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Consistent description of quantum Brownian motors operating at strong friction
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A quantum Smoluchowski equation is put forward that consistently describes thermal quantum states. In
particular, it notably does not induce a violation of the second law of thermodynamics. This so modified kinetic
equation is applied to studgnalytically directed quantum transport at strong friction in arbitrarily shaped
ratchet potentials that are driven by nonthermal two-state noise. Depending on the mutual interplay of quantum
tunneling and quantum reflection these quantum corrections can induce both, a sizable enhancement or a
suppression of transport. Moreover, the threshold for current reversals becomes markedly shifted due to such
guantum fluctuations.
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I. INTRODUCTION particle this yields the Kramers equation which in the strong

Brownian motors are small physical machines that operfriction limit reduces to the Smoluchowski equation. In
ate far from thermal equilibrium by extracting energy fluc- quantum statistical physics the description of Brownian mo-
tuations to generate work against external lopdg]. They  tion dynamics is distinctly more intricate; it has been worked
present the physical analog of biomolecular motors that diout, however, in some detail within limited generality using,
rect intracellular transport and control motion and sensatio®.d., the assumption of a linear bath dynamics or a weak
in cells [3]. In contrast to these molecular biomotors, how-coupling limit. For the latter case, quantum master equations,
ever, the molecular sized physical engines necessitate-e.g., of Lindblad form, have been derivgtd, 11
depending on the nature of particles to be transported and
their operating temperature—a description that accounts as
well for quantum features such as tunneling and quantum II. QUANTUM SMOLUCHOWSKI DYNAMICS
reflection. For this class of quantum Brownian motors, recent L L .
theoretical studieg,5] have predicted that the transport be- ~ R€cent work within the strong friction limit shows that
comes distinctly modified as compared to its classical counduantum Brownian motion can be described by a generalized
terpart. In particular, innate quantum effects such as tunnePMoluchowski equation that accounts for leading quantum
ing induced current reversals, power-law-like quantumCOrrections[8,12. For a particle of mas#1 moving in the
diffusion transport laws, and quantum Brownian heat engineB0tentialV(x), Ankerholdet al. proposed a quantum Smolu-
have been observed with recent, guiding experiments th&howski equatiofQSE for the diagonal part of the density
involve either arrays of asymmetric quantum di@kor cell operatorp(t), ie., the_rate o_f_change of the probability den-
arrays composed of different Josephson junctigfis sity P(x,t)=(X|p(t)|x) in position spacex assumes the form

The present field of classical Brownian motors is very[8]
well established1-3]. In contrast, this is not the case in the
quantum regime. It is mainly due to the mutual interplay of d a .,
quantum mechanics, dissipation, and nonequilibrium driving VMEP(X’U T % et IP(x.1) + mDeﬁ(X)P(X't)' (1)
that the theoretical description of such nonequilibrium, dis-
sipative quantum Brownian motor devices is notoriously dif-wherey denotes friction. The effective potential reads
ficult. The present state of the art of the theory is character-
ized by specific restrictions such as, e.g., an adiabatic driving Vei(X) = V(X) + (L/2AV"(X), (2
regime, a tight binding description, a semiclassical analysi
or combinations thered#,5]. As such, the study of quantum
Brownian motors is far from being complete and there exist
an urgent need of further developments. The analytic study
of quantum Brownian transport farbitrarily shapedspa- A= (W aMy)In(hByl2m),  B=1/keT, ©)

tially periodic ratchet potentials presents such a challenggyescribes quantum fluctuations in position spacekaris the

This goal is addressed here within the strong friction regimeggjtzmann constant. The effective diffusion coefficient reads
where the underlying quantum dynamics can be modeled b

a recently put forward, ingenious quantum generalization o

Smoluchowski dynamicgg]. _ — gl 4 "
Classically, a system coupled to a thermal bath at tem- Deft(X) = Dank(¥) = B {1 +ABV"(X)]. (4)

peratureT is described in terms of Langevin equations orNote that Eq(1) is valid whenevekgT <7 7y.

corresponding Fokker-Planck equatid8$. For a Brownian This so-derived quantum-Smoluchowski equation exhib-

2

S . : L :
wherein the prime denotes the derivative with respect to the
ézoordinatex. The prominent parameter
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its, however, a disturbing short-coming: In clear contradic-dependent diffusion coefficient given in E@). The corre-
tion to the validity of the second law of thermodynamics, Eq.sponding(MQSE) Langevin equation reads in the Ito repre-
(1) yields for an arbitraryasymmetrigeriodic ratchet poten- sentation[10]

tial V(x) of periodL atzeraexternal bias amon-zerg station-

ary average velocityU>=\_]L _(or equivalently, a nonvanighing YMX = = Vi(X) + 2yMDpod¥) &(t), (7)

probability current)). This is so because the expression for ) o ) )

the current reads where the dot denotes the time derivative &fidl is (classi-
cal) Gaussian white noise of vanishing mean and correlation

L 1-exfW(L)] (&) &(s))=8(t—9). The above scheme is close in spirit with
(V)= —-—7T L : the approximation method of colored noise driven dynamics
J dXDRﬁk(X)eXF[‘ V(X)] J du exg ¥ (u)] in terms of corresponding effective Markovian processes
0 X [14]-
(5

WhereWw(x)= UV (u)/Dan(u) upon inspection is nonpe- IV. QUANTUM BROWNIAN MOTOR TRANSPORT

riodic with W(L) # 0. Thus a finite stationary drift emerges; A finite transport emerges when the system operates far
i.e., a Maxwell demon seemingly is at work at stationary,from thermal equilibrium{2]. In the present context, we in-
thermal equilibrium. vestigate overdamped, quantum Brownian mofdt§] with

the quantum fluctuations characterized by the parameier

Eqg. (3). To this aim, we complement the thermal quantum
dynamics in Eq(7) with a slowly waggling nonthermal, de-
terministic, or random force(t), i.e.,

IIl. DEMON-FREE QUANTUM-SMOLUCHOWSKI
DYNAMICS

Next, we put forward a clear-cut modification of the . , v T———
above quantum-Smoluchowski equation which does not YMX= = Veg(X) + V2yMDnod ) E() + 7(1). (8)
cause such a fake perpetual motion phenomenon. First, W dimensionless form we then obtain
observe from theory8] that theleadingstrong friction quan-
tum cqrrection involves the sec_ond qrder derivative of the Y == We(y) + 2Dy, od(y)%(s) + (), (9)
potential V(x), see Eq(4). Following prior works[8,12] we N ) _
shall consistently neglegin the high friction limit higher ~ Where the position of the Brownian motor is scaledyas
order contributions im, which in fact would involve also =X/L, time is rescaled as=t/ 7, with the characteristic time
higher order derivatives of the potential. This new, modifiedScale readingro=MyLZ/AV [the barrier heighAV is the
guantum Smoluchowski equatiaMQSE) is derived from dlfference' betvyeen the maximal .and minimal values'of
the following set of construction criteria: We seek a newV(X)]- During this time span, a classical, overdamped particle
diffusion coefficient thati) in leading order reproduces the moves a distance of lengthunder the influence of the con-
previous result in Refs[8,12], and (i) does not exhibit a stant forceAV/L. The effective potential iaNen(y)=WI(y)
Maxwell demon behavior, i.e., the modified dynamics yields*(1/2XW'(y), where the rescaled potentiaM/(y)
in thermal equilibrium a vanishing probability current, and =V(x)/AV=W(y+1) possesses a unit period and a unit bar-
additionally, (iii ) the dynamics reproduces the correct ther-rier height. The dimensionless parametgr\/L? describes
mal quantum position probability for strong frictioji3].  quantum fluctuations over the characteristic lengthFor
The construction criteriokii) of zero flux together with the example, the valua,=0.01 means that, roughly speaking,
correct leading order result for the thermal position probabil-the difference between quantum and classical fluctuations of
ity in (ii) then fixes the form of the diffusion function the position of the Brownian particle is significant over dis-
FIV'(x)]=a{1-bV'(x)]™* uniquely The two constants  tances of the ordeyA,L=0.1L. The rescaled diffusion func-

andb read explicitya=8 andb=\p. tion DoY) reads
Upon an expansion df[V"(x)] into a series in the two o I
diffusion functions do coincide in first order with respect to Dmod(¥) = Bo 11 = MaBoW' (V)] (10

the quantitye(x) =[AV"(x)| <1, as required by the condition  The dimensionless, inverse temperat@e AV/ksT is a
in (i). Therefore this improved modified quantum- ratio of the activation energy in the nonscaled potential and
Smoluchowski equatio) is given by a modified diffusion,  the thermal energy. The rescaled Gaussian white noise is
reading %(s):(L/AV)g(t) and the rescaled, nonthermal force reads
D0 = Dyod) = FIL-ABVITS. (6 " ns 5 s cizat -
As a specific realization, we next consider nonthermal
Note that from a mathematical viewpoint our thermal MQSEfluctuations modeled by Markovian, two-state noisgs)

dynamics assumes the form of a Padé-like, nonperturbative{—a,a}, that switches with a rate between the levela and
result in place of Eq.(4). The thermal quantum- -a. This problem can be solved analytically in the adiabatic
Smoluchowski stochastic dynamics in this strong frictionlimit, i.e., if »—0. In this limit the stationary averaged di-
limit is thus equivalent to classical Brownian dynamics mensionless velocity reads(y)=J=(1/2)[J(a)+J(-a)],
within the effective potential(2) and the new, state- where
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Ja) = 1 -expg- Bod) (11)

1 y+1
JO dy Drody)exd-Bo¥(y,a)] f dzexd By¥(z,a)]
y

and amplitudesa of the nonequilibrium two-state noise; this re-
gime describes the nearequilibrium behavior with the di-
W(y,a) = W(Y) + (1/2)AoW'(y) = (1/2)AoBo[ W' (y)]? rected current approaching zero. In clear contrast, the use of
2 ' N2 , the conventional qguantum Smoluchowski equaii@$E in
~ (UANBAW (Y] + ahofiW' (y) —ay. (12) Eq. (4) (dotted yields a nonphysicalalthough smaljl posi-
tive current value. It should be pointed out, however, that far
away from equilibrium (for a>0.5 the two forms of

[15] ) . 09 ) forms of
The influence of the quantum corrections is presented i@;;r}gm Smoluchowski dynamics yield practically identical

Figs. 1-4. The role of quantum noise enters via two func-

tions: The effective potentialeg(y) and the effective diffu- study arbitrarily shapedratchet profiles. As examples we

ston funcUoanod(y?. The guantum correction to the poten- consider different cases from the family of more complex
tial erends nganthmmally weakly on temperature. Theshaped asymmetric periodic potentials
crucial correction stems from the diffusion which increases
as the temperature decreases. The prominent quantum effects W(y) = Wy{sin(2my) + 0.4 sif4m(y — 0.45]
appear for lower temperatures. In Figs. 1-4, we take for the .
repspcaled quantum fﬁjctuations a garameter valuehgf +bsin6a(y - 0.45]}, (13
=10“In(10°8y). This choice assures that the quantumwhereb is a shape parameter ai is chosen such that the
Smoluchowski regime is fully valid down to low tempera- barrier height is normalized to unity. This ratchet potential
tures of the ordep,~ 10. In Fig. 1 we depict the current vs exhibits an intriguing current reversal vs the noise amplitude
the dichotomic noise leved. We deduce that the quantum a. The maximal absolute quantum correction is
corrections reduce the absolute value of the curi@me  |\,8,W'(y)|=0.06. There occur two regimes: one regime of
maximal absolute quantum correction is small noise levels for which the amplitude of the quantum
INoBoW'(y)|=0.202. Note that the current value approachescurrent is enhanced and one at larger noise amplitudes where
zero for a vanishing noise amplitude— 0 (solid line) and,  the classical current exceeds its quantum counterpart. A most
as well, for very large amplituda— . The modification of  salient intermediate regime occurs for which ttiassical
the diffusion coefficient turns out to be essential for smallcurrent is positive while the quantum current remains nega-
tive. The point of the physically relevant quantum current

Its classical behavior, i.eAg=0, has been studied in Ref.

The analytic expression for the current allows one to

035 Wy reversal is shifted towards larger noise levels. Use of the
036 o0ty
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FIG. 1. Stationary velocityy) vs the two-state noise amplitude i A R
a for both a strongly damped quantum Brownian mdaswlid line) 0.1 1 a 10 100
and its classical counterpadashed lingis depicted for the poten-
tial (see the right inset of unit barrier height, W(y)= FIG. 2. The dependence of the stationary currgntvs the

-W[sin(27y) +0.25 sirf4mwy)], with Wy=0.454. The theorydot- two-state noise leved is depicted for the potentiall3) with b
ted ling in Ref.[8] yields a nonphysicalalthough smajlquantum-  =0.3 (inse) for the modified quantum-SmoluchowskMQSE)
Maxwell demon behavior at small noise amplitudeésee the left  theory(solid line), the conventional quantum-Smoluchow§RISE)
insed; further away from equilibrium(@a>0.5 the QSE and the theory (dotted, and the classical cagelashed ling respectively,
MQSE predictions practically coincide within line thickness. The for an inverse dimensionless temperatgge 2. Note that the maxi-
chosen dimensionless inverse temperaturgyiss. mal absolute correction is actually rather smalgB,W'(y)|=0.06

031107-3



MACHURA et al. PHYSICAL REVIEW E 70, 031107(2004)

0.05 T T 7 T 0.3 . T T T

T
- - 12— M-QSE
/ - ] 3.10
— M-QSE / 102 0.005F |: ! - - QSE ;03
SE / ’ . / = = classical _ _._|
- Q . 0 —"
= - classical / R , = ac

0.025-

By

FIG. 3. The directed noise-induced transp@jtof the quantum FIG. 4. Comparison of classical and quantum noise induced
Brownian motor(solid ling) vs the dimensionless inverse tempera- girected transport as in Fig. 3 vs inverse temperature for a different
ture B, for the ratchet potentigll3) with b=0.3, see inset in Fig. 2, gichotomic noise leved=1 and for a different ratchet potentidl3)
is compared with its classical limidashed lingand the conven- \ith h=0.62, see the lower inset. The notation and symbols are the
tional quantum theory in Eq4) (dotted ling. The dichotomic noise  same as in Fig. 3. For this potential the classical current does not
level is set ata=5. The variations of the quantum corrections are change the direction. The standard quantum Smoluchowski equa-
depicted with the shaded background. tion predicts a positive current whereas the modified quantum
Smoluchowski equation leads to a positive current only for small
values off3; and then yields a current in the opposite direction. For
this current reversal see the upper inset.

quantum-Smoluchowski diffusion theory of Ref§8,12
yields a fake, positive-valued current at small dichotomic
noise strength(dotted ling, being accompanied by a non-
physical(!) current reversal, see Fig. 2. We find again that
the expected convergence between the two theories occurs V. CONCLUSIONS

far away from thermal equilib_rium. By use of a distinct modification of quantum-
In Figs. 3 and 4 we elucidate the role of temperaturegyqiychowski theory we have developed a strong friction
Equatlon_(lo) shows that the quantum corrections increasey antum approximation that is in agreement with both ther-
monotonically as temperature decreases. We must refraipyq| equilibrium statistics and—above all—with the second
however, from analyzing the limit of extreme low tempera- |5,y of thermodynamics. This so obtained, modified quantum
ture. This is so because the quantum corrections then grofiery can be applied to far from equilibrium transport where
too Iqrge, causing the diffusion to pass from positive to Nons; 4cilitates closed form expression® terms of quadra-
physical, negative values upon exceeding the threshold valugeq for directed, quantum Brownian motor transport. Our
1; clearly, the strong friction quantum theory is valid only 5caple results hold true away from the semiclassical limit
below this threshold. In fact, for correction values close tog g additionally, can readily be applied to experimentally
threshold, the nondiagonal, density matrix elements assumghitrarily shaped ratchet profiles. Note that this presents an
nonzero decoherence values that can no longer be neglectgdnortant advance over prior studies of quantum ratchets
with the quantum-Smoluchowski theory. Figures 3 and 4 deq4 g that often require the use of manageable, stylized po-
pict these increasing quantum corrections with decreasingia| forms. Our investigation additionally manifests a rich
temperature for two different potentials and different di- spectrum of quantum Brownian motor behaviors, exhibiting

chotomic noise levels. For the potentiaB) with b=0.3, see  poy quantum induced enhancement and suppression of
the inset in Fig. 2, for large temperatures both the Class'caﬂ'ansport as well as shifted current reversals.

current and the quantum current are negativg. With decreas- These novel features can advantageously be put to work
ing temperature the interplay between reflection and tunnelg,, quantum ratchets on the micro- and nanosgajeMore-

ing causes a largém absolute valupquantum current; Upon gyer the structure of our quantum-Smoluchowski dynamics
crossing the point of classical current reversal this behaviog, pe generalized to higher dimensional overdamped situa-
is interchanged. At even lower temperatures quantum Corregi,ng s e.g., for quantum noise-induced directed transport
tions cause a smaller current value. The conventional and thg, < rfaces. In particular, our method and these quantum
modified quantum theories yield similar results, see Fig. 3yatchet signatures can be utilized to optimize transport prop-

For the potentia(13) with b=0.62, see the inset in Fig. 4, enies in superconductors by controlling the motion of vorti-
and for the dichotomic noise levak1, there is no classical a5 ang magnetic flux quanta6,17.

current reversal. For very large temperatures the quantum

current agrees W|t_h the classical one and, with decreas!ng ACKNOWLEDGMENTS

temperature, first increases and then changes the direction,
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