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Consistent decrease in North Atlantic Tropical
Cyclone frequency following major volcanic
eruptions in the last three centuries
A. Guevara-Murua1,2, E. J. Hendy1,2, A. C. Rust1,2, and K. V. Cashman1,2

1School of Earth Sciences, University of Bristol, Bristol, UK, 2Cabot Institute, University of Bristol, Bristol, UK

Abstract Injection of sulphate aerosols into the stratosphere following major volcanic eruptions alters
global climate through the absorption and scattering of solar radiation. One proposed consequence is a
decrease in North Atlantic Tropical Cyclone (TC) activity, as was observed following the El Chichón (1982) and
Mount Pinatubo (1991) eruptions. We test this relationship using documentary and proxy reconstructions of
major volcanic eruptions and TC frequency in the North Atlantic basin over the last three centuries. We find a
consistent reduction in the number of TCs formed during the 3 years following major eruptions compared
to the preceding 3 years, including after eruptions located at northern high latitudes. Our findings suggest
that low-latitude eruptions reduce Atlantic TC frequency by decreasing local sea surface temperatures,
whereas the mechanisms for the decrease in TC frequency following high-latitude eruptions are less clear
and attribution is hampered by poor identification of these events.

1. Introduction

Tropical Cyclone (TC) activity over the North Atlantic basin was reduced after the volcanic eruptions of Mount
Pinatubo (Philippines, 1991) and El Chichón (Mexico, 1982) [Evan, 2012]. These two eruptions have become
the model for predicting how radiative forcing by stratospheric aerosols can alter TC formation [e.g., Emanuel
et al., 2013; Caron et al., 2015]. Strong eruptions emit SO2 that oxidizes to form long-lived stratospheric
sulphate aerosols, which decrease sea surface temperatures by backscattering solar radiation and increase
temperatures at the tropopause and in the lower stratosphere through absorption of longwave and short-
wave radiation [Robock, 2000]. These climate system responses should affect TC number and intensity in
the North Atlantic [Evan, 2012; Korty et al., 2012]; understanding how sulphate aerosols affect TC activity is
important not only for understanding climate impacts of volcanic activity but also for anticipating the effects
of geoengineering strategies that involve stratospheric radiation management [e.g., Robock et al., 2008;
MacCracken, 2009; Robock et al., 2013].

Direct attribution of rare forcing events is hampered by high interannual to decadal background TC variability
in the North Atlantic basin of both natural [e.g., Goldenberg et al., 2001; Camargo et al., 2010] and anthropo-
genic [e.g., Holland and Webster, 2007; Dunstone et al., 2013] origin. Eruption impact on TC activity may also
depend on season, climate boundary conditions, and volcano location. For example, the consequences for
hemispheric and zonal temperature gradients are very different for major low-latitude tropical eruptions,
where aerosols have long stratospheric residence times and disperse globally [Robock, 2000], compared with
high-latitude eruptions where aerosols are dispersed regionally and rarely reach the tropics [e.g., Oman et al.,
2005; Schneider et al., 2009]. Moreover, both the Pinatubo and El Chichón eruptions occurred during the posi-
tive phase of the El Niño–Southern Oscillation (ENSO), when TC activity is reduced because of enhanced vertical
wind shear [Gray, 1984; Goldenberg and Shapiro, 1996] and suppressed axisymmetric organization of deep
convection [Goldenberg et al., 2001]. Assessing the impact of the June 1991 Pinatubo eruption is further
complicated by a second stratospheric eruption—Cerro Hudson, Chile (46°S)—that occurred 2months later.

Importantly, short instrumental observation records limit the analysis of the possible response of Atlantic TCs
to major volcanic eruptions: aircraft reconnaissance started in 1944 and satellite data dates from the 1960s
[Jarvinen et al., 1984; Neumann et al., 1985]. Longer records of TC frequency can be obtained from historical
documents such as ship logs, meteorological journals, and newspapers [e.g., Chenoweth and Divine, 2008;
Chenoweth, 2014]. Past volcanic aerosol records can also be reconstructed from sulphate in ice cores [e.g.,
Sato et al., 1993; Crowley et al., 2008; Gao et al., 2008]. Although the level of accuracy is lower than direct
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observations, employing these proxy sources of information increases the record length available for study.
The same data permit hypothesis testing, such as whether TC genesis consistently shifts from the Mean
Development Region (MDR; 8°–20°N and 20°–65°W) towards the north and west, as identified by Evan
[2012] following the Pinatubo and El Chichón eruptions. In this study we use TC counts following eruptions
over the last three centuries to address the following questions: (1) Do major volcanic eruptions reduce TC
frequency in the North Atlantic Basin? (2) Is TC frequency sensitive to the location (latitude) of the volcanic
eruption? (3) Does the location of North Atlantic TC formation shift following major volcanic eruptions?
Finally, we explore the various volcanic aerosol-induced mechanisms that may explain the TC responses
observed following eruptions over the last three centuries.

Figure 1. Volcanic aerosol forcing records and post-eruption TC anomalies. (a) Global annual mean stratospheric aerosol
optical depth (SAOD) since 1690 [Crowley and Unterman, 2013; Gao et al., 2008] and since 1850 [Sato et al., 1993]. (b) SAOD
distribution between Northern (NH) and Southern (SH) Hemispheres for low-latitude and high-latitude volcanic eruptions
(using CU13 data set) where a positive value means higher SAOD in the NH relative to the SH. (c) Mean difference in TC

frequency for each major volcanic eruption ΔTC f
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, where y is the first

post-eruption year, calculated using the reconstructed TC time series of CD08 [Chenoweth and Divine, 2008], HURDAT2, and
the U.S. Hurricane landfall database [Landsea et al., 2004; Landsea and Franklin, 2013].

Geophysical Research Letters 10.1002/2015GL066154

GUEVARA-MURUA ET AL. VOLCANIC ERUPTIONS AND TC FREQUENCY 9426



2. Data
2.1. Volcanic Forcing Indices

We use three global volcanic forcing indices to reconstruct past volcanism (Figure 1). Sato et al. [1993] (hereafter
ST93) estimates Stratospheric Aerosol Optical Depth (SAOD) at 550nm from ejecta volume (fromMitchell [1970]
for 1850 to 1882), ground-basedmeasurements of atmospheric extinctions (1883 to 1978), and satellitemeasure-
ments (from 1979). Crowley and Unterman [2013] (CU13) also estimate SAOD at 550nm but as derived from sul-
phate concentrations in 22 ice core records from Greenland and Antarctica over the last 1200 years. Gao et al.
[2008] (GAO08) estimate the mass of stratospheric aerosols produced by eruptions in the last 1500 years based
on 54 polar ice core records; we convert mass into SAOD by dividing the loadings by 150 Tg [Stothers, 1984].

For each volcanic forcing index, we classify eruptions based on magnitude, annual global average SAOD, and
latitude (Table 1). The largest category (All) includes every eruption that caused 20% of the global annual
mean SAOD of the Pinatubo eruption (SAOD≈ 0.02). This threshold allows us to evaluate eruptions with
the potential to impact climate (regional or global), while limiting inclusion of minor high-latitude eruptions
recorded because of their proximity to the ice cores. In total, there were 25 major volcanic eruptions (16 low
latitude and 9 high latitude) between 1690 and 2000 that fulfilled our criteria (Table 1). We subdivide the All
category into two further categories based on volcano location: Low Latitude (20°N–20°S) and High Latitude
(poleward of 40°N). Note that no confirmed annual average SAOD> 0.02 signals exist for subtropical or
Southern Hemisphere (SH) high-latitude eruptions during this time. Finally, we consider a fourth category
of the most extreme low-latitude volcanic eruptions (annual average SAOD> 0.05, ~40% of the global mean
SAOD of the Pinatubo eruption; Low Latitude (SAOD> 0.05)).

2.2. North Atlantic Tropical Cyclones

We compare historical TC frequency data from the last 300 years using two data sets, each covering a different
area of the North Atlantic Basin. The revised Atlantic HurricaneDatabase (HURDAT2) [Landsea and Franklin, 2013]

Table 1. List of Major Volcanic Eruptions in Last 300 Years Used in this Studya

Volcano Latitude Longitude VEI Eruption Month Year SAOD Range ST93 GAO08 CU13 First Post-Eruption Year

Seruab 6.3°S 130°E 4 June 1693 0.09–0.17 ✓ ✓ 1693
Unknown NH 1719 0.11 ✓ - 1719
Unknown NH 1729 0.04 ✓ - 1730
Shikotsu 42.7°N 141.4°E 5 August 1739 0.04 - ✓ 1740
Katla 63.6°N 19.1°W 5 October 1755 0.03 ✓ - 1756
Makian 0.3°N 127.4°E 4 September 1760 0.04 ✓ - 1761
Laki 64.4°N 17.3°W 4 May 1783 0.04–0.31 ✓ ✓ 1783
Unknown NH 1796 0.02 ✓ - 1796
Unknownb,c TROP December 1808 0.18–0.2 ✓ ✓ 1809
Tambora 8.3°S 118°E 7 April 1815 0.36–0.37 ✓ ✓ 1815
Babuyan Clarob 19.5°N 121.9°E 4 September 1831 0.06–0.1 ✓ ✓ 1832
Cosiguinab 12.9°N 87.6°W 5 January 1835 0.13–0.13 ✓ ✓ 1835
Awu 3.7°N 125.5°E 3 March 1856 0.06 ✓ - - 1856
Makian 0.3°N 127.4°E 4 December 1861 0.05 - - ✓ 1862
Krakataub 6.1°S 105.4°E 6 August 1883 0.07–0.16 ✓ ✓ ✓ 1883
Colima? 19.5°N 103.6°W 4 January 1890 0.04 ✓ - - 1890
Santa Maríab 14.8°N 91.6°W 6 October 1902 0.07–0.07 ✓ - ✓ 1903
Novarupta 58.3°N 155.2°W 6 June 1912 0.02–0.04 ✓ ✓ ✓ 1912
Unknown NH 1925 0.04 - ✓ - 1925
Unknown NH 1943 0.02 - ✓ - 1944
Agung 8.3°S 115.5°E 5 March 1963 0.06–0.07 ✓ ✓ ✓ 1963
Fernandina 0.4°S 91.6°W 4 June 1968 0.03 ✓ - - 1968
Fuego 14.5°N 90.9°W 4 October 1974 0.03 ✓ - - 1975
El Chichónb 17.4°N 93.2°W 5 March 1982 0.05–0.08 ✓ ✓ ✓ 1982
Pinatubo 15.1°N 120.4°E 6 June 1991 0.1–0.13 ✓ ✓ ✓ 1991

aThe “check” and (“hyphen”) marks the eruptions included (not included) in the corresponding volcanic forcing index and reported as having at least (less than)
20% of the global annual mean SAOD of the Pinatubo (1991) eruption. VEI corresponds to the volcanic explosivity index, which measures the explosiveness of a
volcanic eruption on a scale from 0 to 8 [Newhall and Self, 1982]. Low-latitude volcanic eruptions in bold had SAOD > 0.05.

bIndicates eruptions (SAOD> 0.05) that injected more aerosols into the NH with respect to the SH according to the CU13 volcanic forcing index (Figure 1).
cDate is from Guevara-Murua et al. [2014].
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includes the annual number of TCs formed in the North Atlantic Basin since 1851. It uses data from land stations
and ships at sea in the early period, supplemented with aircraft reconnaissance after 1944 and satellite data
after the 1960s [Jarvinen et al., 1984]. We also use the HURDAT2 subset of U.S. Hurricane Landfalls reported from
1851 [Landsea et al., 2004; Landsea and Franklin, 2013]. Chenoweth and Divine [2008] (hereafter CD08) is the
most comprehensive and longest document-based time series of TC activity within the North Atlantic Basin;
it reconstructs the annual number of TCs since 1690 that passed near the Lesser Antilles (along the 61.5°W
meridian from the coast of South America to 25°N). From both HURDAT2 and CD08 databases, we consider only
tropical storms and hurricanes (sustained surface winds >17m/s and >33m/s, respectively).

3. Methods

To establish the first year in which TC frequency was affected by each eruption (first post-eruption year;
Table 1), we consider the response time of mechanisms involved in TC formation. The El Chichón and
Mount Pinatubo eruptions caused upper troposphere warming (70 hPa) and sea surface temperature (SST)
cooling over the MDR coincident with the stratospheric aerosol injection [Evan, 2012]. Stratospheric forcing
from low-latitude eruptions should affect TC formation rapidly and continue until the stratospheric aerosol
concentrations decay to pre-eruption values (assumed to follow an e-folding residence time of 1 year)
[Robock, 2000]. The most active months of TC activity over the North Atlantic Basin are August–October
[Neumann et al., 1985]; we assume that at least two of these months need to be affected by aerosol forcing
to consider the year as post-eruption (i.e., the first post-eruption year for low-latitude eruptions will only be
the same calendar year as the eruption if it occurs before September). One third of the selected SAOD peaks
are derived from Northern Hemisphere (NH) high-latitude eruptions, and over half of these are of “unknown”
origin (Table 1). We propose that only eruptions from the first half of the year (January–June) will affect the TC
season of the same calendar year. If the eruption is “unknown,” the first post-eruption year is assigned based
on the first appearance date of the aerosols in the volcanic forcing index.

To evaluate which eruption categories decrease TC frequency, we compare the number of TCs formed during
the 3 years preceding the eruptions (pre-eruption years) to those formed during the 3 years following the
eruptions (post-eruption years). The statistical significance of any decrease in TC counts in each category is
assessed by a Wilcoxon rank sum test and by a one-tailed T test (if normally distributed). We also examine
changes in TC genesis location over the MDR between pre-eruption and post-eruption years using the
HURDAT2 database. The genesis location is defined as the point where each storm reached tropical or extra-
tropical storm status (maximum sustained surface winds >17m/s). We determine the annual percentage of
TCs formed in the MDR latitudes with respect to the whole North Atlantic Basin and test for a decrease in the
post-eruption years as described above.

4. Results
4.1. Testing for a Volcanic Impact on TC Number

Figure 2 shows the median and population distribution of TC counts for the 3 years before and after volcanic
eruptions since 1851 (Figure 2a) and since 1690 (Figures 2b and 2c). From the CD08 database, these show a con-
sistent reduction of 1 TC per year in the 3 post-eruption years, independent of the volcanic eruption category.
The reduction in TC counts for All volcanic eruptions is statistically significant (p value< 0.05), independent of
the volcanic forcing index used, while the decrease for Low Latitude eruptions is statistically significant in the
GAO08 and ST93 volcanic forcing indices (statistics in Table S1 in the supporting information). The GAO08
volcanic forcing index also shows a statistically significant reduction in TCs (p value< 0.05) following the
category of NH High Latitude eruptions; however, the relationship is not significant for CU13.

Results are consistent for both TC databases: HURDAT2 (Figures 2d–2f) shows a significant decrease of up to 2
TCs per year for All eruptions (CU13 and ST93 volcanic forcing indices) and up to 3.5 TCs per year for the erup-
tion subsets Low Latitude and Low Latitude (SAOD> 0.05) (Figures 2d–2f; supporting information Table S1).
The reduction of 2 TCs per year after NH High Latitude eruptions (GAO08 since 1851, n=3), however, is not
statistically significant (Figure 2e). By comparing TC counts of three post-eruption years with respect to the
three pre-eruption years, our results are insensitive to potential bias associated with storm underrecording
in the past. We further demonstrate this by repeating the exercise using (1) the Vecchi and Knutson [2008]
(1878–2006) adjustment for the HURDAT2 database, which estimates TC undercounts by overlapping ship
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positions for the presatellite period with the TC tracks of the satellite era (supporting information Table S1),
and (2) the Chenoweth [2014] (1851–1898) TC database of the full North Atlantic, which includes an average
of 4 TCs per year more than the HURDAT2 database for the same period. Finally, we see a statistically signifi-
cant decrease in Hurricane landfall frequency (1 Hurricane per year) using the U.S. Hurricane landfall database
for All, Low Latitude, and Low Latitude (SAOD> 0.05) categories of volcanic eruptions in CU13, although not
for GAO08 and ST93 (supporting information Figure S2 and Table S1).

4.2. Changes in TC Genesis Location

There is a significant (14–19%) decrease in the proportion of TCs formed across MDR latitudes relative to total
TC counts in the North Atlantic Basin after (1) Low Latitude and Low Latitude (SAOD> 0.05) eruptions in all
volcanic forcing indices, and (2) for All eruptions in ST93 and CU13 (Wilcoxon rank sum test; supporting
information Figure S1 and Table S1). The decrease in the proportion of TCs formed in the MDR after NH
High Latitude volcanic eruptions (GAO08) is not statistically significant.

5. Discussion and Conclusion

The reduction in TC activity following the eruptions of Mount Pinatubo (1991) and El Chichón (1982) has been
attributed to aerosol radiative forcing [Evan, 2012]. The present study supports this hypothesis and shows a
consistent decrease in the number of TCs for a period of 3 years following major volcanic eruptions in the last
three centuries (Figures 1 and 2). The decrease is also associated with a small reduction in the proportion of
TCs formed within MDR latitudes relative to the total TC counts in the North Atlantic Basin (HURDAT2;
Figure S1 and Table S1). Although this result is dominated by the strong shift in TC genesis location following
both the Pinatubo (1991) and El Chichón (1982) eruptions and confounded by the incomplete HURDAT2
record for the MDR prior to the 1940s [e.g., Landsea, 2007], the post-eruption reduction of TCs recorded in
the Lesser Antilles document-based TC time series [Chenoweth and Divine, 2008] (Figures 2a–2c) provides

Figure 2. TC counts (from (a–c) the Chenoweth and Divine [2008] database and (d–f) from the HURDAT2 database [Landsea and Franklin, 2013]) in the years before
and after stratospheric volcanic aerosol forcing by major volcanic eruptions, according to volcanic forcing indices of Sato et al. [1993] (Figures 2a and 2d); Gao et al.
[2008] (Figures 2b and 2e); and Crowley and Unterman [2013] (Figures 2c and 2f). Four categories of eruptions are considered, All, Low Latitude, Low Latitude
(SAOD> 0.05) and NH High Latitude, and “n” indicates the number of eruptions in each category. The box plot outlines themedian, 25 and 75% quartiles and range of
TC counts for each population; only the median is displayed if n = 1. An “asterisk” denotes a statistically significant decrease in TCs between pre-eruption and
post-eruption years at p value< 0.05 (Wilcoxon rank sum test; full statistics are given in the supporting information Table S1).
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additional support for a northward and westward shift in TC genesis away from these islands following major
volcanic eruptions.

The significant decrease in TC frequency after Low Latitude eruptions coincides with a reduction in SSTs over the
MDR according to the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST1) database [Rayner et al.,
2003] (supporting information Figure S3). SST is a well-recognized factor controlling TC formation [e.g., Gray,
1968, 1979, 1981] and is a mechanism by which volcanic eruptions could affect TC frequency [Evan, 2012].
ENSO events also affect TC activity [Gray, 1984; Goldenberg and Shapiro, 1996], and since large-volcanic eruptions
(SAOD of Pinatubo or greater) may increase the likelihood of El Niño [Emile-Geay et al., 2008], any indirect El Niño-
related dynamics would also contribute to the post-eruption decrease in TC activity. Since 1871, the extended
instrumental Multivariate ENSO Index (MEI.tex; 1871–2005) [Wolter and Timlin, 2011] shows an ~18% increase in
the number of moderate to strong El Niño years within the post-eruption relative to pre-eruption years used in
our analysis. While these results indicate a role for ENSO in our results, this bias toward El Niño events is not found
for post-eruption years earlier in the record (1690–1871) based on the ENSO proxy reconstruction of Gergis and
Fowler [2009], although the same decrease in TC counts (1 TC per year according to the CD08 database) is
observed for both the early (1690–1871) and late (1871–2005) post-eruption years. In support of Emile-Geay
et al. [2008]’s conclusion that El Niño events are not triggered by aerosol forcing, and that even large low-latitude
volcanic eruptions (e.g., Pinatubo; Figure 2) only increase the probability of a positive ENSO phase by 50%, we note
that the eruptions of Serua (1693), Babuyan Claro (1831), and Krakatau (1883) were not directly followed by mod-
erate to strong El Niños. The fact that a strong decrease in TC counts is observed after each of these eruptions
(Figure 1)—Serua (4 TCs in total for 3 post-eruption years; CD08), Babuyan Claro (7 TCs in total; CD08), and
Krakatau (1883; 8 TCs in total; HURDAT2)—reinforces the direct link between TC activity and radiative forcing
by stratospheric aerosols.

Insights are also gained from considering TC frequency data after specific eruptions, including those that do
not fit the general trends (Figure 1). There are a few strong (SAOD> 0.05) low-latitude volcanic eruptions,
such as the “Unknown” eruption in December 1808 [Guevara-Murua et al., 2014], Tambora (Indonesia, 8.3°S,
1815), Cosiguina (Nicaragua, 12.9°N, 1835), and Agung (Indonesia, 8.3°S, 1963), that are not followed by a
decrease in TC counts (Figure 1). The apparent increase in TC frequency after the Cosiguina eruption could
reflect the small number of TCs for the three Cosiguina pre-eruption years, which overlapped with the
post-eruption years of the Babuyan Claro (Philippines, 19.5°N, 1831) eruption. The increase in TCs after
the “Unknown” volcanic explosivity index 6 (VEI6) eruption of 1808 [Guevara-Murua et al., 2014] may reflect
the opposing influence of the strong 1809–1811 La Niña event [Gergis and Fowler, 2009], which may have
countered volcanic forcing from an eruption that injected approximately twice the stratospheric aerosols
of the Mount Pinatubo 1991 eruption [Crowley and Unterman, 2013].

The increased TC counts after both the Tambora (1 TC in total for the three post-eruption years; Figure 1) and
Agung eruptions (0–4 TCs in total for the three post-eruption years depending on TC database; Figure 1) are more
puzzling, since both produced abundant stratospheric sulphate and the Agung eruption was followed by two
El Niño years (first and third post-eruption years). The case of Tambora (Indonesia, 1815), one of the largest volca-
nic eruptions of the last millennium, is particularly interesting since it had a strong influence on global climate and
occurred within the coldest decade in the last 500 years [e.g., Jones et al., 1995; Briffa et al., 1998; D’Arrigo et al.,
2009]. Although small, the increase in TC frequency after the Tambora 1815 eruption also conflicts with the lower
TC activity postevent predicted in amodeling study [Korty et al., 2012]. Could this divergence reflect the pattern of
aerosol distribution between the hemispheres? Both Tambora and Agung volcanoes lie at 8°S. Importantly, these
two eruptions are the only major low-latitude eruptions since 1690 that injected more aerosols into the SH than
the NH (Figure 1) [Crowley and Unterman, 2013; Arfeuille et al., 2014]; and in the case of the 1963 Agung eruption,
the stratospheric aerosols were mainly confined to the SH [Crowley and Unterman, 2013; Arfeuille et al., 2014]. To
understand the consequences for TC frequency, we need information from modeling experiments and more
historic SH eruptions with an asymmetric distribution of aerosols between hemispheres.

The opposite situation, an asymmetric SAOD with a NH bias, was a contributing factor proposed by Evan
[2012] to explain the decrease in TC formation and the north and westward shift in TC genesis location
following the El Chichón eruption (Mexico, 17°N, 1982). Aerosols from El Chichón were retained almost
exclusively within the NH stratosphere (Figure 1) causing a stronger aerosol direct radiative forcing in the
NH with respect to the SH tropics [Evan, 2012]. This asymmetry forced a southward meridional SST gradient
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(�0.7°C from 30°S to 30°N) [Evan, 2012], a feature linked to an increase in vertical wind shear over the tropical
North Atlantic, reduced TC activity, and a movement of the TC genesis location away from the MDR [Kossin
and Vimont, 2007; Vimont and Kossin, 2007]. Of the low-latitude eruptions since 1690 that injected more
aerosols into the NH, only Babuyan Claro (Philippines, 19.5°N, 1831) and Santa María (Guatemala, 14.8°N,
1902) caused NH-biased stratospheric aerosol distributions equivalent to or more extreme than the
El Chichón eruption (Figure 1; CU13). The reduction of 2 TCs per year observed after Babuyan Claro supports
Evan’s [2012] hypothesis, although the effects of the Santa Maria eruption are less clear: TC counts decrease
for the second and third post-eruption years in HURDAT2 but not in CD08 database. As with the asymmetric
SAOD events where aerosol dispersal was disproportionally in the SH (Tambora and Agung), further evidence
for the relation between radiative forcing and SST gradient requires data from a greater number of historic
NH SAOD biased events like Babuyan Claro, Santa María, and El Chichón.

We also see a consistent decrease in the number of TCs (CD08) after the category High Latitude eruptions
(eight NH volcanic events in GAO08 volcanic forcing index; Figure 2 and Table S1). As aerosols produced
by NH high-latitude eruptions do not usually reach the tropics [e.g., Oman et al., 2005; Oman et al., 2006;
Kravitz and Robock, 2011], the mechanism for TC reduction is not expected to involve changes in local upper
tropospheric temperature and SSTs over the MDR. Indeed, no post-eruption SST signal is observed for high-
latitude eruptions in the MDR (supporting information Figure S3 and Table S1), and there is no shift in TC gen-
esis location (Table S1). Instead, the decrease in TC counts after high-latitude eruptions may be associated with
the latitudinal asymmetry of aerosol distribution. Haywood et al. [2013] modeled stratospheric aerosol injection
from NH volcanic eruptions and identified a southward Atlantic SST gradient (stronger SST decrease to the
north) and regional hydroclimatic changes (weakening of the West African monsoon and reduced Western
Sahel precipitation). The paucity of volcanic events and the relatively high number of high-latitude eruptions
of unknown source add considerable uncertainty to interpretations of ways in which these eruptions affect
North Atlantic climate. For example, our assessment that SST and genesis location in the MDR are not affected
by NH high-latitude eruptions is based on only three eruptions (GAO08; Figure 1) that overlap with the SST
(HadISST1 database) [Rayner et al., 2003] and HURDAT2 records, two of which are twentieth century “unknown”
eruptions recorded only by GAO08 and omitted from other volcanic forcing indices [e.g., Arfeuille et al., 2014].
Improving the identification of NH high-latitude volcanic eruptions is therefore a critical next step.

To summarize, our study demonstrates the importance and utility of proxy-based time series for testing
volcanic forcing effects on TC frequency over the North Atlantic basin. We demonstrate that TC counts are
sensitive to the stratospheric aerosol radiative forcing caused by volcanic aerosols. Moreover, we highlight
the importance of combining data from historical documents and other proxy sources with modeling studies
to improve our understanding of how volcanic eruptions at all latitudes affect TCs and climate.
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