-

tials within the QP approach.

In order to disentangle these two issues (QP vs GW

approaches and the multiscale problem), we studied a

simple enough conformal extension of the SM, where the

multiscale issue is delayed to the two-loop order. This is

the Hempfling model, which represents the historically

first phenomenological example of a conformal standard

model extension. In addition to the standard model field

content, this theory includes a new scalar and a new U(1)

gauge field without kinematic mixing. As argued in

Sec. V, a further reduction of the field content does not

result in a phenomenologically viable model. Hence, in

this sense, the Hempfling model is minimal. In particular,

we explicitly determined and compared the allowed

ranges for the new masses and coupling constants, which

are compatible with experimental constraints on the scalar

mixing angle and the absence of Landau poles and

instabilities up to the Planck scale. Notably, both the

QP and GW methods yield a stable and perturbatively

consistent conformal modification of the standard model

all the way up to the Planck scale, which reproduces the

correct Higgs mass.

It turns out that the allowed combined mass regions for

the new particles have no overlap; see Fig. 7. Still, the

allowed intervals for the individual masses of the new

gauge field and scalar are not disjoint:

Hence, the obtained results at least indicate in which mass regions new particles should be expected in order to realize the

generation of the electroweak scale by conformal symmetry breaking.

FIG. 7. Comparison of GW and QP approaches for the masses

of the new scalar and Z0 boson in the Hempfling model. Only data

points with a UV cutoff at the Planck scale are plotted. Obviously,

there is no overlap.
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We emphasize that, as opposed to the much simpler

original Coleman-Weinberg model, our hierarchy assump-

tions have not been proven. Moreover, an analogous

reasoning that relies on analytic solutions to the RG

equations seems currently out of reach. It would thus be

interesting to explore the consequences of alternative

hierarchies, in which e.g., only one of the scalar coup-

lings λi is of the order g4j. It might also be interesting to

draw connections to the functional renormalization group,

cf. e.g., Ref. [29].

A very important point is the extension of our analysis

to higher loop orders. While our prescription for the

Hempfling model effectively results in a one-scale problem

at one-loop order, extending the QP approach to higher

loops will most likely face the problem of multiscale

renormalization. This is a clear advantage of the GW

method, which avoids this problem by construction. On

the other hand, this fact does not necessarily imply the

correctness of the latter approach for generic models. It

would thus be important to continue and extend the

presented comparison between different methods for the

extraction of phenomenological data from effective poten-

tials. Notably, various different ways of treating perturba-

tive calculations with multiple scales have been proposed

in the past; see e.g., Refs. [17,18,20–22]. Very recently, a

new method was suggested in Ref. [22] and assumes the

existence of a renormalization scale μCPSSðϕÞ, where all

loop corrections to the effective potential vanish. The

vacuum is then obtained by minimizing the tree-level

potential Vð0Þ ¼ λiðμCPSSðϕÞÞϕ4 with running couplings.

It would be very interesting to compare all techniques in a

two-loop computation in the context of a simple model.

This should help to evaluate the methods’ compatibility,

perturbative consistency, and gauge independence.

While qualitatively pointing at a problem in the identi-

fication of phenomenological models via perturbative

methods, quantitatively our analysis is certainly incomplete

with regard to the gravitational interaction. Importantly,

gravity introduces the Planck scale of which the naive

treatment immediately violates conformal symmetry. Still,

proposals for conformal extensions of the standard model

exist and include the dynamic generation of the Planck

scale; see e.g., Refs. [30]. Moreover, coupling the standard

model to gravity necessarily induces higher interaction

vertices of the scalar fields, even at the one-loop level [31].

These modify the effective potential and should thus be

incorporated into an analysis to draw further conclusions on

the viability of the considered models.
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Note added.—Simultaneously with the current paper,

Ref. [32], which has some overlaps with the ideas of

our article and contains interesting complementary results,

appeared on the arXiv.

APPENDIX: PHENOMENOLOGICAL DATA

Let us collect the phenomenological data which we use

throughout the paper [33]. The masses of the gauge bosons

are

mW ¼ 80.385� 0.015 GeV;

mZ ¼ 91.1876� 0.0021 GeV; ðA1Þ

the top mass is

mt ¼ 173.1� 0.6 GeV; ðA2Þ

and the mass and vacuum expectation value of the Higgs

take the values

mH ¼ 125.09� 0.24 GeV;

hϕi ¼ 246.21971� 0.00006 GeV: ðA3Þ

The quartic Higgs coupling λ is not known from experi-

ment, but in the standard model, it can be deduced from the

values formH and hϕi. In extensions of the standard model,

this relationship will necessarily be modified; in any case,

λ is not an independent input parameter in the models

considered. Since in all our extensions it is still only one

Higgs doublet which couples to the gauge bosons, we

assume that hϕi as given in (A3) stays the correct expect-

ation value for the interaction eigenstate, even in cases in

which the mass eigenstate of the Higgs boson differs by

some mixing with another scalar. For the renormalization

group evolution, we use the initial values [2]

g1½mt� ¼ 0.3583; g2½mt� ¼ 0.64779;

g3½mt� ¼ 1.1666; yt½mt� ¼ 0.9369 ðA4Þ

at the mt scale.
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