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Common genetic risk variants for type 2 diabetes (T2D) have
primarily been identified in populations of European and Asian
ancestry. We tested whether the direction of association with 20
T2D risk variants generalizes across six major racial/ethnic
groups in the U.S. as part of the Population Architecture using
Genomics and Epidemiology Consortium (16,235 diabetes case
and 46,122 control subjects of European American, African
American, Hispanic, East Asian, American Indian, and Native
Hawaiian ancestry). The percentage of positive (odds ratio [OR] .1
for putative risk allele) associations ranged from 69% in American
Indians to 100% in European Americans. Of the nine variants where
we observed significant heterogeneity of effect by racial/ethnic group
(Pheterogeneity , 0.05), eight were positively associated with risk

(OR .1) in at least five groups. The marked directional consis-
tency of association observed for most genetic variants across
populations implies a shared functional common variant in each
region. Fine-mapping of all loci will be required to reveal markers
of risk that are important within and across populations.Diabetes
61:1642–1647, 2012

O
ver the past decade, genome-wide association
studies (GWAS) and candidate gene associa-
tion studies have been successful in identifying
common risk variants for type 2 diabetes (T2D)

(1–15). The loci revealed have provided insight into the
genetic basis of this common disease, as well as biological
pathways important in its pathogenesis. Most of these
previously reported risk variants were identified in very
large studies or meta-analyses conducted among populations
of European and Asian ancestry and have been associated
with modest increases in T2D risk (per-allele odds ratios
[ORs] between 1.1 and 1.4) (12). Subsequent testing of these
well-established variants in other racial and ethnic groups
has been limited (12,16–24), and most of the studies have
been undersized and underpowered to provide reliable risk
estimates and clarity regarding generalizability of the asso-
ciations in non-European populations. Aggregating results
from multiple studies conducted among racially and ethni-
cally diverse populations is one approach to amass an ad-
equate sample size for replicating these modest genetic
associations and extend our understanding of T2D genetics
to non-European populations. As part of the Population
Architecture using Genomics and Epidemiology (PAGE)
Consortium, we have tested 20 validated risk variants for
association with T2D. These 20 variants represent 18 risk
regions and were examined in as many as 16,235 diabetes
case and 46,122 control subjects from six major U.S. pop-
ulation groups (European Americans, African Americans,
Hispanics, East Asians, Native Hawaiians, and American
Indians) from six large population-based studies.

RESEARCH DESIGN AND METHODS

The PAGE Consortium consists of large ongoing population-based studies or
consortia (25). The following studies are included in the current study: from
the CALiCo (Causal Variants Across the Life Course) consortium, ARIC (the
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Atherosclerosis Risk in Communities Study) (26), CHS (Cardiovascular Health
Study) (27), and SHS (Strong Heart Study) (28,29); EAGLE (Epidemiologic
Architecture of Genes Linked to Environment, based on three National Health
and Nutrition Examination Surveys [NHANES]) (30–33); MEC (The Multieth-
nic Cohort) (34); and WHI (Women’s Health Initiative) (35,36). Detailed in-
formation about each study can be found in Supplementary Data.
Diabetes case and control definitions. To facilitate harmonization of di-
abetes case definitions across studies, data-collection methods were reviewed
and compared between studies. All studies collected self-reported information
on previous diagnosis by a physician or medical professional and use of med-
ication for treatment of diabetes; however, not all studies measured fasting blood
glucose levels, which more specifically define uncontrolled or undiagnosed T2D.
In order to incorporate the T2D information across studies, two case definitions
were allowed: self-report and exam based. To be classified as a case subject
according to the self-report definition, participants had to report both a previous
diagnosis of diabetes and use of medication to treat diabetes. To be classified as
a control subject (self-report), participants had to report neither previous di-
agnosis nor use of diabetes medications. To be classified as a case subject
according to the exam-based definition, participants had to either meet the self-
report case definition or have a fasting ($8 h) blood glucose$126 mg/dL. To be
classified as a control subject (exam based), participants had to be classified as
a control subject per the self-report definition and have a fasting blood glucose
,126 mg/dL. Both prevalent and incident cases were included. For both defi-
nitions, case subjects with reported diabetes diagnosis before age 30 years were
excluded. Sensitivity analyses in the ARIC study suggested that the magnitude
of association between candidate variants and T2D did not differ systematically
according to the case definitions we applied (Supplementary Data). Additional
study-specific details on the data-collection methods and case definitions can be
found in the Supplementary Data.

A total of 16,235 diabetes case and 46,122 control subjects were included in
this study (case and control subjects, respectively, by study: ARIC, 1,348/10,978;
CHS, 859/4,488; SHS, 1,575/1,249; MEC, 6,298/9,980; EAGLE/NHANES, 1,029/
4,502; and WHI, 5,126/14,925). None of these studies was involved in the initial
discovery efforts of these T2D risk loci. The data from the MEC have previously
been reported (37).
Genotyping. The 20 variants evaluated in the current study were selected from
18 genomic regions found to be significantly associated with risk of T2D in
studies published as of September 2009 (Supplementary Table 1). In the
CDKN2A/CDKN2B and KCNQ1 regions, more than one variant was investigated,
as many of the index signals identified in the initial GWAS populations are not
perfectly correlated. An additional variant, rs8050136, at the FTO locus, was also
examined but not associated with risk in any population after adjustment for BMI
(data not shown).

Genotyping was conducted in study-specific laboratories using a number of
different platforms. Cross-laboratory and cross-platform reproducibility was
assessed by genotyping 360 HapMap samples from populationsmost relevant to
PAGE samples in each laboratory. A description of the platforms and quality-
control metrics from each study/laboratory is provided in Supplementary Data.
The genotype concordance for single nucleotide polymorphisms (SNPs)
evaluated in the HapMap samples in more than one laboratory was.98.5% per
SNP, with an average concordance of 99.8%.

We excluded results for SNP rs13266634 (SLC30A8) in all populations
except European Americans and Hispanics, as there is an adjacent SNP 1 bp
away (rs16889462) that has a frequency of 10% in African Americans, 4% in
Asians, and 2% in Native Hawaiians (,1% in Hispanics and Europeans) and
interferes with genotyping assays, thus resulting in genotype misclassification.

Genetic markers that distinguish the major ancestral populations (African,
European, and Asian) were available in three studies. For ARIC, principal
components of ancestry were derived from 200,000 SNPs genotyped on a
custom array. For WHI (all populations) and MEC (African Americans and
Native Hawaiians),;100 ancestry-informative markers were used in a principal-
components analysis to assess major axes of variation (38,39). For a subset of the
MEC Latinos, principal components were derived from markers on the Illumina
2.5M array. Genetic ancestry information was not available for the majority of the
American Indian (SHS) or East Asian (MEC) samples or samples in EAGLE.
Statistical analysis. b values and SEs for each variant were obtained by
unconditional logistic regression or Cox proportional hazards regression. For
each variant, the allele tested was the allele that was associated with increased
risk in previous studies. In each study, models were run separately for each
racial/ethnic population and adjusted for sex, age (continuous), and BMI
(continuous). Approximately 13% of the WHI cohort was selected for inclusion
in PAGE. This selection was nonrandom; therefore, analyses in WHI in-
corporated inverse probability weighting to account for sampling. For SHS,
models were also run separately for each center.

Information on genetic ancestry was available for a large number of
European Americans (;64%), African Americans (;85%), Hispanics (65%), and
Native Hawaiians (;83%). Results were similar after adjustment for population

structure in all populations except for five SNPs in Native Hawaiians and four
SNPs in Hispanics, where log ORs changed by .20% and P values changed by
more than one order of magnitude in either direction (Supplementary Table 2).
For each ethnic group, a pooled estimate was calculated using a fixed-effects
model in which the effect measures were weighted by the inverse of the vari-
ance of the log OR. A combined estimate across ethnic groups was calculated
using a random-effects model. We tested also for heterogeneity by study and
by race using the Q statistic. For Native Hawaiians (MEC), we used the results
adjusted for genetic ancestry. Similarly, for Latinos results are presented for
MEC and WHI, as no ancestry information was available in EAGLE. All reported
P values were derived from two-sided statistical tests. A P value,0.05 was used
to declare an association as statistically significant. For each SNP in each racial/
ethnic population, we estimated the statistical power to detect the previously
reported relative risks in discovery populations of European or Asian ancestry
(40) (Supplementary Table 1).

RESULTS

The descriptive characteristics of case and control sub-
jects by racial/ethnic group and study are presented in
Table 1. The mean age of case or control subjects ranged
across studies from 47.1 (EAGLE, African American con-
trol subjects) to 73.0 (CHS, European American case
subjects and African American control subjects). Both
men and women were represented in each study except
for WHI, which included only women. Case subjects were
consistently heavier than control subjects in each study
and population (Table 1).

We found no significant association with the first prin-
cipal component (a measure of European admixture) and
T2D risk in African Americans (in ARIC, MEC, or WHI). In
Native Hawaiians, the first principal component is a mea-
sure of European admixture (and ancestry) and was signif-
icantly inversely associated with T2D risk (P = 3.2 3 1028)
(Supplementary Fig. 1). In Native Hawaiians, the significance
of the association with three variants, which were all more
common in Native Hawaiians than European Americans,
diminished after adjustment for stratification (rs10010131,
WFS1; rs7754840, CDKAL1; and rs864745, JAZF1). In con-
trast, the variants at TCF7L2 (rs7903146) and KCNQ1
(rs2237897) became nominally significant. The observation
of larger b values for TCF7L2 and KCNQ1 variants after
adjustment for stratification is consistent with negative con-
founding due to lower risk allele frequencies in Native
Hawaiians compared with European Americans (Supple-
mentary Table 1) and an inverse association of European
ancestry and T2D risk in this population. Similarly, in
Hispanics the first principal component, which is also
a measure of European admixture (and ancestry) in this
population, was significantly associated with lower T2D risk
(P = 2.1 3 10212 in the MEC) (Supplementary Fig. 2). Ad-
justment for the first principal component in Hispanics
increased the OR and degree of statistical significance for
three SNPs that were all less common, although marginally, in
Hispanics than in European Americans (rs2237897, KCNQ1;
rs4402960, IGF2BP2; and rs7903146, TCF7L2) and di-
minished significance for rs864745 (JAZF1), which is
more common in Hispanics than in European Americans.

For the most part, the risk allele frequencies of each
population tracked with the risk allele frequency of
European Americans (Supplementary Fig. 3). Effect esti-
mates were .1 for 69–100% of the SNPs across populations
(average: 84%) (Fig. 1). Three variants were significantly
associated (P , 0.05) with risk in at least four groups
(rs4402960, IGF2BP2; rs864745, JAZF1; and rs7903146,
TCF7L2), and of the 17 SNPs evaluated in five or more
populations, positive associations were observed with 13
SNPs (OR .1) in at least five groups (Fig. 1). Of the 108
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estimated effects (total number of tests: SNP 3 population),
91 had ORs .1 (84%). Removing European Americans, the
population in which most of the original signals were
reported, only reduced this percentage to 80%. We observed
significant heterogeneity of effect by racial/ethnic group
for nine SNPs (Pheterogeneity , 0.05). However, aside from
rs7961581 at TSPAN8, eight of these variants (at THADA,
IGF2BP2, WFS1, CDKAL1, CDKN2A/CDKN2B [rs2383208],
TCF7L2, KCNQ1 [rs2237895], and KCNJ11) were positively
associated with risk (OR .1) in at least five populations
(Fig. 1). Thus, even for variants that displayed evidence
of significant heterogeneity across population, the di-
rection of effect was generally consistent in the majority
of the populations.

DISCUSSION

We examined 20 validated risk variants for T2D, represent-
ing 18 risk regions, in as many as 16,235 diabetes case and
46,122 control subjects from six major population groups.
The vast majority of the variants were positively associated
with risk in the five non-European populations. These
findings are highly consistent with a previous multiethnic
study in the MEC, which contributed a large fraction of the
case subjects to this meta-analysis (American Indians 0%,
European Americans 11%, African Americans 31%, Hispanics
66%, East Asians 84%, and Native Hawaiians 100%) (37), and
suggest that the majority of these variants are likely to be
generalized markers of T2D risk across populations.

We did not find evidence of substantial confounding by
population stratification in European Americans or African
Americans. However, adjustment for population structure
using principal components did affect the association with
several variants for Native Hawaiians and Hispanics.
Native Hawaiians are highly admixed with the three main
groups being Polynesian, Asian, and European. The first few
principal components capture European admixture, with
European ancestry lower in Hawaiian case subjects than in
control subjects (41). Therefore, adjustment for European
admixture reduced the strength of association for some of
the variants that were more common in Polynesians and
increased the strength of some of the variants more common
in Europeans. Similar differences were noted for some SNPs
after principal-components adjustment in Hispanics. Un-
fortunately, ancestry-informative markers were not avail-
able to address the issue of population stratification in the
admixed American Indian populations.

The marked directional consistency of association for
most genetic variants across populations implies a shared
functional common variant in each region. This general
pattern of consistency provides little support for the
“synthetic association” model (42), which suggests that
GWAS signals with common alleles are due to rare alleles,
many of which are likely to be ethnically distinct. The in-
ability to replicate associations with variants in populations
where statistical power is sufficient may highlight loci for
which fine-mapping may be helpful. For example, in African
Americans, power was high ($94%) to detect significant

TABLE 1
Descriptive characteristics of diabetes case and control subjects in PAGE studies

Racial/ethnic group study*

Case/control subjects

N % Male Age (years) BMI (kg/m2)

European Americans
ARIC 892/8,688 57.0/45.3 54.7 (5.6)/54.1 (5.7) 30.0 (5.0)/26.3 (4.4)
CHS 660/3,876 53.0/42.0 73.0 (5.5)/72.8 (5.6) 28.1 (4.8)/26.1 (4.4)
MEC 537/1,827 54.2/47.5 67.7 (8.1)/66.9 (8.6) 30.4 (5.6)/25.5 (4.4)
EAGLE 438/2,340 54.3/45.2 67.1 (12.8)/57.0 (16.8) 30.9 (6.3)/27.2 (5.4)
WHI 2,464/10,573 0/0 65.0 (6.9)/67.6 (6.7) 32.1 (6.6)/27.9 (6.0)
Total 4,991/27,304

African Americans
ARIC 456/2,290 37.9/37.0 52.9 (5.5)/53.0 (5.8) 31.9 (6.5)/28.5 (5.6)
CHS 199/612 40.2/36.6 72.4 (5.3)/73.0 (5.7) 30.4 (5.5)/27.9 (5.4)
MEC 1,084/1,630 37.6/45.6 69.1 (7.8)/68.0 (8.3) 31.3 (5.8)/27.4 (4.9)
EAGLE 255/1,037 43.9/45.1 60.0 (12.8)/47.1 (14.0) 31.9 (6.7)/28.8 (6.7)
WHI 1,456/2,580 0/0 60.9 (6.7)/61.7 (7.3) 33.4 (6.9)/32.7 (7.8)
Total 3,450/8,149

Hispanics
MEC 2,231/2,607 48.1/49.1 68.4 (7.1)/67.8 (7.3) 29.8 (5.2)/26.8 (4.1)
EAGLE 336/1,125 50.0/52.1 61.3 (11.8)/49.5 (14.6) 30.1 (6.3)/28.7 (5.2)
WHI 789/1,154 0/0 60.0 (6.5)/60.4 (6.8) 31.3 (5.8)/29.9 (7.0)
Total 3,356/4,886

East Asians
MEC 1,821/2,736 56.4/53.5 68.8 (8.4)/68.4 (8.4) 27.3 (4.3)/24.2 (3.4)
WHI 355/519 0/0 62.7 (7.1)/65.6 (7.6) 27.0 (4.5)/24.3 (4.2)
Total 2,176/3,255

Native Hawaiians
MEC 625/1,180 45.0/45.3 65.4 (7.5)/64.6 (8.0) 31.9 (6.0)/27.7 (5.3)

American Indians
SHS 1,575/1,249 32.9/44.2 56.7 (7.9)/55.4 (8.0) 32.2 (6.2)/29.4 (5.8)
WHI 62/99 0/0 59.4 (7.0)/62.7 (7.6) 34.0 (7.3)/28.8 (5.4)
Total 1,637/1,348

Data are means (SD) unless otherwise indicated. *The exam-based definition for T2D case and control subjects was applied for ARIC, CHS,
SHS, and EAGLE, and the self-report–based definition was applied for MEC and WHI.
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associations, with the index variants at five loci (WFS1,
HHEX, CDNK2A/B, THADA, and KCNQ1) that were found
to be significantly associated with risk in at least one of the
other non-European populations. The lack of a statistically
significant association in African Americans at these loci
could be because the risk allele is relatively invariant in
populations of African ancestry or low linkage disequilib-
rium between the index signal and the functional allele.
Fine-mapping of these loci, and others such as TCF7L2
in American Indians, where we observed no evidence of
a significant association (OR 1.08 [95% CI 0.90–1.29])
despite .99% power and despite the suggestion that
rs7903146 is the biologically functional variant in African
Americans (43) and in genomic studies of open chromatin
(44), should be of high priority to extract information
about any genetic risk conferred at that locus that may be
important for these populations.

This study has a number of limitations. In the design, we
allowed for both incident and prevalent diabetes cases as
well as different case/control criteria depending on study;
however, our sensitivity analysis of the different case groups
(Supplementary Data) did not suggest systematic differ-
ences in effect sizes based on study design, case definition,
or analytic approach. We also had no information about type
1 diabetes in some studies, although case subjects known to
be diagnosed before age 30 years were excluded and most
participants in these studies were middle-aged or older
adults.

This is the largest effort to date to investigate the gen-
eralizability of T2D susceptibility variants in the major
racial/ethnic groups of the U.S. The consistent patterns of
association for these variants provide additional support
for the importance of these loci in contributing to T2D risk
in multiple populations. Identification of the underlying

FIG. 1. Forest plots for each risk variant. Shown are the effect estimates (squares) and 95% CIs (bars) for each variant by population, as well as
overall (hollow square). AA, African American; HIS, Hispanic; AI, American Indian; ALL, random-effects meta-analysis of all populations; ASI,
East Asian; EA, European American; NH, Native Hawaiian; Phet, test for heterogeneity across populations.
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biological functional allele(s) in each region, through fine-
mapping, will be required to determine the extent to which
these regions contribute to racial and ethnic disparities in
T2D risk.
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